Supplementary material for the article "Alpha-cut based fuzzy cognitive maps with applications in decision-making"

DATA AND RESULTS RELATED TO:

ERP MAINTENANCE RISK MODEL

Table S. 1 Strengths of causal relationships in ERP risk model

Causalconnection	Sign	Strength of causal relationship		
		Crisp	T1 fuzzy	IT2 fuzzy
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{2}$	+	0.220	(0,0.06,0.6)	((0,0.06,0.6;1),(0.005,0.06,0.595;0.8))
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{5}$	+	0.257	$(0,0.07,0.7)$	((0,0.07,0.7;1),(0.005,0.07,0.695;0.8))
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{9}$	+	0.273	(0,0.12,0.7)	((0,0.12,0.7;1),(0.005,0.12,0.695;0.8))
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{10}$	+	0.147	(0,0.04,0.4)	((0,0.04,0.4;1),(0.005,0.04,0.395;0.8))
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{13}$	-	0.086	(0,0.05,0.208)	((0,0.05,0.208;1),(0.005,0.05,0.203;0.8))
$\mathrm{C}_{2} \rightarrow \mathrm{C}_{6}$	+	0.110	(0,0.03,0.3)	((0,0.03,0.3;1),(0.005,0.03,0.295;0.8))
$\mathrm{C}_{2} \rightarrow \mathrm{C}_{11}$	+	0.337	(0,0.01,1)	((0,0.01,1;1),(0.005,0.01,0.995;0.8))
$\mathrm{C}_{2} \rightarrow \mathrm{C}_{13}$	-	0.150	(0,0.108,0.342)	((0,0.108,0.342;1),(0.005,0.108,0.337;0.8))
$\mathrm{C}_{3} \rightarrow \mathrm{C}_{4}$	+	0.418	$(0,0.255,1)$	((0,0.255,1;1),(0.005,0.255,0.995;0.8))
$\mathrm{C}_{3} \rightarrow \mathrm{C}_{5}$	+	0.408	(0,0.325,0.9)	((0,0.325,0.9;1),(0.005,0.325,0.895;0.8))
$\mathrm{C}_{3} \rightarrow \mathrm{C}_{6}$	+	0.395	$(0,0.185,1)$	((0,0.185,1;1),(0.005,0.185,0.995;0.8))
$\mathrm{C}_{3} \rightarrow \mathrm{C}_{7}$	+	0.183	$(0,0.05,0.5)$	((0,0.05,0.5;1),(0.005,0.05,0.495;0.8))
$\mathrm{C}_{4} \rightarrow \mathrm{C}_{3}$	+	0.300	(0,0.15,0.75)	((0,0.15,0.75;1),(0.005,0.15,0.745;0.8))
$\mathrm{C}_{4} \rightarrow \mathrm{C}_{5}$	+	0.268	(0,0.105,0.7)	((0,0.105,0.7;1),(0.005,0.105,0.695;0.8))
$\mathrm{C}_{5} \rightarrow \mathrm{C}_{4}$	+	0.147	(0,0.04,0.4)	((0,0.04,0.4;1),(0.005,0.04,0.395;0.8))
$\mathrm{C}_{5} \rightarrow \mathrm{C}_{6}$	+	0.542	$(0,0.625,1)$	((0,0.625,1;1),(0.005,0.625,0.995;0.8))
$\mathrm{C}_{5} \rightarrow \mathrm{C}_{8}$	+	0.390	(0,0.17,1)	((0,0.17,1;1),(0.005,0.17,0.995;0.8))
$\mathrm{C}_{5} \rightarrow \mathrm{C}_{13}$	-	0.050	$(0,0.018,0.133)$	((0,0.018,0.133;1),(0.005,0.018,0.128;0.8))
$\mathrm{C}_{6} \rightarrow \mathrm{C}_{8}$	+	0.220	$(0,0.06,0.6)$	((0,0.06,0.6;1),(0.005,0.06,0.595;0.8))
$\mathrm{C}_{6} \rightarrow \mathrm{C}_{13}$	-	0.103	(0,0.109,0.2)	((0,0.109,0.2;1),(0.005,0.109,0.195;0.8))
$\mathrm{C}_{7} \rightarrow \mathrm{C}_{6}$	+	0.240	(0,0.12,0.6)	((0,0.12,0.6;1),(0.005,0.12,0.595;0.8))
$\mathrm{C}_{7} \rightarrow \mathrm{C}_{8}$	+	0.293	$(0,0.08,0.8)$	((0,0.08,0.8;1),(0.005,0.08,0.795;0.8))
$\mathrm{C}_{7} \rightarrow \mathrm{C}_{13}$	-	0.068	(0,0.038,0.167)	((0,0.038,0.167;1),(0.005,0.038,0.162;0.8))
$\mathrm{C}_{8} \rightarrow \mathrm{C}_{6}$	+	0.203	$(0,0.11,0.5)$	((0,0.11,0.5;1),(0.005,0.11,0.495;0.8))
$\mathrm{C}_{8} \rightarrow \mathrm{C}_{11}$	+	0.293	$(0,0.08,0.8)$	((0,0.08,0.8;1),(0.005,0.08,0.795;0.8))
$\mathrm{C}_{8} \rightarrow \mathrm{C}_{13}$	-	0.065	$(0,0.029,0.167)$	((0,0.029,0.167;1),(0.005,0.029,0.162;0.8))
$\mathrm{C}_{10} \rightarrow \mathrm{C}_{13}$	-	0.036	(0,0.025,0.083)	((0,0.025,0.083;1),(0.005,0.025,0.078;0.8))
$\mathrm{C}_{11} \rightarrow \mathrm{C}_{13}$	-	0.094	(0,0.032,0.25)	((0,0.032,0.25;1),(0.005,0.032,0.245;0.8))
$\mathrm{C}_{12} \rightarrow \mathrm{C}_{2}$	+	0.347	$(0,0.14,0.9)$	((0,0.14,0.9;1),(0.005,0.14,0.895;0.8))
$\mathrm{C}_{12} \rightarrow \mathrm{C}_{6}$	+	0.360	$(0,0.28,0.8)$	((0,0.28,0.8;1),(0.005,0.28,0.795;0.8))
$\mathrm{C}_{12} \rightarrow \mathrm{C}_{7}$	+	0.272	$(0,0.315,0.5)$	((0,0.315,0.5;1),(0.005,0.315,0.495;0.8))
$\mathrm{C}_{12} \rightarrow \mathrm{C}_{8}$	+	0.128	$(0,0.035,0.35)$	((0,0.035,0.35;1),(0.005,0.035,0.345;0.8))
$\mathrm{C}_{12} \rightarrow \mathrm{C}_{10}$	+	0.073	(0,0.02,0.2)	((0,0.02,0.2;1),(0.005,0.02,0.195;0.8))
$\mathrm{C}_{12} \rightarrow \mathrm{C}_{11}$	+	0.073	(0,0.02,0.2)	((0,0.02,0.2;1),(0.005,0.02,0.195;0.8))
$\mathrm{C}_{12} \rightarrow \mathrm{C}_{13}$	-	0.189	(0,0.134,0.433)	((0,0.134,0.433;1),(0.005,0.134,0.428;0.8))

Table S. 2 Simulation results of ERP risk model with hyperbolic tangent function

	Scenario 1					Scenario 2	
λ	Concept	Crisp	T1 fuzzy	IT2 fuzzy	Crisp	T1 fuzzy	IT2 fuzzy
	C1	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))
1.0	C2	0.265	(0,0.198,0.346)	$\begin{gathered} ((0,0.198,0.346 ; 1), \\ (0.063,0.198,0.345 ; 0.8)) \end{gathered}$	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))
	C3	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))	0.777	(0.031,0.625,0.931)	$\begin{aligned} & ((0.031,0.625,0.931 ; 1), \\ & (0.135,0.625,0.93 ; 0.8)) \end{aligned}$
	C4	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))	0.868	(0.031,0.723,0.98)	$\begin{gathered} ((0.031,0.723,0.98 ; 1), \\ (0.164,0.723,0.98 ; 0.8)) \end{gathered}$
	C5	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))	0.895	(0.031,0.789,0.987)	$\begin{gathered} ((0.031,0.789,0.987 ; 1), \\ (0.164,0.789,0.987 ; 0.8)) \end{gathered}$
	C6	0.770	(0,0.612,0.935)	$\begin{gathered} ((0,0.612,0.935 ; 1), \\ (0.164,0.612,0.933 ; 0.8)) \end{gathered}$	0.971	(0,0.932,0.999)	$\begin{gathered} ((0,0.932,0.999 ; 1), \\ (0.208,0.932,0.999 ; 0.8)) \end{gathered}$
	C7	0.245	(0,0.258,0.287)	$\begin{gathered} ((0,0.258,0.287 ; 1), \\ (0.063,0.258,0.286 ; 0.8)) \end{gathered}$	0.672	(0,0.436, 0.871)	$\begin{gathered} ((0,0.436,0.871 ; 1), \\ (0.126,0.436,0.869 ; 0.8)) \end{gathered}$
	C8	0.765	$(0,0.524,0.94)$	$\begin{gathered} ((0,0.524,0.94 ; 1), \\ (0.153,0.524,0.939 ; 0.8)) \end{gathered}$	0.935	(0,0.751,0.997)	$\begin{gathered} ((0,0.751,0.997 ; 1), \\ (0.194,0.751,0.997 ; 0.8)) \end{gathered}$
	C9	0.000	$(0,0,0)$	$((0,0,0 ; 1),(0,0,0 ; 0.8))$	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))
	C10	0.160	(0,0.104,0.213)	$\begin{gathered} ((0,0.104,0.213 ; 1), \\ (0.063,0.104,0.211 ; 0.8)) \end{gathered}$	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))
	C11	0.809	(0,0.484, 0.969)	$\begin{gathered} ((0,0.484,0.969 ; 1), \\ (0.151,0.484,0.968 ; 0.8)) \end{gathered}$	0.786	(0,0.53, 0.94)	$\begin{gathered} ((0,0.53,0.94 ; 1), \\ (0.142,0.53,0.939 ; 0.8)) \end{gathered}$
	C12	0.019	(0.017,0.018,0.019)	$\begin{gathered} ((0.017,0.018,0.019 ; 1), \\ (0.017,0.018,0.019 ; 0.8)) \end{gathered}$	0.000	$(0,0,0)$	$\begin{gathered} ((0,0,0 ; 1), \\ (0,0,0 ; 0.8)) \end{gathered}$
	C13	-0.784	(-0.937,-0.661,0)	$\begin{gathered} ((-0.937,-0.661,0 ; 1), \\ (-0.934,-0.661,-0.214 ; 0.8)) \end{gathered}$	-0.815	(-0.95,-0.704,0)	$\begin{gathered} ((-0.95,-0.704,0 ; 1), \\ (-0.947,-0.704,-0.23 ; 0.8)) \\ \hline \end{gathered}$
3.0	C1	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))
	C2	0.999	$(0,0.998,1)$	$\begin{gathered} ((0,0.998,1 ; 1), \\ (0.995,0.998,1 ; 0.8)) \end{gathered}$	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))
	C3	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))	0.999	(0.995,0.998,1)	$\begin{gathered} ((0.995,0.998,1 ; 1) \\ (0.995,0.998,1 ; 0.8)) \end{gathered}$
	C4	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))	1.000	(0.995,0.999,1)	$\begin{gathered} ((0.995,0.999,1 ; 1), \\ (0.995,0.999,1 ; 0.8)) \end{gathered}$
	C5	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))	1.000	(0.995,1,1)	$\begin{aligned} & ((0.995,1,1 ; 1), \\ & (0.995,1,1 ; 0.8)) \end{aligned}$
	C6	1.000	$(0,1,1)$	((0,1,1;1),(0.995,1,1;0.8))	1.000	$(0,1,1)$	$\begin{gathered} ((0,1,1 ; 1), \\ (0.995,1,1 ; 0.8)) \end{gathered}$
	C7	0.999	$(0,0.999,1)$	$\begin{gathered} ((0,0.999,1 ; 1), \\ (0.995,0.999,1 ; 0.8)) \end{gathered}$	0.998	$(0,0.996,1)$	$\begin{gathered} ((0,0.996,1 ; 1), \\ (0.995,0.996,1 ; 0.8)) \end{gathered}$
	C8	1.000	$(0,0.998,1)$	$\begin{gathered} ((0,0.998,1 ; 1), \\ (0.995,0.998,1 ; 0.8)) \end{gathered}$	1.000	$(0,0.999,1)$	$\begin{gathered} ((0,0.999,1 ; 1), \\ (0.995,0.999,1 ; 0.8)) \end{gathered}$
	C9	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))	0.000	$(0,0,0)$	($(0,0,0 ; 1),(0,0,0 ; 0.8))$
	C10	0.997	(0,0.995, 0.998$)$	$\begin{gathered} ((0,0.995,0.998 ; 1), \\ (0.995,0.995,0.998 ; 0.8)) \end{gathered}$	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))
	C11	1.000	$(0,0.997,1)$	$\begin{gathered} ((0,0.997,1 ; 1), \\ (0.995,0.997,1 ; 0.8)) \end{gathered}$	0.999	$(0,0.997,1)$	$\begin{gathered} ((0,0.997,1 ; 1), \\ (0.995,0.997,1 ; 0.8)) \end{gathered}$
	C12	0.995	(0.995,0.995,0.995)	$\begin{aligned} & ((0.995,0.995,0.995 ; 1), \\ & (0.995,0.995,0.995 ; 0.8)) \end{aligned}$	0.000	$(0,0,0)$	$((0,0,0 ; 1),(0,0,0 ; 0.8))$
	C13	-1.000	$(-1,-1,0)$	$\begin{gathered} ((-1,-1,0 ; 1), \\ (-1,-1,-0.996 ; 0.8)) \end{gathered}$	-0.999	(-1,-0.999,0)	$\begin{gathered} ((-1,-0.999,0 ; 1), \\ (-1,-0.999,-0.996 ; 0.8)) \end{gathered}$
5.0	C1	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))
	C2	1.000	$(0,1,1)$	((0,1,1;1),(1,1,1;0.8))	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))
	C3	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))
	C4	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))
	C5	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))
	C6	1.000	$(0,1,1)$	((0,1,1;1),(1,1,1;0.8))	1.000	$(0,1,1)$	((0,1,1;1),(1,1,1;0.8))
	C7	1.000	$(0,1,1)$	((0,1,1;1),(1,1,1;0.8))	1.000	$(0,1,1)$	((0,1,1;1),(1,1,1;0.8))
	C8	1.000	$(0,1,1)$	((0,1,1;1),(1,1,1;0.8))	1.000	$(0,1,1)$	((0,1,1;1),(1,1,1;0.8))
	C9	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))
	C10	1.000	$(0,1,1)$	((0,1,1;1),(1,1,1;0.8))	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))
	C11	1.000	$(0,1,1)$	((0,1,1;1),(1,1,1;0.8))	1.000	$(0,1,1)$	((0,1,1;1),(1,1,1;0.8))
	C12	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))	0.000	$(0,0,0)$	((0,0,0;1),(0,0,0;0.8))
	C13	-1.000	$(-1,-1,0)$	((-1,-1,0;1),(-1,-1,-1;0.8))	-1.000	$(-1,-1,0)$	$((-1,-1,0 ; 1),(-1,-1,-1 ; 0.8))$

Table S. 3 Simulation results of ERP risk model with sigmoid function

	Scenario 1					Scenario 2	
λ	Concept	Crisp	T1 fuzzy	IT2 fuzzy	Crisp	T1 fuzzy	IT2 fuzzy
1.0	C1	0.659	(0.659,0.659,0.659)	$\begin{aligned} & ((0.659,0.659,0.659 ; 1), \\ & (0.659,0.659,0.659 ; 0.8)) \end{aligned}$	0.659	(0.659,0.659,0.659)	$\begin{aligned} & ((0.659,0.659,0.659 ; 1), \\ & (0.659,0.659,0.659 ; 0.8)) \end{aligned}$
	C2	0.756	(0.659,0.696,0.864)	$\begin{aligned} & ((0.659,0.696,0.864 ; 1), \\ & (0.661,0.696,0.864 ; 0.8)) \end{aligned}$	0.756	(0.659,0.696,0.864)	$\begin{aligned} & ((0.659,0.696,0.864 ; 1), \\ & (0.661,0.696,0.864 ; 0.8)) \end{aligned}$
	C3	0.721	(0.659,0.689,0.815)	$\begin{aligned} & ((0.659,0.689,0.815 ; 1), \\ & (0.66,0.689,0.814 ; 0.8)) \end{aligned}$	0.721	(0.659,0.689,0.815)	$\begin{aligned} & ((0.659,0.689,0.815 ; 1), \\ & (0.66,0.689,0.814 ; 0.8)) \end{aligned}$
	C4	0.766	(0.659,0.715,0.889)	$\begin{aligned} & ((0.659,0.715,0.889 ; 1), \\ & (0.661,0.715,0.888 ; 0.8)) \end{aligned}$	0.766	(0.659,0.715,0.889)	$\begin{aligned} & ((0.659,0.715,0.889 ; 1), \\ & (0.661,0.715,0.888 ; 0.8)) \end{aligned}$
	C5	0.815	(0.659,0.749,0.94)	$((0.659,0.749,0.94 ; 1),$	0.815	(0.659,0.749,0.94)	$\begin{aligned} & ((0.659,0.749,0.94 ; 1), \\ & (0.662,0.749,0.94 ; 0.8)) \end{aligned}$
	C6	0.909	(0.659,0.862,0.989)	$\begin{aligned} & ((0.659,0.862,0.989 ; 1), \\ & (0.665,0.862,0.989 ; 0.8)) \end{aligned}$	0.909	(0.659,0.862,0.989)	$\begin{aligned} & ((0.659,0.862,0.989 ; 1), \\ & (0.665,0.862,0.989 ; 0.8)) \end{aligned}$
	C7	0.741	(0.659,0.724,0.827)	$\begin{aligned} & ((0.659,0.724,0.827 ; 1), \\ & (0.661,0.724,0.826 ; 0.8)) \end{aligned}$	0.741	(0.659,0.724,0.827)	$\begin{aligned} & ((0.659,0.724,0.827 ; 1), \\ & (0.661,0.724,0.826 ; 0.8)) \end{aligned}$
	C8	0.840	(0.659,0.729,0.968)	$\begin{aligned} & ((0.659,0.729,0.968 ; 1), \\ & (0.663,0.729,0.967 ; 0.8)) \end{aligned}$	0.840	(0.659,0.729,0.968)	$\begin{aligned} & ((0.659,0.729,0.968 ; 1), \\ & (0.663,0.729,0.967 ; 0.8)) \end{aligned}$
	C9	0.709	(0.659,0.681,0.775)	$\begin{aligned} & ((0.659,0.681,0.775 ; 1), \\ & (0.66,0.681,0.774 ; 0.8)) \end{aligned}$	0.709	(0.659,0.681,0.775)	$\begin{aligned} & ((0.659,0.681,0.775 ; 1), \\ & (0.66,0.681,0.774 ; 0.8)) \end{aligned}$
	C10	0.699	(0.659,0.67,0.761)	$\begin{aligned} & ((0.659,0.67,0.761 ; 1), \\ & (0.661,0.67,0.759 ; 0.8)) \end{aligned}$	0.699	(0.659,0.67,0.761)	$\begin{aligned} & ((0.659,0.67,0.761 ; 1), \\ & (0.661,0.67,0.759 ; 0.8)) \end{aligned}$
	C11	0.793	(0.659,0.681,0.937)	$\begin{aligned} & ((0.659,0.681,0.937 ; 1), \\ & (0.662,0.681,0.937 ; 0.8)) \end{aligned}$	0.793	(0.659,0.681,0.937)	$\begin{aligned} & ((0.659,0.681,0.937 ; 1), \\ & (0.662,0.681,0.937 ; 0.8)) \end{aligned}$
	C12	0.659	(0.659,0.659,0.659)	$\begin{aligned} & ((0.659,0.659,0.659 ; 1), \\ & (0.659,0.659,0.659 ; 0.8)) \end{aligned}$	0.659	(0.659,0.659,0.659)	$\begin{aligned} & ((0.659,0.659,0.659 ; 1), \\ & (0.659,0.659,0.659 ; 0.8)) \end{aligned}$
	C13	0.455	(0.19,0.536,0.659)	$\begin{gathered} ((0.19,0.536,0.659 ; 1), \\ (0.198,0.536,0.65 ; 0.8)) \end{gathered}$	0.455	(0.19,0.536,0.659)	$\begin{gathered} ((0.19,0.536,0.659 ; 1), \\ (0.198,0.536,0.65 ; 0.8)) \\ \hline \end{gathered}$
3.0	C1	0.944	(0.944,0.944,0.944)	$\begin{aligned} & ((0.944,0.944,0.944 ; 1), \\ & (0.944,0.944,0.944 ; 0.8)) \end{aligned}$	0.944	(0.944,0.944,0.944)	$\begin{aligned} & ((0.944,0.944,0.944 ; 1), \\ & (0.944,0.944,0.944 ; 0.8)) \end{aligned}$
	C2	0.990	(0.944,0.97,0.999)	$\begin{gathered} ((0.944,0.97,0.999 ; 1), \\ (0.946,0.97,0.999 ; 0.8)) \end{gathered}$	0.990	(0.944,0.97,0.999)	$\begin{aligned} & ((0.944,0.97,0.999 ; 1), \\ & (0.946,0.97,0.999 ; 0.8)) \end{aligned}$
	C3	0.979	(0.944,0.966,0.995)	$\begin{aligned} & ((0.944,0.966,0.995 ; 1), \\ & (0.945,0.966,0.995 ; 0.8)) \end{aligned}$	0.979	(0.944,0.966,0.995)	$\begin{aligned} & ((0.944,0.966,0.995 ; 1), \\ & (0.945,0.966,0.995 ; 0.8)) \end{aligned}$
	C4	0.990	(0.944,0.978,0.999)	$\begin{aligned} & ((0.944,0.978,0.999 ; 1), \\ & (0.946,0.978,0.999 ; 0.8)) \end{aligned}$	0.990	(0.944,0.978,0.999)	$\begin{aligned} & ((0.944,0.978,0.999 ; 1), \\ & (0.946,0.978,0.999 ; 0.8)) \end{aligned}$
	C5	0.997	(0.944,0.988,1)	$\begin{aligned} & ((0.944,0.988,1 ; 1), \\ & (0.947,0.988,1 ; 0.8)) \end{aligned}$	0.997	(0.944,0.988,1)	$\begin{aligned} & ((0.944,0.988,1 ; 1), \\ & (0.947,0.988,1 ; 0.8)) \end{aligned}$
	C6	1.000	(0.944,0.999,1)	$\begin{aligned} & ((0.944,0.999,1 ; 1), \\ & (0.949,0.999,1 ; 0.8)) \end{aligned}$	1.000	(0.944,0.999,1)	$\begin{gathered} ((0.944,0.999,1 ; 1), \\ (0.949,0.999,1 ; 0.8)) \end{gathered}$
	C7	0.986	(0.944,0.982,0.997)	$\begin{aligned} & ((0.944,0.982,0.997 ; 1), \\ & (0.946,0.982,0.997 ; 0.8)) \end{aligned}$	0.986	(0.944,0.982,0.997)	$\begin{aligned} & ((0.944,0.982,0.997 ; 1), \\ & (0.946,0.982,0.997 ; 0.8)) \end{aligned}$
	C8	0.998	(0.944,0.981,1)	$\begin{gathered} ((0.944,0.981,1 ; 1) \\ (0.948,0.981,1 ; 0.8)) \end{gathered}$	0.998	(0.944,0.981,1)	$\begin{gathered} ((0.944,0.981,1 ; 1) \\ (0.948,0.981,1 ; 0.8)) \end{gathered}$
	C9	0.976	(0.944,0.962,0.993)	$\begin{aligned} & ((0.944,0.962,0.993 ; 1), \\ & (0.945,0.962,0.993 ; 0.8)) \end{aligned}$	0.976	(0.944,0.962,0.993)	$\begin{aligned} & ((0.944,0.962,0.993 ; 1), \\ & (0.945,0.962,0.993 ; 0.8)) \end{aligned}$
	C10	0.972	(0.944,0.954,0.991)	$\begin{aligned} & ((0.944,0.954,0.991 ; 1), \\ & (0.946,0.954,0.99 ; 0.8)) \end{aligned}$	0.972	(0.944,0.954,0.991)	$\begin{aligned} & ((0.944,0.954,0.991 ; 1), \\ & (0.946,0.954,0.99 ; 0.8)) \end{aligned}$
	C11	0.994	(0.944,0.961,1)	$\begin{gathered} ((0.944,0.961,1 ; 1), \\ (0.947,0.961,1 ; 0.8)) \end{gathered}$	0.994	(0.944,0.961,1)	$\begin{gathered} ((0.944,0.961,1 ; 1), \\ (0.947,0.961,1 ; 0.8)) \end{gathered}$
	C12	0.944	(0.944,0.944,0.944)	$\begin{aligned} & ((0.944,0.944,0.944 ; 1), \\ & (0.944,0.944,0.944 ; 0.8)) \end{aligned}$	0.944	(0.944,0.944,0.944)	$\begin{aligned} & ((0.944,0.944,0.944 ; 1), \\ & (0.944,0.944,0.944 ; 0.8)) \end{aligned}$
	C13	0.104	(0.003, 0.426,0.944)	$\begin{gathered} ((0.003,0.426,0.944 ; 1), \\ (0.003,0.426,0.936 ; 0.8)) \end{gathered}$	0.104	(0.003,0.426,0.944)	$\begin{aligned} & ((0.003,0.426,0.944 ; 1), \\ & (0.003,0.426,0.936 ; 0.8)) \end{aligned}$
5.0	C1	0.993	(0.993,0.993,0.993)	$\begin{aligned} & ((0.993,0.993,0.993 ; 1), \\ & (0.993,0.993,0.993 ; 0.8)) \end{aligned}$	0.993	(0.993,0.993,0.993)	$\begin{aligned} & ((0.993,0.993,0.993 ; 1), \\ & (0.993,0.993,0.993 ; 0.8)) \end{aligned}$
	C2	1.000	(0.993,0.997,1)	$\begin{aligned} & ((0.993,0.997,1 ; 1), \\ & (0.993,0.997,1 ; 0.8)) \end{aligned}$	1.000	(0.993,0.997,1)	$\begin{aligned} & ((0.993,0.997,1 ; 1), \\ & (0.993,0.997,1 ; 0.8)) \end{aligned}$
	C3	0.998	(0.993,0.997,1)	$\begin{aligned} & ((0.993,0.997,1 ; 1), \\ & (0.993,0.997,1 ; 0.8)) \end{aligned}$	0.998	(0.993,0.997,1)	$\begin{aligned} & ((0.993,0.997,1 ; 1), \\ & (0.993,0.997,1 ; 0.8)) \end{aligned}$
	C4	1.000	(0.993,0.998,1)	$\begin{aligned} & ((0.993,0.998,1 ; 1), \\ & (0.993,0.998,1 ; 0.8)) \end{aligned}$	1.000	(0.993,0.998,1)	$\begin{aligned} & ((0.993,0.998,1 ; 1), \\ & (0.993,0.998,1 ; 0.8)) \end{aligned}$
	C5	1.000	(0.993,0.999,1)	$\begin{aligned} & ((0.993,0.999,1 ; 1), \\ & (0.994,0.999,1 ; 0.8)) \end{aligned}$	1.000	(0.993,0.999,1)	$\begin{aligned} & ((0.993,0.999,1 ; 1), \\ & (0.994,0.999,1 ; 0.8)) \end{aligned}$
	C6	1.000	(0.993, 1,1)	$\begin{gathered} ((0.993,1,1 ; 1), \\ (0.994,1,1 ; 0.8)) \end{gathered}$	1.000	(0.993, 1,1)	$\begin{gathered} ((0.993,1,1 ; 1), \\ (0.994,1,1 ; 0.8)) \end{gathered}$
	C7	0.999	(0.993,0.999,1)	$\begin{aligned} & ((0.993,0.999,1 ; 1), \\ & (0.993,0.999,1 ; 0.8)) \end{aligned}$	0.999	(0.993,0.999,1)	$\begin{aligned} & ((0.993,0.999,1 ; 1), \\ & (0.993,0.999,1 ; 0.8)) \end{aligned}$
	C8	1.000	(0.993,0.999,1)	$\begin{aligned} & ((0.993,0.999,1 ; 1), \\ & (0.994,0.999,1 ; 0.8)) \end{aligned}$	1.000	(0.993,0.999,1)	$\begin{aligned} & ((0.993,0.999,1 ; 1), \\ & (0.994,0.999,1 ; 0.8)) \end{aligned}$
	C9	0.998	(0.993,0.996,1)	$\begin{gathered} ((0.993,0.996,1 ; 1), \\ (0.993,0.996,1 ; 0.8)) \end{gathered}$	0.998	(0.993,0.996,1)	$\begin{aligned} & ((0.993,0.996,1 ; 1), \\ & (0.993,0.996,1 ; 0.8)) \end{aligned}$
	C10	0.998	(0.993,0.995,1)	$\begin{aligned} & ((0.993,0.995,1 ; 1), \\ & (0.993,0.995,1 ; 0.8)) \end{aligned}$	0.998	(0.993,0.995,1)	$\begin{aligned} & ((0.993,0.995,1 ; 1), \\ & (0.993,0.995,1 ; 0.8)) \end{aligned}$
	C11	1.000	(0.993,0.996,1)	$\begin{aligned} & ((0.993,0.996,1 ; 1), \\ & (0.994,0.996,1 ; 0.8)) \end{aligned}$	1.000	(0.993,0.996,1)	$\begin{aligned} & ((0.993,0.996,1 ; 1), \\ & (0.994,0.996,1 ; 0.8)) \end{aligned}$
	C12	0.993	(0.993,0.993,0.993)	$\begin{aligned} & ((0.993,0.993,0.993 ; 1), \\ & (0.993,0.993,0.993 ; 0.8)) \end{aligned}$	0.993	(0.993,0.993,0.993)	$\begin{aligned} & ((0.993,0.993,0.993 ; 1), \\ & (0.993,0.993,0.993 ; 0.8)) \end{aligned}$
	C13	0.016	(0,0.099,0.993)	$\begin{gathered} ((0,0.099,0.993 ; 1), \\ (0,0.099,0.991 ; 0.8)) \end{gathered}$	0.016	(0,0.099,0.993)	$\begin{gathered} ((0,0.099,0.993 ; 1), \\ (0,0.099,0.991 ; 0.8)) \end{gathered}$

