Supplementary material for the article "Alpha-cut based fuzzy cognitive maps with applications in decision-making"

DATA AND RESULTS RELATED TO:

RADIOTHERAPY TREATMENT PLANNING

Table S. 4 Strengths of causal relationships in radiotherapy planning model

		Strength of causal relationship		
Causal connection	Sign	Crisp	T1 fuzzy	IT2 fuzzy
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{7}$	+	0.5	$(0.4,0.5,0.6)$	$((0.4,0.5,0.6 ; 1),(0.45,0.5,0.55 ; 0.8))$
$\mathrm{C}_{2} \rightarrow \mathrm{C}_{1}$	+	0.3	$(0.05,0.3,0.55)$	$((0.05,0.3,0.55 ; 1),(0.1,0.3,0.5 ; 0.8))$
$\mathrm{C}_{2} \rightarrow \mathrm{C}_{7}$	+	0.6	$(0.5,0.6,0.7)$	$((0.5,0.6,0.7 ; 1),(0.55,0.6,0.65 ; 0.8))$
$\mathrm{C}_{3} \rightarrow \mathrm{C}_{2}$	-	0.3	$(0.2,0.3,0.4)$	$((0.2,0.3,0.4 ; 1),(0.25,0.3,0.35 ; 0.8))$
$\mathrm{C}_{3} \rightarrow \mathrm{C}_{7}$	-	0.25	$(0.15,0.25,0.35)$	$((0.15,0.25,0.35 ; 1),(0.2,0.25,0.30 ; 0.8))$
$\mathrm{C}_{4} \rightarrow \mathrm{C}_{5}$	-	0.4	$(0.3,0.4,0.5)$	$((0.3,0.4,0.5 ; 1),(0.35,0.4,0.45 ; 0.8))$
$\mathrm{C}_{4} \rightarrow \mathrm{C}_{7}$	-	0.3	$(0.2,0.3,0.4)$	$((0.2,0.3,0.4 ; 1),(0.25,0.3,0.35 ; 0.8))$
$\mathrm{C}_{5} \rightarrow \mathrm{C}_{4}$	-	0.3	$(0.2,0.3,0.4)$	$((0.2,0.3,0.4 ; 1),(0.25,0.3,0.35 ; 0.8))$
$\mathrm{C}_{5} \rightarrow \mathrm{C}_{7}$	+	0.6	$(0.5,0.6,0.7)$	$((0.5,0.6,0.7 ; 1),(0.55,0.6,0.65 ; 0.8))$
$\mathrm{C}_{6} \rightarrow \mathrm{C}_{2}$	+	0.55	$(0.3,0.55,0.8)$	$((0.3,0.55,0.8 ; 1),(0.35,0.55,0.75 ; 0.8))$
$\mathrm{C}_{6} \rightarrow \mathrm{C}_{7}$	+	0.5	$(0.25,0.5,0.75)$	$((0.25,0.5,0.75 ; 1),(0.3,0.5,0.7 ; 0.8))$
$\mathrm{C}_{7} \rightarrow \mathrm{C}_{1}$	+	0.3	$(0.05,0.3,0.55)$	$((0.05,0.3,0.55 ; 1),(0.1,0.3,0.5 ; 0.8))$
$\mathrm{C}_{7} \rightarrow \mathrm{C}_{2}$	+	0.7	$(0.45,0.7,0.95)$	$((0.45,0.7,0.95 ; 1),(0.5,0.7,0.9 ; 0.8))$
$\mathrm{C}_{7} \rightarrow \mathrm{C}_{5}$	+	0.55	$(0.45,0.55,0.65)$	$((0.45,0.55,0.65 ; 1),(0.5,0.55,0.6 ; 0.8))$

Table S. 5 Initial concept values in radiotherapy planning model

	Scenario 1			Scenario 2		
Concept	Crisp	T1 fuzzy	IT2 fuzzy	Crisp	T1 fuzzy	IT2 fuzzy
C1	0.75	(0.75,0.75, 0.75)	$\begin{aligned} & \hline(0.75,0.75,0.75 ; 1) \\ & (0.75,0.75,0.75 ; 1) \end{aligned}$	0.80	(0.6,0.8,1)	$\begin{gathered} ((0.6,0.8,1 ; 1), \\ (0.65,0.8,0.95 ; 0.8)) \end{gathered}$
C2	0.8	(0.80,0.80,0.80)	$\begin{aligned} & (0.80,0.80,0.80 ; 1) \\ & (0.80,0.80,0.80 ; 1) \end{aligned}$	0.85	(0.7,0.85,1)	$\begin{gathered} ((0.7,0.85,1 ; 1), \\ (0.75,0.85,0.95 ; 0.8)) \end{gathered}$
C3	0.3	(0.3,0.3,0.3)	$\begin{gathered} (0.3,0.3,0.3 ; 1) \\ (0.3,0.3,0.3 ; 1) \end{gathered}$	0.25	$(0,0.25,0.5)$	$\begin{gathered} ((0,0.25,0.5 ; 1), \\ (0.05,0.25,0.45 ; 0.8)) \end{gathered}$
C4	0.6	(0.6,0.6,0.6)	$\begin{gathered} (0.6,0.6,0.6 ; 1) \\ (0.6,0.6,0.6 ; 1) \end{gathered}$	0.45	(0.3,0.45,0.6)	$\begin{gathered} ((0.3,0.45,0.6 ; 1), \\ (0.35,0.45,0.55 ; 0.8)) \end{gathered}$
C5	0.7	(0.7,0.7,0.7)	$\begin{aligned} & (0.7,0.7,0.7 ; 1) \\ & (0.7,0.7,0.7 ; 1) \end{aligned}$	0.60	(0.5,0.6,0.7)	$\begin{gathered} ((0.5,0.6,0.7 ; 1), \\ (0.55,0.6,0.65 ; 0.8)) \end{gathered}$
C6	0.5	(0.5,0.5,0.5)	$\begin{aligned} & (0.5,0.5,0.5 ; 1) \\ & (0.5,0.5,0.5 ; 1) \end{aligned}$	0.55	(0.4,0.55,0.7)	$\begin{gathered} ((0.4,0.55,0.7 ; 1), \\ (0.45,0.55,0.65 ; 0.8)) \end{gathered}$
C7	0.65	(0.65,0.65,0.65)	$\begin{aligned} & (0.65,0.65,0.65 ; 1) \\ & (0.65,0.65,0.65 ; 1) \\ & \hline \end{aligned}$	0.25	(0,0.25,0.5)	$\begin{gathered} ((0,0.25,0.5 ; 1), \\ (0.25,0.25,0.45 ; 0.8)) \\ \hline \end{gathered}$

Table S. 6 Simulation results of radiotherapy planning model with hyperbolic tangent function

λ	Concept	Scenario 1				Scenario 2	
		Crisp	T1 fuzzy	IT2 fuzzy	Crisp	T1 fuzzy	IT2 fuzzy
1.0	C1	0.901	(0.598,0.901,0.967)	$\begin{gathered} ((0.598,0.901,0.967 ; 1), \\ (0.719,0.901,0.959 ; 0.8)) \end{gathered}$	0.901	(0.598,0.901,0.967)	$\begin{aligned} & ((0.598,0.901,0.967 ; 1), \\ & (0.719,0.901,0.959 ; 0.8)) \end{aligned}$
	C2	0.926	(0.861,0.926,0.958)	$\begin{aligned} & ((0.861,0.926,0.958 ; 1), \\ & (0.879,0.926,0.953 ; 0.8)) \end{aligned}$	0.927	(0.861,0.926,0.959)	$\begin{gathered} ((0.861,0.926,0.959 ; 1), \\ (0.879,0.926,0.953 ; 0.8)) \end{gathered}$
	C3	0.031	(0.031,0.031,0.031)	$\begin{aligned} & ((0.031,0.031,0.031 ; 1), \\ & (0.031,0.031,0.031 ; 0.8)) \end{aligned}$	0.000	(0,0.031,0.031)	$\begin{gathered} ((0,0.031,0.031 ; 1), \\ (0.026,0.031,0.031 ; 0.8)) \end{gathered}$
	C4	-0.792	(-0.842,-0.792,-0.716)	$\begin{aligned} & ((-0.842,-0.792,-0.716 ; 1), \\ & (-0.819,-0.792,-0.758 ; 0.8)) \end{aligned}$	-0.79	.842,-0.792,-0.716)	$\begin{aligned} & ((-0.842,-0.792,-0.716 ; 1), \\ & (-0.819,-0.792,-0.758 ; 0.8)) \end{aligned}$
	C5	0.948	(0.917,0.948,0.966)	$\begin{gathered} ((0.917,0.948,0.966 ; 1), \\ (0.935,0.948,0.958 ; 0.8)) \end{gathered}$	0.948	(0.917,0.948,0.966)	$\begin{gathered} ((0.917,0.948,0.966 ; 1), \\ (0.935,0.948,0.958 ; 0.8)) \end{gathered}$
	C6	0.031	(0.031,0.031,0.031)	$\begin{aligned} & ((0.031,0.031,0.031 ; 1), \\ & (0.031,0.031,0.031 ; 0.8)) \end{aligned}$	0.031	(0.031, $0.031,0.031)$	$\begin{gathered} ((0.031,0.031,0.031 ; 1), \\ (0.031,0.031,0.031 ; 0.8)) \end{gathered}$
	C7	0.993	(0.978,0.993,0.997)	$\begin{gathered} ((0.978,0.993,0.997 ; 1), \\ (0.987,0.993,0.996 ; 0.8)) \end{gathered}$	0.993	(0.978,0.993,0.997)	$\begin{gathered} ((0.978,0.993,0.997 ; 1), \\ (0.987,0.993,0.996 ; 0.8)) \end{gathered}$
3.0	C1	1.000	(0.997,1,1)	$\begin{aligned} & ((0.997,1,1 ; 1), \\ & (0.998,1,1 ; 0.8)) \end{aligned}$	1.000	(0.997,1,1)	((0.997,1,1;1),(0.998,1,1;0.8))
	C2	1.000	(0.999,1,1)	((0.999,1,1;1),(1,1,1;0.8))	1.000	$(0.999,1,1)$	((0.999,1,1;1),(1,1,1;0.8))
	C3	0.995	(0.995,0.995,0.995)	$\begin{gathered} ((0.995,0.995,0.995 ; 1), \\ (0.995,0.995,0.995 ; 0.8)) \end{gathered}$	0.000	(0,0.995,0.995)	$\begin{gathered} ((0,0.995,0.995 ; 1), \\ (0.995,0.995,0.995 ; 0.8)) \end{gathered}$
	C4	0.963	(0.911,0.963,0.982)	$\begin{aligned} & ((0.911,0.963,0.982 ; 1), \\ & (0.945,0.963,0.975 ; 0.8)) \end{aligned}$	0.963	(-1,0.963,0.982)	$\begin{gathered} ((-1,0.963,0.982 ; 1), \\ (-0.999,0.963,0.975 ; 0.8)) \end{gathered}$
	C5	0.998	(0.993,0.998,0.999)	$\begin{aligned} & ((0.993,0.998,0.999 ; 1), \\ & (0.997,0.998,0.999 ; 0.8)) \end{aligned}$	0.998	(0.993,0.998,1)	$\begin{gathered} ((0.993,0.998,1 ; 1) \\ (0.997,0.998,1 ; 0.8)) \end{gathered}$
	C6	0.995	(0.995,0.995,0.995)	$\begin{aligned} & ((0.995,0.995,0.995 ; 1), \\ & (0.995,0.995,0.995 ; 0.8)) \end{aligned}$	0.995	(0.995,0.995,0.995)	$\begin{aligned} & ((0.995,0.995,0.995 ; 1), \\ & (0.995,0.995,0.995 ; 0.8)) \end{aligned}$
	C7	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))
5.0	C1	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))
	C2	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))
	C3	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))	0.000	$(0,1,1)$	((0,1,1;1),(1,1,1;0.8))
	C4	0.998	(0.995,0.998,0.999)	$\begin{gathered} ((0.995,0.998,0.999 ; 1), \\ (0.997,0.998,0.999 ; 0.8)) \end{gathered}$	0.998	(-1,0.998,0.999)	$\begin{gathered} ((-1,0.998,0.999 ; 1), \\ (0.997,0.998,0.999 ; 0.8)) \end{gathered}$
	C5	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))
	C6	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))
	C7	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))

Table S. 7 Simulation results of radiotherapy planning model with sigmoid function

	Scenario 1					Scenario 2	
λ	Concept	Crisp	T1 fuzzy	IT2 fuzzy	Crisp	T1 fuzzy	IT2 fuzzy
1.0	C1	0.787	(0.681,0.787,0.868)	$\begin{gathered} ((0.681,0.787,0.868 ; 1), \\ (0.704,0.787,0.854 ; 0.8)) \end{gathered}$	0.787	(0.681,0.787,0.868)	$\begin{gathered} ((0.681,0.787,0.868 ; 1), \\ (0.704,0.787,0.854 ; 0.8)) \end{gathered}$
	C2	0.837	(0.739,0.837,0.9)	$\begin{gathered} ((0.739,0.837,0.9 ; 1), \\ (0.768,0.837,0.887 ; 0.8)) \end{gathered}$	0.837	(0.739,0.837,0.9)	$\begin{gathered} ((0.739,0.837,0.9 ; 1), \\ (0.768,0.837,0.887 ; 0.8)) \end{gathered}$
	C3	0.659	(0.659,0.659,0.659)	$\begin{aligned} & ((0.659,0.659,0.659 ; 1), \\ & (0.659,0.659,0.659 ; 0.8)) \end{aligned}$	0.659	(0.659,0.659,0.659)	$\begin{aligned} & ((0.659,0.659,0.659 ; 1), \\ & (0.659,0.659,0.659 ; 0.8)) \end{aligned}$
	C4	0.592	(0.563,0.592,0.619)	$\begin{gathered} ((0.563,0.592,0.619 ; 1), \\ (0.578,0.592,0.606 ; 0.8)) \end{gathered}$	0.592	(0.563,0.592,0.619)	$\begin{aligned} & ((0.563,0.592,0.619 ; 1), \\ & (0.578,0.592,0.606 ; 0.8)) \end{aligned}$
	C5	0.729	(0.675,0.729,0.772)	$\begin{aligned} & ((0.675,0.729,0.772 ; 1), \\ & (0.702,0.729,0.752 ; 0.8)) \end{aligned}$	0.729	(0.675,0.729,0.772)	$\begin{gathered} ((0.675,0.729,0.772 ; 1), \\ (0.702,0.729,0.752 ; 0.8)) \end{gathered}$
	C6	0.659	(0.659,0.659,0.659)	$\begin{gathered} ((0.659,0.659,0.659 ; 1), \\ (0.659,0.659,0.659 ; 0.8)) \end{gathered}$	0.659	(0.659,0.659,0.659)	$\begin{aligned} & ((0.659,0.659,0.659 ; 1), \\ & (0.659,0.659,0.659 ; 0.8)) \end{aligned}$
	C7	0.902	(0.815,0.902,0.949)	$\begin{gathered} ((0.815,0.902,0.949 ; 1), \\ (0.854,0.902,0.934 ; 0.8)) \end{gathered}$	0.902	(0.815,0.902,0.949)	$\begin{gathered} ((0.815,0.902,0.949 ; 1), \\ (0.854,0.902,0.934 ; 0.8)) \end{gathered}$
3.0	C1	0.992	(0.96,0.992,0.998)	$\begin{gathered} ((0.96,0.992,0.998 ; 1), \\ (0.971,0.992,0.998 ; 0.8)) \end{gathered}$	0.992	(0.96,0.992,0.998)	$\begin{gathered} ((0.96,0.992,0.998 ; 1), \\ (0.971,0.992,0.998 ; 0.8)) \end{gathered}$
	C2	0.997	(0.982,0.997,0.999)	$\begin{aligned} & ((0.982,0.997,0.999 ; 1), \\ & (0.989,0.997,0.999 ; 0.8)) \end{aligned}$	0.997	(0.982,0.997,0.999)	$\begin{gathered} ((0.982,0.997,0.999 ; 1), \\ (0.989,0.997,0.999 ; 0.8)) \end{gathered}$
	C3	0.944	(0.944,0.944,0.944)	$\begin{aligned} & ((0.944,0.944,0.944 ; 1), \\ & (0.944,0.944,0.944 ; 0.8)) \end{aligned}$	0.944	(0.944,0.944,0.944)	$\begin{aligned} & ((0.944,0.944,0.944 ; 1), \\ & (0.944,0.944,0.944 ; 0.8)) \end{aligned}$
	C4	0.837	(0.736,0.837,0.892)	$\begin{aligned} & ((0.736,0.837,0.892 ; 1), \\ & (0.795,0.837,0.868 ; 0.8)) \end{aligned}$	0.837	(0.736,0.837,0.892)	$\begin{gathered} ((0.736,0.837,0.892 ; 1), \\ (0.795,0.837,0.868 ; 0.8)) \end{gathered}$
	C5	0.972	(0.945,0.972,0.986)	$\begin{aligned} & ((0.945,0.972,0.986 ; 1), \\ & (0.961,0.972,0.98 ; 0.8)) \end{aligned}$	0.972	(0.945,0.972,0.986)	$\begin{aligned} & ((0.945,0.972,0.986 ; 1), \\ & (0.961,0.972,0.98 ; 0.8)) \end{aligned}$
	C6	0.944	(0.944,0.944, 0.944$)$	$\begin{aligned} & (0.944,0.944,0.944 ; 1), \\ & (0.944,0.944,0.944 ; 0.8)) \end{aligned}$	0.944	(0.944,0.944,0.944)	$\begin{gathered} ((0.944,0.944,0.944 ; 1), \\ (0.944,0.944,0.944 ; 0.8)) \end{gathered}$
	C7	1.000	(0.997,1,1)	((0.997,1,1;1),(0.999,1,1;0.8))	1.000	(0.997,1,1)	((0.997,1,1;1),(0.999,1,1;0.8))
5.0	C1	1.000	(0.996,1,1)	((0.996,1,1;1),(0.997,1,1;0.8))	1.000	(0.996,1,1)	((0.996,1,1;1),(0.997,1,1;0.8))
	C2	1.000	(0.999,1,1)	((0.999,1,1;1),(0.999,1,1;0.8))	1.000	(0.999,1,1)	((0.999,1,1;1),(0.999,1,1;0.8))
	C3	0.993	(0.993,0.993,0.993)	$\begin{aligned} & ((0.993,0.993,0.993 ; 1), \\ & (0.993,0.993,0.993 ; 0.8)) \end{aligned}$	0.993	(0.993,0.993,0.993)	$\begin{aligned} & ((0.993,0.993,0.993 ; 1), \\ & (0.993,0.993,0.993 ; 0.8)) \end{aligned}$
	C4	0.966	(0.936,0.966,0.98)	$\begin{gathered} ((0.936,0.966,0.98 ; 1), \\ (0.953,0.966,0.974 ; 0.8)) \end{gathered}$	0.966	$(0.936,0.966,0.98)$	$\begin{gathered} ((0.936,0.966,0.98 ; 1), \\ (0.953,0.966,0.974 ; 0.8)) \end{gathered}$
	C5	0.997	(0.991,0.997,0.999)	$\begin{aligned} & ((0.991,0.997,0.999 ; 1), \\ & (0.995,0.997,0.998 ; 0.8)) \end{aligned}$	0.997	(0.991,0.997,0.999)	$\begin{aligned} & ((0.991,0.997,0.999 ; 1), \\ & (0.995,0.997,0.998 ; 0.8)) \end{aligned}$
	C6	0.993	(0.993,0.993,0.993)	$\begin{aligned} & ((0.993,0.993,0.993 ; 1), \\ & (0.993,0.993,0.993 ; 0.8)) \end{aligned}$	0.993	(0.993,0.993,0.993)	$\begin{aligned} & ((0.993,0.993,0.993 ; 1), \\ & (0.993,0.993,0.993 ; 0.8)) \end{aligned}$
	C7	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))	1.000	$(1,1,1)$	((1,1,1;1),(1,1,1;0.8))

