Handai Cyber University

Biotechnology Advanced Environmental Biotechnology

Ken-ichi Suga

Graduate School of Engineering, Osaka University Graduate School of Information Science, Osaka University International Center for Biotechnology, Osaka University

Keep water clean!

Environmental Biotechnology

Water quality and pollution Wastewater treatment

Water quality and pollution

Introduction

Stream and self-purification
Eutrophication

Water quality and pollution

•Introduction

The integration of natural and man-generated water cycle

Water quality and pollution

• Stream pollution and self-purification

Stream pollution and self-purification

Up stream

Down stream

Effect of organic pollution and self-purification on a stream.

Water quality and pollution

• Eutrophication

Aquatic food chain unbalanced by eutrophication compared with normal chain

Eutrophic lake

- The accepted upper limits for lakes free of algal blooms
 - (Ammonia + Nitrate)-N0.3 mg/lOrthophosphate-P0.02 mg/l
- Lakes will exhibit algal blooms
 Total-N
 Total-P
 0.1 mg/l

Biological treatment systems

Activated sludge process Advanced wastewater treatment – Biological nitrogen removal – Biological phosphorus removal

Biological treatment systems

Activated sludge process

Biological treatment 1. Activated sludge process

Waste water treatment by activated sludge system

Waste water treatment by activated sludge system

Design of activated sludge process

Kinetics of biological growth

٠

Application of kinetics to wastewater treatment systems

Design of activated sludge process Kinetics of biological growth

$$\left[\frac{dX}{dt}\right]_{grow} = Y \left[\frac{dS}{dt}\right]_{con} - k_d X \qquad (1)$$

$$\left\lfloor \frac{dX}{dt} \right\rfloor_{grow} = \text{net growth rate of microorganisms}$$

 $\left[\frac{dS}{dt}\right]_{con} = \text{rate of BOD utilization by microorganisms}$

- k_d = microorganisms decay constant
- Y = growth yield coefficient, mass of microorganism /mass BOD utilized₂₀

Application of kinetics to treatment system

Schematic of an activated sludge reactor with sludge recycle

A material balance for the mass of cells in the entire system can be written as

$$\begin{bmatrix} Rate \ of \ change \\ of \ cells \\ concentration \\ in \ reactor \end{bmatrix} = \begin{bmatrix} Net \ rate \ of \\ cells \ growth \\ in \ reactor \end{bmatrix} - \begin{bmatrix} Rate \ of \ cells \\ outflow \\ from \ reactor \end{bmatrix}$$
$$V\left(\frac{dX}{dt}\right) = \left(Y\left(\frac{dS}{dt}\right)_{con} - k_dX\right)V - \left(Q_wX_r + \left(Q - Q_w\right)X_e\right)$$
(2)

- *Y*: growth yield coefficient, mass of cells / mass BOD utilized k_d : cells decay coefficient
 - *X* : the concentration of cells in the reactor
 - X_e : the concentration of cells in the effluent
 - X_r : the concentration of cells in the recycle flow
 - Q_w : the cell-wasting rate.

$$\left(\frac{dS}{dt}\right)_{con} = consumption \ rate \ of \ BOD$$

At steady state, dX/dt equals 0, Eq. (2) can be rewritten as

$$\left(Q_{w}X_{r}+\left(Q-Q_{w}\right)X_{e}\right)=\left(Y\left(\frac{dS}{dt}\right)_{con}-k_{d}X\right)V$$
(3)

In a system with a properly operating settling units, the concentration of the cells in the effluent, X_e is very small, Eq. (3) can be simplified to give

$$Q_{w}X_{r} = \left(Y\left(\frac{dS}{dt}\right)_{con} - k_{d}X\right)V$$
(4)

Dividing both sides of Eq. (4) by XV gives

$$\frac{Q_w X_r}{XV} = \left(\frac{Y}{X} \left(\frac{dS}{dt}\right)_{con} - k_d\right)$$
⁽⁵⁾
²³

The mean cell residence time θ_c is defined as

$$\theta_c = \frac{XV}{Q_w X_r} \tag{6}$$

The mean hydraulic retention time θ for the reactor is defined as

$$\theta = \frac{V}{Q} \tag{7}$$

where,

V: the volume of the reactor

Q: the flow rate of waste water to the reactor

Eq.(5) can be simplified

or

or
$$\frac{1}{\theta_c} = Y \left(\frac{\left(\frac{dS}{dt} \right)_{con}}{X} \right) - kd \qquad (8)$$
where,
$$\frac{1}{\theta_c} = Y \nu - k_d \qquad (9)$$

$$\nu = \frac{\left(\frac{dS}{dt} \right)_{con}}{X}$$

 ν is commonly known as the specific BOD consumption rate or specific waste removal rate.

The waste removal rate in the reactor can be evaluated,

$$V\left(\frac{dS}{dt}\right)_{con} = Q(S_0 - S) \tag{10}$$

Using Eqs. (6), (7) and (10), the cell concentration X in the reactor can be obtained,

$$X = \frac{\theta_c}{\theta} \frac{Y(S_0 - S)}{1 + k_d \theta_c} \tag{11}$$

Sludge production rate, R_s can be calculated by using Eq. (6)

$$R_s = Q_w X_r = \frac{XV}{\theta_c} \tag{12}$$

Oxygen requirements

The theoretical oxygen requirement can be calculated by knowing BOD of wastewater and the amount of organisms wasted from the system.

$$O_{2}\left(\frac{g}{day}\right) = \begin{bmatrix} BOD \ utilized \\ per \ day \end{bmatrix} - \begin{bmatrix} BOD \ of \ organisms \\ wasted \ per \ day \end{bmatrix}$$
(13)

The BOD of a mole of cells is assumed as follows,

$$C_{5}H_{7}NO_{2} + 5O_{2} \rightarrow 5CO_{2} + 2H_{2}O + NH_{3} \quad (14)$$

(113g) (5x32g)

$$\frac{O_{2}}{cells} = \frac{160}{113} = 1.42 \left(\frac{g O_{2}}{g - cell}\right) \quad (15)$$

Consequently, the BOD of cells is equal to BOD = 1.42(cells) (16) Therefore, the theoretical oxygen requirement for an activated sludge system can be calculated as

$$O_{2}\left(\frac{g}{day}\right) = \begin{bmatrix} BOD \ utilized \\ per \ day \end{bmatrix} - 1.42 \begin{bmatrix} organisms \\ wasted \ per \ day \end{bmatrix}$$
(17)

$$O_{2}\left(\frac{g}{day}\right) = \left(\frac{dS}{dt}\right)_{con} - 1.42\left(\frac{dX}{dt}\right)_{gr}$$
(18)

$$=Q(S_0 - S) - 1.42Q_w X_r$$
(19)

Then, if the oxygen transfer efficiency of the aeration system is known, the actual air requirement can be determined.

Advanced wastewater treatment

Biological nitrogen removal

Nitrogen content in municipal wastes 4 - 6kg of nitrogen per person per year.

Common form of nitrogen organic, ammonia, nitrate and nitrite.

Decomposition of nitrogenous organic matter Bacterial decomposition Organic nitrogen compounds \rightarrow NH₃

Advanced wastewater treatment

• Nitrification and nitrogen removal

Bacterial nitrification (autotrophic bacteria)

 $NH_{4}^{+} + \frac{3}{2}O_{2} \xrightarrow{Nitromonas} NO_{2}^{-} + 2H^{+} + H_{2}O$ $NO_{2}^{-} + \frac{1}{2}O_{2} \xrightarrow{Nitrobacter} NO_{3}^{-}$

Bacterial denitrification (hetrotrophic bacteria)

dissolved organic $-C + NO_x$ $\longrightarrow N_2$, CO_2 , H_2O , biomass 32

Advanced waste water treatment by three activated sludge system (Nitrogen removal)

Treatment efficiency

Conventional activated sludge process BOD 70 - 80%Nitrogen 10 - 40%Advanced activated sludge process BOD 80 - 90%Nitrogen 60 - 70%

Advanced wastewater treatment

Biological phosphorus removal

Phosphorus content in the cell

Conventional activated sludge about 3% of the cell dry mass

Polyphosphate accumulating activated sludge bacteria more than 12% of the cell dry mass Biochemical model of enhanced phosphorus uptake and release

PHB : poly-β-3 hydroxy butyric acid polyP : poly phosphate

Biological phosphorus removal

Handai Cyber University

Biotechnology Advanced Environmental Biotechnology

END

Graduate School of Engineering, Osaka University Graduate School of Information Science, Osaka University International Center for Biotechnology, Osaka University