University orldaho	
BAE450	
Environmental Hydrology	
Streamflow	
Module 3	
To become familiar with methods to measure or estimate streamflow	

December 2017 Automatical Action of Action of

BAE450: Environmental Hydrology

Measurement of Streamflow

What are some typical units?

- discharge Q: cfs (ft³/s), cms (m³/s)
- volume V: ft³, m³, gallons, liters, acre-ft
- time t: seconds, minutes, days, years

2

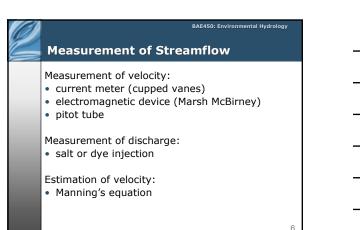
Continuity

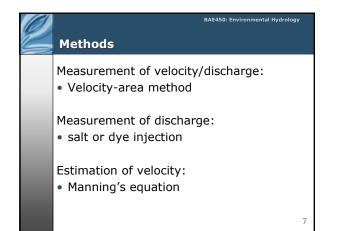
The most important equation in stream or channel measurements is the continuity equation, which is stated as

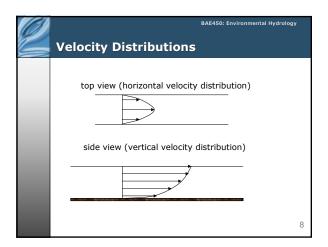
$$Q = v * A$$

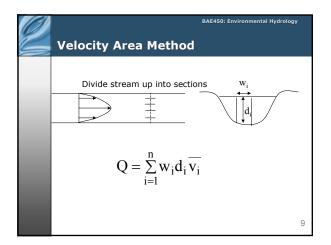
where Q is discharge, v is velocity, and A is the cross-sectional area of flow So, for two cross-sections, 1 and 2, the following should hold: $Q = v_1^*A_1 = v_2^*A_2$

4

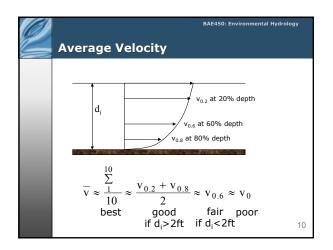

DE250: Environmental Hydrology

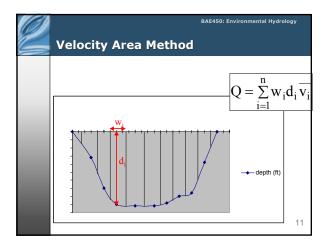

Stage Height & Rating Curve

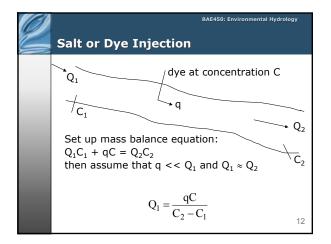

In many cases, a measurement of stage height is
recorded using a staff gauge, pressure transducer
or nitrogen bubbler. To convert the stage height
to a discharge, frequent measurements of
discharge are needed to develop a rating curve

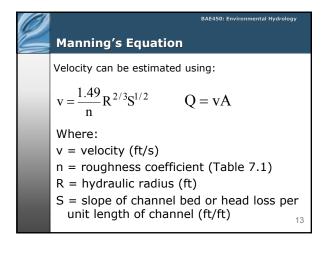

to recorder

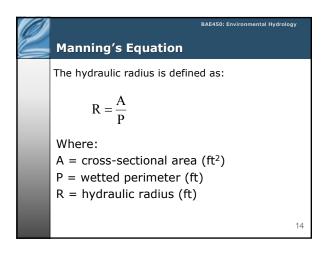
stilling
well
pressure
transducer
g

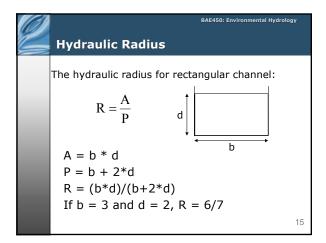


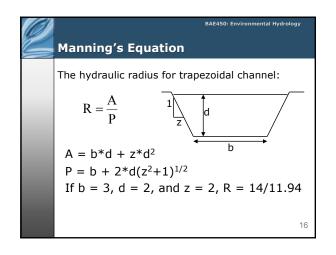


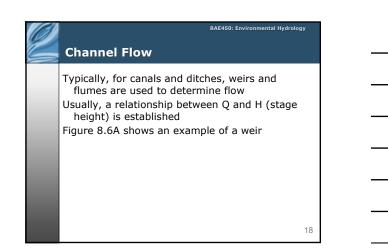


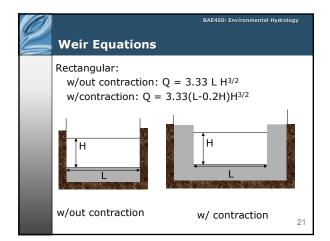


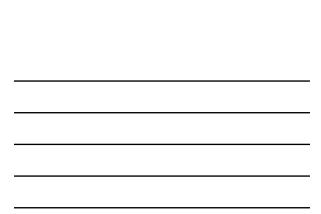


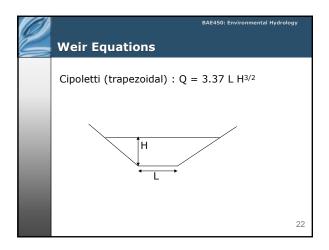




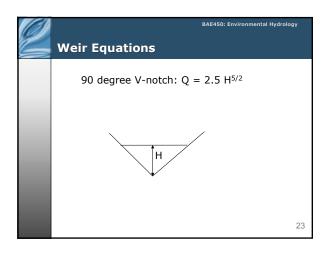





BAE450: Environmental Hydrology Manning's n	
The roughness coefficient is a critical parameter which must be determined from a table, or by calibration A smaller roughness will result in a larger Q n varies between about 0.01 to 0.15	
	17



BAE450: Environmental Hydrold	рду
The general relationship for a flume (or weir) is: $Q = C A \sqrt{(2gH)}$ where C is a coefficient, A is cross-sectional area (ft ²), g is the gravitational constant, and H is height of water in the flume Usually, H is measured at critical depth where a unique relationship exists between flow and water level	
	19


BAE450: Environmental Hydrolog	aA
 The general relationship for a weir is: Q = C L H^{3/2} where C is a weir coefficient, L is the weir length (ft), and H is height of water above the riser crest note that A in flume equation is replaced with L*H 	
	20

Notes on Flumes and Weirs

Coefficients should be evaluated in-situ Rules exist for installation and design of flumes and weirs, including where to measure H Tables exist for different dimensional shapes

BAE450: Environmental Hydrology