

Measurement of Streamflow

Who collects streamflow data?

- USGS
- NRCS
- US Forest Service
- USDA-ARS
- US Corps of Engineers
- USBR
- Tennessee Valley Authority

Measurement of Streamflow
What are some typical units?

- discharge Q: cfs ($\mathrm{ft} 3 / \mathrm{s}$), cms ($\mathrm{m}^{3} / \mathrm{s}$)
- volume V: $\mathrm{ft}^{3}, \mathrm{~m}^{3}$, gallons, liters, acre- ft
- time t: seconds, minutes, days, years
\qquad
\qquad
\qquad
\qquad

Continuity

The most important equation in stream or \qquad channel measurements is the continuity equation, which is stated as

$$
\mathrm{Q}=\mathrm{V} * \mathrm{~A}
$$

where Q is discharge, v is velocity, and A is the cross-sectional area of flow
So, for two cross-sections, 1 and 2, the following should hold: $\mathrm{Q}=\mathrm{v}_{1} * \mathrm{~A}_{1}=\mathrm{v}_{2} * \mathrm{~A}_{2}$

Stage Height \& Rating Curve

In many cases, a measurement of stage height is recorded using a staff gauge, pressure transducer or nitrogen bubbler. To convert the stage height to a discharge, frequent measurements of discharge are needed to develop a rating curve
\qquad
\qquad
\qquad

\qquad

Measurement of Streamflow

Measurement of velocity:

- current meter (cupped vanes)
- electromagnetic device (Marsh McBirney)
- pitot tube
\qquad

Measurement of discharge: \qquad

- salt or dye injection

Estimation of velocity:
\qquad

- Manning's equation

Methods

Measurement of velocity/discharge:

- Velocity-area method

Measurement of discharge:

- salt or dye injection

Estimation of velocity:

- Manning's equation

Velocity Distributions
top view (horizontal velocity distribution)

side view (vertical velocity distribution)

\qquad
\qquad
\qquad

Velocity Area Method

Divide stream up into sections

$$
\mathrm{Q}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{w}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}} \overline{\mathrm{v}_{\mathrm{i}}}
$$

Average Velocity
\qquad

Velocity Area Method

Salt or Dye Injection

\qquad
\qquad
\qquad

$$
\mathrm{Q}_{1}=\frac{\mathrm{qC}}{\mathrm{C}_{2}-\mathrm{C}_{1}}
$$

Manning's Equation

Velocity can be estimated using:
$\mathrm{v}=\frac{1.49}{\mathrm{n}} \mathrm{R}^{2 / 3} \mathrm{~S}^{1 / 2} \quad \mathrm{Q}=\mathrm{vA}$
Where:
v = velocity (ft/s)
$\mathrm{n}=$ roughness coefficient (Table 7.1)
$\mathrm{R}=$ hydraulic radius (ft)
$S=$ slope of channel bed or head loss per unit length of channel ($\mathrm{ft} / \mathrm{ft}$)

Manning's Equation
The hydraulic radius is defined as:

$$
\mathrm{R}=\frac{\mathrm{A}}{\mathrm{P}}
$$

Where:
A $=$ cross-sectional area (ft^{2})
$\mathrm{P}=$ wetted perimeter (ft)
\qquad
$\mathrm{R}=$ hydraulic radius (ft)

Hydraulic Radius

The hydraulic radius for rectangular channel: \qquad

$$
\mathrm{R}=\frac{\mathrm{A}}{\mathrm{P}}
$$

$A=b * d$
$P=b+2 * d$
$R=(b * d) /(b+2 * d)$
If $b=3$ and $d=2, R=6 / 7$

Manning's Equation

The hydraulic radius for trapezoidal channel:

$$
\mathrm{R}=\frac{\mathrm{A}}{\mathrm{P}}
$$

$A=b^{*} d+z^{*} d^{2}$
$P=b+2 * d\left(z^{2}+1\right)^{1 / 2}$
If $b=3, d=2$, and $z=2, R=14 / 11.94$

Manning's n

The roughness coefficient is a critical parameter which must be determined from a table, or by calibration
A smaller roughness will result in a larger Q
n varies between about 0.01 to 0.15
\qquad

Flume Equation

The general relationship for a flume (or weir) is:
$\mathrm{Q}=\mathrm{CA} \sqrt{ }(2 \mathrm{~g} \mathrm{H})$
where C is a coefficient, A is cross-sectional area (ft^{2}), g is the gravitational constant, and H is height of water in the flume
Usually, H is measured at critical depth where a unique relationship exists between flow and water level

Weir Equation

\qquad
The general relationship for a weir is:
$\mathrm{Q}=\mathrm{CLH} \mathrm{H}^{3 / 2}$
where C is a weir coefficient, L is the weir length (ft), and H is height of water above the riser crest

- note that A in flume equation is replaced with $L^{*} H$

Weir Equations

Cipoletti (trapezoidal) : Q = 3.37 L H ${ }^{3 / 2}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Weir Equations

90 degree V -notch: $\mathrm{Q}=2.5 \mathrm{H}^{5 / 2}$

Coefficients should be evaluated in-situ
Rules exist for installation and design of flumes and weirs, including where to measure H
Tables exist for different dimensional shapes
\qquad
\qquad
\qquad
\qquad

