Lecture 13

CE260/Spring 2000

Fe2+ and Mn2+ removal

· WHO standards for acceptable concentrations of iron and manganese are 0.3 and 0.1 mg/L respectively

· Solubility is controlled by the oxidation state
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· Iron oxide (rust) has reddish brown color and MnO2 has brown black color and they are both precipitates

· pH, temp, complexing agents and O2 effect oxidation

· If rxn rate of oxidation < input then iron and manganese will accumulate

· Can use Permanganate (MnO4) to oxidize iron and manganese

· Redox equations are below Mn2+ likes high pH , while Fe2+favors low pH
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· Overall reaction for iron removal is favored under high pH conditions
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· The reactions for the oxidation of Fe2+ with oxygen are:
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· Greensand - glauconite (K, Na, Ca)1.2-2 - (Fe3+, Al, Fe, Mg)4 Si7-7.6Al1-1.4O2(OH)4 nH2O

· If MnO2 coats the surface then adsorbed Fe2+ and Mn2+ oxidizes completely to Mn4+, Mn3+ and Fe3+
· KMnO4 is used to regenerate the surface (H2S and phenols are also removed)

Phosphorus removal

· P is typically the limiting factor for freshwater systems

· Al2(SO4)3.18H2O is alum

· Na2Al2O4 is sodium alumnate

· Figures 15.4a nd b

Activated carbon

· Removal of dissolved substances by adsorption onto surface of the carbon

· Carbon is the absorbent

· Solute is the absorbate

· Can remove SOCs (synthetic organic chemicals) also radium 222, Hg, and other metals

· Some organic chemicals that are not removed (e.g. THMs, methylene chloride, MTBE)

· Can dechlorinate with GAC Cl2 ( 2Cl- and chloroamines ( CO2 + Cl-
· Two types of activated carbon: granular GAC and powder PAC

· Activation process have wood or coal +oxidizing steam ~1700F (water-gas rxn)
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· Loss of C in form of COg leaves a very porous structure to the char up to 1000 m2/g carbon

· Adsorption capacity of activated carbon

· Adsorption isotherm describes relationship between the amount of adsorbate adsorbed and equilibrium adsorbate concentration in solution

· Bottle pt method

· Same conc. absorbate in solution 

· Different concentration of carbon

· 10 bottles on shaker test table


· run last for 1.5 x
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· Where:

· V = volume of sample

· Co = initial adsorbate

· C = final steady state concentration

· M = mass of carbon

· qe = equilibrium conc. adsorbed/mass C

· qI = initial conc. adsorbed/mass C
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· Langmuir Isotherm (Ex. 15.4) 

· 1918 single layer adsorption model 

· ( = fraction S.A. covered by adsorbate at equilibrium

· 1-( = bare fraction

· Since adsorption rate = desorption rate at SS
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· If max amount of solute adsorbed is Qo, Qo = k" when ( = 1

· Substution of this into the above equation yields:
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· Remember that C = Cequil
· Can linearize the Langmuir three ways
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· Want to solve for K and Qo
· Use the equation that best fits the data range

· Can describe adsorption w/ Langmuir if you have a good linear fit.  If not then maybe some other model will work

Freundlich Isotherm - Heinrich Freundlich

· General exponential concentration fit
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· KF = specific capacity

· N is a function of the energy of adsorption (linearize)
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· General Freundlich isotherm lookalikes the following:


BET - Brunaver, Emmert, and Teller (1938)

· Extension of the Langmuir Isotherm to several layers of adsorption

· First layer is heat of adsorption the subsequent layers are condensation
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· Cs = saturation concentration of solute in H2O

· B and Qo are constants 

· Ha is the enthalpy of adsorption 

· Linearize the BET
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· GAC adsorbers (Figure 15.9)

· Look at adsorption zone progression in fixed bed adsorbers (Figure 15.11)

· EBCT = empty bed contact time = (H = td = V/Q ~ 7 to 20 min

Rate of adsorption zone formation
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· N = mass flux

· a= adsorption area

· m = mass of adsorbate

· k' = mass transfer constant

· C = conc. in the liquid

· C* = conc. in equilibrium with the adsorbate

· k = k'/x

· r = rate of mass removal

· Doing a mass balance on the elemental volume yields:
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· Since A = x-c of bed and A (x = (V
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· V = nominal velocity through the bed, consider

· Fm = mass flux of the liquid
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· If m = mass adsorbent in the bed
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· Describes adsorption in the adsorption zone

· Capacity in adsorption zone
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· Ve = volume of liquid passed through the bed

· Vb = volume of liquid passed at breakthrough

· tex = time to bed exhaustion

· t( = time for adsorption zone to be moved
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· tf = time to form 1 (
· tD = time to travel bed distance D

· V = velocity

· Total mass of a contaminant adsorbed (mT)
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· (m = is the incremental mass adsorbed

· Define the fractional capacity of the adsorption zone
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· Extreme value of f = 0 and 1
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· We can also define

· M( = amount of adsorbate that will accumulate at complete saturation

· q( = amount of adsorbate at the initial concentration/unit mass of adsorbate

· Mb = amount of solute accumulated at point of breakthrough
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· Thus the % saturation of the whole column at breakthrough (Sb) is:
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· Since QCo over a time (t) gives the mass needed to be removed can calculate VColumn needed to achieve this

· So shape of the breakthrough is critical

· From the isotherm data we can get sets of data of Co and qo



· Can define superficial mass rate of saturation (Ms)
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· For any point on above figure for a C and a q FmC = Msq

· We can either graphically or numerically integrate this equation

· Need relationship between C-C* and C

· Method

· Draw best fit isotherm and plot isotherm (Figure above)

· Draw operating line

· Find C1 and corresponding q1 from op. line now find corresponding C1* that would be in equilibrium 

· Repeat to get C-C*,s for q's and C's then integrate


[image: image30.wmf]A

A

A

A

x

or

V

V

V

V

x

A

C

C

C

C

C

dC

A

A

A

C

C

C

C

C

dC

b

e

b

x

n

i

i

i

C

C

i

i

i

C

C

e

b

b

3

2

1

1

*

*

3

2

1

3

1

*

*

)

(

)

(

1

+

+

=

-

-

=

=

-

D

=

-

+

+

=

-

D

=

-

å

ò

å

ò

=

=

d

d


· Then plot C/Co versus (Vx - Vb)/(Ve - Vb)

· Bed depth service time method (BDST)

· Based on lab and pilot column tests

· 2 design constraints

· minimum contact time must be provided

· carbon must be supplied at rate exhausted

· example of a wastewater at same concentration for 3 columns of different depths (Figure 15.22)

· draw a line at a specific CD, the tD is determined for each

· ts < tb because bed needs to be filled

· Re = the rate of carbon exhaustion
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· The EBLT = empty bed contact time is calc.
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· Plot bed depth versus ts (Figure 15.23)

· Find the Dmin required to meet effluent criteria (or min td) then plot Re versus EBDT (Figure 15.24)
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· If some fraction of wastewater is not adsorbable then:
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