
MySQL/PHP Database
Applications

3537-4 FM.f.qc 12/15/00 15:31 Page i

3537-4 FM.f.qc 12/15/00 15:31 Page ii

MySQL/PHP Database
Applications

Jay Greenspan and Brad Bulger

M&T Books
An imprint of IDG Books Worldwide, Inc.

Foster City, CA ● Chicago, IL ● Indianapolis, IN ● New York, NY

3537-4 FM.f.qc 12/15/00 15:31 Page iii

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND
SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS
PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN
SALES MATERIALS. THE ACCURACY AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE
OPINIONS STATED HEREIN ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS,
AND THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL.
NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER
COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER
DAMAGES.

Trademarks: All brand names and product names used in this book are trade names, service marks, trademarks, or
registered trademarks of their respective owners. IDG Books Worldwide is not associated with any product or vendor
mentioned in this book.

is a registered trademark or trademark
under exclusive license to IDG Books Worldwide, Inc.
from International Data Group, Inc. in the
United States and/or other countries.

is a trademark of
IDG Books Worldwide, Inc.

MySQL/PHP Database Applications
Published by
M&T Books
An imprint of IDG Books Worldwide, Inc.
919 E. Hillsdale Blvd., Suite 400
Foster City, CA 94404
www.idgbooks.com (IDG Books Worldwide Web site)
Copyright © 2001 IDG Books Worldwide, Inc. All rights
reserved. No part of this book, including interior design,
cover design, and icons, may be reproduced or
transmitted in any form, by any means (electronic,
photocopying, recording, or otherwise) without the prior
written permission of the publisher.
ISBN: 0-7645-3537-4
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
1O/QZ/QR/QR/FC
Distributed in the United States by IDG Books
Worldwide, Inc.
Distributed by CDG Books Canada Inc. for Canada; by
Transworld Publishers Limited in the United Kingdom; by
IDG Norge Books for Norway; by IDG Sweden Books for
Sweden; by IDG Books Australia Publishing Corporation
Pty. Ltd. for Australia and New Zealand; by TransQuest
Publishers Pte Ltd. for Singapore, Malaysia, Thailand,
Indonesia, and Hong Kong; by Gotop Information Inc.
for Taiwan; by ICG Muse, Inc. for Japan; by Intersoft
or South Africa; by Eyrolles for France; by International
Thomson Publishing for Germany, Austria, and
Switzerland; by Distribuidora Cuspide for Argentina; by
LR International for Brazil; by Galileo Libros for Chile; by
Ediciones ZETA S.C.R. Ltda. for Peru; by WS Computer
Publishing Corporation, Inc., for the Philippines; by
Contemporanea de Ediciones for Venezuela; by Express
Computer Distributors for the Caribbean and West Indies;
by Micronesia Media Distributor, Inc. for Micronesia; by
Chips Computadoras S.A. de C.V. for Mexico; by Editorial
Norma de Panama S.A. for Panama; by American
Bookshops for Finland.
For general information on IDG Books Worldwide’s
books in the U.S., please call our Consumer Customer

Service department at 800-762-2974. For reseller
information, including discounts and premium sales,
please call our Reseller Customer Service department
at 800-434-3422.
For information on where to purchase IDG Books
Worldwide’s books outside the U.S., please contact our
International Sales department at 317-572-3993 or fax
317-572-4002.
For consumer information on foreign language
translations, please contact our Customer Service
department at 800-434-3422, fax 317-572-4002, or
e-mail rights@idgbooks.com.
For information on licensing foreign or domestic rights,
please phone +1-650-653-7098.
For sales inquiries and special prices for bulk quantities,
please contact our Order Services department at
800-434-3422 or write to the address above.
For information on using IDG Books Worldwide’s books
in the classroom or for ordering examination copies,
please contact our Educational Sales department at
800-434-2086 or fax 317-572-4005.
For press review copies, author interviews, or other
publicity information, please contact our Public Relations
department at 650-653-7000 or fax 650-653-7500.
For authorization to photocopy items for corporate,
personal, or educational use, please contact Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, or fax 978-750-4470.
Library of Congress Cataloging-in-Publication Data
Greenspan, Jay, 1968-

My SQL/PHP database applications / Jay Greenspan
and Brad Bulger.

p. cm.
ISBN 0-7645-3537-4 (alk. paper)
1. SQL (Computer program language) 2. PHP

(Computer program language 3.Web databases.
I. Bulger, Brad, 1959- II. Title.
QA76.73.S67G73 2001
005.13’3--dc21 00-053995

3537-4 FM.f.qc 12/15/00 15:31 Page iv

Eleventh Annual
Computer Press
Awards 1995Tenth Annual

Computer Press
Awards 1994

Eighth Annual
Computer Press
Awards 1992 Ninth Annual

Computer Press
Awards 1993

IDG is the world’s leading IT media, research and exposition company. Founded in 1964, IDG had 1997 revenues of $2.05
billion and has more than 9,000 employees worldwide. IDG offers the widest range of media options that reach IT buyers
in 75 countries representing 95% of worldwide IT spending. IDG’s diverse product and services portfolio spans six key areas
including print publishing, online publishing, expositions and conferences, market research, education and training, and
global marketing services. More than 90 million people read one or more of IDG’s 290 magazines and newspapers, including
IDG’s leading global brands — Computerworld, PC World, Network World, Macworld and the Channel World family of
publications. IDG Books Worldwide is one of the fastest-growing computer book publishers in the world, with more than
700 titles in 36 languages. The “...For Dummies®” series alone has more than 50 million copies in print. IDG offers online
users the largest network of technology-specific Web sites around the world through IDG.net (http://www.idg.net), which
comprises more than 225 targeted Web sites in 55 countries worldwide. International Data Corporation (IDC) is the world’s
largest provider of information technology data, analysis and consulting, with research centers in over 41 countries and more
than 400 research analysts worldwide. IDG World Expo is a leading producer of more than 168 globally branded conferences
and expositions in 35 countries including E3 (Electronic Entertainment Expo), Macworld Expo, ComNet, Windows World
Expo, ICE (Internet Commerce Expo), Agenda, DEMO, and Spotlight. IDG’s training subsidiary, ExecuTrain, is the world’s
largest computer training company, with more than 230 locations worldwide and 785 training courses. IDG Marketing
Services helps industry-leading IT companies build international brand recognition by developing global integrated marketing
programs via IDG’s print, online and exposition products worldwide. Further information about the company can be found
at www.idg.com. 1/26/00

Welcome to the world of IDG Books Worldwide.

IDG Books Worldwide, Inc., is a subsidiary of International Data Group, the world’s largest publisher of
computer-related information and the leading global provider of information services on information technology.
IDG was founded more than 30 years ago by Patrick J. McGovern and now employs more than 9,000 people
worldwide. IDG publishes more than 290 computer publications in over 75 countries. More than 90 million
people read one or more IDG publications each month.

Launched in 1990, IDG Books Worldwide is today the #1 publisher of best-selling computer books in the
United States. We are proud to have received eight awards from the Computer Press Association in recognition
of editorial excellence and three from Computer Currents’ First Annual Readers’ Choice Awards. Our best-
selling ...For Dummies® series has more than 50 million copies in print with translations in 31 languages. IDG
Books Worldwide, through a joint venture with IDG’s Hi-Tech Beijing, became the first U.S. publisher to
publish a computer book in the People’s Republic of China. In record time, IDG Books Worldwide has become
the first choice for millions of readers around the world who want to learn how to better manage their
businesses.

Our mission is simple: Every one of our books is designed to bring extra value and skill-building instructions
to the reader. Our books are written by experts who understand and care about our readers. The knowledge
base of our editorial staff comes from years of experience in publishing, education, and journalism —
experience we use to produce books to carry us into the new millennium. In short, we care about books, so
we attract the best people. We devote special attention to details such as audience, interior design, use of
icons, and illustrations. And because we use an efficient process of authoring, editing, and desktop publishing
our books electronically, we can spend more time ensuring superior content and less time on the technicalities
of making books.

You can count on our commitment to deliver high-quality books at competitive prices on topics you want
to read about. At IDG Books Worldwide, we continue in the IDG tradition of delivering quality for more than
30 years. You’ll find no better book on a subject than one from IDG Books Worldwide.

John Kilcullen
Chairman and CEO
IDG Books Worldwide, Inc.

3537-4 FM.f.qc 12/15/00 15:31 Page v

About the Authors
Jay Greenspan made his living as a technical consultant and editor before finding
his way into Wired Digital’s Webmonkey. There he learned everything he knows
about Web technology and gained an appreciation for electronic music, the color
orange, and a “cute top.” He now makes his living as a writer and consultant. He
will neither confirm nor deny the rumors that he once worked for a prime-time
game show.

Brad Bulger can remember when computers were as big as refrigerators and old-
timers would come into the machine room and call them “mini.” He learned more
than anyone really should about database systems by working for Relational
Technology nee Ingres nee CA for many years. After an interregnum, he got a job
with Wired. He would still like to know when the future is going to get here, but has
a sneaking suspicion he already knows.

Credits

ACQUISITIONS EDITOR
Debra Williams Cauley

PROJECT EDITOR
Neil Romanosky

TECHNICAL EDITORS
Richard Lynch
Michael Widenius

COPY EDITOR
S. B. Kleinman

PROJECT COORDINATORS
Louigene A. Santos
Danette Nurse

GRAPHICS AND PRODUCTION
SPECIALISTS

Robert Bilhmayer
Rolly Delrosario
Jude Levinson
Michael Lewis
Ramses Ramirez
Victor Pérez-Varela

QUALITY CONTROL TECHNICIAN
Dina F Quan

PERMISSIONS EDITOR
Laura Moss

MEDIA DEVELOPMENT SPECIALIST
Angela Denny

MEDIA DEVELOPMENT COORDINATOR
Marisa Pearman

BOOK DESIGNER
Jim Donohue

ILLUSTRATORS
Gabriele McCann
Ronald Terry

PROOFREADING AND INDEXING
York Production Services

COVER IMAGE
© Noma/Images.com

3537-4 FM.f.qc 12/15/00 15:31 Page vi

In memory of Dr. Jonathan B. Postel

3537-4 FM.f.qc 12/15/00 15:31 Page vii

Preface
Welcome. If you are thumbing through these pages, you’re probably considering
writing Web-based applications with PHP and MySQL. If you decide to go with
these tools, you’ll be in excellent company. Thousands of developers — from total
newbies to programmers with years of experience — are turning to PHP and MySQL
for their Web-based projects; and for good reason.

Both PHP and MySQL are easy to use, fast, free, and powerful. If you want to get
a dynamic Web site up quickly, there are no better choices. The PHP scripting lan-
guage was built for the Web. All the tasks common to Web development can be
accomplished in PHP with an absolute minimum of effort. Similarly, MySQL excels at
tasks common to dynamic Web sites. Whether you’re creating a content-management
system or an e-commerce application, MySQL is a great choice for your data storage.

Is This Book for You?
There are quite a few books that deal with PHP and a few that cover MySQL. We’ve
read some of these and found a few to be quite helpful. If you’re looking for a book
that deals with gory details of either of these packages, you should probably look
elsewhere.

The focus of this book is applications development. We are concerned with what
it takes to get data-driven Web sites up and running in an organized and efficient
way. The book does not go into arcane detail of every aspect of either of these tools.
For example, in this book, you will not find a discussion of PHP’s LDAP functions
or MySQL’s C application program interface (API). Instead, we will focus on the
pieces of both packages that affect one another. We hope that by the time you’re
done with this book you’ll know what it takes to get an application up and running
using PHP and MySQL.

How This Book Is Organized
We have organized the book into four parts.

Part I: Using MySQL
Before you code any PHP scripts, you will need to know how to design a database,
create tables in your database, and get the information you want from the database.
Part I of this book will show you about all you need to know to work with MySQL.

ix

3537-4 FM.f.qc 12/15/00 15:31 Page ix

Part II: Using PHP
As an applications developer, the bulk of your time will be spent writing scripts that
access the database and present HTML to a user’s browser. Part II will start by
showing you the basics of the PHP scripting language, covering how PHP works
with variables, conditions, and control structures. Part II will also cover many of
PHP’s functions and discuss techniques for writing clean, manageable code.

Part III: Simple Applications
In this part, we present two of the seven applications in this book: a guestbook and
a survey. Here you will see the lessons from Parts I and II put into practice as we
build working applications.

Part IV: Not So Simple Applications
Here the applications will be more complex, as we present applications commonly
used on the Web. You will see how you can design a content management system,
a discussion board, a shopping cart, and other useful applications. Along the way,
we will show some tips and techniques that should be helpful as you write your
applications.

Part V: Appendixes
The appendixes cover several topics of interest to the MySQL/PHP developer. In the
appendixes, you will find installation and configuration instructions, quick refer-
ence guides to PHP and MySQL functions, a regular expressions overview, and
guides to MySQL administration. In addition, there are a few helpful resources,
snippets of code, and instructions on using the CD-ROM.

Tell Us What You Think
Both the publisher and authors of this book hope you find it a valuable resource.
Please feel free to register this book at the IDG Books Web site (http://www.
idgbooks.com) and give us your feedback. Also check in at the site we’ve dedicated
to this book, http://www.mysqlphpapps.com/, where you will be able to contact
the authors and find updates to the applications created for this book.

x Preface

3537-4 FM.f.qc 12/15/00 15:31 Page x

Acknowledgments
This book would never have happened if not for the efforts of Debra Williams
Cauley. I thank her for her patience and persistence. The efforts and talents of Neil
Romanosky, S. B. Kleinman, and many others at IDG Books have made this book
more lucid and attractive than we could have hoped. Richard Lynch’s exacting eye
and technical acumen kept our code clean, fast, and readable.

Any book on open-source software owes debt to those who have created these
great tools. So I thank everyone involved with PHP and MySQL, from the core
developers to those who contribute to the documentation. Special thanks to
Michael (Monty) Widenius, MySQL’s lead developer. He has not only created a ter-
rific relational database, but has offered his advice and expertise to the authors of
this book.

xi

3537-4 FM.f.qc 12/15/00 15:31 Page xi

Contents at a Glance

Preface . ix

Acknowledgments . xi

Introduction . xxiii

Part I Working with MySQL

Chapter 1 Database Design with MySQL 3
Chapter 2 The Structured Query Language for Creating and

Altering Tables . 21
Chapter 3 Getting What You Want with select 45

Part II Working with PHP

Chapter 4 Getting Started with PHP — Variables 71
Chapter 5 Control Structures . 95
Chapter 6 PHP’s Built-in Functions 111
Chapter 7 Writing Organized and Readable Code 165

Part III Simple Applications

Chapter 8 Guestbook 2000,
the (Semi-)Bulletproof Guestbook 193

Chapter 9 Survey . 215

Part IV Not So Simple Applications

Chapter 10 Catalog . 249
Chapter 11 Content Management System 285
Chapter 12 Threaded Discussion . 311
Chapter 13 Problem Tracking System 331
Chapter 14 Shopping Cart . 361

3537-4 FM.f.qc 12/15/00 15:31 Page xii

Part V Appendixes

Appendix A HTML Forms . 405
Appendix B Brief Guide to PHP/MySQL Installation and

Configuration . 413
Appendix C MySQL Utilities . 423
Appendix D MySQL User Administration 439
Appendix E PHP Function Reference 447
Appendix F Regular Expressions Overview 507
Appendix G Helpful User-Defined Functions 517
Appendix H PHP and MySQL Resources 543
Appendix I MySQL Function Reference 551
Appendix J What’s on the CD-ROM . 585

Index . 587

End-User License Agreement 599

GNU General Public License 602

CD-ROM Installation Instructions 608

3537-4 FM.f.qc 12/15/00 15:31 Page xiii

Contents

Preface. ix

Acknowledgments . xi

Introduction . xxiii

Part I Working with MySQL

Chapter 1 Database Design with MySQL . 3
Why Use a Relational Database? . 3
Blasted Anomalies . 5

Update anomaly . 5

Delete anomaly . 8

Insert anomaly . 10

Normalization . 10
1st normal form . 10

2nd normal form . 12

3rd normal form. 13

Types of Relationships . 13
One-to-many relationship . 14

One-to-one relationship . 14

Many-to-many relationship . 16

Features MySQL Does Not Support . 17
Referential integrity . 17

Transactions. 18

Stored procedures. 19

Chapter 2 The Structured Query Language for Creating and
Altering Tables . 21
Definitions . 22

Null . 22

Index . 24

create database Statement . 24
use database Statement. 25
create table Statement . 26
Column Types. 27

Text column types . 27

Numeric column types . 30

Date and time types . 31

Creating Indexes . 33

3537-4 FM.f.qc 12/15/00 15:31 Page xv

Table Types. 35
alter table Statement. 35

Changing a table name . 36

Adding and dropping columns . 36

Adding and dropping indexes . 37

Changing column definitions . 37

insert Statement . 38
update Statement . 39
drop table/drop database . 40
show tables. 40
show columns/show fields . 41
Using phpMyAdmin . 43

Chapter 3 Getting What You Want with select 45
Basic select . 45

The where clause . 48

order by . 53

limit . 54

group by and aggregate functions . 54

having . 60

Joining Tables. 61
Two-table join (the equi-join). 61

Multi-table join . 63

outer join . 64

self join . 65

Portions of SQL the SQL Standard that MySQL Doesn’t
Support . 67
Unions . 67

Correlated subqueries . 67

Part II Working with PHP

Chapter 4 Getting Started with PHP — Variables 71
Assigning Simple Variables Within a Script 71

Delimiting Strings . 72

Assigning arrays within a script. 74

Assigning two-dimensional arrays in a script 76

Accessing Variables Passed from the Browser 77
HTML forms variables . 77

Passing arrays . 79

Cookies. 81

Sessions . 83

Using Built-In Variables . 85
PHP variables. 86

Apache variables . 87

xvi Contents

3537-4 FM.f.qc 12/15/00 15:31 Page xvi

Other Web server variables. 89

Testing Variables. 90
isset() . 90

empty() . 91

is_int() . 91

is_double() . 91

is_string() . 91

is_array() . 92

is_bool() . 92

is_object(). 92

gettype() . 92

Changing Variable Types . 92
Type casting. 93

Using settype() . 93

intval(), doubleval(), and stringval() . 93

Variable Variables . 93
Chapter 5 Control Structures . 95

The if Statements . 95
Determining true or false in PHP . 96

Comparison operators . 98

Logical operators . 98

Complex if statements . 99

if ... else statements . 100

if ... elseif statements . 100

Alternative if... structures . 101

switch ... case . 102
Loops . 103

while... 103

do ...while. 106

for . 106

foreach . 107

continue and break. 108

continue . 108

break . 108

Including files . 109
Chapter 6 PHP’s Built-in Functions . 111

Function Basics . 112
Arguments . 112

Return values . 113

Function Documentation. 114
Important PHP 4 Functions. 114

MySQL API . 115

String-handling functions . 125

Regular expression functions . 135

Contents xvii

3537-4 FM.f.qc 12/15/00 15:31 Page xvii

Type-conversion functions. 140

Array functions . 143

Print functions . 148

Date/time functions . 150

Filesystem functions. 154

Random number generator functions . 157

cURL functions. 158

Session functions . 158

HTTP header functions . 158

Mail function . 160

URL functions. 161

Output buffering . 162

Chapter 7 Writing Organized and Readable Code. 165
Indenting . 165

Code blocks . 166

Function calls. 167

SQL statements. 168

Includes . 169
include() and require(). 171

include_once() and require_once() . 171

User-Defined Functions . 172
Function basics . 173

Returning values . 175

Using a variable number of arguments . 177

Variable scope . 178

Object-Oriented Programming . 180
Classes . 181

Instantiating an object . 184

Inheritance . 185

Object-Oriented Code versus Procedural Code 187
Comments. 187

Part III Simple Applications

Chapter 8 Guestbook 2000,
the (Semi-)Bulletproof Guestbook 193
Determining the Scope and Goals of the Application 193

Necessary Pages . 194

What do we need to prevent?. 195

Designing the Database . 199
Code Overview . 200
Code Breakdown . 201

Reusable functions . 201

Interesting code flow . 211

Scripts. 214

xviii Contents

3537-4 FM.f.qc 12/15/00 15:31 Page xviii

Chapter 9 Survey. 215
Determining the Scope and Goals of the Application 215

Necessary Pages . 216

What do we need to prevent?. 219

Designing the Database . 220
Code Overview . 224
Code Breakdown. 225

Reusable functions . 225

Interesting Code Flow . 238
admin_question.php . 238

admin_get_winner.php. 242

admin_winners.php . 243

Part IV Not So Simple Applications

Chapter 10 Catalog . 249
Determining the Scope and Goals of the Application 250

Necessary Pages . 251

What Do We Need to Prevent? . 255

The Data . 255
A flawed data design . 255

MySQL oddities . 257

A better schema . 259

Code Overview . 262
The object-oriented approach. 262

Accessing the filesystem. 263

Uploading files . 263

Accessing outside utilities . 264

Code Breakdown. 265
Objects in theory . 266

Objects in practice . 267

Classes . 268

Sample Script . 282

Chapter 11 Content Management System 285
Determining the Scope and Goals of the Application 286

Necessary pages . 286

What do you need to prevent? . 291

Designing the Database. 291
Code Overview . 298
Code Breakdown. 298

Reusable functions . 298

Interesting Code Flow . 301
content/authenticate.php . 301

content/admin_user.php . 304

content/edit_story.php . 308

Contents xix

xix

3537-4 FM.f.qc 12/15/00 15:31 Page xix

Chapter 12 Threaded Discussion . 311
Determining the Scope and Goals of the Application 312

What do you need? . 312

What do you need to prevent? . 315

The Data . 316
Code Overview . 320
Code Breakdown . 321

Reusable functions . 321

Other Files . 330
index.php . 330

Chapter 13 Problem Tracking System . 331
Determining the Scope and Goals of the Application 331

What do you need? . 332

What do you need to prevent? . 335

Designing the Database . 335
Code Overview . 340
Code Breakdown. 340

Reusable functions . 340

Scripts . 354

Chapter 14 Shopping Cart . 361
Determining the Scope and Goals of the Application 361

What do you need? . 363

What do you need to prevent? . 365

The Data . 366
Configuration Overview . 369

Configuring for encryption and security 369

Encryption and security tools . 371

Configuring for credit-card authorization 372

Configuring for session handling . 372

Code Overview . 373
Session functions . 374

cURL functions. 376

Dealing with the credit-card processor . 377

Code Breakdown. 378
Classes . 380

Scripts . 387

xx Contents

3537-4 FM.f.qc 12/15/00 15:31 Page xx

Part V Appendixes

Appendix A HTML Forms . 405
Appendix B Brief Guide to PHP/MySQL Installation and

Configuration . 413
Appendix C MySQL Utilities . 423
Appendix D MySQL User Administration . 439
Appendix E PHP Function Reference . 447
Appendix F Regular Expressions Overview 507
Appendix G Helpful User-Defined Functions. 517
Appendix H PHP and MySQL Resources. 543
Appendix I MySQL Function Reference. 551
Appendix J What’s on the CD-ROM . 585

Index . 587

End-User License Agreement 599

GNU General Public License . 602

CD-ROM Installation Instructions 608

Contents xxi

3537-4 FM.f.qc 12/15/00 15:31 Page xxi

Introduction
SOON WE WILL HEAD OFF on a fabulous journey, a journey on which we will explore
the ins and outs of MySQL and PHP database applications in great detail. It’s going
to be a fun trip; we just know it.

OK, maybe we’re being a bit optimistic. If you’re anything like us, there will be
points when this particular journey will be a lot more tedious than it is exciting.
Let’s face facts: application development isn’t always the most exciting thing in the
world. And as with any other venture that involves programming, there are sure to
be some very frustrating times, whether because of a syntax error you can’t find or
a piece of code that won’t do what you think it ought to do. But despite all that,
here you are, and I think there is a very good reason for your being here.

Web applications are the present and the future. No matter your background, whether
it be Visual Basic or COBOL, or maybe you know just some HTML and JavaScript, your
résumé is only going to improve with some Web applications development experience.
We don’t think there’s a better combination of tools to have under your belt than PHP
and MySQL. The numbers bear us out. PHP and MySQL are becoming increasingly pop-
ular, and the demand for people who can use these tools will only increase.

But a bit later there will be more details on why you should use PHP and MySQL.
Before we can get into the details of that, we want take a bit of time to go over the
architecture of Web applications. Once we’ve done this, we will be able to explain
in detail why PHP and MySQL should be the centerpieces of your application devel-
opment environment. Once we’ve sold you on these tools, we’ll present a very quick
and grossly under-coded application. As you look over this application, you will
see the basic syntax and principles behind PHP and MySQL.

As we proceed with the book, we will assume that you have read and under-

stand everything presented in this introduction.

Basic Architecture
At the most basic level, the Web works off of a client/server architecture. Simply
stated, that means that both a central server and a client application are responsi-
ble for some amount of processing. This differs from a program such as Microsoft
Word, which operates just fine without any help from a server. Those of you who
used older VAX machines will remember the days of dumb terminals, which had no
processing power whatsoever. Depending on where you work today, perhaps in a
university or a bank, you may still use applications that are in no way dependent
on the client. In other words, all the work is done on the central computer.

NOTE

3537-4 FM.f.qc 12/15/00 15:31 Page xxiii

The client
The applications you can develop with MySQL and PHP make use of a single client:
the Web browser. This is not the only possibility for Internet-based applications.
For very sophisticated applications that require more client-side processing or that
need to maintain state (we will talk about maintaining state later in the Introduc-
tion), a Java applet may be necessary. But unless you’re coding something like a
real-time chat program, client-side Java is completely unnecessary.

So the only client you should be concerned with is the Web browser. The appli-
cations will need to render in the browser. As you probably already know, the pri-
mary language of browsers is the hypertext markup language or HTML. HTML
provides a set of tags that describe how a Web page should look. If you are new to
the concept of HTML, get on the Web and read one of the many tutorials out there.
It shouldn’t take that much time to learn the basics.

Of course, most browsers will accept more than HTML. There are all kinds of
plug-ins, including RealPlayer, Flash, and Shockwave. Most browsers also have
some level of support for JavaScript, and some of the newer ones can work with
XML. But, like most Web developers, we will be taking a lowest-common-denomi-
nator approach in this book. We’re going to create applications that can be read in
any browser. There will be no JavaScript, XML, or anything else that could prevent
some users from rendering the pages we serve. HTML it is.

The server
Almost all of the work of Web applications takes place on the server. A specific appli-
cation, called a Web server, will be responsible for communicating with the browser.
A relational database server stores whatever information the application requires.
Finally, you need a language to broker requests between the Web server and the data-
base server; it will also be used to perform programmatic tasks on the information
that comes to and from the Web server. Figure I-1 represents this system.

But of course none of this is possible without an operating system. The Web
server, programming language, and database server you use must work well with
your operating system.

OPERATING SYSTEM
There are many operating systems out there. Windows 98 and Macintosh OS are
probably the most popular. But that’s hardly the end of it. Circumstances may have
forced you to work with some obscure OS for the past few years. You may even be
under the impression that your OS is the best thing going. That’s fine. But if you’re
planning on spending a lot of time on the Web and are planning on running appli-
cations, you’re best off getting to know either Windows NT/2000 or Unix. These two
account for well over 90 percent of all the Web servers on the Web. It is probably
easier for you to learn a little NT/2000 or Unix than it is to convince everybody else
that the AS/400 is the way to go.

xxiv Introduction

3537-4 FM.f.qc 12/15/00 15:31 Page xxiv

Figure I-1: Architecture of Web applications

Which should you use? Well, this is a complex question, and the answer for
many will be based partially on religion. In case you’re unaware of it, let’s take a
moment to talk about the broad topics in this religious war.

If you don’t know what we are talking about, here are the basics. PHP and
MySQL belong to a class of software known as open source. This means that the
source code to the heart of their applications is available to anyone who wants to
see it. They make use of an open-source development model, which allows anyone
who is interested to participate in the development of the project. In the case of
PHP, coders all over the world participate in the development of the language and
see no immediate pay for their substantial work. Most of the people who participate
are passionate about good software and code for the enjoyment of seeing people
like you and me develop with their tools.

This method of development has been around for some time, but it has gained
prominence as Linux has become increasingly popular. More often than not, open-
source software is free. You can download the application, install it, and use it
without getting permission from anyone or paying a dime to anyone.

Suffice it to say that Microsoft, Oracle, and other traditional software companies
do not make use of this method of development.

If you are not an open-source zealot, there are excellent reasons to choose
NT/2000. Usually, the thing that steers people towards NT/2000 is inertia. If you or
your company has been developing with Microsoft products for years, it is probably
going to be easier to stay within that environment. If you have a team of people who

Web Browser
(Internet Explorer,

Netscape)

Internet

Web Server
(Apache,IIS)

Middleware
PHP, ColdFusion,

ASP,JSP

Relational
Database
(MySQL, Oracle, MS

SQL)

Introduction xxv

3537-4 FM.f.qc 12/15/00 15:31 Page xxv

know Visual Basic, you are probably going to want to stick with NT/2000. Even if
this is the case, there’s nothing to prevent you from developing with PHP and
MySQL. Both products run on Windows 95/98 and Windows NT/2000.

But in the real world, almost all PHP/MySQL applications are running off of
some version of Unix, whether it be Linux, BSD, Irix, Solaris, HP-UX, or one of the
other flavors. For that reason, the applications in this book will work with Unix. If
you need to run these on Windows, minor alterations to the PHP scripts may be
necessary. Most of the people who created PHP and MySQL are deeply involved
with Unix, and most of their development is done on Unix machines, so it’s not
surprising that the software they have created works best on Linux, BSD, and other
Unix boxes.

The major advantage of Unix is its inherent stability. Boxes loaded with Linux
have been known to run months or years without crashing. Linux and BSD also
have the advantage of being free and able to run on standard PC hardware. If you
have any old 486, you can load it up with Linux, MySQL, PHP, and Apache and
have yourself a well-outfitted Web server. You probably wouldn’t want to put this
on the Web, where a moderate amount of traffic might overwhelm it, but it will
serve nicely as a development server, a place where you can test your applications.

WEB SERVER
The Web server has what seems to be a fairly straightforward job. It sits there, run-
ning on top of your operating system, listening for requests that somebody on the
Web might make, responds to those requests, and serves out the appropriate Web
pages. In reality, it is a bit more complicated than that, and because of the 24/7
nature of the Web, stability of the Web server is a major issue.

There are many Web servers out there, but two Web servers dominate the mar-
ket. They are Apache and Microsoft’s Internet Information Server (IIS).

INTERNET INFORMATION SERVER IIS is deeply tied to the Windows environment
and is a key component of Microsoft’s Active Server Pages. If you’ve chosen to go
the Microsoft way, you’ll almost certainly end up using IIS.

There is a certain amount of integration between the programming language and
Web server. At this point, PHP 4 integrates well with IIS. As of this writing, there is
some concern about the stability of PHP/IIS under heavy load, but PHP is improv-
ing all the time, and by the time you read this there may no longer be a problem.

APACHE The Apache Web server is the most popular Web server there is. It, like
Linux, PHP, and MySQL, is an open-source project. Not surprisingly, Apache works
best in Unix environments, but also runs just fine under Windows.

Apache makes use of third-party modules. Because it is open source, anyone
with the skill can write code that extends the functionality of Apache. PHP will
most often run as an Apache extension, known as an Apache module.

Apache is a great Web server. It is extremely quick and amazingly stable. The
most frequently stated complaint about Apache is that, like many pieces of Unix
software, there are limited graphical tools with which you can manipulate the

xxvi Introduction

3537-4 FM.f.qc 12/15/00 15:31 Page xxvi

application. You alter Apache by specifying options on the command line or by
altering text files. When you come to Apache for the first time, all this can be a bit
opaque.

Though Apache works best on Unix systems, there are also versions that run on
Windows operating systems. Nobody, not even the Apache developers, recommends
that Apache be run on a busy server under Windows. If you have decided to use the
Windows platform for serving Web pages, you’re better off using IIS.

But there are conditions under which you’ll be glad Apache does run under
Windows. You can run Apache, PHP, and MySQL on a Windows 98 machine and
then transfer those applications to Linux with practically no changes to the scripts.
This is the easiest way to go if you need to develop locally on Windows but to serve
off a Unix/Apache server.

MIDDLEWARE
PHP belongs to a class of languages known as middleware. These languages work
closely with the Web server to interpret the requests made from the World Wide
Web, process these requests, interact with other programs on the server to fulfill the
requests, and then indicate to the Web server exactly what to serve to the client’s
browser.

The middleware is where you’ll be doing the vast majority of your work. With a
little luck, you can have your Web server up and running without a whole lot of
effort. And once it is up and running, you won’t need to fool with it a whole lot.

But as you are developing your applications, you’ll spend a lot of time writing
code that makes your applications work. In addition to PHP, there are several lan-
guages that perform similar functions. Some of the more popular choices are ASP,
Perl, and ColdFusion.

RELATIONAL DATABASES
Relational Database Management Systems (RDBMSs) provide a great way to store
and access complex information. They have been around for quite a while. In fact,
they predate the Web, Linux, and Windows NT, so it should be no surprise that
there are many RDBMSs to choose from. All of the major databases make use of the
Structured Query Language (SQL).

Some of the more popular commercial RDBMSs are Oracle, Sybase, Informix,
Microsoft’s SQL Server, and IBM’s db2. In addition to MySQL, there are now two
major open-source relational databases. Postgres has been the major alternative to
MySQL in the open-source arena for some time. In August 1999, Borland released its
Interbase product under an open-source license and allowed free download and use.

Why these Products?
Given the number of choices out there, you may be asking yourself why you should
choose PHP and/or MySQL. We will answer this question in the following three
sections.

Introduction xxvii

3537-4 FM.f.qc 12/15/00 15:31 Page xxvii

Why PHP?
Programming languages are a lot like shoes. Some look good to some people yet
look really ugly to others. To carry the analogy a little further, some shoes just fit
well on some feet.

What we mean is this: when it comes to Web programming, all languages do
pretty much the same thing: They all interact with relational databases; they all
work with a filesystem; they all interact with a Web server. The question about
which language is best is rarely a matter of a language’s inability to perform cer-
tain actions. It’s usually more a matter of how quickly you can do what you need
to do with the least amount of pain.

IT’S FAST AND EASY
What about speed? There are really only three things that we know for sure when it
comes to comparing speeds of Web programming languages. First, applications
written in C will be the fastest. Second, programming in C is rather difficult and
will take much longer than any of the other languages mentioned so far. Third,
comparisons between languages are extremely difficult. From everything we know,
we feel safe in saying the PHP is as fast as anything out there.

More often than not choosing a language comes back to the same issues
involved in buying shoes. You’ll want to go with what’s most comfortable. If you’re
like us, you will find that PHP has managed the perfect mix of power, structure, and
ease of use. Again, this is largely a matter of opinion, but we do believe the syntax
of PHP is superior to that of ASP and JSP. And we believe it puts more power at
your fingertips more quickly than ColdFusion and is not as difficult to learn as Perl.

In the end, we believe PHP offers the best opportunity to develop powerful Web
applications quickly. That generalization made, we do believe there are other excel-
lent reasons for choosing PHP.

IT’S CROSS-PLATFORM
In the rundown of Web architecture, we mentioned that PHP will run on Windows
2000/NT and Unix and with both IIS and Apache. But the cross-platform abilities of
PHP go far beyond these platforms. If you happen to be using Netscape, Roxen, or
just about anything else, it is likely PHP will work with it.

Yes, ASP can be run on Linux, and ColdFusion can work on Solaris and Linux,
and JSP is adaptable across many platforms. At this point, PHP works as well on as
wide a variety of systems as any other available product.

IT ACCESSES EVERYTHING
What do you need to access in the course of creating your Web applications?
LDAP? IMAP mail server? Oracle? Informix? DB2? Or maybe you need an XML
parser or WDDX functions.

Whatever you need to use, it is more than likely that PHP has a built-in set of
functions that make getting whatever you need very easy. But what if it doesn’t
have something built in that you’d like? That brings us to our next point.

xxviii Introduction

3537-4 FM.f.qc 12/15/00 15:31 Page xxviii

IT’S CONSTANTLY BEING IMPROVED
If you are new to open source development, you might be surprised by the high
quality of the software. There are thousands of very technical, very talented pro-
grammers out there who love to spend their time creating great, and mostly free,
software. In an active project such as PHP, there is a variety of developers looking
to improve the product almost daily.

It is truly remarkable. If you happen to find a bug, you can submit a report to a
mailing list that the core developers read. Depending on its severity, it is likely that
the bug will be addressed within a couple of hours to a couple of days.

When PHP 4 was put together, it was done so in a modular fashion. This makes
adding greater functionality reasonably easy. If there are sets of functions you’d
like added to PHP, there’s a good chance that someone will be able to do it with
minimal effort.

YOUR PEERS WILL SUPPORT YOU
Most languages have active mailing lists and development sites. PHP is no excep-
tion. If you run into trouble — if there’s a bug in your code you just can’t figure out
or you can’t seem to fathom some function or another — someone among the hun-
dreds subscribed to PHP mailing lists will be happy to check and fix your code.

The open-source nature of PHP creates a real feeling of community. When you
get into trouble, your PHP-hacking brethren will feel your pain and ease it.

IT’S FREE
If you have a computer, Linux, Apache, and PHP are all completely free.

Why MySQL?
This one is perhaps a little tougher to answer. Although MySQL has much to rec-
ommend it, it also has a variety of competitors, many of whom may be better suited
for a particular task.

In Part I of this book, MySQL is discussed in some detail. In these chapters, you’ll
see that we mention features available in other relational databases that MySQL
does not support. (If you know your way around databases and are curious, these
include stored procedures, triggers, referential integrity, and SQL unions and sub-
queries.) Given these limitations, there are definitely environments where MySQL
would not be the best choice. If you are planning on starting, say, a bank (you
know, a savings and loan), MySQL probably isn’t for you.

But for the majority of people in the majority of applications, MySQL is a great
choice. It is particularly well suited for Web applications.

IT’S COST-EFFECTIVE
Think you need an Oracle installation? Get ready to shell out somewhere between
$30,000-$100,000 or more. There’s no doubt that Oracle, Sybase, and Informix cre-
ate terrific databases, but the cost involved will be prohibitive for many.

MySQL is free. You can install and use it and pay nothing in the process.

Introduction xxix

3537-4 FM.f.qc 12/15/00 15:31 Page xxix

IT’S QUICK AND POWERFUL
MySQL may not have every bell and whistle available for a relational database, but
for most users there is plenty. If you are serving out Web content or creating a
moderately sized commerce site, MySQL has all the power you need.

For small-to-medium-sized databases, MySQL will be extremely fast. The devel-
opers of MySQL take great pride in the speed of their product. For applications like
the ones presented in Parts III and IV of this book, it is unlikely you’ll find a data-
base that’s any faster.

IT’S IMPROVING ALL THE TIME
MySQL is improving at a staggering rate. The developers release updates frequently
and are adding impressive (and we do mean impressive) features all the time.
Recently, MySQL added support for transactions; they are apparently at work now
on stored procedures.

MySQL transaction support was added shortly before this writing.Therefore,

applications in this book that might make use of transactions do not.

All in all, MySQL is an excellent product and getting better all the time.

Your First Application
Enough of the prelude. Let’s get to writing an application so you can see how all of
these parts come together in a real live application. By the time you have finished
reading this intro, you should have a pretty good idea of how it all comes together.

Tool check
There are a few key elements you need to get going. We’ll run through them here so
you’ll know what you need.

SOFTWARE
This is a Web-based application, so you’re clearly going to need a Web server. You
will probably be using Apache, whether you are using Windows or Unix. You will
need to install Apache so that it can access the PHP language.

In addition, you will need to have MySQL installed. And PHP will have to be
able to recognize MySQL. Apache, MySQL, and PHP are provided on the accompa-
nying CD, and installation instructions are provided in Appendix B. You may want
to install these packages before proceeding, or you could just read along to get an
idea of what we’re doing and install the packages later when you want to work with
the more practical examples in this book.

NOTE

xxx Introduction

3537-4 FM.f.qc 12/15/00 15:31 Page xxx

TEXT EDITOR
As of this writing, there are no slick, integrated development environments (IDEs)
for PHP. To code PHP and your Web pages, you will need a text editor. You could use
Notepad or something similarly basic, but if you’re starting without an allegiance to
any particular editor, I suggest you get something with good syntax highlighting. On
Windows, Allaire’s Homesite (www.allaire.com) is a tool that works well with PHP,
and we’ve heard excellent things about Editplus (www.editplus.com).

If you have been working on Unix for some time, it is likely that you already know
and love some text editor or another, whether it be Emacs, vi , or Kedit. If not, any of
these are fine, though the first two do take some getting used to. If you’re woking on
Unix, but don’t have the patience to learn vi, try Pico. It’s very easy to use.

If you need a text editor under Unix but don’t know your way around vi, try

Pico. It’s a very basic, easy-to-use text editor.

Application overview
We thought we would start this book with something really exotic, a Web applica-
tion that’s mind-blowingly original, something never before seen on the Web. After
a great brainstorming session, when we contacted some of the brightest people on
the Web, and geniuses in other creative fields, we found the perfect thing. We’d
write an application that stores user information, a place where users can enter
their names, e-mail addresses, URLs, and maybe even comments. After lengthy dis-
cussion, and deep prayer, we decided on a name for this application. It is now and
forever to be known as a guestbook.

The guestbook is a simplified example, something you would never want to

run on a live Web server. We re-create this application in a more robust form

in Chapter 8.

Create the database
Now that you know exactly what you need , the first step is to create a database
that will store this information. To do this, you will use the language common to
most every database server: the Structured Query Language (SQL). You will read a
lot more about this later, so don’t worry if you don’t understand everything right
away. Just read through the rest of the Introduction and then read Chapter 1.

Start up the MySQL command-line client. If you’re working on Unix, typing
mysql at the shell should do the trick (or you might have to go to the /mysql/bin
directory). If you are on Windows, you will need to go to the DOS prompt, find the

XREF

Tip

Introduction xxxi

3537-4 FM.f.qc 12/15/00 15:31 Page xxxi

path to mysql.exe, and execute it. Then, at the prompt, create a new database.
When you’re done, you should have something that looks very much like this:

[jay@mybox jay]$ mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 716 to server version: 3.22.27-log

Type ‘help’ for help.

mysql> create database guestbook;
Query OK, 1 row affected (0.00 sec)

mysql>

Now, within the database named guestbook, you will need a table that stores the
user information. This table is also created in the MySQL monitor. The command to
create the table isn’t very complex. You basically need to let MySQL know what
kind of information to expect, whether numbers or stings, and whether or not any
of the information can be omitted (or NULL). The basic command is create table; it
will look about like this when you make the table:

mysql> use guestbook
Database changed
mysql> create table guestbook

-> (
-> name varchar(40) null,
-> location varchar(40) null,
-> email varchar(40) null,
-> url varchar(40) null,
-> comments text null
->)
-> ;

Query OK, 0 rows affected (0.00 sec)

mysql>

So now you have a database named guestbook and a table within the database
named guestbook. Now it’s time to write an application in PHP that will enable you
to insert, edit, and view information kept in this guestbook.

Your PHP Script
Now’s the time to move to the text editor. In the course of configuring your Web
server, you will need to let it know which files should be handed off to PHP so the
engine can interpret the page. Most often, these files will have a .php extension,
though it is possible to have PHP interpret anything, including .html files. These

xxxii Introduction

3537-4 FM.f.qc 12/15/00 15:31 Page xxxii

scripts will live inside the folder designated to hold Web pages. For Apache, this
will usually be /htdocs.

BASIC SYNTAX
One neat thing about PHP is that it lets you move between straight HTML and com-
mands that are part of the PHP programming language. It works like this: The sections
of your script between the opening tag <?php and a closing tag ?> will be interpreted
by the PHP engine, and portions not within these tags will be treated as plain HTML.
Check out the following PHP page.

<?php
echo “Hi,”;
?>
mom.

When run through the Web server, this would create a Web page that prints, sim-
ply, “Hi, mom.” PHP’s echo command manages the first part of the line. But, of
course, PHP can do quite a bit more than that. Like any other programming lan-
guage, it can work with variables and make decisions.

<?php
echo “hi, mom. “;

$var = date(“H”);
if ($var <= 11)
{

echo “good morning”;
}
elseif ($var > 11 and $var < 18)
{

echo “good afternoon”;
}
else
{

echo “good evening”;
}
?>

In this page, after printing out the greeting, there is some real programming. I’ve
used PHP’s built-in date function to grab the hour of the day in 24-hour format.
That value is immediately assigned to a variable named $var. Then a decision is
made, and the appropriate text is printed, depending on the time of day. Notice the
syntax here. Each PHP command ends with a semicolon. In the if statement, curly
braces hold the commands to be executed depending on the condition. And the
condition itself is held within parentheses.

Introduction xxxiii

3537-4 FM.f.qc 12/15/00 15:31 Page xxxiii

The date() function and echo, which are used in the previous example, are just
two of the hundreds of functions built into PHP, many of which you will learn to
use in the course of this book. If you are going to access the database, you’re going
to need a few more.

CONNECTING TO THE DATABASE
While you’re installing PHP, you should let it know that you plan on using MySQL with
it. If you don’t do this, what we will discuss now won’t work. Even if PHP is aware that
you’re using MySQL, in your specific scripts you must identify the exact database you
need access to. In this case, that will be the guestbook database you just created.

mysql_connect(“localhost”, “nobody”,”password”) or
die (“Could not connect to database”);

mysql_select_db(“guestbook”) or
die (“Could not select database”);

The first line tells MySQL that the Web server (the entity running the script) is on
the local machine, has a username of nobody, and has a password of password.
Then, if the connection is successful, the specific database is selected with the
mysql_select_db() command. With these lines safely tucked away in your scripts,
you should be able to manipulate the database with your commands.

Because you’re going to need these lines in every page in this application, it
makes sense to save some typing and put them in a file of their own and include
them in every page. If you’ve done any programming at all, you know that this
involves dumping the entire contents of that file into the file being accessed. These
lines will be kept in a file called dbconnect.php. At the top of every other file in this
application will be the following line:

include(‘dbconnect.php’);

INSERTING INFORMATION INTO THE DATABASE
Because you have yet to put any users in the database, we’ll start by reviewing the
script that will allow that. But first, we need to tell you a little bit more about PHP
variables. A bit earlier, we showed that you can create variables within a PHP script,
but as this is a client/server environment, you’re going to need to get variable data
from the client (the Web browser) to PHP. You’ll usually do this with HTML forms.

There’s a basic rundown of HTML forms in Appendix A. Check that if you need
to. For now we will just point out that every form element has a name, and when a
form is submitted the names of those form elements become available as variables
in the PHP script the form was submitted to. With the following form, as soon as
the form is submitted, the variables $surname and $submit will become available
in the PHP script myscript.php. The value of $surname will be whatever the user
enters into the text field. The value of $submit will be the text string “submit.”

<form action=”myscript.php”>
<input type=”text” name=”surnmae”>

xxxiv Introduction

3537-4 FM.f.qc 12/15/00 15:31 Page xxxiv

<input type=”submit” name=”submit” value=”submit”>
</form>

Before we show the script itself, now is a good time to note that Web program-
ming is slightly different from other types of programming in one important
respect: It is stateless. To display a page, a Web server must first receive a request
from a browser. The language they speak is called HTTP, the Hypertext Transfer
Protocol. The request will include several things — the page the browser wishes to
see, the form data, the type of browser being used, and the IP address the browser
is using. Based on this information, the Web server will decide what to serve.

Once it has served this page, the server maintains no connection to the browser.
It has absolutely no memory of what it served to whom. Each HTTP request is dealt
with individually with no regard to what came before it. For this reason, in Web
programming you need to come up with some way of maintaining state. That is, if
you are progressing through an application, you will need some way of letting the
server know what happened. Essentially, you will need ways of passing variables
from page to page. This will come up in our applications. The applications will
solve this problem in one of three ways: by passing hidden form elements, by using
cookies, or by using sessions.

Now back to our script.

<form action=”myscript.php”>
<input type=”text” name=”surnmae”>
<input type=”submit” name=”submit” value=”submit”>

</form>

You can decide what you will display on a page based on the variable informa-
tion that comes from HTML forms. For instance, you could check if the preceding
form had been submitted by checking if the variable name $submit had a value of
“submit.” This very technique will come into play when it comes to creating the
page for inserting information into the database.

There is one page in our application, called sign.php, that has an HTML form.
The action of the form in this page is create_entry.php. Here’s the page in all its
glory:

<h2>Sign my Guest Book!!!</h2>

<form method=post action=”create_entry.php”>

Name:
<input type=text size=40 name=name>

Location:
<input type=text size=40 name=location>

Introduction xxxv

3537-4 FM.f.qc 12/15/00 15:31 Page xxxv

Email:
<input type=text size=40 name=email>

Home Page URL:
<input type=text size=40 name=url>

Comments:
<textarea name=comments cols=40 rows=4 wrap=virtual></textarea>

<input type=submit name=submit value=”Sign!”>
<input type=reset name=reset value=”Start Over”>

</form>

When the user fills out this form and submits it, the information will be sent to
create_entry.php. The first thing to do on this page is to check that the form has
been submitted. If it has, take the values entered into the form and use them to cre-
ate a query that you will send to MySQL. Don’t worry about the specifics of the
query just yet. Just know that it will insert a row into the database table you cre-
ated earlier.

<?php
include(“dbconnect.php”);

if ($submit == “Sign!”)
{

$query = “insert into guestbook
(name,location,email,url,comments) values
(‘$name’, ‘$location’, ‘$email’, ‘$url’, ‘$comments’)”

;
mysql_query($query) or

die (mysql_error());
?>
<h2>Thanks!!</h2>
<h2>View My Guest Book!!!</h2>
<?php
}
else
{

include(“sign.php”);
}
?>

If the form, which is in sign.php, hasn’t been submitted, it is included and there-
fore will show the same form. You may notice that this page is submitted to itself.

xxxvi Introduction

3537-4 FM.f.qc 12/15/00 15:31 Page xxxvi

The first time the create_entry.php page is called, the form in sign.php will be dis-
played. The next time, though, the data will be inserted into the database.

Figures I-2 and I-3 show the pages that this script will create.

Figure I-2: create_entry.php the first time through

Figure I-3: create_entry.php after submission

Introduction xxxvii

3537-4 FM.f.qc 12/15/00 15:31 Page xxxvii

VIEWING INFORMATION IN THE DATABASE
This shouldn’t be too tough. You already know that the file will need to include
dbconnect.php. Other than that, we’ve already mentioned that databases store
information in tables. Each row of the table will contain information on a specific
person who signed the guestbook, so to view all of the information, the page will
need to retrieve and print out every row of data. Here’s the script that will do it (you
should notice that it’s pretty sparse):

<?php include(“dbconnect.php”); ?>

<h2>View My Guest Book!!</h2>

<?php

$result = mysql_query(“select * from guestbook”) or
die (mysql_error());

while ($row = mysql_fetch_array($result))
{

echo “Name:”;
echo $row[“name”];
echo “
\n”;
echo “Location:”;
echo $row[“location”];
echo “
\n”;
echo “Email:”;
echo $row[“email”];
echo “
\n”;
echo “URL:”;
echo $row[“url”];
echo “
\n”;
echo “Comments:”;
echo $row[“comments”];
echo “
\n”;
echo “
\n”;
echo “
\n”;
}
mysql_free_result($result);
?>

<h2>Sign My Guest Book!!</h2>

xxxviii Introduction

3537-4 FM.f.qc 12/15/00 15:31 Page xxxviii

The query asks MySQL for every row in the database. Then the script enters a
loop. Each row in the database is loaded into the variable $row, one row at a time.
Rows will continue to be accessed until none is left. At that time, the script will
drop out of the while loop.

As it works through the loop, each column in that row is displayed. For example

print $row[“email”]

will print out the e-mail column for the row being accessed.
When run, this simple script will print out every row in the database. Figure I-4

shows what the page will look like.

Figure I-4: view.php

And that about does it for our first application.

WHY YOU SHOULD NOT USE THIS APPLICATION
If you want to load this up on your own server to see if it works, fine; be our guest.
But we wouldn’t put it anywhere where the general public could get to it. No, if you
were to do that there would be problems. For instance, you could end up with
Figure I-5 on your view.php page. Not good at all!

Introduction xxxix

3537-4 FM.f.qc 12/15/00 15:31 Page xxxix

Figure I-5: Problematic guestbook entry

If you want a guestbook, you should use the super-hyper-coded application
made exclusively for the readers of this book, which you will find in Chapter 8.
We call this application Guestbook2k. But before we get there, it’s time for some
education.

Now get reading.

xl Introduction

3537-4 FM.f.qc 12/15/00 15:31 Page xl

Chapter 1

Database Design with
MySQL

IN THIS CHAPTER

◆ Identifying the problems that led to the creation of the relational database

◆ Learning the normalization process

◆ Taking a look at database features that MySQL does not currently support

THE BULK OF THIS CHAPTER is for those of you who have made it to the early 21st

century without working with relational databases. If you’re a seasoned database
pro, having worked with Oracle, Sybase, or even something like Microsoft Access or
Paradox, you may want to skip this little lesson on database theory. However, I do
suggest that you look at the final section of this chapter, where I discuss some of
MySQL’s weirder points. MySQL’s implementation of SQL is incomplete, so it may
not support some of what you might be looking for.

Why Use a Relational Database?
If you’re still here and are ready to read with rapt attention about database theory
and the wonders of normalization, you probably don’t know much about the history
of the relational database. You may not even care. For that reason, I’ll keep this very
brief. Dr. E. F. Codd was a research scientist at IBM in the 1960s. A mathematician
by training, he was unhappy with the available models of data storage. He found
that all the available methods were prone to error and redundancy. He worked on
these problems and then, in 1970, published a paper with the rousing title “A
Relational Model of Data for Large Shared Databanks.” In all honesty, nothing has
been the same since.

A programmer named Larry Ellison read the paper and started work on software
that could put Dr. Codd’s theories into practice. If you’ve been a resident of this
planet over the past 20 years, you may know that Ellison’s product and company
took the name Oracle and that he is now one of the richest men in the world. His
earliest product was designed for huge mainframe systems. Responding to market
demands over the years, Oracle, and many other companies that have sprung up
since, have designed systems with a variety of features geared toward a variety of 3

3537-4 ch01.f.qc 12/15/00 15:20 Page 3

operating systems. Now, relational databases are so common that you can get one
that runs on a Palm Pilot.

To understand why Dr. Codd’s theories have revolutionized the data storage
world, it’s best to have an idea as to what the troubles are with other means of data
storage. Take the example of a simple address book — nothing too complex, just
something that stores names, addresses, phone numbers, e-mails, and the like. If
there’s no persistent, running program that we can put this information into, the
file system of whatever OS is running becomes the natural choice for storage.

For a simple address book, a delimited text file can be created to store the infor-
mation. If the first row serves as a header and commas are used as the delimiter, it
might look something like this:

Name, Addr1, Addr2, City, State, Zip, Phone, E-mail
Jay Greenspan, 211 Some St, Apt 2, San Francisco, CA, 94107,
4155551212, jgreen_1@yahoo.com
Brad Bulger, 411 Some St, Apt 6, San Francisco, CA, 94109,
4155552222, bbulger@yahoo.com
John Doe, 444 Madison Ave, , New York, NY, 11234, 2125556666,
nobody@hotmail.com

This isn’t much to look at, but it is at least machine-readable. Using whatever lan-
guage you wish, you can write a script that opens this file and then parses the infor-
mation. You will probably want it in some sort of two-dimensional or associative
array so that you’ll have some flexibility in addressing each portion of each line of
this file. Any way you look at it, there’s going to be a fair amount of code to write. If
you want this information to be sortable and queryable by a variety of criteria, you’re
going to have to write scripts that will, for instance, sort the list alphabetically by
name or find all people within a certain area code. What a pain.

You might face another major problem if your data needs to be used across a net-
work by a variety of people. Presumably more than one person is going to need to
write information to this file. What happens if two people try to make changes at
once? For starters, it’s quite possible that one person will overwrite another’s changes.
To prevent this from happening, the programmer has to specify file locking if the
file is in use. While this might work, it’s kind of a pain in the neck for the person
who gets locked out. Obviously, the larger the system gets the more unmanageable
this all becomes.

What you need is something more robust than the file system — a program or
daemon that stays in memory seems to be a good choice. Further, you’ll need a data
storage system that reduces the amount of parsing and scripting that the program-
mer needs to be concerned with. No need for anything too arcane here. A plain,
simple table like Table 1-1 should work just fine.

Now this is pretty convenient. It’s easy to look at and, if there is a running pro-
gram that accesses this table, it should be pretty quick. What else might this
program do? First, it should be able to address one row at a time without affecting

4 Part I: Working with MySQL

3537-4 ch01.f.qc 12/15/00 15:20 Page 4

the others. That way, if two or more people want to insert information into this
table, they won’t be tripping over each other. It would be even spiffier if the
program provided a simple and elegant way to extract information from a table
such as this. There should be a quick way of finding all of the people from
California that doesn’t involve parsing and sorting the file. Furthermore, this
wondrous program should be able to accept statements that describe what you
want in a language very similar to English. That way you can just say: “Give me all
rows where the contents of the State column equal ‘CA’.”

Yes, this would be great, but it isn’t enough. There are still major problems that
will need to be dealt with. These problems, which I’ll discuss in the following pages,
are the same ones that made Dr. Codd write his famous paper, and that made Larry
Ellison a billionaire.

Blasted Anomalies
Dr. Codd’s goal was to have a model of information that was dependable. All of the
data-storage methods available to him had inherent problems. He referred to these
problems as anomalies. There are three types of anomalies: Update, Delete, and Insert.

Update anomaly
Now that we can assume that a table structure can quickly and easily handle mul-
tiple requests, we need to see what happens when the information gets more com-
plex. Adding some more information to the previous table introduces some serious
problems (Table 1-2).

Table 1-2 is meant to store information for an entire office, not just a single per-
son. Since this company deals with other large companies, there will be times when
more than one contact will be at a single office location. For example, in Table 1-2,
there are two contacts at 1121 43rd St. At first this may appear to be OK: we can still
get at all the information available relatively easily. The problem comes when the
BigCo Company decides to up and move to another address. In that case, we’d have
to update the address for BigCo in two different rows. This may not sound like
such an onerous task, but consider the trouble if this table has 3,000 rows instead
of 3 — or 300,000 for that matter. Someone, or some program, has to make sure the
data is changed in every appropriate place.

Another concern is the potential for error. It’s very possible that one of these
rows could be altered while the other one remained the same. Or, if changes are
keyed in one row at a time, it’s likely that somebody will introduce a typo. Then
you’re left wondering if the correct address is 1121 or 1211.

The better way to handle this data is to take the company name and address and
put that information in its own table. The two resulting tables will resemble Table
1-3 and Table 1-4.

Chapter 1: Database Design with MySQL 5

3537-4 ch01.f.qc 12/15/00 15:20 Page 5

TABLE 1-1 SIMPLE TABLE FOR DATA STORAGE

name addr1 addr2 city state zip phone e-mail

Jay Greenspan 211 Some St Apt 2 San Francisco CA 94107 4155551212 jgreen_1@yahoo.com

Brad Bulger 411 Some St Apt 6 San Francisco CA 94109 4155552222 bbulger@yahoo.com

John Doe 444 Madison Ave New York NY 11234 2125556666 nobody@hotmail.com

TABLE 1-2 PROBLEMATIC TABLE STORAGE

id company_name company_address contact_name contact_title phone email

1 BigCo Company 1121 43rd St Jay Greenspan Vice President 4155551212 jgreen_1@yahoo.com

2 BigCo Company 1121 43rd St Brad Bulger President 4155552222 bbulger@yahoo.com

3 LittleCo Company 4444 44th St John Doe Lackey 2125556666 nobody@hotmail.com

6
Part I: W

orking w
ith M

ySQ
L

3
5
3
7
-
4

c
h
0
1
.
f
.
q
c

1
2
/
1
5
/
0
0

1
5
:
2
0

P
a
g
e

6

TABLE 1-3 COMPANIES

company_id company_name company_address

1 BigCo Company 1121 43rd St

2 LittleCo Company 4444 44th St

TABLE 1-4 CONTACTS

contact_id company_id contact_name contact_title phone email

1 1 Jay Greenspan Vice President 4155551212 jgreen_1@yahoo.com

2 1 Brad Bulger President 4155552222 bbulger@yahoo.com

3 2 John Doe Lackey 2125556666 nobody@hotmail.com

Chapter 1: D
atabase D

esign w
ith M

ySQ
L

7

3
5
3
7
-
4

c
h
0
1
.
f
.
q
c

1
2
/
1
5
/
0
0

1
5
:
2
0

P
a
g
e

7

Now the information pertinent to BigCo Co. is in its own table, named Companies.
If you look at the next table (Table 1-4), named Contacts, you’ll see that we’ve
inserted another column, called company_id. This column references the company_id
column of the Company table. In Brad’s row, we see that the company_id (the second
column) equals 1. We can then go to the Companies table, look at the information for
company_id 1 and see all the relevant address information. What’s happened here is
that we’ve created a relationship between these two tables—hence the name rela-
tional database.

We still have all the information we had in the previous setup, we’ve just seg-
mented it. In this setup we can change the address for both Jay and Brad by altering
only a single row. That’s the kind of convenience we’re after.

Perhaps this leaves you wondering how we get this information un-segmented.
Relational databases give us the ability to merge, or join, tables. Consider the fol-
lowing statement, which is intended to give us all the available information for
Brad: “Give me all the columns from the contacts table where contact_id is equal to
1, and while you’re at it throw in all the columns from the Companies table where
the company_id field equals the value shown in Brad’s company_id column.” In
other words, in this statement, you are asking to join these two tables where the
company_id fields are the same. The result of this request, or query, would look
something like Table 1-5.

In the course of a couple of pages, you’ve learned how to solve a data-integrity
problem by segmenting information and creating additional tables. But I have yet
to give this problem a name. When I learned the vocabulary associated with rela-
tional databases from a very thick and expensive book, this sort of problem was
called an update anomaly. There may or may not be people using this term in the
real world; if there are, I haven’t met them. However, I think this term is pretty apt.
In the table presented earlier in this section, if we were to update one row in the
table, other rows containing the same information would not be affected.

Delete anomaly
Now take a look at Table 1-6, focusing on row 3. Consider what happens if Mr. Doe
is deleted from the database. This may seem like a simple change but suppose
someone accessing the database wants a list of all the companies contacted over
the previous year. In the current setup, when we remove row 3 we take out not only
the information about John Doe, we remove information about the company as
well. This problem is called a deletion anomaly.

If the company information is moved to its own table, as we saw in the previous
section, this won’t be a problem. We can remove Mr. Doe and then decide indepen-
dently if we want to remove the company he’s associated with.

8 Part I: Working with MySQL

3537-4 ch01.f.qc 12/15/00 15:20 Page 8

TABLE 1-5 QUERY RESULTS

company_ company_ Contact Contact
company_id name address contact_id Name Title Phone E-mail

1 BigCo Company 1121 43rd St 2 Brad Bulger President 4155552222 bbulger@yahoo.com

TABLE 1-6 TABLE WITH DELETION ANOMALY

company_ company_ contact_ contact_
company_id name address name title phone email

1 BigCo Company 1121 43rd St Jay Greenspan Vice President 4155551212 jgreen_1@yahoo.com

2 BigCo Company 1121 43rd St Brad Bulger President 4155552222 bbulger@yahoo.com

3 LittleCo Company 4444 44th St John Doe Lackey 2125556666 nobody@hotmail.com

Chapter 1: D
atabase D

esign w
ith M

ySQ
L

9

3
5
3
7
-
4

c
h
0
1
.
f
.
q
c

1
2
/
1
5
/
0
0

1
5
:
2
0

P
a
g
e

9

Insert anomaly
Our final area of concern is problems that will be introduced during an insert.
Looking again at the Table 1-6, we see that the purpose of this table is to store
information on contacts, not companies. This becomes a drag if you want to add a
company but not an individual. For the most part, you’ll have to wait to have a
specific contact to add to the data before you can add company information to the
database. This is a ridiculous restriction.

Normalization
Now that we’ve shown you some of the problems you might encounter, you need to
learn the ways to find and eliminate these anomalies. This process is known as nor-
malization. Understanding normalization is vital to working with relational data-
bases. But, to anyone who has database experience, normalization is not the be-all
and end-all of data design. Experience and instinct also play a part in creating a
good database. In the examples presented later in this book, the data will be nor-
malized, for the most part — but there will also be occasions when an unnormalized
structure is preferable.

One other quick caveat. The normalization process consists of several “normal
forms.” In this chapter we will cover 1st, 2nd, and 3rd normal forms. In addition to
these, the normalization process can continue through four other normal forms. (For
the curious, these are called Boyce-Codd normal form, 4th normal form, 5th normal
form, and Domain/Key normal form). I know about these because I read about them
in a book. In the real world, where real people actually develop database applications,
these normal forms just don’t get talked about. If you get your data into 3rd normal
form that’s about good enough. Yes, there is a possibility that anomalies will exist in
3rd normal form, but if you get this far you should be OK.

1st normal form
Getting data into 1st normal form is fairly easy. Data need to be in a table structure
and meet the following criteria:

◆ Each column must contain an “atomic” value. That means that there will
be only one value per cell. No arrays or any other manner of representing
more than one value will exist in any cell.

◆ Each column must have a unique name.

◆ The table must have a set of values that uniquely identifies the row (This
is known as the primary key of the table).

◆ No two rows can be identical.

◆ No repeating groups of data are allowed.

10 Part I: Working with MySQL

3537-4 ch01.f.qc 12/15/00 15:20 Page 10

TABLE 1-7 TABLE WITH REPEATING GROUPS OF DATA

company_ company_ contact_ contact_
company_id name address name title phone email

1 BigCo Company 1121 43rd St Jay Greenspan Vice President 4155551212 jgreen_1@yahoo.com

2 BigCo Company 1121 43rd St Brad Bulger President 4155552222 bbulger@yahoo.com

3 LittleCo Company 4444 44th St John Doe Lackey 2125556666 nobody@hotmail.com

Chapter 1: D
atabase D

esign w
ith M

ySQ
L

11

The final item
 here is the only one that m

ay require som
e explanation. Take a look

at Table 1-7:

3
5
3
7
-
4

c
h
0
1
.
f
.
q
c

1
2
/
1
5
/
0
0

1
5
:
2
0

P
a
g
e

1
1

As we’ve already seen, row 1 and row 2 contain two columns that contain iden-
tical information. This is a repeating group of data. Only when we remove these
columns and place them in their own table will this data be first normal form. The
separation of tables that we did in Tables 1-3 and 1-4 will move this data into 1st

normal form.
Before we move on to chat about 2nd and 3rd normal form, you’re going to need

a couple of quick definitions. The first is primary key. The primary key is a column
or set of columns by which each row can be uniquely identified. In the tables pre-
sented so far, I’ve included a column with sequential values, and as rows are added
to these tables the database engine will automatically insert an integer one greater
than the maximum value for the column. It’s an easy way to make sure you have a
unique field for every row. Every database in the world has some method of defin-
ing a column like this. In MySQL it’s called an auto_increment field. Depending on
your data, there are all kinds of values that will work for a primary key. Social
Security numbers work great, as do e-mail addresses and URLs. The data just need
to be unique. In some cases, two or more columns may comprise your primary key.
For instance, continuing with our address book example, if contact information
needs to be stored for a company with many locations, it will probably be best to
store the switchboard number and mailing address information in a table that has
the company_id and the company city as its primary key.

Next, we need to define the word dependency, which means pretty much what
you think it means. A dependent column is one that is inexorably tied to the pri-
mary key. It can’t exist in the table if the primary key is removed.

With that under our belts, we are ready to tackle 2nd normal form.

2nd normal form
This part of the process only comes into play when you end up with one of those
multi-column primary keys that I just discussed. Assume that in the course of
dividing up our address tables we end up with Table 1-8. Here, the company_name
and comapany_location comprise the multi-column primary key.

TABLE 1-8 TABLE NOT IN 2ND NORMAL FROM

company_name company_location company_ceo company_address

BigCo Company San Francisco Bill Hurt 1121 43rd St

LittleCo Company LA LittleCo Company 4444 44th st

You should be able to see pretty quickly that an insertion anomaly would work
its way in here if we were to add another location for BigCo Co. We’d have the CEO
name, Bill Hurt, repeated in an additional row, and that’s no good.

12 Part I: Working with MySQL

3537-4 ch01.f.qc 12/15/00 15:20 Page 12

We can get this table into 2nd normal form by removing rows that are only partially
dependent on the primary key. Here, CEO is only dependent on the company_name
column. It is not dependent on the company_location column. To get into 2nd normal
form, we move rows that are only partially dependent on a multi-field primary key
into their own table. 2nd normal form does not apply to tables that have a single-
column primary key.

3rd normal form
Finishing up the normalization process, 3rd normal form is concerned with transitive
dependencies. A transitive dependency is a situation where a column exists that is
not directly reliant on the primary key. Instead, the field is reliant on some other
field, which in turn is dependent on the primary key. A quick way to get into 3rd

normal form is to look at the all fields in a table and ask if those fields describe the
primary key. If not, you’re not there.

If your address book needs to store more information on your contacts, you may
find yourself with a table like this.

TABLE 1-9 TABLE NOT IN 3RD NORMAL FORM

contact_ contact_ assistant_ assistant_
contact_id name phone name phone

1 Bill Jones 4155555555 John Bills 2025554444

2 Carol Shaw 2015556666 Shawn Carlo 6505556666

You may think we’re doing OK here. But look at the assistant_phone column and
ask if that really describes the primary key (and the focus of this table), which is
your contact. It’s possible, even likely, that one assistant will serve many people, in
which case it’s possible that an assistant name and phone will end up listed in the
table more than once. That would be a repeating group of data, which we already
know we don’t want.

Types of Relationships
Essentially, the deal with this book is that we’re going to create a bunch of tables that
don’t have anomalies. We’ll include columns that maintain relationships between
these tables. There are three specific types of relationships that we’ll encounter in
database land.

Chapter 1: Database Design with MySQL 13

3537-4 ch01.f.qc 12/15/00 15:20 Page 13

One-to-many relationship
This is by far the most common type of relationship that occurs between tables. When
one value in a column references several fields in another table, a one-to-many
relationship is in effect (Figure 1-1).

Figure 1-1: Tables with a one-to-many relationship

This is a classic one-to many relationship. Here, each company is associated with
a certain industry. As you can see, one industry listed in the industry table can be
associated with one or more rows in the company table. This in no way restricts
what we can do with the companies. We are absolutely free to use this table as the
basis for other one-to-many relationships. Figure 1-2 shows that the Companies
table can be on the “one” side of a one-to-many relationship with a table that lists
city locations for all the different companies.

One-to-one relationship
A one-to-one relationship is essentially a one-to-many relationship where only one
row in a table is related to only one row in another table. During the normalization
process, I mentioned a situation where one table holds information on corporate
executives and another holds information on their assistants. This could very well
be a one-to-one relationship if each executive has one assistant and each assistant
works for only one executive. Figure 1-3 gives a visual representation

Industries

1
2

Industry_nameIndustry_ID
Utilities
Construction

3 Banking

Companies

Company_id
1
2

Company_Name
Big Co Corporation
Little Co Corporation

Industry_id
1
1

3 Joe's Utility 1
4 Leadfoot Builders 2

5 Angel's Cement Boots 2

6 Al's Bank 3

14 Part I: Working with MySQL

3537-4 ch01.f.qc 12/15/00 15:20 Page 14

Figure 1-2: Tables with two one-to-many relationships

Figure 1-3: Tables with a one-to-one relationship

Executives

1
2

Exec_first_nameExecID
Jon
Melinda

3 Larry

Exec_last_name
Dust
Burns
Gains

Assistants

1
2

Exec_idAsst_id
1
2

3 3

Asst_first_name
Walter
James
Nancy

Asst_last_name
James
Walter
Els

Industries

1
2

Industry_nameIndustry_ID
Utilities
Construction

3 Banking

Companies

Company_id
1
2

Company_Name
Big Co Corporation
Little Co Corporation

Industry_id
1
1

3 Joe's Utility 1
4 Leadfoot Builders 2

5 Angel's Cement Boots 2

6 Al's Bank 3

Co_Location_id
1
2

Company_id
2
2

city
San Francisco
New York

3 2 Chicago
4 5 Dallas

Chapter 1: Database Design with MySQL 15

3537-4 ch01.f.qc 12/15/00 15:20 Page 15

Many-to-many relationship
Many-to-many relationships work a bit differently from the other two. For instance,
suppose that the company keeping the data has a variety of newsletters that it sends
to its contacts, and it needs to add this information to the database. There’s a weekly,
a monthly, a bi-monthly, and an annual newsletter, and to keep from annoying
clients, the newsletters must only be sent to those who request them.

To start, you could add a table that stores the newsletter types (Table 1-10)

TABLE 1-10 NEWSLETTERS TABLE

newsletter_id newsletter_name

1 Weekly

2 Monthly

3 Bi-monthly

4 Annual

Table 1-10 can’t be directly related to another table that stores contact information.
The only way to make this work is to add a column that stores the newsletters that
each contact receives. Right away, you should notice a problem with the Table 1-11.

TABLE 1-11 CONTACTS TABLE

contact_id contact_first_name contact_last_name newsletters

1 Jon Doe 1,3,4

2 Al Banks 2,3,4

In this table the Newsletters column contains more than one value. The value
looks a lot like an array. As mentioned earlier, this should never occur within your
database — we want only atomic values in each column.

In situations like this you’ll need to create another table. Figure 1-4 shows how
the relationship between these values can be made to work.

16 Part I: Working with MySQL

3537-4 ch01.f.qc 12/15/00 15:20 Page 16

Figure 1-4: Tables with a many-to-many relationship

With this structure, any number of contacts can have any number of newsletters
and any number of newsletters can be sent to any number of contacts.

Features MySQL Does Not Support
MySQL is a polarizing piece of software in the applications development commu-
nity. It has aspects that many developers like: it’s free, it doesn’t take up a whole lot
in the way of resources, it’s very quick, and it’s easy to learn compared to packages
like Oracle and Sybase. However, MySQL achieves its speediness by doing without
features common in other databases, and these shortcomings will keep many from
adopting MySQL for their applications. But, for many, the lack of certain features
shouldn’t be much of a problem. Read and decide for yourself.

Referential integrity
Every example used in the previous pages made use of foreign keys. A foreign key is
a column that references the primary key of another table in order to maintain a
relationship. In Table 1-4, the Contacts table contains a company_id column, which
references the primary key of the Companies table (Table 1-3). This column is a
foreign key to the Companies table.

1
2

Contact_first_nameContact_id
Jon
Al

Contact_last_name
Doe
Banks

Newsletter_id
1
2
3

Newsletter_name
Weekly
Bi-Weekly
Annual

4 Semi-annual

Client_id
1
1
2

Newsletter_id
1
2
2

2 3
2 4

Chapter 1: Database Design with MySQL 17

3537-4 ch01.f.qc 12/15/00 15:20 Page 17

In Chapter 2 we demonstrate how to create tables in MySQL. It’s easy enough to
create tables with all the columns necessary for primary keys and foreign keys.
However, in MySQL foreign keys do not have the significance they have in most
database systems.

In packages like Oracle, Sybase, or PostGres, tables can be created that explicitly
define foreign keys. For instance, using the tables 1-3 and 1-4 with Oracle, the
database system could be made aware that the company_id column in the Contacts
table had a relationship to the Companies table. This is potentially a very good
thing. If the database system is aware of a relationship, it can check to make sure
the value being inserted into the foreign key field exists in the referenced table. If it
does not, the database system will reject the insert. This is known as referential
integrity.

To achieve the same effect in MySQL, the application developer must add some
extra steps before inserting or updating records. For example, to be ultra-safe,
the programmer needs to go through the following steps in order to insert a row in
the Contacts table (1-4):

1. Get all of the values for company_id in the Companies table.

2. Check to make sure the value for company_id you are going to insert into
the Contacts table exists in the data you retrieved in step 1.

3. If it does, insert values.

The developers of MySQL argue that referential integrity is not necessary and
that including it would slow down MySQL. Further, they argue that it is the respon-
sibility of the application interacting with the database to ensure that the inserted
data is correct. There is logic to this way of thinking. In Parts III and IV of this book
we present several applications that all work just fine without enforcing referential
integrity or the method of checking shown above. In general, in these applications,
all the possible values are pulled from a database anyway and there’s very little
opportunity for errors to creep into the system.

For example, using PHP and HTML, the programmer might turn the Companies
table into a drop-down box. That way the user can only choose a valid value.

Transactions
In relational databases, things change in groups. As shown in a variety of appli-

cations in this book, many changes require that rows be updated in several tables
concurrently. In some cases, tables may be dropped as part of a series of statements
that get the data where it needs to be. An e-commerce site may contain code like
the following:

1. Insert customer into the Customers table.

2. Add invoice information into the Invoice table.

3. Remove a quantity of 1 of ordered item from the Items table.

18 Part I: Working with MySQL

3537-4 ch01.f.qc 12/15/00 15:20 Page 18

By the time you read this book, there is a very good chance that MySQL will

support transactions. The developers have been working with transaction-

safe tables for some time. Check mysql.com to see if the current release can

use transactions. We did not use transactions in any of the applications in

this book.

When you’re working with a series of steps like this, there is potential for serious
problems. If the operating system crashes or power goes out between steps two and
three, the database will contain bad data.

To prevent such a state, most sophisticated database systems make use of transac-
tions. With transactions, the developer can identify a group of commands. If any one
of these commands fails to go through, the whole group of commands is nixed and the
database returns to the state it was in before the first command was attempted. This is
known a COMMIT/ROLLBACK approach. Either all of the requests are committed to the
database, or the database is rolled back to the state it was in prior to the transactions.

In Section 5.4.3 of the MySQL Reference Manual, there is a lengthy defense of
MySQL’s choice not to include transactions. It also includes techniques for achieving
the same effect with logging and table locks. You can decide for yourself whether
this argument makes sense. Many people feel that the lack of transactions makes
MySQL a poor choice in certain environments. If you’re the IT manager at a bank
looking for a relational database management system (RDBMS), MySQL probably
isn’t the way to go.

Stored procedures
The big fancy database systems allow for procedural code (something very much like
PHP or Perl) to be placed within the database. There are a couple of key advantages
to using stored procedures. First, it can reduce that amount of code needed in mid-
dleware applications. If MySQL accepted stored procedures, a single PHP command
can be sent to the database to query data, do some string manipulation, and then
return a value ready to be displayed in your page.

The other major advantage comes from working in an environment where more
than one front-end is accessing the same database. Consider a situation where there
happens to be a front-end written for the Web and another in Visual C++ accessible
on Windows machines. It would be a pain to write all the queries and transactions in
two different places. You’d be much better off writing stored procedures and access-
ing those from your various applications.

MySQL also does not support sub-selects.We will discuss how to work around

this limitation in Chapter 3.

NOTE

NOTE

Chapter 1: Database Design with MySQL 19

3537-4 ch01.f.qc 12/15/00 15:20 Page 19

Summary
At this point you should have a pretty good idea of how relational databases work. The
theory covered here is really important, as quality data design is one of the corner-
stones of quality applications. If you fail in the normalization process, you could leave
yourself with difficulties that will haunt you for months or years.

In the applications in Parts 3 and 4 of this book, you will see how we approached
and normalized several sets of data.

Now that you know how tables in a relational database work, move on to
Chapter 2, where you will see how to make these tables in MySQL.

20 Part I: Working with MySQL

3537-4 ch01.f.qc 12/15/00 15:20 Page 20

Chapter 2

The Structured Query
Language for Creating
and Altering Tables

IN THIS CHAPTER

◆ Creating tables and databases in MySQL

◆ Choosing the proper column type and column attributes for tables

◆ Maintaining databases and tables

IN CHAPTER 1 YOU LEARNED that tables are the basis of all the good things that come
from working with relational databases. There’s a fair amount you can do with these
tables, as you’ll see throughout this book. So it should come as no surprise that the
process of creating and maintaining the tables requires some knowledge. As Mom
used to say, nothing good comes easy.

If you’re coming to MySQL from Microsoft’s SQL Server or a desktop package
like Access, you may be used to creating tables with a slick WYSIWYG (what you
see is what you get) interface. In fact, there is a package called phpMyadmin that
will give you many of the niceties you’re used to working with. We use this tool
and love it. We’ll discuss it in further detail at the end of this chapter. There’s no
doubt that working with a graphical interface can be a lot more pleasant than fig-
uring out the syntax of a language — any language.

In fact, there are many GUI tools you can use when working with MySQL. See

http://www.mysql.com/downloads/contrib.html for a listing. The

MySQL development team is working on an Access-like interface to MySQL.

Check the mysql.com site for availability.

NOTE

21

3537-4 ch02.f.qc 12/15/00 15:20 Page 21

However, even if you plan on installing and using this tool, you should take
some time to learn how to create and maintain tables using the Data Definition
Language (DDL), which is part of SQL. Specifically, it will be a great help to you to
know the create and alter commands. Before too long you will have to use these
commands within your scripts. There also may be an occasion when you don’t have
access to the graphical interface, and you’ll need this knowledge to fall back on.

Definitions
Before we get to creating tables and databases in MySQL, there are a couple of
items you’ll need to understand. The concepts I’m about to present are very impor-
tant — make sure you understand how to deal with these before you move forward
in your database design.

Null
One of the first decisions you will have to make for every column in your tables is
whether or not you are going to allow null values. If you remember back to your
ninth grade math, you may recall the null set, which is a grouping that contains noth-
ing. In relational databases, null has the same meaning: a null field contains nothing.

Keep in mind that a null field is distinctly different from a text string with no
characters (a zero-length string) or the numerical value of zero. The difference is
that empty strings and zeros are values. In your programming you most likely have
had an occasion where you have had to check whether a string contained any
value, perhaps as part of an if... statement. In PHP, it would look like this:

$var //this is a variable used in the test
if ($var == “”)
{

echo “Var is an empty string”;
} else {

echo $var;
}

The same syntax would work for comparing zero against another value.
These sorts of comparisons will not work with null. Since null is the absence of

value, any comparison with any value (including another null) is meaningless. In
Chapter 3 you will see that null values require the application developer to be very
careful when writing table joins. To give you a quick preview, consider what would
happen if we wanted to join Table 2-1 and Table 2-2:

22 Part I: Working with MySQL

3537-4 ch02.f.qc 12/15/00 15:20 Page 22

In your SQL select statements (covered in Chapter 3), there are a couple of

ways you can check if a field contains a null value. First, you can use MySQL’s

isnull() function. For example to find rows in a table where the mid-

dle_name column contains null values, you could run the following query:

select * from names where isnull(middle_name);

Or, to exclude null values in the query result:

select * from names where !isnull(middle_name);

The exclamation point means “not.”

You can also use the is null and is not null statements.For example:

select * from users were addr2 is null;
select * from users where addr2 is not null;

TABLE 2-1 CONTACTS

first_name last_name spouse_id

Jay Greenspan 1

Brad Bulger NULL

TABLE 2-2 SPOUSES

spouse_id first_name last_name

1 Melissa Ramirez

If you wanted to find the authors of a great book on MySQL and PHP and their
associated spouses, you would have to join these tables on the spouse_id field.
(Don’t worry if you don’t understand the exact syntax, it will be covered in the next
chapter.)

SELECT * FROM Contacts, Spouses
WHERE Contacts.spouse_id = Spouses.spouse_id

Tip

Chapter 2: The Structured Query Language for Creating and Altering Tables 23

3537-4 ch02.f.qc 12/15/00 15:20 Page 23

This statement would work fine for Jay, but there’s going to be a problem for
Brad because he’s not married and his spouse_id field is null. He will not show up
in the result set even though the goal of the query is to get all the people in the
contacts table and the associated spouses if they exist.

Again, this is just a preview, an example of why null is so important. In Chapter 3
you will see how the outer join solves problems like this.

Index
Arguably the single greatest advantage of a relational database is the speed with
which it can query and sort tremendous amounts of information. To achieve these
great speeds, MySQL and all other database servers make use of optimized data-
storage mechanisms called indexes.

An index allows a database server to create a representation of a column that it
can search with amazing speeds. Indexes are especially helpful in finding a single
row or groups of rows from a large table. They can also speed up joins and aggre-
gate functions, like min() and max(),which we’ll cover in Chapter 3.

Given these advantages, why not just create an index for every column for every
table? There are some very good reasons. First, indexes can actually slow some
things down. It takes time for your database server to maintain indexes. You
wouldn’t want to create overhead for your server that is not going to be a benefit to
you down the road. There are also occasions when the indexes themselves are
slower. If you need to iterate through every row in a table, you’re actually better off
not using an index. Also, unnecessary indexes will use a lot of disk space.

A table’s primary key is often the subject of searches (for obvious reasons). Thus,
in a table definition, the column or columns that you declare as your primary key
will automatically be indexed.

There will be more on creating indexes later in this chapter.

create database Statement
Before you can get to creating your tables, you’ll need to create a database. This
should take all of a second. The basic Create system is fairly simple and can be run
from any interface that has access to MySQL.

The general syntax is:

create database database_name

In case you’re wondering, after running this command MySQL creates a

folder in which it stores all the files needed for your database. On my Linux

machine, the database folders are stored in /var/lib/mysql/.

NOTE

24 Part I: Working with MySQL

3537-4 ch02.f.qc 12/15/00 15:20 Page 24

When naming databases, or for that matter columns or indexes, avoid using
names that will cause confusion down the road. On operating systems where the file
names are case sensitive, such as most Unix systems, database names will also be
case sensitive. Come up with conventions that you plan on sticking to, such as using
all lowercase names for tables and columns. Spaces are not allowed. Though MySQL
can work around potentially bad choices, you should avoid using words that MySQL
uses in the course of its business. For instance, naming a table “Select” is a really
bad idea. In Chapter 7 of the MySQL reference manual, there is a list of over 150
reserved words. If you stay away from words used by SQL or MySQL functions you
should be OK.

From the MySQL command line client, you can simply type in:

create database database_name;

The MySQL command-line client is in the /bin directory of your MySQL

installation and has the file name mysql (on Unix) or mysql.exe on

DOS/Windows.

From PHP, you can use either the mysql_create_db () or the mysql_query()
function. The following piece of code would create two databases. Keep in mind
that you will need to be logged into MySQL as a user with the proper rights for the
code to work.

$conn = mysql_connect(“localhost”,”username”, “password”)
or die (“Could not connect to localhost”);

mysql_create_db(“my_database”) or
die (“Could not create database”);

$string = “create database my_other_db”;
mysql_query($string) or

die(mysql_error());

use database Statement
Before you can begin making tables in MySQL you must select a database that has
been created. If you are accessing MySQL through the mysql command-line client,
you will have to enter the statement:

use database_name

Tip

Chapter 2: The Structured Query Language for Creating and Altering Tables 25

3537-4 ch02.f.qc 12/15/00 15:20 Page 25

If you’re accessing a database through PHP, use the mysql_select_db() function.

$conn = mysql_connect(“localhost”,”username”, “password”)
or die (“Could not connect to localhost”);

mysql_select_db(“test”, $conn) or
die (“Could not select database”);

create table Statement
Once you have created and selected a database, you are ready to create a table. The
basic Create Table system is fairly simple and takes this basic form.

create table table_name
(

column_1 column_type column attributes,
column_2 column_type column attributes,
primary key (column_name),
index index_name(column_name)

)

Column types, column attributes, and details on indexes are covered in the follow-
ing sections. Before we get to those, there are two simple column attributes to discuss:

◆ null | not null

◆ default

The first gives you the opportunity to forbid or allow null values. If you don’t
specify “null” or “not null” it is assumed that null values are allowed. The second,
if declared, sets a value if none is declared when you insert a row into the table.

Here’s an example create statement where you can see these two attributes, and
a few others, put to use. This one was lifted from Chapter 12 and changed slightly.

create table topics2 (
topic_id integer not null auto_increment,
parent_id integer default 0 not null,
root_id integer default 0,
name varchar(255),
description text null,
create_dt timestamp,
modify_dt timestamp,

26 Part I: Working with MySQL

3537-4 ch02.f.qc 12/15/00 15:20 Page 26

author varchar(255) null,
author_host varchar(255) null,

primary key(topic_id),
index my_index(parent_id))

This statement creates a table named “topics” with nine columns and two
indexes, one for the primary key and one for the parent_id column. In the above
statement four column types are used: integer, varchar, text, and timestamp. These,
and many other column types are discussed in further detail below. You should
have a good understanding of all the column types available as well as ways to cre-
ate indexes before you set out to create tables.

To create tables from the command line client, key in the entire command. From
PHP, use the mysql_query() function.

$conn = mysql_connect(“localhost”,”username”, “password”) or
die (“Could not connect to localhost”);

mysql_select_db(“test”, $conn) or
die(“could not select database”);

$query = “create table my_table (
col_1 int not null primary key,
col_2 text

)”;
mysql_query($query) or

die(mysql_error());

Column Types
MySQL comes with a range of column types. Several are similar but have subtle yet
important differences. Give this section a read and choose carefully when deciding
on column types for your tables.

Text column types
MySQL has seven column types suitable for storing text strings:

◆ char

◆ varchar

◆ tinytext

◆ text

Chapter 2: The Structured Query Language for Creating and Altering Tables 27

3537-4 ch02.f.qc 12/15/00 15:20 Page 27

◆ mediumtext

◆ longtext

◆ enum

CHAR
Usage: char(length)

The char column type has a maximum length of 255 characters. This is a fixed-
length type, meaning that when a value is inserted that has fewer characters than
the maximum length of the column, the field will be right-padded with spaces. So
if a column has been defined as char(10) and you want to store the value “happy”,
MySQL will actually store “happy” and then five spaces. The spaces are removed
from the result when the value is retrieved from the table.

VARCHAR
Usage: varchar(length)

This is nearly identical to char and is used in many of the same places. It also
has a maximum length of 255. The difference is that varchar is a variable-length
column type. The values will not be padded with spaces. Instead MySQL will add
one character to each varchar field, which stores the length of the field. MySQL
removes spaces from the end of strings in varchar fields.

USING CHAR OR VARCHAR For the most part there is little practical difference
between char and varchar. Which one you decide to use will depend on which will
require more space, the trailing spaces in a char column or the single character in
varchar. If your field stores something like last names, you’ll probably want to allow
25 characters, just to be safe. If you were to use the char column type and someone
had the last name Smith, your column would contain 20 trailing spaces. There’s no
need for it; you’re much better off using varchar and allowing MySQL to track the
size of the column. However, when you want to store passwords of five to seven
characters, it would be a waste to use varchar to track the size of the column. Every
time a varchar field is updated, MySQL has to check the length of the field and
change the character that stores the field length. You’d be better off using char(7).

If you define a column as varchar with a column length of less than four,

MySQL will automatically change the column to the char type.

NOTE

28 Part I: Working with MySQL

3537-4 ch02.f.qc 12/15/00 15:20 Page 28

TINYTEXT
Usage: tinytext

This is first of the four binary (or blob) text character types. All of these types
(tinytext, text, mediumtext, and largetext) are variable column types, similar to
varchar. They differ only in the size of string they can contain. The tinytext type
has a maximum length of 255, so in fact it serves the same purpose as varchar(255).
An index can be created for an entire tinytext column

TEXT
Usage: text

The text type has a maximum length of 65,535 characters. Indexes can be created
on the first 255 characters of a text column.

MEDIUMTEXT
Usage: mediumtext

The mediumtext type has a maximum length of 16,777,215 characters. Indexes
can be created on the first 255 characters of a mediumtext column.

LONGTEXT
Usage: longtext

The longtext type has a maximum length of 4,294,967,295 characters. Indexes
can be created on the first 255 characters of a longtext column. However, this col-
umn currently is not very useful, as MySQL allows string of only 16 million bytes.

ENUM
Usage: enum (‘value1’, ‘value2’, ‘value3’ ...) [default ‘value’]

With enum, you can limit the potential values of a column to those you specify.
It allows for 65,535 values, though it’s difficult to see a situation where you’d want
to use this column with more than a few potential values. This type would be of use
when, for example, you want to allow only values of “yes” or “no”. The create
statement that makes use of enum will look like this:

create table my_table (
id int auto_increment primary key,
answer enum (‘yes’, ‘no’) default ‘no’

);

SET Usage: set (‘value1’, ‘value2’, ‘value3’ ...) [default ‘value’]
This column type defines a superset of values. This allows for zero or more val-

ues from the list you specify to be included in a field.

Chapter 2: The Structured Query Language for Creating and Altering Tables 29

3537-4 ch02.f.qc 12/15/00 15:20 Page 29

You will not see this column type used in this book. We do not like to see multi-
ple values in a single field as it violates very basic rules of database design. Re-read
Chapter 1 if you don’t know what this means.

Numeric column types
MySQL has seven column types suitable for storing numeric values. Note that the
following are synonyms: int and integer; double, double precision, and real; and
decimal and numeric.

◆ int/integer

◆ tinyint

◆ mediumint

◆ bigint

◆ float

◆ double/double precision/real

◆ decimal/numeric

For all numeric types the maximum display size is 255. For most numeric types
you will have the option to zerofill a column — to left-pad it with zeros. For example,
if you have an int column that has a display size of 10 and you insert a value of 25
into this column, MySQL will store and display 0000000025. The numeric column
types may also be defined as signed or unsigned. Signed is the default definition.

INT/INTEGER
Usage: int(display size) [unsigned] [zerofill]

If you use the unsigned flag, this column type can store integers from 0 to
4,294,967,295. If signed, the range is from –2,147,483,648 to 2,147,483,647. Int
will often be used with auto_increment to define the primary key of a table.

create table my_table (
table_id int unsigned auto_increment primary key,
next_column text

);

Note that I’ve used an unsigned column because an auto_increment column has
no need for negative values.

TINYINT
Usage: tinyint(display size) [unsigned] [zerofill]

If unsigned, tinyint stores integers between 0 and 255. If signed, the range is
from -128 to 127.

30 Part I: Working with MySQL

3537-4 ch02.f.qc 12/15/00 15:20 Page 30

MEDIUMINT
Usage: mediumint(display size) [unsigned] [zerofill]

If unsigned, mediumint stores integers between -8,388,608 and 8,388,607. If
signed, the range is from 0 to 1677215.

BIGINT
Usage: bigint(display size) [unsigned] [zerofill]

If unsigned, bigint stores integers between -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. If signed, the range is from 0 to 18,446,744,073,709,
551,615.

FLOAT
Usage: FLOAT(precision) [zerofill]

In this usage, float stores a floating-point number and cannot be unsigned. The
precision attribute can be <=24 for a single-precision floating-point number and
between 25 and 53 for a double-precision floating-point number. Starting in MySQL
3.23, this is a true floating-point value. In earlier MySQL versions, FLOAT(precision)
always has two decimals.

Usage: FLOAT[(M,D)] [ZEROFILL]
This is a small (single-precision) floating-point number and cannot be unsigned.

Allowable values are -3.402823466E+38 to -1.175494351E-38, zero, and 1.175494
351E-38 to 3.402823466E+38. M is the display width and D is the number of deci-
mals. FLOAT without an argument or with an argument of <= 24 stands for a
single-precision floating-point number.

DOUBLE/DOUBLE PRECISION/REAL
Usage: DOUBLE[(M,D)] [zerofill]

This is a double-precision floating-point number and cannot be unsigned.
Allowable values are -1.7976931348623157E+308 to -2.2250738585072014E-308,
zero, and 2.2250738585072014E-308 to 1.7976931348623157E+308. M is the dis-
play width and D is the number of decimals.

Usage: DECIMAL[(M[,D])] [ZEROFILL]
Numbers in a decimal column are stored as characters. Each number is stored as

a string, with one character for each digit of the value. If D is 0, values will have no
decimal point. The maximum range of DECIMAL values is the same as for DOUBLE,
but the actual range for a given DECIMAL. If M is left out, it’s set to 10.

Date and time types
MySQL has five column types suitable for storing dates and times.

◆ date ◆ time

◆ datetime ◆ year

◆ timestamp

Chapter 2: The Structured Query Language for Creating and Altering Tables 31

3537-4 ch02.f.qc 12/15/00 15:20 Page 31

MySQL date and time types are flexible, accepting either strings or numbers as
part of insert statements. Additionally, MySQL is pretty good at interpreting dates
that you give it. For instance, if we create this table:

create table date_test(
id int unsigned auto_increment,
the_date date

);

The following insert statements are all interpreted correctly by MySQL:

insert into date_test (a_date) values (‘00-06-01’);
insert into date_test (a_date) values (‘2000-06-01’);
insert into date_test (a_date) values (‘20000601’);
insert into test6 (a_date) values (000601);

MySQL prefers to receive dates as strings. So ‘000601’ is a better choice than

a similar integer. Using strings for date values may save you from encounter-

ing some errors down the road.

Extracting information from date and time columns can be a challenge. MySQL
provides many functions that help manipulate these columns.

DATE
Usage: date

The date column type stores values in the format YYYY-MM-DD. It will allow
values between 1000-01-01 and 9999-12-31.

DATETIME
Usage: datetime [null | not null] [default]

The datetime type stores values in the format: YYYY-MM-DD HH:MM:SS. It will
allow values between 1000-01-01 00:00:00 and 9999-12-31 23:59:59.

TIMESTAMP
Usage: timestamp(size)

This is a handy column type that will automatically record the time of the most
recent change to a row, whether it is an insert or an update. Size can be defined as
any number between 2 and 14. Table 2-3 shows the values stored with each column
size. The default value is 14.

Tip

32 Part I: Working with MySQL

3537-4 ch02.f.qc 12/15/00 15:20 Page 32

TABLE 2-3 TIMESTAMP FORMATS

Size Format

2 YY

4 YYMM

6 YYMMDD

8 YYYYMMDD

10 YYMMDDHHMM

12 YYMMDDHHMMSS

14 YYYYMMDDHHMMSS

TIME
Usage: time

Stores time in HH:MM:SS format and has a value range from –838:59:59 to
838:59:59. The reason for the large values is that the time column type can be used
to store the result of mathematical equations involving times.

YEAR
Usage: year[(2|4)]

In these post-Y2K days it’s hard to imagine that you’d want to store your years
in two-digit format, but you can. In two-digit format, allowable dates are between
1970 and 2069. The digits 70-99 are prepended with 19 and 01–69 are prepended
with 20.

Four-digit year format allows values from 1901 to 2155.

Creating Indexes
Starting in version 3.23.6 MySQL can create an index on any column. There can be
a maximum of 16 columns for any table. The basic syntax is:

index index_name (indexed_column)

Chapter 2: The Structured Query Language for Creating and Altering Tables 33

3537-4 ch02.f.qc 12/15/00 15:20 Page 33

Although the index name is optional, you should always name your indexes.

It becomes very important should you want to delete or change your index

using the SQL alter statement. If you don’t specify a name, MySQL will

base the index name on the first column in your index.

Another way to create an index is to declare a column as a primary key. Note
that any auto_increment column must be indexed, and you’ll probably want to
declare it as your primary key. In the following table, the id_col column is indexed.

create table my_table (
id_col int unsigned auto_increment primary key,
another_col text

);

The primary key can also be declared like other indexes after the column defini-
tions.

create table my_table (
id_col int unsigned not null auto_increment,
another_col text,
primary key(id_col)

);

Indexes can span more than one row. If a query uses two rows in concert during
a search, you could create an index that covers the two with this statement:

create table mytable(
id_col int unsigned not null,
another_col char(200) not null,
index dual_col_index(id_col, another_col)

);

This index will be used for searches on id_col and another_col. These indexes
work from left to right. So this index will be used for searches that are exclusively
on id_col. However, it will not be used for searches on another_col.

Finally, you can create indexes on only part of a column. Starting in MySQL ver-
sion 3.23 you can index tinytext, text, mediumtext, and longtext columns on the
initial 255 characters. For char and varchar columns, you can create indexes for
the initial portion of a column. Here the syntax is:

index index_name (column_name(column_length))

Tip

34 Part I: Working with MySQL

3537-4 ch02.f.qc 12/15/00 15:20 Page 34

For example:

create table my_table(
char_column char (255) not null,
text_column text not null,
index index_on_char (char_column(20)),
index index_on_text (text_column(200))

);

An index can also assure that unique values exist in every row in a table by
using the unique constraint.

create table my_table(
char_column char (255) not null,
text_column text not null,
unique index index_on_char (char_column)

);

Table Types
MySQL offers three table types: ISAM, MyISAM, BDB, and Heap. ISAM is an older
table type and is not recommended for new applications. The default table type is
MyISAM. The syntax for declaring a table type is

create table table_name type=table_type(
col_name column attribute

);

MyISAM tables are extremely fast and very stable. There’s no need to declare
another table type unless one of the other table type fits your specific needs.

Heaps are actually memory-resident hash tables. They are not stored in any
physical location and therefore will disappear in the case of crash or power outage.
But because of their nature, they are blazingly fast. You should only use these for
temporary tables.

Starting in MySQL version 3.23.16, MySQL offers BDB tables. These tables are
transaction safe and are integral to MySQL’s efforts to include transactions. Check
Section 8.4 of the MySQL reference manual to see the current state of BDB tables.

alter table Statement
If you’re not happy with the form of your table, you can modify it with the alter
table statement. Specifically, this statement allows you to rename tables, columns,

Chapter 2: The Structured Query Language for Creating and Altering Tables 35

3537-4 ch02.f.qc 12/15/00 15:20 Page 35

and indexes; add or drop columns and indexes; and redefine the definitions of
columns and indexes. This statement will always start with alter table table_name.
The rest of the command will depend on the action needed as described below.

Changing a table name
The syntax for changing a table name is as follows:

alter table table_name rename new_table_name

If you have MySQL version 3.23.27 or higher you can make use of the

rename statement.The basic syntax is

rename table_name to new_table_name

Adding and dropping columns
When adding a column, you will need to include all the column definitions defined
in the previous section. In addition, starting in version 3.22, MySQL allows you to
specify where in the table the column will reside, although this specification is
optional. The basic syntax is:

alter table table_name add column column_name column attributes

For example:

alter table my_table add column my_column text not null

To specify the location of the column, use first to specify your inserted column
as the first column in the table or after to place the column following a column that
already exists, as shown in the following examples.

alter table my_table add column my_next_col text not null first
alter table my_table add column my_next_col text not null after
my_other_column

To drop a column, you need only the following:

alter table table_name drop column column name

NOTE

36 Part I: Working with MySQL

3537-4 ch02.f.qc 12/15/00 15:20 Page 36

When altering a table, try to get all of your changes into a single alter state-

ment. It’s better practice than, for example, deleting an index in one state-

ment and creating a new one in another statement.

Adding and dropping indexes
You can add indexes using the index, unique, and primary key commands in the
same way they are used in the create statement.

alter table my_table add index index_name (column_name1,
column_name2, ...)
alter table my_table add unique index_name(column_name)
alter table my_table add primary key(my_column)

Making your indexes go away is just as easy with the drop command.

alter table table_name drop index index_name
alter table_name test10 drop primary key

Changing column definitions
It is possible to change a column’s name or attributes with either the change or
modify commands. To change a column’s name, you must also redefine the col-
umn’s attributes. The following will work:

alter table table_name change original_column_name new_column_name
int not null

But this will not:

alter table table_name change my_col2 my_col3;

If you wish to change only the column’s attributes, you can use the change com-
mand and make the new column name the same as the old column name. For
instance, to change the column col_1 from a char(200) column to a varchar(200)
column, you could use the following:

alter table table_name change col_1 col_1 varchar(200)

Starting in MySQL version 3.22.16, you could also use the modify command.

alter table table_name modify 1 col_1 varchar(200)

Tip

Chapter 2: The Structured Query Language for Creating and Altering Tables 37

3537-4 ch02.f.qc 12/15/00 15:20 Page 37

insert Statement
Now that you know all you need to know about creating and modifying tables,
you’re probably going to want to put some information into the table. You do this
by using the insert statement.

The basic form of the SQL insert statement is:

insert into table_name (column_1, column2, column3,...) values
(value1, value2, value3 ...)

If a column in your table allows null values, you can leave it out of the insert
statement.

Text strings must be surrounded by single quote marks (‘). For example:

insert into table_name (text_col, int_col) values (‘hello world’, 1)

This can cause a problem because undoubtedly someone is going to want to
insert a contraction into your database and that would confuse your database.
Therefore you’ll need a way of escaping the single quote character. In fact there are
several characters that need to be escaped in order to be inserted into MySQL. If
you want to insert any of the following characters into a text field they must be
prepended with a backslash:

◆ ‘ (single quote)

◆ “ (double quote)

◆ \ (backslash)

◆ % (percent sign)

◆ _ (underscore)

You can also escape single quotes by using two consecutive single quote marks
(‘’).

The following characters are identified in MySQL by their typical escape sequences:

◆ \n (newline)

◆ \t (tab)

◆ \r (carriage return)

◆ \b (back space)

It’s worth noting here that, for the most part, you won’t have to worry about
escaping all of these characters while doing your PHP programming. As we’ll see

38 Part I: Working with MySQL

3537-4 ch02.f.qc 12/15/00 15:20 Page 38

there are functions and settings built into PHP that handle this automatically. The
addslashes() function and the magic quotes settings in the php.ini are particu-
larly helpful.

update Statement
The SQL update statement is slightly different from the others we’ve seen so far, in
that it makes use of a where clause. The general syntax is:

update table_name set col_1=value1, col_2=value_2 where col=value

Once again, if you’re inserting a string, you’ll need to surround it with single
quotes and escape properly. Keep in mind that the where portion of the update
statement can be about any comparison operator. Often it will be used to identify a
single row by its primary key. In Table 2-4, id is the primary key.

TABLE 2-4 FOLKS TABLE

id fname lname salary

1 Don Ho 25,000

2 Don Corleone 800,000

3 Don Juan 32,000

4 Don Johnson 44,500

This statement would affect only Don Corleone:

update folks set fname=’Vito’ where id=2

As you can see, it would be risky to run an update statement based on the
fname column, as you could accidentally update every column in this table.

update folks set fname=’Vito’ where fname=’don’

You could also use update to give your underpaid employees a raise:

update folks set salary=50000 where salary<50,000

Chapter 2: The Structured Query Language for Creating and Altering Tables 39

3537-4 ch02.f.qc 12/15/00 15:20 Page 39

drop table/drop database
If you wish to get rid of a table or an entire database, the drop command will do
the trick. Keep in mind that if you drop a database you will lose all of the tables
that exist within the database.

drop table table_name
drop database database_name

The drop table command can be from PHP through the mysql_query() func-
tion. If you wish to drop a database from PHP, you need to make use of the
mysql_drop_db() function.

show tables
To get a list of the tables available in a database, use the show tables command.
For this command to work, you must have already selected a database using the
use database command.

Figure 2-1 shows the response to the show tables command from the MySQL
command line client.

Figure 2-1: The show tables command from the MySQL command line client

40 Part I: Working with MySQL

3537-4 ch02.f.qc 12/15/00 15:20 Page 40

From PHP, you can get a list of tables by using mysql_list_tables().

<?
mysql_connect(“localhost”, “root”, “”);
$result = mysql_list_tables(“test”);

while($row = mysql_fetch_array($result))
{

echo $row[0] . “
\n”;
}
?>

You are better off not using mysql_list_tables(), as this function may not be

available in the future. Running a show tables command through mysql_

query() is a better choice.

show columns/show fields
These commands, which are synonymous, are very handy if you can’t remember the
column types and attributes you declared in your create statement. For example,
let’s say you created a table with the following command.

create table topics (
topic_id integer not null auto_increment primary key,
parent_id integer default 0 not null,
root_id integer default 0,
name varchar(255),
description text null,
create_dt timestamp,
modify_dt timestamp,
author varchar(255) null,
author_host varchar(255) null,
index my_index(parent_id)

)

Figure 2-2 shows the results you would get after running show fields from
topics from the MySQL command line client.

NOTE

Chapter 2: The Structured Query Language for Creating and Altering Tables 41

3537-4 ch02.f.qc 12/15/00 15:20 Page 41

Figure 2-2: The show fields command from the MySQL command line client

You can get similar information through the PHP interface by using mysql_
field_name(), mysql_field_type(), and mysql_field_len(). All of the syntax
and functions in this code are covered in Part II of this book.

$db = mysql_connect(“localhost”,”root”, “”)
or die (“Could not connect to localhost”);

mysql_select_db(“test”, $db)
or die (“Could not find test”);

$db_name =”topics”;
$query = “select * from $db_name”;
$result = mysql_query($query);
$num_fields = mysql_num_fields($result);

//create table header
echo “<table border = 1>”;
echo “<tr>”;
for ($i=0; $i<$num_fields; $i++)
{

echo “<th>”;
echo mysql_field_name ($result, $i);
echo “</th>”;

}
echo “</tr>”;
//end table header

//create table body

echo “<tr>”;
for ($i=0; $i<$num_fields; $i++)
{

echo “<td valign = top>”;

42 Part I: Working with MySQL

3537-4 ch02.f.qc 12/15/00 15:20 Page 42

echo mysql_field_type ($result, $i) . “
 \n”;
echo “(“ . mysql_field_len ($result, $i) . “)
 \n”;
echo mysql_field_flags ($result, $i) . “
 \n”;
echo “</td>”;

}
echo “</tr>”;
//end table body

echo “</table>”;

Using phpMyAdmin
If you are an old-time Unix guy or gal, you may be perfectly comfortable keying in
all of your commands and sorting out the errors when you mistype something or
screw up the syntax. But myself, I like the convenience of a graphical interface.

If you’re like me, you will be thrilled to know that a couple of programmers have
used PHP to create a great Web-based interface to MySQL. Best of all, they’re giv-
ing their program away. All you need to do is cruise over to phpwizard.net and
download the appropriate .tar, .gz, or .zip file. We would have included it on the
CD, but you’re really better off getting the most recent version off their site. It’s
constantly being improved.

This package will cover about all the MySQL administrative functions you’ll come
across. Figures 2-3 and 2-4 show a bit of what you can expect for phpMyAdmin.

Figure 2-3: View of phpMyAdmin

Chapter 2: The Structured Query Language for Creating and Altering Tables 43

3537-4 ch02.f.qc 12/15/00 15:20 Page 43

Figure 2-4: Another View of phpMyAdmin

Summary
This chapter discussed everything you need to know in order to create and main-
tain databases and database tables when working with MySQL. It is possible that
you will never need to commit the details of the create statement to memory, as
graphical tools like phpMyAdmin can help you create and alter tables.

Still, it is important to understand the column types and the purposes of indexes,
as a quick and efficient database will always use the correct data type and will only
include indexes when necessary. As you will see in Parts III and IV of this book, we
take a good deal of care to make sure that we get the most out of our databases.

44 Part I: Working with MySQL

3537-4 ch02.f.qc 12/15/00 15:20 Page 44

Chapter 3

Getting What You
Want with select

IN THIS CHAPTER

◆ Understanding the basics of the SQL select statement

◆ Working with the where and from clauses

◆ Joining two or more tables

◆ Learning the non-supported aspects of the select syntax in MySQL

THE select STATEMENT IS your key to getting exactly what you want from your
database. It’s amazingly agile, capable of getting about any set of data that you can
imagine. Working with select can get a bit hairy when queries get extremely com-
plex, but once you understand the basics, which are covered in this chapter, you
should be able to get almost any group of data from your database.

There are very good books that spend a long time explaining the details of

the select statement. If you find that this chapter doesn’t cover something

you need, we suggest you first turn to the MySQL manual, and then the

MySQL mailing lists. In addition, SQL For Dummies, also published by IDG

Books Worldwide, covers the ANSI standard in some pretty good detail.

Basic select
When it comes time to take the information from your database and lay it out on
your Web pages, you’ll need to limit the information returned from your tables and
join tables together to get the proper information. So you’ll start with your data-
base, the superset of information, and return a smaller set. In the select statement
you’ll choose columns from one or more tables to assemble a result set. This result
has columns and rows and thus can be effectively thought of as a table (or a two-
dimensional array, if your mind works that way). This table doesn’t actually exist in
the database, but it helps to think about it this way.

XREF

45

3537-4 ch03.f.qc 12/15/00 15:20 Page 45

The basic select statement requires you to indicate the table you are selecting
from and the column names you require. If you wish to select all the columns from
a given table, you can substitute an asterisk (*) for the field names.

select column_1, column_2, column_3 from table_name

or

select * from table_name

Keep in mind that with a select statement you are not actually altering the
tables involved in the query. You are simply retrieving information. From PHP, you
will send the query to MySQL from the mysql_query() function.

There are all sorts of ways you can choose to lay out the information, but at
times you’re going to want a simple HTML table with the column names put in a
header row. The simple PHP code in Listing 3-1 will lay out any SQL query in an
ultra-simple HTML table. It includes a simple form that will allow you to enter a
query. If you don’t understand this code just yet, don’t worry about it; all the PHP
functions will be covered in Chapter 6. Alter the mysql_connect() and mysql_
select_db() functions if you wish to change the database used.

Listing 3-1: PHP script that converts an SQL query to an HTML table

<?php

if(!isset($query) || empty($query))
{$query = “select * from users”;}

//stripslashes is necessary because the select statement is
//coming from a form. In most systems, the magic_quotes
//setting (see Appendix B) will prepend single quotes
//with backslashes, which could be problematic.
$query=stripslashes($query);

mysql_connect(“username”, “password”, “”)
or die(“Could not connect to database.”);

mysql_select_db(“test”) or
die(“Cannot select database”);

$result = mysql_query($query) or
die(mysql_error());

$number_cols = mysql_num_fields($result);

echo “query: $query”;
//layout table header
echo “<table border = 1>\n”;
echo “<tr align=center>\n”;

46 Part I: Working with MySQL

3537-4 ch03.f.qc 12/15/00 15:20 Page 46

for ($i=0; $i<$number_cols; $i++)
{

echo “<th>” . mysql_field_name($result, $i). “</th>\n”;
}
echo “</tr>\n”;//end table header

//layout table body
while ($row = mysql_fetch_row($result))
{

echo “<tr align=left>\n”;
for ($i=0; $i<$number_cols; $i++)
{

echo “<td>”;
if (!isset($row[$i])) //test for null value

{echo “NULL”;}
else

{echo $row[$i];}
echo “</td>\n”;

}
echo “</tr>\n”;

}

echo “</table>”;

?>

<form action=”<? echo $PHP_SELF?>” method=”get”>
<input type=”text” name=”query” size=”50”>

<input type=”submit”>

</form>

For the remainder of this chapter you will see how to build on the complexity of
the select statement. To see things in action, we created a table in MySQL against
which we can run these queries. This is the create statement for a table named
“users”, which holds basic personal information:

CREATE TABLE users (
userid int(10) unsigned NOT NULL auto_increment,
fname varchar(25) NOT NULL,
lname varchar(25) NOT NULL,
addr varchar(255) NOT NULL,
addr2 varchar(255),
city varchar(40) NOT NULL,
state char(2) NOT NULL,
zip varchar(5) NOT NULL,

Chapter 3: Getting What You Want with select 47

3537-4 ch03.f.qc 12/15/00 15:20 Page 47

lastchanged timestamp(14),
PRIMARY KEY (userid)
);

To get things started, we loaded up the database with a few rows of information.
When run through the PHP code above, the query select * from users will
return the results shown in Figure 3-1.

Figure 3-1: Results of query using select * from users

The where clause
The where clause limits the rows that are returned from your query. To get a single
row from a table, you would a run the query against the primary key. For instance,
to get all the information on Brad, you would use this query:

select * from users where userid = 2

Figure 3-2 shows the results of this query.
If you’re doing a comparison to a column that stores a string (char, varchar, etc),

you will need to surround the string used for comparison in the where clause by
single quotes.

select * from users where city = ‘San Francisco’

48 Part I: Working with MySQL

3537-4 ch03.f.qc 12/15/00 15:20 Page 48

Figure 3-2: Results of query using select * from users where userid=2

MySQL has several comparison operators that can be used in the where clause.
Table 3-1 lists these operators.

TABLE 3-1 MYSQL COMPARISON OPERATORS

Operator Definition

= equal to

<> or != not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

Like Compares a string (discussed in detail later in this Chapter)

Chapter 3: Getting What You Want with select 49

3537-4 ch03.f.qc 12/15/00 15:20 Page 49

You can compare several operators at once by adding and or or to the where
clause.

select * from users
where userid = 1 or

city = ‘San Francisco’

select * from users
where state = ‘CA’ and

city = ‘San Francisco’

It’s important to note that fields with null values cannot be compared with any
of the operators used in Table 3-1. For instance, in the table shown in Figure 3-1,
you might think that the following statement would return every row in the table:

select * from users where zip <> ‘11111’ or state = ‘11111’

But in fact, row 9 will not be returned by the query. Null values will test neither
true nor false to any of these operators. Instead, to deal with null values, you will
need to make use of the is null or is not null predicates.

To get the previous query to work as we had intended you’d need to augment
your original query.

select * from users
where zip <> ‘11111’ or

zip = ‘11111’ or
zip is null

Or if you wanted to find all the rows where the zip contained any value (except
null) you could use the following:

select * from table where zip is not null

USING DISTINCT
There will be times where your query will contain superfluous data. For instance, if
your goal was to see all the cities in California, your first instinct might be to run a
query like select city, state from users where state=’CA’. But look at the
result returned in Figure 3-3.

Notice that the first three rows are identical. This is no good, as there’s no need
for these extra rows. You can get by this by using select distinct. When you use
distinct, the MySQL engine will remove rows with identical results. So here the
better query is select distinct city, state from users where state=’CA’,
which returns the data in Figure 3-4, which is exactly what you want.

50 Part I: Working with MySQL

3537-4 ch03.f.qc 12/15/00 15:20 Page 50

Figure 3-3: Results of query using select city, state from users where state=’CA’

Figure 3-4: Results of query using select distinct city, state from users where state=’CA’

Chapter 3: Getting What You Want with select 51

3537-4 ch03.f.qc 12/15/00 15:20 Page 51

USING BETWEEN
You can also choose values within a range by using the between predicate.
between works for numeric values as well as dates. In the following query,
lastchanged is a timestamp column. If you wanted to find the people who signed up
on the day of June 14, 2000, you could use this query:

select * from users where lastchanged between 20000614000000 and
20000614235959

Remember that the default timestamp column type stores dates in the form
YYYYMMDDHHMMSS, so to get all entries for a single day, you need to start your
range at midnight (00:00:00) and end it at 11:59:59 pm (23:59:59).

You can also use between on text strings. If you wished to list all the last names
in the first half of the alphabet, this query would work. Note that the following
query will not include names that start with “m”.

select * from users where lname between ‘a’ and ‘m’

USING IN/NOT IN
The in predicate is helpful if there are several possible values for a single column
that can be returned. If you queried the users table to get all the states in New
England, you could write the query like this:

select * from users
where state = ‘RI’ or

state = ‘NH’ or
state = ‘VT’ or
state = ‘MA’ or
state = ‘ME’

Using in, you can specify a set of possible values and simplify this statement.
The following query would achieve the same result.

select * from users
where state in (‘RI’, ‘NH’, ‘VT’, ‘MA’, ‘ME’)

If you need to achieve the same effect but in reverse, you can use the not in
predicate. To get a listing of all people in the table not living in New England, sim-
ple throw in the word ‘not’:

select * from user where
state not in (‘RI’, ‘NH’, ‘VT’, ‘MA’, ‘ME’)

52 Part I: Working with MySQL

3537-4 ch03.f.qc 12/15/00 15:20 Page 52

USING LIKE
Of course there will be occasions when you are searching for a string, but you’re
not exactly sure what the string looks like. In cases like these, you will need to use
wildcard characters. In order to use wildcards, you need the like predicate.

There are two wildcard characters available, the underscore (_) and the percent
sign (%). The underscore stands for a single character. The percent sign represents
any number of characters, including none.

So, for example, if you were looking for someone with the first name of Daniel
or Danny or Dan, you would use the percent sign.

select * from users where fname like ‘Dan%’

Note that because the percent sign will match on zero characters, the preceding
query would match the name “Dan”.

However, if for some odd reason you needed to find all of the people in your
database with four-letter first names beginning with the letter J, you’d construct
your query like this: (Note that three underscores follow the letter J.)

select * from users where fname like ‘J___’

The three underscores will match any characters and return names like Jean,
John, and Jack. Jay and Johnny will not be returned.

In MySQL the like comparison is not case sensitive. This is quite different

from most implementations.

order by
There is one thing you should always keep in mind when working with relational
databases: the storage of rows in any table is completely arbitrary. In general, you’ll
have no idea of the order in which your database has decided to put the rows
you’ve inserted. When it matters, you can specify the order of rows returned in
your query by tacking order by on the end of it.

This command can sort by any column type: alphabetical, chronological, or
numeric. In addition, order by allows you to sort in either ascending or descend-
ing order by placing asc or desc after order by, respectively. If neither is included,
asc is used by default.

To alphabetize the entries in the table, you would probably want to make sure
that this list is sorted by both first name and last name:

select * from users order by lname, fname

NOTE

Chapter 3: Getting What You Want with select 53

3537-4 ch03.f.qc 12/15/00 15:20 Page 53

You can sort by as many columns as you wish, and you can mix the asc and
desc as you need. The following query isn’t particularly useful, but it is possible:

select * from users order by lname asc, fname desc

limit
The limit predicate will restrict the number of rows returned from your query. It
allows you to specify both the starting row and the number of rows you want
returned. To get the first five rows from the table, run the following query:

select * from users limit 0,5

To find the first five rows alphabetically, you could use limit with order by:

select * from users order by lname, fname limit 0,5

You’ll probably notice that the numbering is like arrays — the first row is row 0.
To get the second five rows of the table, you’d run the following:

select * from users limit 5,5

limit is particularly useful in situations where you want to restrict the display
on any one page. You’ll see the use of limit throughout this book. Even Chapter 8,
which is the first application in this book, uses limit.

group by and aggregate functions
Remember back to when we were talking about using select with distinct and
how that removed rows we didn’t need? That may have seemed pretty cool, but it’s
nothing compared to what you can get out of using group by and its associated
aggregate functions.

Consider this task: you wish to know the number of entries from each state in
our database (for example, six from California, seven from New York, two from
Vermont). If you did a select distinct state from users order by state,
you would get a listing of each state in the database, but there’s no way to get the
numbers. As MySQL goes through the table to process the query, it simply skips
over rows that would return identical values.

However, with group by, MySQL creates a temporary table where it keeps all of
the information on the rows and columns fitting your criteria. This allows the
engine to perform some very key tasks on the temporary table. Probably the easiest
way to show what group by can do is by showing one of the aggregate functions.
We’ll start with count().

54 Part I: Working with MySQL

3537-4 ch03.f.qc 12/15/00 15:20 Page 54

MySQL may not actually create a temporary table for each group by; how-

ever, the actual inner workings of a group by are pretty complex, and this is a

good way to think about what MySQL is doing.

COUNT()
Once again, the goal of your query is to find out the number of people from each
state that are in your users table. To do that you will use group by with count().

Remember that when the group by clause is used, you can imagine MySQL cre-
ating a temporary table where it assembles like rows. The count() function then
(you guessed it) counts the number of rows in each of the groups. Check out the fol-
lowing query and the result returned in Figure 3-5.

select state, count(*) from users group by state

Figure 3-5: Results of query using select state, count(*) from users group by state

Here the asterisk (*) indicates that all rows within the group should be counted.
The count(*) function is also handy for getting the total number of rows in a
table.

select count(*) from users

NOTE

Chapter 3: Getting What You Want with select 55

3537-4 ch03.f.qc 12/15/00 15:20 Page 55

Within a group by, you can also indicate a specific field that is to be counted.
count will look for the number of non-null values. Take, for example, the table in
Figure 3-6.

Figure 3-6: users_ages table

It may not seem that there’s much use in counting non-null values from this
table. However, if you’re the type that’s really into statistics, you could use this
table to figure out what percentage from each city feels comfortable indicating its
age. First you’d need a count of all the entries from each specific city and state; fol-
lowing that, you’d need a count of all the non-null values in the age field.

Select city, state, count(*), count(age) from user_ages
group by state, city

From the result in Figure 3-7, you can see that Chicagoans are far more forth-
coming than those from the coasts.

This is as good a time as any to introduce aliases. There will be times, particu-
larly when you’re working with functions, when the column name returned by the
query isn’t what you’d like it to be. For example, in Figure 3-7 you may wish for a
table header a bit more descriptive than count(*).

You can follow any function or column name with the word as and then specify
a name you prefer. as simply designates an alias. If you need a column name that
is more than one word, surround the text string with single quotes.

56 Part I: Working with MySQL

3537-4 ch03.f.qc 12/15/00 15:20 Page 56

Figure 3-7: Results of query using count() function

While on the topic of aliases, I’ll also mention that there are a variety of func-
tions available in MySQL (see Appendix I). They range from simple math functions
to more complex operations. Below I’ve thrown in some math to clarify the purpose
of the query. Notice the use of the as clause and the way it affects the display of the
query (shown in Figure 3-8).

Select city, state, count(*) as ‘Total Rows’,
count(age) as ‘The Willing’,
(count(age)/count(*)*100) as ‘Percent Responding’

from user_ages
group by state, city

You can also use aliases on tables. This will be particularly helpful when deal-
ing with multiple tables. I’ll discuss this in further detail in the section “Multi-table
join.”

SUM()
The sum() function returns the sum of a given column and is almost always used
with a group by clause. For instance, if you are running an application for a non-
profit, you might want to know the total contributions from each state. The table
you’re working with might look like the one in Figure 3-9.

Chapter 3: Getting What You Want with select 57

3537-4 ch03.f.qc 12/15/00 15:20 Page 57

Figure 3-8: Results of query using functions and aliases

Figure 3-9: Table where using sum() would be helpful

58 Part I: Working with MySQL

3537-4 ch03.f.qc 12/15/00 15:20 Page 58

To get the total from each state, you’d run the following query:

select state, sum(contribution) from contributions group by state

MIN()
The min() function pulls out the lowest value in each grouping. To find the lowest
contribution from any state just make a small change to the previous query:

select state, min(contribution) from contributions group by state

MAX()
As you probably guessed, max() will return the highest value in a group:

select state, max(contribution) from contributions group by state

AVG()
avg () returns the average of the group:

select state, sum(contribution) from contributions group by state

You could throw all these together to create a pretty useful query, as Figure 3-10
and the following query show.

select state, sum(contribution) as ‘Total’,
avg(contribution) as ‘Average’,
min(contribution) as ‘Minimum’,
max(contribution) as ‘Maximum’

from contributions
group by state

GROUP BY OPTIONS
Most relational databases require that fields listed in the select clause be used in
the group by predicate. But MySQL gives you more options; you can group a sub-
set of the columns listed. For instance, if you wanted to find out the number of
people in one city and get a look at a sample Zip code from that city, you could run
the following:

select city, zip, count(*) from users group by city

The query would return a listing of cities, the number of entries for each city,
and one sample Zip code.

Chapter 3: Getting What You Want with select 59

3537-4 ch03.f.qc 12/15/00 15:20 Page 59

Figure 3-10: Using multiple aggregate functions together

This is quite different from the results from this query:

select city, zip, count(*) from users group by city, zip

This returns a separate row for each city/zip combination and provides a count
for each unique combination.

having
The having predicate restricts the rows displayed by a group by. This is not the
same as the where clause. The where clause actually restricts the rows that are used
in the group by. The having clause only prevents their display.

If you needed to find the average amount of donations from each state for all
those who contributed more than $100, you could run the following:

select avg(donations), state where donations> 100

However, if you wanted to display average contributions for all of the states
where the average was over $100, you would have to use the having clause. Since
the having clause does not restrict rows that go into the group by, the aggregate
functions, in this case avg(), use all the rows in their calculations.

60 Part I: Working with MySQL

3537-4 ch03.f.qc 12/15/00 15:20 Page 60

select avg(contribution) as avg_contrib, state
from contributions
group by state
having avg(contribution)>500

Joining Tables
If you read Chapter 1, you know that relational databases work so well because
they segment information. Different tables hold information on different topics,
and fields are inserted into the tables to maintain relationships. After you finish the
normalization process, it’s likely that none of your tables will be usable without the
others. That is why you’ll need to join tables in your SQL select statements.

Two-table join (the equi-join)
For the sake of continuity, we’re going to reprise a couple of tables first seen in
Chapter 1. Take a look at the familiar tables in Figure 3-11.

Figure 3-11: Tables in need of a join

If you’re looking to do a mailing to all of the people in the contacts table, you
are going to need to join the contacts table to the companies table, because the
street address is in the companies table (and it’s exactly where it should be). The
company_id column in the contacts table creates the relationship between these
tables. And if you join these tables on occasions where the company_id field in the
contacts table is equal to the company_id field in the contacts table, all of the
information will be at your fingertips.

companies

company_id
1
2

company_name
Big Co Company
Little Co Company

address
1121 43rd St
4444 44th St

contracts

contract_id
1
2

company_id
1
1

Name
Jay Greenspan
Brad Bulber

Title
Vice President
President

Phone
4155551212
4155552222

Email
1121 43rd St
4444 44th St

3 2 John Doe Lacky 2125556666 4444 44th St

Chapter 3: Getting What You Want with select 61

3537-4 ch03.f.qc 12/15/00 15:20 Page 61

This is easy enough to accomplish in SQL. In the from portion of the select
statement all of the tables to be joined must be listed. And in the where portion, the
fields on which the join takes place must be shown:

select *
from companies, contacts
where companies.company_ID = contacts.company_ID

At times when a reference to a field name is ambiguous, you need to specify which
table the column comes from the by using the syntax table_name.column_name. This is
done in the where clause in Figure 3-12. If you fail to indicate the table from which
you’re pulling the company_id column in the SQL statements, MySQL will return an
error.

Figure 3-12: A basic join

This type of join, where tables are merged based on quality in a common field, is
extremely common. It is known as an equi-join, or an inner join. The name “inner
join” will make more sense once you learn about the outer join later in this chapter.

Once you begin performing joins, aliases become convenient. By specifying an
alias in the from clause you could save yourself some typing. In the following code,
t1 is an alias for companies and t2 is an alias for contacts.

62 Part I: Working with MySQL

3537-4 ch03.f.qc 12/15/00 15:20 Page 62

select *
from companies t1, contacts t2
where t1.company_ID = t2.company_ID

Multi-table join
An equi-join can be applied to more than one table. Many of your SQL statements
will join three, four, or more tables. All you’ll need to do is add additional columns
after select, additional tables in the from clause, and the additional join parame-
ters in the where clause. Take a look at the tables that need multiple joins in
Figure 3-13.

Figure 3-13: Tables in need of multiple joins

If you wanted to find the addresses for all of the companies with offices in
California who had expertise in consulting, you would have to join all four of these
tables. The following query would get the job done. Here the where clause contains
quite a few tests; the first two lines of the where clause limit the rows that will be
returned to those companies that match our criteria. The remainder of the where
clause takes care of the joins.

company_id
1
2

name
IBM
Xerox

3 Sun

expertise_id
1
2

area
Hardware
Software

3 Consulting

company_id
1
1

expertise_id
1
2

1 3
2 1
2 3
3 1
3 2

location_id
1
2

company_id
1
2

address
4 My Way, Durham
44 Circle Dr, New York

state
NC
NY

3 1 1 Front St, San Francisco CA
4 2 Park Dr, Palo Alto CA
5 2 48 Times Square, New York NY
6 3 280 South, Sunnyvale CA

Chapter 3: Getting What You Want with select 63

3537-4 ch03.f.qc 12/15/00 15:20 Page 63

SQL-query:
Select *
from companies, locations, expertise, companies_expertise
where state = ‘CA’ and

companies_expertise.expertise_ID = 3 and
companies.company_ID = companies_expertise.company_ID and
companies.company_ID = locations.company_ID and
companies_expertise.expertise_ID = expertise.expertise_ID

outer join
The challenges presented by null values have shown themselves repeatedly in this
book. In Chapter 2 we presented these two tables, seen in Figure 3-14.

Figure 3-14: Tables in need of an outer join

Now imagine that you need to get a list of the authors of this book and their
spouses, if they are married. The equi-join shown in the previous section will not
work in this case. Take the following query:

select *
from contact, spouses
where contact.spouse_ID = spouses.spouse_ID

Only the first row of the contact table will be returned. The null value in the sec-
ond row ensures that nothing can match the criteria in the where clause. In cases
like this, where we need to preserve one table and join the second table when there
are matching values, we will make use of the outer join (also known as the left
outer join), which looks like this:

select *
from contact
left join spouses
on contact.spouse_ID = spouses.spouse_ID

This statement says, “I want to keep the entire contacts table, and tack on the
spouses table when these two fields are equal.” The word left in the term left outer

first_name
Jay
Brad

last_name
Greenspan
Bulger

spouse_id
1

spouse_id
1

spouse_first_name
Melissa

spouse_last_name
Ramirez

64 Part I: Working with MySQL

3537-4 ch03.f.qc 12/15/00 15:21 Page 64

join refers to the fact that when you visualize your database tables, you should
visualize the first table, the one that appears in the from clause, on the right-most
side, and the joined table on the left.

Depending on the database package you’re using, the syntax of the outer join
may vary. Some databases support left, right, and full (both left and right) outer
joins. MySQL only has the left outer join, but in practice it’s usually all you need.
You can use the syntax seen in the previous query, or you can use left outer
join on.

Outer joins will come up frequently out of necessity. Additionally, it is often
good practice to use outer joins even when you feel an inner join will do the trick.
It’s just a matter of being safe. You’d rather not have important rows of data come
up missing because you forgot to account for null values. Throughout the book,
you will see occasions when we have used outer joins because we just wanted to be
extra careful.

There may come times when you will need to do more than one outer join. Say,
for instance (and for no particularly good reason), we wanted to store information
regarding spouses’ siblings. We’d add another table listing the siblings and a col-
umn to the spouses table, which maintained the relationship. So, if we were to
design a query that maintained everyone in the contacts table, and maintained
everyone returned from the spouses table, we’d have to throw in two outer joins:

select *
from contact
left join spouses on contact.spouse_ID = spouses.spouse_ID
left join on syblings spouses.sybling_ID = syblings.sybling_ID

self join
As bizarre as it may sound, the time will come when you’ll need to join a table to a
copy of itself. You’ll usually run into the need for this when looking for duplicates
in a table. If we had a sneaking suspicion that there was a bigamist in Table 3-2,
how would we search out the two with the same spouse?

TABLE 3-2 CONTACTS

contact_id first_name last_name spouse_id

1 jay greenspan 1

2 brad bulger

Continued

Chapter 3: Getting What You Want with select 65

3537-4 ch03.f.qc 12/15/00 15:21 Page 65

TABLE 3-2 CONTACTS (Continued)

contact_id first_name last_name spouse_id

3 john james 2

4 elliot simms 2

You would need to discover if the value in this spouse_id field was repeated (for
instance, the number 2 appears more than once). You could do a group by, but
then there would be no way of getting the names of the people involved. Using
group by along with the count() function, you could find the occasions where one
person appears more than once, but it would take a second query to find out who
those people were. With a self join, you can do it all in one step. But it needs to
be a carefully considered step.

You might think that the following query would do the trick. Notice that I again
use an alias, so that we have two table names we can address.

select t1.first_name, t1.last_name, t2.first_name, t2.last_name
from contacts t1, contacts t2
where t1.spouse_id = t2.spouse_id

But this is going to return more rows than we need. Specifically, each name will
match itself, providing duplicates of each returned entry. Given this query, when
the row for Jay is compared to itself, it will test true and be returned in the result.
You can eliminate redundancy here by ensuring that the contact_id field from the
first table is not equal to the ID field in the second table.

select t1.first_name, t1.last_name
from contacts t1, contacts t2
where t1.spouse_id = t2.spouse_id
and t1.contact_id != t2.contact_id

This is good but not perfect. Take the example of Elliot and John. A row will be
returned when the Elliot is in t1 and John is in t2; another will be returned when
John is in t1 and Elliot is in t2. The easiest way to address that here is to make use
of the numeric primary key. You know one ID will be greater than the other, and by
using that information you can get rid of all duplicates.

select t1.first_name, t1.last_name
from contacts t1, contacts t2
where t1.spouse_id = t2.spouse_id
and t1.countact_id < t2.contact_id

66 Part I: Working with MySQL

3537-4 ch03.f.qc 12/15/00 15:21 Page 66

Portions of SQL the SQL Standard
that MySQL Doesn’t Support
The MySQL developers are constantly working on improvements to the software. It
is possible that within the next couple of years they will support most of the fea-
tures you’d find in high-priced commercial software, like Oracle, Sybase, Informix,
or Microsoft’s SQL Server. But as of the writing of this book, there are a couple of
portions of the select syntax that MySQL doesn’t support.

Unions
Unions allow queries with the same number of columns to be returned in one result
set. For instance, if you had two tables storing user names, you could have all of
the names in one query returned with a statement like this:

select first_name, last_name
from table_1
union
select first_name, last_name
from table_2

Unions are convenient, but their absence in MySQL isn’t that big of a deal. In the
preceding example, you could easily run a second query.

Correlated subqueries
If you’re coming from a background of using a package like Oracle, you may find
the absence of correlated subqueries troubling. The good news is that subquery
support is high on the developers’ priority list. For those new to the concept, sub-
queries allow you to define an entire query in the where clause.

For example, using subqueries, if you had a table that stored students and their
test scores, you could easily find all the students with better-than-average test
scores:

select first_name, last_name, score
from test_scores
where score> (select avg(score) from test_scores)

You can achieve the same effect by running two queries. In all cases you can
work around the absence of subqueries by running additional queries. You lose
some elegance, but the effect is identical.

Chapter 3: Getting What You Want with select 67

3537-4 ch03.f.qc 12/15/00 15:21 Page 67

Make sure to check in at the mysql.com every now and then. Subqueries

may be included in version 3.24. And by the time you’re reading this, that

version may be available.

In Chapter 10 there is more information on dealing with subqueries in

MySQL.

Summary
You can get through the better part of your life without committing some portions
of SQL to memory. If you are using graphical tools you may not need to learn the
specifics of the create or alter command. The same cannot be said of the select
statement.

Everything covered in this chapter is really important to your life as an applica-
tions developer. The select statement allows you efficiently retrieve and sort infor-
mation from your databases, and if you understand the intricacies of the select
statement, you’ll be able to write applications more efficiently and elegantly.

XREF

NOTE

68 Part I: Working with MySQL

3537-4 ch03.f.qc 12/15/00 15:21 Page 68

Chapter 4

Getting Started with
PHP — Variables

IN THIS CHAPTER

◆ Assigning variables within PHP scripts

◆ Handling data passed from HTML forms

◆ Working with PHP’s built-in variables, including Apache variables

◆ Testing for and assigning variable types

PHP MAKES WORKING WITH variables extremely easy. PHP is smart about under-
standing variable types and keeps the syntax to an absolute minimum. Those com-
ing to PHP from a C, Java, or Perl background may find PHP easier to deal with, but
the ease of syntax can present its own problems.

All variables in PHP start with a dollar sign ($). It doesn’t matter what kind of
variables they are, whether strings, integers, floating-point numbers, or even
arrays. They all look identical in the code. The PHP engine keeps track of the type
of information you are storing.

In general, variables will come from three places: they are either assigned within a
script, passed from an HTML page (often from form input), or part of your PHP envi-
ronment. We’ll talk about each of these in the following sections. Note that variables
can come from other places: URLs and sessions are also possible origins of variables.

Assigning Simple Variables
Within a Script
PHP does not require explicit variable declaration. All you have to do is use a vari-
able and it exists. And as we already mentioned, all variable types look identical.
The following code shows how to assign variables of string, integer, and floating-
point (double) types:

$a = “this is a string”; //this is a string
$b = 4; //this is an integer 71

3537-4 ch04.f.qc 12/15/00 15:21 Page 71

$c = 4.837; //this is a floating-point number
$d = “2”; //this is another string

Notice that the = is the assignment operator. For comparison, you must use two
consecutive equal signs (= =). For example, if($x==1).

Typing is flexible, and PHP is pretty smart about handling changes in types. For
example, given the code you just saw, the following would evaluate as you’d prob-
ably hope:

$e = $b + $d;
echo $e;

PHP would recognize that you want to treat the string in $d as an integer. The
variable $e will be an integer type and will equal 6. In fact, PHP will also evaluate
the following as an integer:

$a = 2;
$b = “2 little piggies”;
$c = $a + $b;

Here, $c will equal 4. If an integer or floating-point number is at the beginning
of a string, PHP can evaluate it as such. Similarly, PHP will move smoothly among
numeric types.

$f = 2; //$f is an integer
$g = 1.444; // $g is a double (floating-point) type
$f = $f + $g; //$f is now a double type

This kind of flexibility is nice, but it can lead to some difficulty. There will be
times when you’re not sure what variable types you are working with. We’ll show
you how to deal with these circumstances in the section “Testing Variables.”

Delimiting Strings
In the preceding code, all the strings were surrounded by double quotes. There are
two other ways to delimt strings in PHP.

If you surround your strings with double quotes, variables within the string will
be expanded. For instance,

$my_name = “Jay”;
$phrase = “Hello, my name is, $my_name”;
echo $phrase;

72 Part II: Working with PHP

3537-4 ch04.f.qc 12/15/00 15:21 Page 72

will print “Hello, my name is, Jay”. But if you want to include any of the following
characters within you string, they must be escaped with backslashes:

◆ “ (double quotes)

◆ \ (backslash)

◆ $ (dollar sign)

For example, to print an opening form tag using double quotes you would have
to do the following.

echo “<form action=\”mypage.php\” method=\”get\”>”;

You can also surround strings with single quotes. If a string is within single
quotes, variables will not be expanded. So this code:

$my_name = “Jay”;
echo ‘Hello, my name is, $my_name’;

will print “Hello, my name is, $my_name”. The only characters that need to be
escaped within single quotes are single quotes and backslashes.

Finally, starting in PHP 4, you can make use of Here documents. This is a hybrid
of the single and double-quote style that can be convenient in many circumstances.
Here docs are delimited at the start of the string with three less-than signs <<< and
an identifier. In the book we use the identifier EOQ. The string is terminated with
the same identifier followed by a semicolon. In the following, $my_string is a
string properly delimited using Here doc syntax.

$my_string = <<<EOQ
My string is in here.
EOQ;

Using Here docs, variables will be expanded within string and double quotes do
not need to be escaped. We make frequent use of Here docs when working with
form elements.

$element = <<<EOQ
<textarea name=”$name” cols=”$cols” rows=”$rows”
wrap=”$wrap”>$value</textarea>
EOQ;

In a case like this we don’t need to litter the string with backslashes, and we still
get the convenience of having variables expanded within the string.

Chapter 4: Getting Started with PHP — Variables 73

3537-4 ch04.f.qc 12/15/00 15:21 Page 73

Array elements accessed by associative keys cannot be expanded in Here

docs. For example, the following will produce an error.

$array = array (“fname”=>”jay”, “lname”=>”greenspan”);

$str = <<<EOQ

print my string $array[“fname”]

EOQ;

Assigning arrays within a script
Arrays are variables that contain multiple values. A simple array might store the
months of the year. To assign this array, you could use the following:

$months = array(“January”, “February”, “March”, “May”, “June”,
“July”, “August”, “September”, “October”, “November”, “December”);

This array has 12 elements, and you can address them by their ordinal placement
in the array, starting with 0. So the command echo $months[0] would print
January and echo $months[11] would print December. To print out all of the val-
ues within an array, you could get the length of the array and then set up a loop.

for ($month_number=0; $i<count($months); $i++)
{
echo $months[$month_number] . “
\n” ;

}

The for loop is explained in Chapter 5.

You can also assign values to arrays with a simple assignment operator. The fol-
lowing would work:

$dogs = array();
$dogs[0] = “shepherd”;
$dogs[1] = “poodle”;

If you don’t specify the numeral, the value will be tacked on the end of the array.
The following line would assign “retriever” to $dogs[2].

$dogs[] = “retriever”;

XREF

Tip

74 Part II: Working with PHP

3537-4 ch04.f.qc 12/15/00 15:21 Page 74

There are a variety of functions that work with arrays (over 40 in PHP 4).

Many of these will be covered in Chapter 6.

Like many programming languages, PHP makes use of associative arrays. If you
are new to the concept, elements in associative arrays have “keys” that reference
individual elements. This is particularly important when you’re dealing with data-
bases. When you fetch rows from your database query you will usually refer to the
elements by their keys.

You can assign an associative array in this manner. Here, first_name,
last_name, and e-mail are the keys.

$person = array (
“first_name” => “Jay”,
“last_name” => “Greenspan”,
“e-mail” => “jgreen_1@yahoo.com”

);

If you wanted to add to this array, you could assign another value. Notice that
the next line would add an integer into the array, so this array would contain four
values, three strings and one integer.

$person[“age”] = 32;

Typically, if you want to access both the keys and the values in an associative
array, you would use list()=each(), as in the following code.

while (list($key, $value) = each($person))
{

echo “key : $key, value = $value
\n”;
}

Chapter 5 describes the list()=each() in more detail. Basically, each() pulls the
key and value of a single array element; list() takes those values and assigns
them to $key and $value, respectively. This process continues until each element in
the array has been accessed. If you want to go through the array a second time, you
will need to reset the array pointer with reset($person).

If you wanted to get only the value without the key, or if you were using a non-
associative array and wanted to use the list()=each() structure, you would have
to do this:

while (list(, $value) = each($person))
{

XREF

Chapter 4: Getting Started with PHP — Variables 75

3537-4 ch04.f.qc 12/15/00 15:21 Page 75

echo “value = $value
\n”;
}

Or, if you want to get at just the keys, you could do this.

while (list($key) = each($person))
{

echo “key = $key
\n”;
}

Think about PHP arrays this way: all arrays are associative. A couple of pages

back you saw you can assign a basic array without specifying associative

keys. For example $myarray= array (“pug”, “poodle”).When this is

done, PHP assigns $myarray consecutive numeric keys starting at zero.

They behave just like associative keys.You step through them using list()

=each(). They make use of the same array functions, many of which are

explained in Chapter 6.

Assigning two-dimensional arrays in a script
PHP also supports multi-dimensional arrays. The most commonly used multi-
dimensional array is the two-dimensional array. Two-dimensional arrays look a lot
like tables. They store information that is based on two keys. For instance, if we
wanted to store information on more than one person, a two-dimensional array
would work well. We would assign an array named $people, and within $people
there would be individual arrays addressing each person:

$people = array (
“jay” => array (

“last_name” => “greenspan”,
“age” => 32

),
“john” => array (

“last_name” => “doe”,
“age” => 52

)
);

Here the $people array contains information on two people, Jay and John. To
access information on any single value, you will need to use both keys. To print out
John’s last age, the following two commands would work:

echo $people[“john”][“age”]; //prints 52

NOTE

76 Part II: Working with PHP

3537-4 ch04.f.qc 12/15/00 15:21 Page 76

You could access all of the elements in a two-dimensional array by looping
through both of the array’s dimensions:

while(list($person, $person_array) = each($people))
{

echo “What I know about $person
\n”;
while(list($person_attribute, $value) = each($person_array))
{

echo “$person_attribute = $value
\n”;
}

}

Accessing Variables Passed from the
Browser
The whole point of using PHP, or any other middleware package for that matter, is
to deliver customized information based on user preferences and need. Often, the
information will come via HTML forms. But information can come from other
places, including HTML anchors, cookies, and sessions.

HTML forms variables
One of the most common ways in which variable information is delivered is
through HTML forms.

Appendix A presents detailed information on creating HTML forms. Refer

to that appendix before you read this section if you are unfamiliar with

this topic.

For each of your form elements you will have to assign a name and a value
attribute. When the form is submitted, the name=value pairs are passed to PHP.
They can be passed to PHP by either the GET or POST methods, depending on what
you chose in your form action attribute.

Once a form is submitted, the form elements automatically become global vari-
ables in PHP. (Global variables and variable scope are discussed in Chapter 6). It is
truly a no-muss, no-fuss way of doing business. Consider the following simple
HTML form:

<form action=mypage.php action=post>
<input type=text name=email>

XREF

Chapter 4: Getting Started with PHP — Variables 77

3537-4 ch04.f.qc 12/15/00 15:21 Page 77

<input type=text name=first_name>
<input type=submit name=submit value=add>

</form>

Once the user hits the submit button, variables named $email, $first_name,
and $submit will be available in the called PHP page. You can then process these
variables however you see fit. Note that in most of our applications we will be
using the value of the submit button, to make sure the page understands what
action the user has taken. The following is a brief example of how this will work.
Assume the name of the page is mypage.php.

<?php
if (isset($submit) && $submit==”yes”)
{

echo “thank you for submitting your form.”
} else {
?>
<form action=mypage.php action=post>

<input type=text name=email>
<input type=text name=first_name>
<input type=submit name=submit value=yes>

</form>
<?php
}
?>

In some browsers if there is only one submit button within a form, the user

can hit the enter key and submit the form without the submit button infor-

mation being sent.

On his or her first visit to this page the user will be presented with a form. Once
the form is submitted and the page recalls itself with the new variable information,
only the thank you message will appear.

Form variables will also be accessible through either the $HTTP_POST_VARS or
$HTTP_GET_VARS array, depending on the method used in your form. These are
convenient if you have variables coming from both methods, if variables from
forms could carry the same name as variables in your script, or if you have an
undefined set of variables being passed and you need to check what’s there.

NOTE

78 Part II: Working with PHP

3537-4 ch04.f.qc 12/15/00 15:22 Page 78

If you are wondering when you might have to deal with variables from both GET
and POST, consider a situation where a user gets to a page by clicking on a link
with querystring information. The user may then end up at a page with a form. If
the action of form is an empty string, the form will submit to itself and it will main-
tain the querystring If the method of the form is POST, variables will be coming
from both GET and POST

You can access any individual element like any associative array ($HTTP_
POST_VARS[“e-mail”]). Or you can loop through all of the contents of the array as
follows:

while (list($key, $value) = each($HTTP_POST_VARS))
{

echo “variable = $key value = $value
”;
}

Passing arrays
There are occasions when passing scalar variables won’t work, and you’ll need to
pass arrays from your HTML page to your PHP script. This will come up when your
user can choose one or more form elements on a page. Take, for example, multiple
select boxes, which allow users to pass one or more items from a number of items.
The form element is made with the HTML in the following code example. The “mul-
tiple” attribute indicates that the user can choose more than one element, as shown
in Figure 4-1. To choose more than one element on the PC, hold down the Ctrl key
while selecting additional values. On the Mac, use the Apple key, and you Gnome
users can select and unselect individual elements with a click.

<form action =”mypage.php” method=”post”>
<select name=”j_names[]” size=4 multiple>

<option value=”2”>John
<option value=”3”>Jay
<option value=”4”>Jackie
<option value=”5”>Jordan
<option value=”6”>Julia

</select>
<input type=”submit” value=”submit”>

</form>

Chapter 4: Getting Started with PHP — Variables 79

3537-4 ch04.f.qc 12/15/00 15:22 Page 79

Figure 4-1: Multiple select box

Notice that in the select “name” attribute we’ve added opening and closing
brackets ([]). This tells PHP to expect an array. If we didn’t include the bracket,
there could be two values fighting for the same variable name, and that’s no good
at all.

Once it has been submitted you can address this array like any other.

if (is_array($j_names))
{

echo “the select values are:

”;
while(list($key, $value) = each($j_names))
{

echo $value . “
\n”;
}

}

Passing arrays can also be useful when you want to present a series of check-
boxes that the user may or may not check before pressing the submit button. In
Chapter 8, there is a code example for a page that allows the program’s administra-
tor to use checkboxes to select which entries should be deleted. Figure 4-2 shows a
sample of this type of page. If we were to assign a different name to each checkbox,
we would have to check each one individually. With arrays, we write a three-line
loop to check them all.

80 Part II: Working with PHP

3537-4 ch04.f.qc 12/15/00 15:22 Page 80

Figure 4-2: Series of checkboxes

Arrays passed from forms can also have associative keys, which can be multi-
dimensional. The name of the form element should take the form name=”array_
name[element_name]”. Or for a multi-dimensional array, array_name[element_name]
[subelement_name]”.

Cookies
Cookies are small pieces of information that are stored on a user’s hard drive. A
cookie contains a bit of text that can be read by the Web server that put it there.
Cookies provide the only way to keep track of users over the course of several vis-
its. Remember that the Web is a stateless environment. Your Web server really has
no idea who is requesting a page. Cookies help you keep track of users as they
move around your site.

When they exist, cookies become part of the HTTP request sent to the Web
server. But first you’ll need to set a cookie. The developers have made this, like
everything else in PHP, exceedingly simple. Use the setcookie() function. This
function takes the following arguments:

setcookie(name, value, time_to_expire, path, domain, security
setting);

Chapter 4: Getting Started with PHP — Variables 81

3537-4 ch04.f.qc 12/15/00 15:22 Page 81

We will discuss this in more detail in Chapter 6, but for now, suffice it to say that
the following statement

setcookie(“mycookie”,
“my_id”,time()+(60*60*24*30),”/”,”.mydomain.com”, 0)

would set a cookie with the following parameters:

◆ Stores a variable named my_cookie

◆ Value of mycookie “my_id”

◆ The cookie will expire 30 days from the time it is set (current time + the
number of seconds in 30 days).

◆ The cookie will be available to every page in the domain. We could
restrict it to a specific path within a domain by including a path.

◆ It will be available to every site with a mydomain.com address.

◆ There are no special security settings.

Once the cookie is set, the variables retrieved from the cookie behave precisely
like the variables retrieved from form elements. They will automatically be avail-
able as global variables. After a PHP script places the cookie, additional scripts
within the domain can access it directly.

If you wanted to be careful that $mycookie didn’t conflict with another variable
also named $mycookie, you could access it through the HTTP_COOKIE_VARS array,
using HTTP_COOKIE_VARS[“mycookie”].

You can also set cookies that are accessible as arrays:

setcookie(“mycookie[first]”,
“dddd”,time()+2592000,”/”,”192.168.1.1”, 0);
setcookie(“mycookie[second]”,
“my_second_id”,time()+2592000,”/”,”192.168.1.1”, 0);

These two variables would be accessible as an associative array.

The preceding code worked fine using Internet Explorer 5 on the PC.

However, this may not work on other browsers. In any case, you are probably

better off avoiding situations that require arrays within cookies.

NOTE

82 Part II: Working with PHP

3537-4 ch04.f.qc 12/15/00 15:22 Page 82

Sessions
PHP 4, like ASP and ColdFusion, natively supports sessions, only it does a much
better job. What’s a session? Basically, it’s another way of maintaining state
between pages. Your script declares that a session should start with the start_
session() function. At that point PHP registers a unique session ID, and usually
that ID is sent to the user via a cookie. PHP then creates a corresponding file on the
server that can then keep track of any number of variables. The file has the same
name as the session ID.

Once the session is created, you can register any number of variables. The values
of these variables are kept in the file on the server. As long as the session cookie
lives, these variables will be available to any page within the same domain that
wishes to access them. This is a much more convenient setup than sending vari-
ables from page to page through hidden form elements or bloated cookies.

Of course, there is the possibility that some users will not allow cookies. For this
reason, PHP allows you to track the Session ID through the querystring. You can do
this manually by appending the Session ID onto the querystring, or by changing a
configuration option.

To add the session ID to the querystring manually, use <?= SID?>. This automat-
ically prints out a string like this:

PHPSESSID=07d696c4fd787cd6c78b734fb4855520

Adding this to a link will pass the PHPSESSID variable via the querystring. Use
something like this:

<a href=”mypage.php?<?=SID?>”>click to page

<?= is shorthand for echo.You can use it any time you like, not just with

sessions.

If PHP is compiled with the –enable-trans-id option the session ID will auto-
matically be added to every relative link.

Basically, it is pretty simple. The following script will register a session variable
named $my_var, and will assign it a value of “hello world”.

<?
session_start();
session_register(“my_var”);
$my_var = “hello world”;
?>

NOTE

Chapter 4: Getting Started with PHP — Variables 83

3537-4 ch04.f.qc 12/15/00 15:22 Page 83

On subsequent pages the variable $my_var will be available, but only after you
run the session_start() function. That function tells PHP to look for a session
and if the session exists, to make all the session variables accessible as globals.

It can take a little work with if statements to make your session variables prop-
erly accessible. Look at the following short script for an example.

<?php
session_start();
session_register(“your_name”);
//check to see if $your name contains anything
if(!empty($your_name))
{

echo “I already know your name, $your_name”;
}
//this portion will probaby run the first time to
//this page.
elseif(empty($your_name) && !isset($submit))
{

echo “<form name=myform method=post action=$PHP_SELF>
<input type=text name=first_name> first name

<input type=text name=last_name> last name

<input type=submit name=submit value=submit>
</form>”;

//if the form has been submitted, this portion will
//run and make an assignment to $your_name.
} elseif (isset($submit) && empty($your_name))
{

$your_name = $first_name . “ “ . $last_name;
echo “Thank you, $your_name”;

}

After running this code, hit refresh on your browser. You will see that the script
remembers who you are.

Your setcookie() and session_start() functions should always be at

the very top of your file. If you try sending anything to the browser prior to

setting a cookie, you will get error messages.

Tip

84 Part II: Working with PHP

3537-4 ch04.f.qc 12/15/00 15:22 Page 84

Using Built-In Variables
There are a variety of variables set by your server and PHP environment. You can
find a complete list of these by running phpinfo(). If you haven’t done it yet, go
to your keyboard, type in the following, and then run the following script:

<?php
phpinfo();
?>

It will deliver a page that looks like what you see in Figure 4-3.

Figure 4-3: phpinfo();

It’s a good idea to delete this page when you’re done with it. No need to give
crackers any more information than absolutely necessary.

You can use this variety of variables in a variety of ways. We’ll take a look at
some of these now, and show where and when you might use them. Some variables
come from the PHP engine, while others originate from your Web server.

Chapter 4: Getting Started with PHP — Variables 85

3537-4 ch04.f.qc 12/15/00 15:22 Page 85

PHP variables
These are variables available through PHP.

PHP_SELF
This is the address of the file being run. Usually, the full path is given from the
ServerRoot directory, which is very useful when a form is both presented and
processed in the same PHP page.

<?
if(isset($submit))
{
//do some form processing here
echo “thanks for the submission”;

} else {
?>
<form name=myform method=post action=<?=$PHP_SELF?>>

<input type=text name=first_name> first name

<input type=text name=last_name> last name

<input type=submit name=submit value=submit>

</form>
<?
}
?>

Keep in mind that PHP_SELF always refers to the name of the script being exe-
cuted in the URL. So in an include file, PHP_SELF will not refer to the file that has
been included. It will refer to the script being run.

It’s worth noting that PHP_SELF behaves strangely when PHP is run on
Windows or as a CGI module. Make sure to look at phpinfo() to see the value of
$PHP_SELF on your system.

HTTP_POST_VARS
This is the array that contains all the variables sent through the POST method, usu-
ally through forms. You can access each individual variable as an element in an
associative array (for example $PHP_POST_VARS[“myname”]).

HTTP_GET_VARS
This is the array that contains all the variables sent through the GET method. You
can access each individual variable as an element in an associative array (for
example $PHP_GET_VARS[“myname”]).

HTTP_COOKIE_VARS
All of the cookies sent to the browser will be readable in this associative array.
This includes the session cookie. If you are wondering how your cookies are

86 Part II: Working with PHP

3537-4 ch04.f.qc 12/15/00 15:22 Page 86

behaving, phpinfo() will give you a quick readout of what your browser is send-
ing to the server.

Apache variables
Apache keeps track of dozens of variables. We can’t include a complete list of vari-
ables here, as the variables you use will vary depending on your current setup. Here
are some of the ones you might use frequently in your scripts.

As you look at this list and phpinfo(), keep in mind that if you are not getting
what you want out of your Web server variables, you will need to make changes to
your server configuration, not PHP. PHP just passes the information along and can-
not alter these variables.

DOCUMENT_ROOT
This variable returns the full path to the root of your Web server. For most Apache
users, this directory will be something like /path/to/htdocs. We use this variable
throughout the book to make our applications portable. Take this include statement
as an example:

include”$DOCUMENT_ROOT/book/functions/charset.php”;

By using the DOCUMENT_ROOT variable instead of an absolute path, we can move
the book directory and all its sub-folders to any other Apache server without wor-
rying that the include statements will break. Keep in mind that if you are using a
Web server other than Apache, DOCUMENT_ROOT may not be available.

If you set the include_path directive in your php.ini file, you will not need to

worry about specifying any path in your include statement — PHP will look

through all of the directories you specify and try to find the file you indicate.

HTTP_REFERER
This variable contains the URL of the page the user viewed prior to the one he or
she is currently viewing. Keep in mind when using HTTP_REFERER that not every
page request has a referer. If someone types the URL into a browser, or gets to your
page via bookmarks, no referer will be sent. This variable can be used to present
customized information. If you had a relationship with another site and wished to
serve up a special, customized header for only those referred from that domain you
might use a script like this.

//check if my user was referred from my_partners_domain.com
if(ereg (“http.*my_partners_domain.com.*” , $HTTP_REFERER))
{

Tip

Chapter 4: Getting Started with PHP — Variables 87

3537-4 ch04.f.qc 12/15/00 15:22 Page 87

include’fancy_header.php’;
}else{

include’normal_header.php’;
}

Keep in mind that HTTP_REFERER is notoriously unreliable. Different browsers
serve up different HTTP_REFERERs in certain situations. It is also easily spoofed. So
you wouldn’t want to use a script like the preceding one to serve any secure infor-
mation. I worked on a site where HTTP_REFERER was used to determine if a special
GIF should be included in the header.

HTTP_USER_AGENT
Anyone who has built a Web page knows how important browser detection is.
Some browsers will choke on fancy JavaScript, and others require very simple text.
The user_agent string is your key to serving the right content to the right people. A
typical user_agent string looks something like this:

Mozilla/4.0 (compatible; MSIE 5.01; Windows 98)

You can then parse this string to get what you are looking for.
You may be interested in PHP’s get_browser() function. Theoretically, this

function will determine the capabilities of your user’s browser so you can find out
if your script can safely serve out, for example, frames or JavaScript. The PHP
manual has instructions for installation and use of get_browser(), but I do not
recommend using it. Why? Using get_browser() you will be told that both
Internet Explorer 5 for the PC and Netscape Navigator 4.01 for the Mac support CSS
(cascading stylesheets) and JavaScript. But as anyone with client-side experience
knows, writing DHTML that works on both of these browsers is a major task (and a
major pain). The information you get from get_browser() can lead to a false sense
of security. You’re better off accessing HTTP_USER_AGENT and making decisions
based on the specific browser and platform.

REMOTE_ADDR
This is the IP address of the user that sent the HTTP request. REMOTE_ADDR is easily
spoofed and doesn’t necessarily provide information unique to a user. You might
want to use it for tracking, but it should not be used to enforce security.

REMOTE_HOST
This is the host machine sending the request. When I dial it up through my ISP
(att.net), the REMOTE_HOST looks like this: 119.san-francisco-18-19rs.ca.
dial-access.att.net. REMOTE_HOST is often not available.

88 Part II: Working with PHP

3537-4 ch04.f.qc 12/15/00 15:22 Page 88

REQUEST_URI
This is pretty much the same as PHP_SELF, except that it contains information in
the querystring in addition to the script file name. It contains everything from the
root path on. So if you were visiting http://www.mydomain.com/info/products/
index.php?id=6, REQUEST_URI will equal /info/products/index.php?id=6.

SCRIPT_FILENAME
This variable contains the filesystem’s complete path of the file.

Other Web server variables
As mentioned earlier, phpinfo() is your friend. We developed applications for this
book on Unix systems running Apache Web servers. But, as PHP will run on a vari-
ety of operating systems and Web servers and MySQL does run on Windows as well
as Unix, you should be aware of the different variables associated with whatever
Web server and operating system you’re running.

You’ll see that include files in our applications make use of the DOCUMENT_ROOT
Apache variable. If you were to attempt to move the application files to Windows,
you would get an error in the include statements. The better choice when using
Microsoft’s Personal Web Server is the $APPL_PHYSICAL_PATH variable.

Figure 4-4 gives a glimpse of some of the variables you can access from Personal
Web Server.

Figure 4-4: Personal Web Server variables

Chapter 4: Getting Started with PHP — Variables 89

3537-4 ch04.f.qc 12/15/00 15:22 Page 89

Testing Variables
At the start of this chapter, we showed that assigning data to a variable determines
the variable type. The appearance of the variable gives no indication as to what the
variable contains. If you see $var sitting in a script you’ll have no idea if this con-
tains a string, an integer, a floating-point number, or an array. In fact, many times
in your scripts you won’t be sure if the variable contains a value, or even if it exists
at all. For all these reasons, you need to perform tests. The following sections
describe the types of tests you can perform.

isset()
This function tests whether a variable has any value, including an empty string. It
returns a value of either true or false. If the variable has not been initialized or has
not been set, isset() will test false.

Consider the following script, which processes a MySQL query. You already
know that database fields can contain both empty strings and null values. It’s quite
possible that in your script you would want to treat the two differently. To print out
a special message when the query comes across null values, you would need to use
isset(). In this code, $query is a select statement typed into a form element.

$result = mysql_query($query) or
die (mysql_error());

$number_cols = mysql_num_fields($result);

echo “query: $query
\n”;
//layout table header
echo “<table border = 1>\n”;
echo “<tr align=center>\n”;
for ($i=0; $i<$number_cols; $i++)
{

echo “<th>”, mysql_field_name($result, $i), “</th>\n”;
}
echo “</tr>\n”;//end table header

//layout table body
while ($row = mysql_fetch_row($result))
{

echo “<tr align=left>\n”;
for ($i=0; $i<$number_cols; $i++)
{

echo “<td>”;
if (!isset($row[$i])) //test for null value

{echo “NULL”;}

90 Part II: Working with PHP

3537-4 ch04.f.qc 12/15/00 15:22 Page 90

else
{echo $row[$i];}

echo “</td>\n”;
}
echo “</tr>\n”;

}
echo “</table>”;

Note that the exclamation point (!) means “not”. So the phrase if(!isset
($var)) will test true if the variable is not set.

If you wish to destroy a variable, use the unset function.

empty()
The empty() function overlaps somewhat with the isset() function. It tests true if
a variable is not set, contains an empty string, or has a value of 0. It is useful for,
among other things, processing form data. If you want to determine if the user put
something in a text field you could use something like this:

if(empty($first_name))
{
echo “Please enter your first name. It is a required field”;
exit;

}

is_int()
This tests whether a variable is an integer. It has two synonyms: is_integer() and
is_long(). You may need this function to troubleshoot a script when you’re not
sure if a variable is an integer or a string containing numerals.

$a = “222”;
$b = 22;

Given these two variable assignments, is_int($a) would test false and
is_int($b) would test true.

is_double()
This function tests whether a variable is a floating-point (or double) number. It has
two synonyms: is_float() and is_real().

is_string()
This function tests whether a variable is a text string.

Chapter 4: Getting Started with PHP — Variables 91

3537-4 ch04.f.qc 12/15/00 15:22 Page 91

is_array()
This function tests whether a variable is an array. This is used frequently in the
course of this book. A good example can be found in Chapter 6, in the discussion
of the implode() function.

is_bool()
This tests whether a variable is boolean, (contains either TRUE or FALSE). Note that
the following examples are not boolean.

$a = “TRUE”;
$b = “FALSE”;

In Chapter 6 you will see a variety of functions that return FALSE on failure. In
these, FALSE is a boolean value.

is_object()
Returns true if the variable is an object. See Chapter 6 for a discussion of objects
and object-oriented programming if you don’t know what an object is.

gettype()
This function will tell you the type of variable you have. It will return the expected
values (string, double, integer, array, or boolean), and it can also return types
related to object-oriented programming (object, class). There will be more informa-
tion on PHP object-oriented programming in Chapter 6.

Note that gettype() returns a string. So the following would test TRUE and
print “Yes”.

$str = “I am a string”;
$type = gettype($str);
if ($type == “string”)
{

echo “Yes”;
}

Changing Variable Types
There are three ways to change the type of any variable.

92 Part II: Working with PHP

3537-4 ch04.f.qc 12/15/00 15:22 Page 92

Type casting
By placing parentheses containing the variable type you require before the variable
name, you will change the variable type.

$a = 1;
$b = (string) $a;
echo gettype($a), “
\n”;
echo gettype($b), “
\n”;

This code would print,

integer
string

Using this method you can cast a variable as an array, a double, an integer, an
object, or, as in the preceding code, a string.

Using settype()
This function takes two arguments. The first is a variable name. The second speci-
fies the variable type. The advantage of using this function over casting is that
settype() will return a value of FALSE if the conversion fails. And there is no way
to detect a failed casting. It can take the same types as listed in type casting.

$a = 1;
settype($a, “string”);

intval(), doubleval(), and stringval()
Finally, if you don’t have enough ways to evaluate variable types, use one of these
functions. They do not actually change the type of the variable, but return a value
of the specified type. So in the following, you can be sure, $a will be treated like an
integer.

$a = “43”;
$b = (intval($a) * 2);

Variable Variables
PHP includes variable variables, which, in the wrong hands, could be used to write
the most incomprehensible code imaginable. It enables you to take the contents of
a variable and use them as variable names. Two consecutive dollar signs let PHP

Chapter 4: Getting Started with PHP — Variables 93

3537-4 ch04.f.qc 12/15/00 15:22 Page 93

know to take the value of the variable and use that as a variable name. The follow-
ing creates a variable name $foo with the value of “bar”:

$a = ‘foo’;
$$a = ‘bar’;

In the context of a database application, variable variables might be used to cre-
ate a series of variables against which you compare other variables. In the follow-
ing, $firstrow is an associative array.

$firstrow = array (“firstname”=>”jay”, “lastname”=>”greenspan”);

while (list($field,$value) = each($firstrow))
{

$field = “first_$field”;
$$field = $value;

}

echo $first_firstname, “ “, $first_lastname;

When run through the while loop, the following variables would be created and
printed.

$first_firstname = “jay”
$first_lastname = “greenspan”

Summary
If you read this chapter attentively (or even if you didn’t) you should have a pretty
good idea of how to work with PHP variables.

PHP does a better job than any scripting language in making variables easy to
access and process. If you want to get a feel of how PHP variables are used, take a
look at Chapter 8, the first application in the book. There, many of the functions
and concepts presented here are put to work. By flipping back and forth between
this chapter and those scripts, you will see how variables are used and how scripts
come together.

One very important point: This chapter did not discuss variable scope, which is a
very important topic. See Chapter 7, when we discuss functions, for an explanation
of this topic.

94 Part II: Working with PHP

3537-4 ch04.f.qc 12/15/00 15:22 Page 94

Chapter 5

Control Structures
IN THIS CHAPTER

◆ Understanding the syntax of if statements

◆ Determining true and false values with PHP

◆ Learning PHP loops

◆ Choosing loops to use in your scripts

CONTROL STRUCTURES ARE THE BUILDING blocks of programming languages. PHP has
all of the control structures needed to make a language work. If you’re familiar with
C or Perl, none of the features we discuss in this chapter should come as much of a
surprise. However, if you’re approaching PHP from a background in VBScript or
Visual Basic, the syntax will probably be different from what you’re used to. If you
find the syntax to be a little heavy at first, stick with it. You might find that the
extra brackets and parentheses actually help you write readable code.

The if Statements
The if statement is pretty much the cornerstone of all programming languages. In PHP,
an if statement typically takes this basic form:

if (condition)
{

actions to perform if condition is true.
}

After the word “if” there is a set of parentheses. Within those parentheses is the
single condition or set of conditions to be tested. If the condition is evaluated as
being true, the code within the curly braces will be executed. The following will test
true and print “I’m True!” to a Web page.

<?php
$foo = 100;
$bar = 10;
if ($foo>$bar) 95

3537-4 ch05.f.qc 12/15/00 15:22 Page 95

{
echo “I’m True!”;
}

?>

This is clear enough. But before we mention the complexities of the if statement,
you should know how PHP determines whether a condition is true or false.

Determining true or false in PHP
The next section will show the operators commonly used in if statements. These are
fairly intuitive. In the preceding code example, 100 is greater than 10, so it will test
true. No problem. But there’s a bit more to these tests in PHP.

The words TRUE and FALSE also carry the expected meaning.

if (TRUE)
{

echo “Yup!”; //this will be printed
}
if (FALSE)
{

echo “Nothing doing.”; //this will not be printed
}

But you’re not limited to simple mathematical operators or the words TRUE and
FALSE when testing a true or false condition. As you saw in Chapter 4, you will
often test for the existence of a variable using isset() or empty(). These functions,
like many others in PHP, will return a value of 0 if the condition is false, and a value
of 1 if the condition is true. The following will actually print out “1”.

$myvar = “I am setting a variable”;
echo isset($myvar);

In PHP “0” is equivalent to false. As you can guess, “1” is equal to true. But it’s
not just “1” that is true — any non-zero, non-empty value tests as true. This gives
you some flexibility in your tests.

When working with Web pages, you’ll usually be doing some sort of text manip-
ulation. Often you’ll need to test whether the text string you’re working with has a
certain structure. For example, you might want to test if a string contains certain
characters. You could use one of the regular expression functions for this, but you
could also use the strstr() function. The strstr() function takes two arguments,
both of them strings. It searches for the first occurrence of the string in the second
argument in the first argument. It returns the string in the second argument plus all
of the characters following that string. However, if the string isn’t found, the func-
tion will return FALSE. In the example below strstr() returns the “text string”.

96 Part II: Working with PHP

3537-4 ch05.f.qc 12/15/00 15:22 Page 96

$str = “my little text string”;
strstr($str, “text”);

Since the result of this function is not empty and not 0 it could be used in a test.
The following would test True and print out “Yeah!”

$str = “my little text string”;
if (strstr($str, “text”))
{

echo “Yeah!”;
}

But, in the example below, the string is not found, so the function will return FALSE
and nothing will print.

$str = “my little text string”;
$new_str = strstr($str, “nothing”);
if($new_str)
{

echo “nothing to print”; //this will not be printed
}

This is a good place to note that the functions you create in the course of your
programming will often need to return a TRUE or FALSE value. You can make your
functions do this by returning TRUE or FALSE, or, if you prefer, 1 or 0. See Chapter 6
for a rundown of functions if you don’t know how to use them. Take a look at this
example:

//tests whether a variable starts with “http://”
function url_test ($url)
{

if (strtolower(substr($url,0,7))== “http://”)
{
return TRUE; //this could also be 1
}

else {
return FALSE; //could be 0

}
}

$myurl = “http://www.theonion.com”;
if (url_test ($myurl))
{

echo “Thanks for entering a valid URL.”;
}

Chapter 5: Control Structures 97

3537-4 ch05.f.qc 12/15/00 15:22 Page 97

Comparison operators
There aren’t too many comparison operators in PHP. Table 5-1 lists them.

TABLE 5-1 PHP’S COMPARISON OPERATORS

Symbol Operator Description

== (2 equal signs) equal to Determines if two quantities are equal.

=== (3 equal signs) identical to Determines if the two values are
of the same value and the same
variable type.

!= not equal Determines if the values are not equal.

> greater than Determines if the value to the left of
the symbol has a higher value than
the one to the right of the symbol.

< less than Determines if the value to the left of
the symbol has a lower value than
the one to the right of the symbol.

>= greater than or equal to Determines if the value to the left
has a higher or equal value to the
one on the right.

<= less than or equal to Determines if the value to the left
has a lower or equal value to the
one on the right.

Logical operators
In addition to comparison operators, you will be using logical operators in your
scripts. Table 5-2 lists the logical operators.

TABLE 5-2 PHP’S LOGICAL OPERATORS

Symbol example Description

and if ($a ==0 and $b==1) Checks both conditions.

&& if ($a ==0 && $b==1) Same as the previous row, but has a
higher precedence (see Note below).

98 Part II: Working with PHP

3537-4 ch05.f.qc 12/15/00 15:22 Page 98

Symbol example Description

or if ($a ==0 or $b ==1) Determines if one or the other meets
the condition.

|| if ($a ==0 || $b ==1) Same as the previous row, but has a
higher precedence (see Note below)

xor if ($a ==0 xor $b==1) This is known as “exclusive or”. It
determines if one of the two is true but
not both. If both of these conditions are
true, the overall test will be false.

! if (!empty($a)) Determines if something is not the case.
In this example the condition will be true
if $a has a value.

The difference between && and and is their order of precedence. PHP

must determine which operators to compare first. It does this based on the

list found at http://www.php.net/manual/language.operators.

precedence.php.

Complex if statements
Using the operators in Table 5-1 and 5-2 you can create if statements that are a bit
more complex than the basic one at the beginning of this chapter. Here are a few
quick examples:

if ($var == 1 && $var2 <=5 && !empty($var3))
{

//do some stuff
}

Since this is a book dealing with MySQL databases, we’ll show some examples of
if statements you can use when playing with database queries.

To test if a select query returned any rows, you could use either of the following:

$query = “select * from my_table”;
$result = mysql_query($query)or

die(mysql_error());
if (mysql_num_rows($result) >0)
{

NOTE

Chapter 5: Control Structures 99

3537-4 ch05.f.qc 12/15/00 15:22 Page 99

//do something here.
}
//this would also work...
if (!$row = mysql_fetch_array($result))
{

echo “there were no rows to fetch, so the query must have
returned no rows.”;
}

This will test if an update query actually changed anything. A similar construct
would work for update and delete statements.

$query = “update mytable set col1=’my text’ where id = 1”;
mysql_query($query) or

die(mysql_error());
if (mysql_affected_rows() == 0)
{

echo “query did nothing”;
}

if ... else statements
If you’re clear on the previous sections, there’s nothing here that will surprise you.
The else portion of an if ... else statement allows you to specify code that is executed
if the condition specified is false.

$a = 2;
if ($a == 1)
{

echo “it’s equal”;
} else {

echo “it is not equal”;
}

This code will print “it is not equal”.

if ... elseif statements
You will often have to check a variable against more than one set of conditions. For
instance, you might have a single page that will insert, edit, and delete records from
a database. It would be fairly typical to indicate which portion of the script you
wish to run by assigning different values to a submit button in an HTML form.
When the form is submitted, the value of the submit button can be checked against
several elseif statements.

if ($submit == “edit”)

100 Part II: Working with PHP

3537-4 ch05.f.qc 12/15/00 15:22 Page 100

{
// code for editing database

} elseif ($submit ==”update”)
{

//code for updating records
}elseif ($submit == “delete”)
{

//code for deleting records
} else
{

echo “I have no idea what I should be doing.”;
}

“elseif” is not that same as “else if”. If you have that space between the words,

you will not get an error, but you may get some weird behavior.

Alternative if... structures
There are a couple of different ways to write if statements. The first simply substi-
tutes a colon for the opening curly brace and the word endif with a semicolon for
the closing curly brace.

This syntax is depreciated.You’re better off not using it.

if ($a==1):
echo “I knew a was equal to one.”;

elseif ($a>1):
echo “a is bigger than I thought.”;

else:
echo “a is a little number.”;

endif;

The other alternative if structure we have is what’s known as a trinary operator.
It’s essentially a shortened form of an if ... else statement and we’ll use it in this

NOTE

Tip

Chapter 5: Control Structures 101

3537-4 ch05.f.qc 12/15/00 15:22 Page 101

book to save a few lines of code when there’s a simple assignment of a variable to
be done. It looks like this:

$a = ($x==1) ? “x was one” : “x wasn’t one”;

The portion before ? is the condition to be tested (here, is x equal to 1). If the
condition is true, the portion between ? and : is carried out ($a is assigned the string
“x was one”). If not, the expression in the third portion, between : and ; will be
executed and $a will carry the string “x wasn’t one”.

switch ... case
The switch structure is an alternative to using multiple if ... elses. This won’t work for
everything, but in some situations switch will help you remove some ugly syntax.

Choose a variable against which you wish to run a comparison. Continuing the
example given in the discussion of if... else, we may wish to execute different parts
of script based on the value passed by a submit button.

switch ($submit)
{

case “insert”:
// code to insert to database
break;

case “update”:
//code to update database
break;

case “display”:
//code to display
break;

}

Here the code tests against the value in $submit. In the case that $submit is
equal to “insert”, that portion of code is run.

Note the use of break above. If break is not included the code will continue to
run. For example, the if $submit was equal to “update” the following would run
the code for both the update and display portions:

switch ($submit)
{

case “insert”:
// code to insert to database
break;

case “update”:
//code to update database

102 Part II: Working with PHP

3537-4 ch05.f.qc 12/15/00 15:22 Page 102

case “display”:
//code to display
break;

}

Loops
No matter what language you’ve used in the past, you’ll know that loops are an
essential part of programming. PHP has as rich set of loops that should satisfy your
every programming need.

while...
This is probably the most common loop, therefore we’ll discuss it first. You will give
the while loop a condition to validate. As long as that condition is true, the code
within the curly braces will be executed.

while (condition)
{

code to execute here;
}

For a very basic example, the following would print all the numbers between
0 and 10:

$a = 0;
while ($a<=10)
{

echo “$a
 \n”;
$a++;

}

For something a bit more practical, you will use a while loop to iterate through
every row returned by a database query. Since mysql_fetch_array() will return
FALSE if there’s no row to be fetched, it works quite nicely with a while... loop.

$query = “select fname, lname from people”;
$result = mysql_query($query) or

die(mysql_error());
while ($row = mysql_fetch_array($result))
{

echo $row[“fname”] , “ “ , $row[“lname”] , “
 \n”;
}

Chapter 5: Control Structures 103

3537-4 ch05.f.qc 12/15/00 15:22 Page 103

USING WHILE WITH LIST() = EACH()
Another place while... often comes into play is with arrays, when using the list()
= each() structure. This structure assigns elements in an array to named variables.
It will iterate through the array, and when there are no more elements to pull from,
it will test FALSE, and the while loop will stop. When pulling from an array, list()
is expecting an associative array and will take two variables: the first for the key,
the second for the value.

$knicks = array (center => “Ewing”, point => “Childs”,
shooting_guard => “Houston”,
forward => “Sprewell”, strong_forward => “Johnson”

);
echo “<h2>The Knicks 1999 Starting Five Were</h2>”;
while (list($key,$value) = each ($knicks))
{

echo “$key: $value
\n”;
}

After running the preceding code the array pointer will be at the end of the

array. If you wish to loop through it again, you will have to move the pointer

to the beginning of the array with reset. In the preceding example, reset

($knicks) would work.

Note that if you don’t have an associative array and you wish to grab array values,
you will need to account for it in your list(). Do this by including a comma within
the list parentheses.

$names = array(“John”, “Jacob”, “Jason”, “Josh”);
while (list (, $value) = each ($names))
{

echo “$value
 \n”;
}

If you didn’t have the comma preceding $value, the ordinal placement of each
element would be assigned to value and the code would print “0, 1, 2, 3”.

If you want to just get the keys out of an associative array, your list statement
should contain something like list($key,).

List is also useful with mysql_fetch_array(). It can be kind of a pain to keep
referring to values by their associative array reference (e.g., $row[“first_name”]).

NOTE

104 Part II: Working with PHP

3537-4 ch05.f.qc 12/15/00 15:22 Page 104

If you use list() = each(), you won’t have to assign each record to a variable
and then reference it as an associative array. The following works just fine:

$query = “select fname, lname from users”;
$result = mysql_query($query) or

die(mysql_error());
while (list ($fname, $lname) = mysql_fetch_array($result))
{

echo $fname . “ “. $lname . “
\n”;
}

As you saw above, list() has a couple of uses. Though we’re stressing its use with
the each() statement, it can generally be thought of as an “array destructor”. That is,
it pulls elements out of an array. Similarly, each() is an “array iterator”, it walks
through all of the elements in an array, and it doesn’t need to be used with list(),
though that is by far the most common usage.

Continuing with the subject of while loops and mysql queries, you will probably
need a quick piece of code that will print out the results of any query. For this, you
can use a nested set of while loops. The outer loop fetches each individual record
from the database. The inner one prints out the contents of each individual record.

while($row = mysql_fetch_array($result, MYSQL_ASSOC))
{

while (list($key, $value) = each ($row))
{

echo “$key: $value
\n”;
}

}

Note the use of MYSQL_ASSOC. If you didn’t use this, mysql_fetch_array would
return every column twice, once with ordinal reference and once with the associa-
tive key.

ALTERNATIVE WHILE... SYNTAX
If you wish, you can write a while loop like this:

while (condition):
//code here

endwhile;

This is also deprecated.You are better off not using it.NOTE

Chapter 5: Control Structures 105

3537-4 ch05.f.qc 12/15/00 15:22 Page 105

do ...while
The do...while loop is nearly identical to the while loop discussed above. The only
difference is that the condition is tested after the code in question has been run once.

do
{

//code to be used here.
} while (condition);

This structure may be useful to you. It may even be vital to scripts you need to
write. But in the course of writing seven applications for this book, we didn’t need
to use it once.

for
The for loop takes three expressions. The first is evaluated only the first time
through the loop. The second argument is a condition that is evaluated each addi-
tional time through the loop; if the condition in the second argument tests false, the
loop will end. The third expression will be executed in every loop after the first.

As an example, the following would iterate through every value in an array and
print the value for each element.

$myarray = array (jay, brad, john, kristin);
for ($i = 0; $i < count($myarray); $i++)
{

echo $myarray[$i] . “
\n”;
}

The first time through, $i is assigned the value of 0, so the first element in the
array will be printed. The next time and each subsequent time through, $i will be
incremented by one. The loop will end as soon as $i is equal to the length of the
array (which would be 4). Remember that the elements in the array start at 0, so the
last element in the above array is $myarray[3].

You can also leave any of the three expressions in the for loop empty. If you
leave the second expression empty, the if condition will evaluate to true, and you
will need to make sure that your loop will eventually hit a break statement (break
will be discussed soon). The following would be very bad: it would run indefinitely,
using up your memory and CPU. You’d have to kill the Web server to get this script
to stop. It could bring your entire machine down.

for ($i = 0;; $i++)
{

echo “$I
\n”;
}

106 Part II: Working with PHP

3537-4 ch05.f.qc 12/15/00 15:22 Page 106

There are occasions when leaving the second expression empty serves a purpose.
But again, this is something that will not come up in the course of the applications
presented in this book.

The following is an alternative structure for the for loop (this is probably starting
to look a bit familiar). This is also deprecated and shouldn’t be used:

for ($i=0; $i<100; $i++):
//run code here

endfor;

foreach
The foreach structure is used exclusively with arrays. If you prefer, you can use it in
place of list() = each() on most occasions. This structure will work from the
beginning to the end of an array, assigning each element to a scalar variable you
indicate with the word as. The following would print all the values in the array
$names_array.

$names_array = array(“jay”, “brad”, “ernie”, “bert”);
foreach ($names_array as $first_name)
{

echo $first_name;
}

If you are working with an associative array, you will likely need to access both
the key and the value of every array element. The following syntax will achieve this.

$jay_info = array (fname => “jay”, lname => “greenspan”, wife =>
“melissa”, hobby =>”juggling”);
foreach($jay_info as $key => $value)
{

echo “$key: $value
\n”;
}

There is no good reason to recommend either list() = each() or foreach().
They both do the same thing for arrays. Choose whichever you think looks best on
your PHP page.

We used list()=each() in the applications in this book, mostly because

it was available when we were writing code in PHP3 and foreach() wasn’t

available.

NOTE

Chapter 5: Control Structures 107

3537-4 ch05.f.qc 12/15/00 15:22 Page 107

continue and break
Within loops you may need to either break out of the loop entirely or skip to the
next item to be addressed in the loop. For these situations, you can use continue and
break, respectively.

continue
Consider a situation when you’re reading from the file system and you would like
your script to address each file in a specific directory, but we have no need to
address any subdirectories. When PHP reads names from the directory, you don’t
know if the item is a file or directory, so you need to run a test using the is_dir()
function. We’d want to skip over listings that are directories. The script looks some-
thing like this:

$directory=opendir(‘/home/jay/’);
echo “Files are:
\n”;
while ($file = readdir($directory))
{

if (is_dir($file)){continue;}

echo “$file
\n”;
//process files here;

}
closedir($directory);

?>

Note that continue isn’t necessary here. You could also code this script like this,
and some feel this a better way of going about it.

$directory=opendir(‘/home/jay/’);
echo “Files are:
\n”;
while ($file = readdir($directory))
{

if (!is_dir($file)){
echo “$file
\n”;

}
}
closedir($directory);

break
Break will release the script from a control structure but will continue the execution
of a script. It is almost always better to avoid using break. if statements can accom-
plish the same thing and make for cleaner code.

108 Part II: Working with PHP

3537-4 ch05.f.qc 12/15/00 15:22 Page 108

Including files
Including files in your PHP scripts is vital to writing good code. And technically,
the functions for including files (include and require) are not control structures,
they are language constructs. They are discussed in detail in Chapter 7.

Summary
In this chapter you saw the building blocks of the PHP language. You saw how
to make use of loops and if blocks. If you read Chapter 4, where variables were
discussed, you now know all of the basics needed for programming with PHP.

Coding is all about working with variables, loops, and if blocks. The various
combinations of these will take care of everything you will need to accomplish
in your applications. However, there is still one major portion you need to learn:
functions. Chapter 6 shows how PHP’s built-in functions operate on your scripts.

Chapter 5: Control Structures 109

3537-4 ch05.f.qc 12/15/00 15:22 Page 109

3537-4 ch05.f.qc 12/15/00 15:22 Page 110

Chapter 6

PHP’s Built-in Functions
IN THIS CHAPTER

◆ Using PHP’s built-in variables

◆ Handling strings

◆ Working with arrays

PHP HAS AN AMAZING number of built-in functions. Many are only available to
you if PHP is compiled with certain options. If, for example, you need to do some
XML parsing, PHP has two function sets that can help you. (One uses a SAX
approach, the other a DOM approach). If you need LDAP, IMAP, or PDF functions,
there is a function set for you. Additionally, PHP has an API (application program
interface) for about every relational database on the planet. But really, there’s no
need to cover most of these functions in this book.

Another thing to keep in mind is that the function set is changing almost daily.
PHP 4 is internally structured in a way that makes it extremely easy for program-
mers to add additional functions. In fact, if you know your way around C, you
could probably add a new function into PHP in a few hours. So you can expect reg-
ular additions to the core function set.

Your best friend, as always, is the online PHP manual: http://www.
php.net/manual. It’s is the only source where you can be sure that the list of func-
tions will be more or less up to date. If you want to go directly to the explanation
of a function, all you need to do is point your browser at http://www.php.net/
function_name.

We want to point out one more thing before we get started here. There are seven
applications in the final two portions of this book. In the course of creating these
functions, we made use of a little over 100 of PHP’s built-in functions. So while
there are thousands of built-in functions, you will probably only make regular use
of a relatively small number.

A pretty neat resource is the function table at:http://www.zugeschaut-

und-mitgebaut.de/php/.
Tip

111

3537-4 ch06.f.qc 12/15/00 15:22 Page 111

Function Basics
Functions all take the same basic form.

return_type function_name(argument1, argument2, argument3)

First there is the function’s name; note that the name of the function is not case-
sensitive. However, we don’t know of any programmer who ever uses uppercase letters
to refer to a built-in function.

Next there is a set of parentheses. Every function will have a set of parentheses
marking the beginning and end of the arguments.

Arguments
So what’s an argument? An argument is simply a value that the function is expect-
ing. Depending on the purpose of the function, it may expect zero, one, two, three,
or more arguments, and any of the arguments may be any variable type — maybe a
string, maybe an integer, or maybe an array. To give you a better idea of what argu-
ments are, let’s look at a very useful function for string handling.

The str_replace() function is extremely helpful. Let’s say you had the follow-
ing string:

$str = “My name is Jay.”;

Say that in the $str variable you need to replace “Jay” with “John”. Within $str
you need to search for “Jay” and replace it with “John”. Here, you would expect a
function to take three arguments: the string to be searched for, the replacement
string, and the string to be searched through. It so happens that in PHP, the argu-
ments come in this order:

str_replace(string to search for, replacement string, string to be
searched through);

Or to put it in practice:

$str = “My name is Jay.”;
$new_str = str_replace(“Jay”, “John”, $str);

Keep in mind that certain functions will have optional arguments and a few will
take no arguments at all. The substr() function, for example, has an optional third
argument. This function returns a portion of a string by its ordinal references. To
get everything from the second character to the next-to-last character, you would
use the following:

//note, the first character in the string is 0
$new_str = substr ($str_var,1,-1);

112 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 112

However, to get everything from the second character on, you would use the fol-
lowing:

$str = substr ($str_var,1);

So in this function the third argument is optional. (We’ll point out optional argu-
ments as we move through the functions.) The details of working with substr()
will be covered later in the chapter.

There are also a few occasions when a function will take no arguments at all. A
good example of this is phpinfo(). It spits out everything you need to know about
your PHP environment without taking any arguments. Another good example is
time(), which returns the current Unix timestamp.

Return values
The final thing you should be aware of is what the function will return. In the
above case, str_replace() will return a string. What you do with this string is
your business. You could assign it a variable or print it out, or do whatever else
seems appropriate.

//assign to variable
$new_str = str_replace(“Jay”, “John”, $str);
//print directly
echo str_replace(“Jay”, “John”, $str);

Note that functions may return arrays, integers, doubles (floating-point num-
bers), objects, or sometimes Boolean values. In Chapter 5, you saw a good example
of a function that returns a Boolean value (that is, TRUE or FALSE). If you want to
determine whether a variable is an array, you can use the is_array() function.

if (is_array($var))
{

//process array
}

There are also functions that will return a value if there is a value to be returned,
and that will return FALSE if there is no value to be returned. A good example of
this is the mysql_fetch_array() function. This function will grab rows from a
result set returned by a query as long as there are results to grab. When there are no
more rows to be had, it returns FALSE. As you saw in Chapter 5, this is very help-
ful for looping through all rows returned by a query.

$result = mysql_query(“select * from my_table”) or
die (mysql_error());

Chapter 6: PHP’s Built-in Functions 113

3537-4 ch06.f.qc 12/15/00 15:22 Page 113

while($row = mysql_fetch_array($result))
{
//process row
}

Finally, there are occasions where a function will return nothing. This will be
common in functions that perform a specific action, like closing a connection to a
database or the file system.

Function Documentation
As we say repeatedly throughout this book, the PHP online manual is your friend.
The documentation team is amazing, and we really believe the quality of the online
manual is one of the reasons for the success of the language. As there is no way we
can cover every PHP function in this book, you will need to consult the manual.
For that reason, we want to take a minute to go over how the functions are pre-
sented in the manual.

A typical manual reference will look something like this:

int mysql_affected_rows ([int link_identifier])

This function returns the number of rows affected by an update, insert, or delete
query. Looking at this, you can see that the first portion (int) indicates the variable
type that will be returned. This could be any of the variable types or void (meaning
that the function will return nothing). Then within the parentheses there will be a
list of arguments. The type of argument is listed as well as what it represents. Note
that optional arguments are placed in brackets. So above, the function requires no
arguments but has one optional argument: the connection identifier grabbed from
mysql_connect(). In a case like phpinfo(), you will see that the argument list
is void.

In the preceding example, if you pass an argument, it better be an integer. If you
were to give it a string or an array, you will get an error.

Important PHP 4 Functions
In this section, we will attempt to break down PHP 4 functions into logical group-
ings. Along the way we will cover every function used in the applications presented
in this book.

114 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 114

MySQL API
There are a total of 33 MySQL functions available in PHP. Only 17 of these are used
in the applications in this book. You may find uses for some of the other MySQL
functions in your applications, but you probably won’t use all of them. For the sake
of this listing, I’ll break the functions into the set you might use the most, and then
the ones that you’re less likely to use extensively.

FREQUENTLY USED MYSQL FUNCTIONS
You will probably end up using the following functions frequently. You may want
to dog-ear this page.

MYSQL_CONNECT() You can’t do anything with MySQL until you make the con-
nection using the following function.

int mysql_connect(str host, str username, str password)

Most often you will be connecting to MySQL on localhost using a username and
password assigned to you, the Web developer. The integer that this function returns
to you is a connection identifier. You may need to track the connection identifier
and use it with the mysql_db_select() function. It will typically look something
like this:

$conn = mysql_connect(“localhost”, “username”, “password”) or
die (“Could Not Connect to Database”);

If MySQL is not installed on a standard port or if the mysql socket is not

located in /tmp/mysql.sock, you can specify the port of socket location in

the host string. For example:

mysql_connect(“localhost:/usr/local/mysql.sock”,
“username”, “password”);

Or, if the MySQL database in sitting on another machine, you can access it

with the following

mysql_connect(“mymachine.mydomain.com”, “username”,
“password”);

You can also specify host, username, and password in the php.ini file. That

way you could leave one or more of these arguments empty.
Tip

NOTE

Chapter 6: PHP’s Built-in Functions 115

3537-4 ch06.f.qc 12/15/00 15:22 Page 115

MYSQL_PCONNECT() The mysql_pconnect() function works exactly like mysql_
connect() but with one important difference: The link to MySQL will not close
when the script finishes running.

int mysql_pconnect(str host, str username, str password)

When you use this function the connection remains open, and additional calls to
mysql_pconnect() will attempt to use these open connections when they run. This
could make your scripts quite a bit faster.

It is interesting to note what happens when mysql_pconnect() is run. The first
time the script is run, PHP will ask for a connection, and MySQL will open a connec-
tion to the database. When that script finishes, the connection remains available. The
next time a PHP page is requested, PHP will ask for a connection that is already open.
If MySQL has one available, it will grant PHP the open connection. If there are no
open connections available, a new connection will be opened.

Establishing a connection with the MySQL database will be about the slowest
function in your scripts. If PHP can use a connection that has already been opened,
there will be far less overhead in the application.

In order for mysql_pconnect() to work, set the following lines in your php.ini file:

mysql.allow_persistent = On
mysql.max_persistent = -1; maximum number of ;persistent
links. -1 means no limit

Note that these are the defaults. You will probably want to limit the number of
persistent connections if you use this method.

MYSQL_SELECT_DB() The mysql_select_db() function changes the focus to
the database you wish to query.

int mysql_select_db (string database_name [, int link_identifier])

You can include the integer it returns in the mysql_query() function, but it is
only really needed if you are connecting to more than one database. The second,
optional argument is the link identifier retrieved from the mysql_connect()/
mysql_pconnect() function. It typically looks like this:

$db = mysql_select_db(“database_name”) or
die (“Could Not Select Database”);

See the description of the db_connect() function in Chapter 8 to see how

to handle connections to the MySQL server and a specific database in a sin-

gle function.XREF

116 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 116

MYSQL_QUERY() This mysql_query() function is probably the MySQL function
that you will use most frequently in your scripts.

int mysql_query (string query [, int link_identifier])

This function sends any query that you can put together to MySQL. It is impor-
tant to understand that this function does not actually return the result of the
query. It opens a cursor that points to the result set on MySQL. So if you were to do
the following:

echo mysql_query(“select * from table”);

you would not get a meaningful answer, only the number that identifies the result
set. Following mysql_query(), you will need to make use of one of the functions
that actually retrieves the data from MySQL (mysql_fetch_row(), mysql_fetch_
array(), mysql_result()).

The optional second argument would be the result of either mysql_connect() or
mysql_select_db(). It is typically used as in the following code sample. Note that
a query can fail for any number of reasons. It is best to use mysql_error() to find
out why the query failed.

$result = mysql_query(“select * from db”) or
die (mysql_error());

See the discussion of the safe_query() function in Chapter 8 to see how

to safely handle queries with a uniform function.

MYSQL_FETCH_ARRAY() Once you have retrieved your result from a query, you
will (more often than not) use mysql_fetch_array() to retrieve the rows from
a query.

array mysql_fetch_array (int result [, int result_type])

This function returns an associative array, with names of the select columns as
the key. By default, mysql_fetch_array() will return each column in a row twice:
the first will have an associative key, the second will have a numeric key. To tell
PHP to limit the results to numeric results use MYSQL_NUM as the second argu-
ment. To get only the associative keys, use MYSQL_ASSOC as the second argument.

This function returns FALSE when there are no rows left to fetch.
The following will print the results of a query as a table:

$query =(“select * from table_name”);

XREF

Chapter 6: PHP’s Built-in Functions 117

3537-4 ch06.f.qc 12/15/00 15:22 Page 117

$result = mysql_query($query)
or die (echo mysql_error());
echo “<table>”;
//if I don’t use MYSQL_ASSOC or MYSQL_NUM, each row will
//be retrieved twice, and I don’t want that
while ($row = mysql_fetch_array($result, MYSQL_ASSOC))
{
echo “<tr>”;
while(list ($key, $value) = each($row))
{

echo “<td>” . $value . “</td>”;
}
echo”</tr>”;
}
echo “</table>”;

In Chapter 3 there is a script that prints any query to a table that includes the

column names as table headers.

MYSQL_FETCH_ROW() The mysql_fetch_row() function works almost exactly
like mysql_fetch_array(), but it only returns a numeric array of the fetched row.

array mysql_fetch_row (int result)

There’s generally little reason to use mysql_fetch_row(), and we recom-

mend that you use mysql_fetch_array() instead. However, you will see

many scripts that use this function.

MYSQL_INSERT_ID() Frequently the primary key of a MySQL table will be an
auto_increment field. In such cases, after you do an insert query you may need to
know the number MySQL assigned to the newly inserted row.

int mysql_insert_id ([int link_identifier])

We use this function used many times throughout the book; one example is in
Chapter 12 in the discussion of the admin_user.php page.

You might think that the following method would work equally well for getting
the row that was just inserted into the database.

Tip

XREF

118 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 118

mysql_query(“insert into users (fname, lname) values (‘jay’,
‘greenspan’) or

die (myslq_error());
mysql_query(“select max(user_id) from users”);

However, there is no guarantee that this script will return an accurate result. On
a busy server, it is possible that an insert (perhaps run by another users accessing
the script at nearly the same time) will occur between the time it took for these two
queries to run. In such cases, your user will end up with bogus data.

mysql_insert_id() returns the value of the auto_increment field associated with
the specific copy of the script, so you know the number that it returns is accurate.

MYSQL_NUM_ROWS() A query can execute successfully, but still return zero
rows in the result. This function will tell you exactly how many rows have been
returned by a select query.

int mysql_num_rows (int result)
You might use it in a case like this:

$query = “select * from table_name”;
$result = mysql_query($query) or

die(mysql_error());
if (mysql_num_rows($result) == 0)
{

echo “Sorry, no results found.”;
} else{

//print results
}

MYSQL_AFFECTED_ROWS() This function is similar to the mysql_num_rows()
function, but works for a different set of queries. It returns the number of rows in a
table that are affected by an update, insert, or delete query.

int mysql_affected_rows ([int link_identifier])

This function is excellent for checking that a query you have run has actually
accomplished something.

$query = “delete from table_name where unique_id = 1”;
$result = mysql_query($query) or

die (mysql_error());
$deleted_rows = mysql_affected_rows();
if ($deleted_rows == 0)
{

echo “no rows removed from the table.”;

Chapter 6: PHP’s Built-in Functions 119

3537-4 ch06.f.qc 12/15/00 15:22 Page 119

} else {
echo “You just removed $deleted_rows row/rows from the

database.”;
}

MYSQL_ERRNO() If there is a problem with a query, this function will spit out the
error number registered with MySQL.

int mysql_errno ([int link_identifier])

On its own, this isn’t terribly helpful. For the most part, you would only use this
if you wished to use custom error handling. Better error messages come from mysql_
error() which is discussed next.

MYSQL_ERROR() This function should accompany every mysql_query() you run.

string mysql_error ([int link_identifier])

As you can see in code samples throughout the book we make use of mysql_
error with the die statement.

mysql_query(“select * from my_table”) or
die (mysql_error())

Without it, you will only know that your query has failed. You won’t know if
you’re searching for a database that doesn’t exist or if you’re trying to insert a
string into a numeric field, or have made some sort of syntactical blunder.

MYSQL_RESULT() This function, which grabs the contents of a specific cell, should
be used sparingly.

mixed mysql_result (int result, int row [, mixed field])

It’s relatively slow and can almost always be replaced by mysql_fetch_array().
However, if you need to grab contents from a single cell it can be convenient. The
second argument will always be the number of the row you are accessing. The third
can either be the numeric offset of the column or the column name.

Here’s an example of how you could use mysql_result(). In this case, we’re
running a simple count(), so there is only one value to be accessed. Using mysql_
result() is a bit easier than mysql_fetch_array().

mysql_connect(“localhost”, “username”, “password”);
mysql_select_db(“test”);
$result = mysql_query(“select count(*) from users”) or

die (mysql_error());
echo mysql_result($result,0,0);

120 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 120

If you have many rows, or even many columns, that need to be retrieved you
should use mysql_fetch_array().

LESS FREQUENTLY USED MYSQL FUNCTIONS
Given the title of this book, it wouldn’t make too much sense if we didn’t cover the
entire API. There are many available functions that probably won’t come into play
too often. But if you’re going to be writing applications with these tools, it’s best to
know what’s available.

MYSQL_FETCH_OBJECT() This function provides another way to access data
retrieved from a query.

object mysql_fetch_object (int result [, int result_typ])

This grabs a row just like mysql_fetch_array(). The only difference is that you
refer to values fetched from a row as object properties. It can also take the constants
MYSQL_ASSOC, MYSQL_NUM, or MYSQL_BOTH.

$result = mysql_query(“select distinct fname, lname from users where
id=1”) or

die (mysql_error());
$an_object = mysql_fetch_object($result);
echo “First name: “ . $an_object->fname;
echo “Last name: “ . $an_object->lname;

We discuss the object-oriented approach in Chapter 7.

There are two reasons you might want to use this function. First, you love work-
ing with OO syntax and wish to extend it to your database calls. The second reason
may be relevant to the Perl hackers out there.

PHP 4, like Perl, allows for Here printing, which we discussed in Chapter 4 under
the discussion of delimiting strings.

“Here” printing may not work on Windows installations.Tip

XREF

Chapter 6: PHP’s Built-in Functions 121

3537-4 ch06.f.qc 12/15/00 15:22 Page 121

When using Here printing, you can print only simple variables — no arrays.
However, object properties are allowed. Thus, the following would work:

print <<<EOQ
field value is $an_object->fname;
EOQ;

MYSQL_FREE_RESULT() This function frees result memory used by a query.

int mysql_free_result (int result)

Usually you won’t need this function, as connections to MySQL are automati-
cally closed after a script executes. If you run some sort of query that returns a slew
of results and then the script continues to do some other work, you can clear up the
memory used to store the initial query by using mysql_free_result().

This is a good point to note PHP’s impressive memory-handling capabilities.
When a connection is closed (either implicitly at the end of the script or by using
mysql_close()) PHP clears up all of the memory used by the query. When you are
writing your applications this is one less thing you will need to worry about.

MYSQL_CLOSE() This closes the link to MySQL.

int mysql_close ([int link_identifier])

You don’t really need to use this function, as links opened with mysql_connect
are closed automatically at the end of a script’s execution, and it has no effect on
mysql_pconnect().

In the Content Management application we use this function because within the
course of a script we add a user to the MySQL Grant tables (see Appendix D) and
then reconnect to the database as that user. In a case like this we must first close the
connection.

MYSQL_DATA_SEEK() This function repositions the cursor to the row number you
specify; the first row is 0.

int mysql_data_seek (int result_identifier, int row_number)

This function could be useful if for some reason you need to rewind the array
and go through the result set a second time. If you find yourself using it frequently,
however, it might be worth rethinking the logic in your pages. In most cases you
should be able to get all the information you need from your array in a single pass.

MYSQL_CREATE_DB() This function can only appear after a connection is made to
MySQL with mysql_connect() or mysql_pconnect(). The user connected to MySQL

122 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 122

must have rights necessary to create tables. However, you could just as easily use
mysql_query(“create database db_name”);

int mysql_create_db (string database name [, int link_identifier])

This function and the MySQL functions that follow are fine, but we find it

easier to use normal SQL statements (create, alter, drop, etc.) and send them

to MySQL through the mysql_query() function. They work just as well

and can be used within scripts and in the command-line client. In the end,

there are fewer functions that you need to remember.

MYSQL_DROP_DB() This function removes a database from MySQL, which is
something you probably don’t want to be doing from your scripts too often.

int mysql_drop_db (string database_name [, int link_identifier])

MYSQL_LIST_DBS () This function lists databases available on a MySQL server.

int mysql_list_dbs ([int link_identifier])

You will have to use the mysql_list_tables() function to retrieve the exact
tables. Since MySQL responds just fine to the following, it’s best to avoid this func-
tion and use the mysql_fetch_array().

mysql_connect(“localhost”, “username”, “password”);
mysql_query(“show databases”);

MYSQL_LIST_TABLES() If given a database name this function will return a result
identifier to a list of tables within a database.

int mysql_list_tables (string database [, int link_identifier])

Like mysql_query(), this function doesn’t contain the results; those must be
fetched with the mysql_tablename() function. The following example shows how
you might use these functions to get a listing of tables from the database named “test”.

$tables=mysql_list_tables(“test”);
for($i=0; $i<mysql_num_rows($tables); $i++)
{

echo mysql_tablename($tables,$i), “
\n”;
}

Tip

Chapter 6: PHP’s Built-in Functions 123

3537-4 ch06.f.qc 12/15/00 15:22 Page 123

If you don’t wish to commit these functions to memory, you could use the fol-
lowing code to achieve the same thing.

$result = mysql_query (“show tables from test”) or
die(mysql_error());

while($row = mysql_fetch_row($result))
{

echo $row[0], “
\n”;
}

MYSQL_LIST_FIELDS() This function returns a result identifier, which you can
then use to grab information about the MySQL columns.

int mysql_list_fields (string database_name, string table_name
[, int link_identifier])

You must use a result identifier from this function to get information from the
mysql_field_flags(), mysql_field_len(), mysql_field_name(), and mysql_
field_type() functions. All of these functions take the same arguments: the first
is the result identifier, the second is the numeric offset of the column, starting at 0.
These columns return about what you’d expect, respectively name flags (such as
NOT NULL, PRIMARY KEY), the length, the name of the field, and the type (such
as int, text, enum, and so on).

As an example, take the table created with the following create statement:

create table show_stuff (
stuff_id int not null primary key auto_increment,
stuff_desc varchar(255) null,
stuff_stuff text

);

The following script will return about everything you ‘d need to know about the
columns. (The results of the script can be seen in Figure 6-1.)

$result= mysql_list_fields (“test”, “show_stuff”);
$i = 0;
while($i <mysql_num_fields($result))
{

echo “” . mysql_field_name ($result, $i) . “
”;
echo mysql_field_flags ($result,$i) . “
”;
echo mysql_field_len ($result, $i) . “
”;
echo mysql_field_type ($result, $i) . “
”;
$i++;

}

124 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 124

Figure 6-1: Results of field description script

Note once again that you can make use of MySQL’s descriptive queries to
achieve the same results. The queries “show columns from table_name” and
“describe table_name” get all the information you need and keep you from having
to use these functions.

String-handling functions
In creating Web-based applications, string handling and manipulation is one of the
most critical tasks of the language you work with. Text cleanup and validation is
extremely important, and good Web middleware will make working with text rela-
tively easy. PHP excels in this department: It contains built-in functions that cover
most anything you’d want to do to text.

In fact, there are far more functions than we could cover here. As of PHP 4.0.2,
there were 70 string-handling functions listed on http://www.php.net/manual/
ref.strings.html. In this book we can cover only a portion of these. We will
cover all of the string-handling functions we used in the course of creating the
applications in Sections III and IV, and we will cover some other notable functions
that we didn’t have the opportunity to use.

STRING FUNCTIONS USED IN THIS BOOK
I thought it would be nice to start with a function that clearly demonstrates why
PHP is so cool.

Chapter 6: PHP’s Built-in Functions 125

3537-4 ch06.f.qc 12/15/00 15:22 Page 125

STRIP_TAGS() This function removes HTML and PHP tags.

string strip_tags (string str [, string allowable_tags])

One of the most important things that you will need to do with every Web-based
application you write is make sure that the users of your Web pages haven’t passed
you malicious text. As we discuss in Chapter 8, if you’re not careful, you might find
your pages filled with HTML tags (, <div>, etc.) or JavaScripts that you don’t
want. You could also find yourself in real trouble if some cracker decides to litter
your form fields with something like <script> alert(“you stink”);</script>.

The strip_tags() function will remove all HTML and PHP tags, except for
those explicitly allowed in the second argument. If you wanted to allow and
<i> tags, you might use this:

strip_tags($str, “<i>”)

ADDSLASHES() This function is intended to work with your database insert and
update queries.

string addslashes (string str)

If you take a look at a typical insert query you can see a potential problem:

insert into table_name(char_field, numeric_field)
values (‘$str’, $num);

What if the value in $str contains a contraction such as “ain’t”? You could get an
error because the apostrophe is going to confuse MySQL. You will need to escape
all occurrences of single quotes (‘), double quotes (“), and NULLs in the string.

For example:

$str1 = “let’s see”;
$str2 = “you know”;
$str1 = addslashes($str1);
$result = mysql_query(“insert into show_stuff

(stuff_desc, stuff_stuff) values(‘$str1’, ‘$str2’)”);
echo mysql_affected_rows();

So, given this potential problem, do you need to put all of your form input infor-
mation through addslashes()? Not necessarily. It depends on the magic_quotes_
gpc setting in your php.ini file. If it is set to on, which is the default, data that come
from Get, Post, or Cookies is automatically escaped, so you don’t need to worry
about putting the information through addslashes().

126 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 126

Make sure to check your magic_quotes settings in your php.ini. Note that

if set to yes, magic_quotes_runtime will automatically add slashes to

data returned from queries and files. See Appendix B for more discussion on

magic_quotes settings.

In addition to the characters listed here, there are a few other characters that

you need to escape if you are going to put them in a MySQL database.

You can see the full list at the following URL: http://www.mysql.com/

documentation/mysql/bychapter/manual_Reference.html. If you’d

like a little PHP function that will automatically escape these characters,see the

mysql_escape_string() function in Appendix G.

STRIPSLASHES() This function will remove the slashes inserted by the magic_
quotes_gpc or addslashes().

string stripslashes (string str)

And why might this be necessary? Say you’ve put some form input through
some validation and the validation fails. You are probably going to want to echo
the values originally entered into forms back to the user. But if you do this with the
magic_quotes on and the user enters text into the form that needs to be escaped,
the escaping backslash will appear to the user. That is not a good thing. See
Appendix B for more information on magic quotes.

STR_REPLACE() This function replaces all occurrences of the first argument and
replaces them with the string in the second argument.

string str_replace (string to search for, string to replace with,
string to be affected)

For example, if we wanted to print out the names of both authors of this book,
the following would work:

$str = “This book written by Brad. Brad wrote a nice book.”;
$str = str_replace(“Brad”, “Brad and Jay”, $str);
echo $str;

This would print: “This book written by Brad and Jay. Brad and Jay wrote a nice
book.”

XREF

Tip

Chapter 6: PHP’s Built-in Functions 127

3537-4 ch06.f.qc 12/15/00 15:22 Page 127

SUBSTR_REPLACE() This function operates on the string in the first argument.
The portion of the string to be manipulated will be identified by the numbers in the
third and fourth arguments.

string substr_replace (string string, string replacement, int start
[, int length])

The third argument should be the offset of the character you wish to start with.
The fourth, which is optional, can have an integer representing the number of char-
acters after the third argument. If the fourth argument is a negative number, the
portion will determined from the end of the string.

For example:

echo substr_replace(“this are my string”, “this is”, 0,8);

will print “This is my string”. And:

echo substr_replace(“this is my string”, “new string!”, 11,-1);

will print “This is my new string!”.

STRCMP() This function compares two strings.

int strcmp (string str1, string str2)

If the first string is greater than the second the function will return a number
greater than 0. It will return a number less than 0 if string two is greater than
string one.

STRLEN() This function returns an integer that gives the number of characters in
a string.

int strlen (string str)

For example:

echo strlen(“My String”);

will print “9”.

STRPOS() This function returns the position of the string in the second argument
within the first argument. It will return FALSE if the string isn’t found.

int strpos (string to search, string to find [, int offset])

128 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 128

For example:

$str = “Where is the first space”;
echo strpos($str, “ “);

This will return “5”. If you wanted to get the first space after the fifth character
you could make use of the optional third argument.

$str = “Where is the first space”;
echo strpos($str, “ “, 6);

This would return “8”.
An interesting note: Suppose you want to test if a string contains a specific

character, say a space. You might think the following would work since strpos()
returns FALSE if the string in the second argument is not found.

if(strpos($str, “ “))
{

echo “thank you for including a space”;
} else
{

echo “include a space, please”;
}

But, if you remember back to Chapter 5, the value of zero will also test as FALSE.
So in the preceding code, if $str starts with a space, the condition will evaluate as
FALSE. Therefore, if you want to use a test like this, you will need to alter the con-
dition. In PHP 4 you can run a test against the constant FALSE. For example,

$str = “ Whereisthefirstspace”;
if(strpos($str, “ “)===FALSE)
{

echo “you have not included a space.”;
} else
{

echo “thank you for the space.”;
}

STRRPOS() This is similar to the strpos() function except that it finds the final
position of the character in the second argument.

int strrpos (string to search, char to find)

Chapter 6: PHP’s Built-in Functions 129

3537-4 ch06.f.qc 12/15/00 15:22 Page 129

For example:

$str = “Where is the final space”;
echo strrpos($str, “ “);

will return “18”.

SUBSTR() This function returns a portion of a string based on numeric offsets.

string substr (string string, int start [, int length])

For example:

echo substr(“this is my string”, 5);

will return everything after the fifth character. In this case “is my string”. The
optional third argument can represent the number of characters to be returned, fol-
lowing the third argument. For example

echo substr(“this is my string”, 5,2);

will return “is”. A negative number in the fourth argument specifies a character
from the end of the string. For example,

echo substr(“this is my string”, 5,-7);

will print “is my”.

The substr function works really well with functions like strpos() and

strrpos().

STRREV() This function reverses the order of a string.

string strrev (string string)

Use of strrev() may not come up too often in your programming life. In this
book, it comes into use in the credit-card validation algorithm.

STRTOLOWER() This function makes an entire string lower case.

string strtolower (string str)

Tip

130 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 130

It’s particularly useful when you’re dealing with something like file names. Since
Unix file names are case-sensitive, you may want to be sure that all files that you
write have all lowercase letters. We also make use of this function when dealing
with passwords.

STRTR() This function takes the string in the first argument and translates each char-
acter in the second argument to the corresponding character in the third argument.

string strtr (string str, string from, string to)
or
string strtr (string str, associative array)

So in the following, each a will be tuned into an i and each o will be turned into
a u.

strtr ($str, “ao”, “iu”)

Note that it does all of the replacements at once. For example, given this code

$str = “i”;
echo strtr($str, “iu”, “uv”);

you might think that this function would first turn “i” into “u”, then “u” into “v”.
This is not the case. It will do the replacements in a batch, so the output of this
operation is “u”.

This function can also work with only two arguments. In such cases, the second
argument should be an associative array. Then each key will be replaced by its cor-
responding value in the string.

$str = “this is my strings”;
$replace_array = array(“this”=>”these”, “is”=>”are”);
echo strtr($str, $replace_array);

This code prints “these are my strings”.
Once again, the replacements are done in a batch. If you had a third element in

the preceding array “these”=>”those”, you wouldn’t have to worry about the word
“this” being changed to “these” and then being changed to “those”.

UCFIRST() This function makes the first character in the string upper case.

string ucfirst(string str);

Note that it leaves everything after the fist character untouched. So if you
wanted to make sure that the first and only the first character of a string was capi-
talized, you would have to something like this.

Chapter 6: PHP’s Built-in Functions 131

3537-4 ch06.f.qc 12/15/00 15:22 Page 131

$str = “this is My string”;
echo ucfirst(strtolower($str));

This would print out “This is my string”.

UCWORDS() This function makes the first character in every word in the string
upper case.

string ucwords(string str);

Like ucfirst(), ucwords() does not touch characters that do not start a work.

TRIM() This function removes any white space from the beginning and end of a
string including return characters, line feeds, spaces, and tabs.

string trim (string str)

PHP also has the ltrim() function to strip white space from only the start

of a string or chop() to remove white space from only the end of a string.

HTMLSPECIALCHARS() This function transforms <, >, &, and “ into their proper
HTML entities: <, >, &, and ".

string htmlspecialchars (string string)

This function is useful for printing HTML source code to the browser.

In addition to htmlspecialchars(), you can make use of html

entities(). htmlentities() transforms every character that has an

HTML entity. For example the copyright symbol is turned into ©.

GET_HTML_TRANSLATION_TABLE() This function gets a full list of characters that
have HTML entities, or just those used by htmlspecialchars(). You can indicate
which you need access to by including HTML_ENTITIES or HTML_SPECIALCHARS
within the function. For example get_html_translation_table(HTML_ENTITIES),
gets a full list of characters and their entities.

NOTE

NOTE

132 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 132

Each character and its entity are available as key=>value pairs in an associative
array. The resulting array can be of use with the strtr() function.

NUMBER_FORMAT() This function formats a number to your specifications.

string number_format (float number, int decimals, [[string dec_
point], [string thousands_sep)]]

The fist argument will be the number you wish to format. The second argument
will state the number of digits you would like after the decimal point. You can use
this function with just these two arguments. For example,

echo number_format((10/3), 2);

will print “3.33”, and

echo number_format(1000,2);

will print “1,000”. Note that if there are two arguments, number_format() includes
a comma as a thousands separator.

In the third and fourth arguments you can include a decimal point separator and
a thousands separator, respectively. For example,

echo number_format(10000.67, 2, “&”, “R”);

will print, 10R000&67.

If number_format() doesn’t cut it for you, you can make use of PHP’s

sprintf(),printf(), and scanf() functions. If you have a background in

Perl or C you probably know how these functions work. They’re powerful,

complex, and take a good deal of time to get used to. If you want to familiarize

yourself with these functions, take a look at the PHP manual (http://

www.php.net/manual/function.sprintf.php) and this tutorial:

http://wdvl.com/Authoring/Scripting/Tutorial/perl_printf

.html.

HELPFUL STRING FUNCTIONS NOT USED IN THIS BOOK
Just because we didn’t use them doesn’t mean you won’t. And again, it’s entirely
possible that something we didn’t cover will suit your needs perfectly. Please look
over the PHP manual for a complete list.

NOTE

Chapter 6: PHP’s Built-in Functions 133

3537-4 ch06.f.qc 12/15/00 15:22 Page 133

NL2BR() This function adds an HTML break (
) after each newline (\n) in
a string.

string nl2br (string string)

Note that the newline characters will remain after going through this function.
For example, this code

$str = “jay
john
bob
stan”;

echo nl2br($str);

will print the following (note that this is the HTML source of the resulting page):

jay

john

bob

stan

STRTOUPPER () This function makes an entire string upper case.

string strtoupper (string string)

MD5() md5() is a one-way algorithm that encrypts information.

string md5 (string str)

This function is often used for passwords. If you were to put a password in a text
file, it is possible that someone who had (legitimate) access to your system could
view the passwords. However, if you pass it through md5(), the correct password is
unknowable. For example, md5(“jay”) is baba327d241746ee0829e7e88117d4d5.
If this is what is entered in the text file, those who have rights to view the database
will not know what the correct password is.

A safe password will be a lot more complex than “jay”. A cracker could (and

will) run an entire dictionary through md5() to see if something allows

entry to the system.

Tip

134 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 134

md5() is one-way only.There is no way to un-encrypt it. If you are interested

in two-way encryption look to the mycrpt functions in the PHP manual:

http://www.php.net/manual/ref.mcrypt.php.

Regular expression functions
Regular expressions offer a method for complex pattern matching. If you’re new to
the concept of regular expressions, consider this: Given the string handling func-
tions you have seen so far, how could you insert a newline and a break (\n
)
after every 45 characters? Or how could you find out if a string contains at least
one uppercase letter? You may be able to pull it off, but it won’t be pretty.

By the way, the following code will solve the previous two questions.

//insert \n
 after each 45 characters
$new_str = ereg_replace(“(.{45})”, “\\1\n
”, $str);

//check if string contains uppercase letter
if (ereg(“[A-Z]”, $str))
{

echo “yes it does.”;
}

Statements like these may seem a bit opaque at first, but after working with
them for a while, you will grow to love the convenience they offer.

See Appendix F for a rundown on how regular expressions work.

Note that regular expressions are a good deal slower than string-handling func-
tions. So if you have, for example, a simple replace that doesn’t require regular
expressions, use str_replace() and not ereg_replace().

REGULAR EXPRESSION FUNCTIONS USED IN THIS BOOK
The following regular expression functions are used in the application in this book.

EREG() Tests whether a string matches a regular expression.

int ereg (string pattern, string string [, array regs])

XREF

Tip

Chapter 6: PHP’s Built-in Functions 135

3537-4 ch06.f.qc 12/15/00 15:22 Page 135

You can use this function in two ways. First, you can place a regular expression
in the first argument and search for its existence in the second argument. The func-
tion will return TRUE or FALSE, depending on the outcome of the search. For
example:

if (ereg(“^http://.*”, $str))
{

echo “This is a URL”;
}

The optional third argument is an array that is created from the regular expres-
sion. The portions of the regular expression that will become elements in the array
are indicated by parentheses in the regular expression.

ereg(“(....)-(..)-(..)”, $publish_date, $date_array);

This example, which was taken from the Content Manager application, creates
an array named $date_array, wherein the first element will be the complete string
matched by the regular expression. The next three elements in the array will be the
portions indicated by the parentheses. So $date_array[1] will contain 4 charac-
ters, and $date_array[2] and date_array[3] will contain 2 characters each.

Note that arrays created by the third argument in ereg() will always contain 11
elements. Even if you have more than ten substrings within parentheses, only the first
10 will be put in the array. If you have fewer than 10 substrings, the array will still
contain 11 elements. If you want to test whether anything exists in the array element,
you have to test against an empty string (“”). An isset() will always test TRUE.

So, after running this code:

$publish_date = “2000-10-02”;
ereg(“(....)-(..)-(..)”, $publish_date, $date_array);

$date_array would contain the following:

[0] => 2000-10-02
[1] => 2000
[2] => 10
[3] => 02
[4] =>
[5] =>
[6] =>
[7] =>
[8] =>
[9] =>

Note that ereg() performs a case-sensitive match.

136 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 136

EREGI() This function is a case-insensitive version of ereg().

int eregi (string pattern, string string [, array regs])

EREG_REPLACE() You can use this function for string replacement based on com-
plex string patterns.

string ereg_replace (string pattern, string replacement, string
string)

For example, if you wanted to delete the querystring from a URL, you could use this:

$url= “http://www.phpmysqlbook.com/index.php?var=hello”;
$parsed_url = ereg_replace(“\?.*\$”, “”,$url);
echo $parsed_url;

This would print http://www.phpmysqlbook.com/index.php. This regular
expression matches a question mark, and all characters that occur after it until the
end of the line. The question mark must be escaped with a backslash because it has
a specific meaning to the regular expression. Following the question mark we
match any number of characters until the dollar sign, which is the endline charac-
ter. It needs to be escaped with a backslash because without the backslash, PHP will
think the character represents a variable.

But often you will need a bit more functionality than this. What if you want to
preserve the string you are searching for in the replacement string? Or what if your
search contains distinct portions offset by sets of parentheses? Here’s a simple
example. We want to replace the current querystring by placing an additional
name=value pair between the two name=value pairs currently in the string. That is,
we want to put “newvar=here” after “var=hello” and before “var2=yup”.

$url= “http://www.phpmysqlbook.com/index.php?var=hello&var2=yup”;
$parsed_url = ereg_replace(“(\?.*&)”, “\\1newvar=here&”,$url);
echo $parsed_url;

This creates the following string:

http://www.phpmysqlbook.com/index.php?var=hello&newvar=here&var2=yup

Here the single set of parentheses indicates portion 1. Then, by using the nota-
tion \\1, we can include that portion in the newly created string. If more than one
portion is indicated by additional parentheses, you can echo the others back into
the result by noting which portion you need.

$url= “this is a test “;
$parsed_url = ereg_replace(“(this.*a).*(test)”, “\\1 regular

Chapter 6: PHP’s Built-in Functions 137

3537-4 ch06.f.qc 12/15/00 15:22 Page 137

expression \\2”,$url);
echo $parsed_url;

The result of these commands is: “this is a regular expression test”.
The regular expression matches everything between “this” and “test”. We use

parentheses to indicate a substring that starts with “this” and moves to the letter “a”.
The next .* portion matches any number of characters. Finally, “test” is another sub-
string. These substrings are echoed back in the second argument, with \\1 echoing
the first substring and \\2 echoing the second substring.

The regular expression match is case-sensitive.

EREGI_REPLACE() This is the same as ereg_replace(), except that the match is
case-insensitive.

REGULAR EXPRESSION FUNCTIONS NOT USED IN THIS BOOK
The following regular expression functions, while not used in the examples in this
book, are still useful to know.

SQL_REGCASE() This nifty little function will alter strings so that you can use
them in case-insensitive regular expressions.

string sql_regcase (string string)

This might be of use if you are doing a regular expression search in a database
server that doesn’t support case-insensitive regular expressions. It will save you
from having to type in every character in a string as both an uppercase and lower-
case letter. For example:

echo sql_regcase(“this string”);

produces:

[Tt][Hh][Ii][Ss] [Ss][Tt][Rr][Ii][Nn][Gg]

PERL-COMPATIBLE REGULAR EXPRESSIONS (PCRE)
For years, the Perl programmers of the world have had regular expressions unlike
any others. If you have some experience with Perl, it’s likely that you’ve come to
love the additional power these regular expressions give you. If you don’t come
from a Perl background, you might enjoy learning a bit about the features.

PCREs are, however, a fairly large topic, one that Appendix F explains only briefly.
However, if you’re looking to get a good jump on learning about Perl’s regular
expressions and how they can work for you, the information at the following URL is
a good read: http://www.perl.com/pub/doc/manual/html/pod/perlre.html.
There is also a decent description of Perl regular expressions in the PHP4 manual:
http://www.php.net/manual/pcre.pattern.syntax.html.

138 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 138

The major reason for using PCRE functions is that they give you choice between
“greedy” and “non-greedy” matching. For a quick example, take the following string.

$str = “I want to match to here. But end up matching to here”

Using ereg() or ereg_replace() there is no way to match from “I” to the first
occurrence of “here”. The following will not work as you might expect:

$str = “I want to match to here. But end up matching to here”;
$new_str = ereg_replace(“I.*here”, “Where”, $str);
echo $new_str;

This will print “Where” and nothing else. The entire string will be replaced. Using
ereg_replace() there is no way to indicate that you want to match to the first
occurrence of “here”. However, using preg_replace(), you could do the following:

$str = “I want to match to here. But end up matching to here”;
$new_str = preg_replace(“/I.*?here/”, “Where”, $str);
echo $new_str;

In this instance, .*? means “match all characters until the first occurrence”.

PCRE FUNCTIONS USED IN THIS BOOK
PREG_MATCH() This is similar to the ereg() function in that you can assign the
optional third argument an array of matched subpatterns, if any are found in the
regular expression. preg_match returns the number of pattern matches found or
False, if none are found.

int preg_match (string pattern, string subject [, array matches])

PREG_REPLACE() This makes replacements based on Perl regular expressions.

mixed preg_replace (mixed pattern, mixed replacement, mixed subject
[, int limit])

This is similar to ereg_replace(), though the pattern here must be a Perl regu-
lar expression. It can also make use of \\digit to echo the matched substring into the
result. The optional fourth argument will limit the number of replaces that preg_
replace makes.

preg_replace(“/[
 \s]*$/i”,””,$body);

Chapter 6: PHP’s Built-in Functions 139

3537-4 ch06.f.qc 12/15/00 15:22 Page 139

This example, taken from the content management system application, will
remove all occurrences where breaks (
), non-breaking spaces ($nbsp;), or
white space (spaces, tabs, new lines) appear consecutively. This replacement is not
case-sensitive (the “i” flag determines that) to ensure that both
 and
 are
matched.

The brackets indicate that anything within the brackets will start the match. The
asterisk indicates that if the character following the first match is also one of the
characters within the brackets, the pattern is matched and a replace should occur.

PCRE FUNCTIONS NOT USED IN THIS BOOK
There are a few PCRE functions that we did not use to create these applications. They
are: preg_match_all, preg_quote(), and preg_grep(). See the online manual for
their usage. Note that we will discuss preg_split()in the next section.

Type-conversion functions
This is a category of my own making. In the manual, these functions will fall under
other headings. However, we feel that the specialized nature of these functions
demands a unique category.

Chapter 4 discusses PHP variables in detail, including PHP’s flexible variable
typing. If you recall, if you need to evaluate a string as if it were an integer, you
can make use of the intval() function. See Chapter 4 for similar variable conver-
sion functions.

But at times the variable conversion will be a bit more extreme, turning strings
into arrays and arrays into strings. Why, you ask, might you want to do this?
Consider a string like the following:

24,16,9,54,21,88,17

So you have this string of integers, maybe retrieved from a text file. How would
you go about sorting it in ascending order? If you have to deal with it as a string
the code is going to get very nasty. However, if you can make use of myriad array
functions, life gets quite a bit easier. You could simply use the sort() function.
Take a look:

$str = “24,16,9,54,21,88,17”;
//turn $str into an array
$array = explode(“,”, $str);
//sort the array in ascending order
sort($array, SORT_NUMERIC);
//turn the array back into a string and print
$new_str = implode(“,”, $array);
echo $new_str;

140 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 140

This will print:

9,16,17,21,24,54,88

More on the sort() function a bit later.

TYPE CONVERSION FUNCTIONS USED IN THIS BOOK
The following type conversion functions are used in the examples in this book.

EXPLODE() This function transforms a string into an array.

array explode (string separator, string string [, int limit])

The second argument is the string you wish to break into an array. The first is
the character or characters that separate the different elements. In the example
immediately above, the string is separated on a comma.

The third argument limits the number of elements in the resulting array. If you
were to use the following code

$str = “24,16,9,54,21,88,17”;
//turn $str into an array
$my_array = explode(“,”, $str, 3);

$my_array would have three elements: $my_array[0] => 24 $my_array[1] =>
16 $my_array[2] => 9,54,21,88,17. You can see that the last element contains
what’s left of the original string. If you wanted to sort only the first three elements
in a string and discard the rest you might do this:

$str = “24,16,9,54,21,88,17”;
//turn $str into an array
$array = explode(“,”, $str, 4);
unset($array[3]);
sort($array, SORT_NUMERIC);
echo implode(“,”, $array);

If the string separator does not exist, the entire string will be placed in array ele-
ment zero. If the string does not exist, an empty string will be placed in the first
element.

IMPLODE() As you might expect, implode() is the opposite of explode(): it
turns an array into a string.

string implode (string glue, array pieces)

Chapter 6: PHP’s Built-in Functions 141

3537-4 ch06.f.qc 12/15/00 15:22 Page 141

The first argument is the string that will separate the string elements. The second
is the array to be separated.

A good example of when you might use implode() is in a page that runs an SQL
delete command. Say that in a page you have presented a series of checkboxes to
indicate the rows you wish to delete from the database. You are probably going
to want to pass the elements you wish to delete within an array. In the page that
does the deletes, you could then run a script like this:

//say $deleted_comes from an HTML page and
//contains (1,3,7)
if(is_array($delete_items))
{

$str = implode(“,” , $delete_items);
$query = “delete from table where item_id in ($str)”;
mysql_query($query);

}

SPLIT() The split function does the same thing as explode, but it allows you to
specify a regular expression as the separation string.

array split (string pattern, string string [, int limit])

This could come into play if you want to separate a string based on more than
one element. Say you had a string you needed as an array, the elements of which
could be separated by either a new line or a tab. The following would do the trick:

//note there is a tab between 524 and 879
//and a tab between 879 and 321
$items = “524 879 321
444
221”;
$array = split(“[\n\t]”, “$items”);

split() is more flexible than explode(), but it’s also slower.

PREG_SPLIT() This works like split(), only it uses a Perl regular expression as
the pattern.

array preg_split (string pattern, string subject [, int limit [, int
flags]])

NOTE

142 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 142

Note that if the flag is PREG_SPLIT_NO_EMPTY, empty items will not be placed
in the array.

Again, if explode() can do it, make sure to use it.

TYPE CONVERSION FUNCTIONS NOT USED IN THIS BOOK
In addition to the functions in the previous section, you can make use of spliti(),
which uses a case-insensitive pattern match.

Array functions
I am a big fan of the array functions available in PHP 4. Just about anything you’d
like to do to an array you can do with a built-in function. The developers of PHP have
done a good job of making sure you have to loop though arrays very infrequently.

In the PHP 4.0.2 manual there are exactly 47 listed array functions. It’s likely
that by the time you read this chapter, there will be several more. So make sure you
scan the manual to see the full range of available array functions.

See Chapter 5 for a discussion of how to create, add to, and walk through

an array.

ARRAY FUNCTIONS USED IN THIS BOOK
When you’re dealing with database applications, much of your logic should come
within your SQL statements. Thus, in the applications presented in this book fairly
few array functions were necessary. Here’s a rundown of the ones we used.

ARRAY_FLIP() This function, which is useful with associative arrays, exchanges the
keys and values. That is, the keys become the values and the values become the keys.

array array_flip (array trans)

This comes up once in the course of the book, in the following code:

$trans = array_flip(get_html_translation_table(HTML_ENTITIES));
$title = strtr($title, $trans);

Before the array_flip() function, the array will return many elements. Here
are a couple of examples:

[(c)] => ©
[(r)] => ®

XREF

Chapter 6: PHP’s Built-in Functions 143

3537-4 ch06.f.qc 12/15/00 15:22 Page 143

Once the array is flipped, these entries will look like this:

[$copy] => (c)
[®] => (r)

Then strtr() replaces each value to its key. So in the end this code will make
sure that any character that needs to be represented by an HTML entity will be.

Note that if an array has two identical values before being flipped, only one can
survive in the flipped array. You can’t have two array elements with same key. If
there is a conflict the element in the right-most position will be maintained.

ARRAY_MERGE() As you can probably guess, this function merges, or concate-
nates, two or more arrays.

array array_merge (array array1, array array2 [, array ...])

If any of the arrays contain the same associative keys, the elements in the right-
most array will be preserved.

ARRAY_SPLICE() This function takes the array indicated in the first argument and
removes all elements following the offset specified in the second argument. It can
then insert additional elements.

array array_splice (array input, int offset [, int length [, array
replacement]])

If the offset is a positive number, the elements will be counted from the left; if the
offset is a negative number, all items to the left of the indicated number will be
deleted. The optional third argument can indicate how many elements after the offset
you wish to delete. For example:

$knicks_array = array (“Childs”, “Sprewell”, “Ewing”,
“Johnson”,”Houston”);
array_splice($knicks_array, 2,1);

will remove elements starting at offset 2 and remove only one element. So “Ewing”
will be deleted from this array. array_splice() also gives you the ability replace the
deleted portion with another array. So, to account for trades, you can do this.

$knicks_array = array (“Childs”, “Sprewell”, “Ewing”,
“Johnson”,”Houston”);
$new_knicks = array (“Longley”,”Rice”);

array_splice($knicks_array, 2,1,$new_knicks);

144 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 144

Following this code, $knicks_array would contain six elements: Childs, Sprewell,
Longley, Rice, Johnson, Houston.

Note that the value returned by this function is an array of the deleted items. In
the code that follows, $traded_knicks will be an array with one element, “Ewing”.

$traded_knicks = array_splice($knicks_array, 2,1);

COUNT() This returns the number of elements in an array, and is frequently used
with loops.

int count (mixed var)

For example:

$array = array(1,2,3,4,5);
for($i=0; $i<count($array); $i++)
{

echo $array[$i] . “
\n”;
}

Note that sizeof() is a synonym for count().

ARRAY FUNCTIONS NOT USED IN THIS BOOK
Again, there are many great array functions in PHP 4. Here are some of the highlights
(from my point of view, anyway).

ARRAY_COUNT_VALUES() This nifty function will return an associative array, the
keys of which will be all of the unique values within the array.

array array_count_values (array input)

The values of the resulting array will be an integer representing the number of
times the value appears within the array.

$array = array(“yes”,”no”,”no”,”yes”,”why”);
$result = array_count_values($array);

After this $result will contain:

[yes] =>, 2, [no] => 2, [why] => 1

ARRAY_DIFF() If given two arrays, this function will return all of the elements
that are in the first array, but not in the second array.

array array_diff (array array1, array array2 [, array ...])

Chapter 6: PHP’s Built-in Functions 145

3537-4 ch06.f.qc 12/15/00 15:22 Page 145

For example:

$knicks = array(“sprewell”, “houston”, “Ewing”, “childs”);
$all_stars = array(“mourning”, “houston”, “carter”, “davis”,
“miller”);
$non_knick_allstars = array_diff($all_stars, $knicks);

Note that in the returned array, the elements maintain the keys they had in the
array from which they were taken. So after running this code, $non_knicks_array
will contain the following:

[0] => mourning, [2] => carter, [3] => davis, [4] => miller

Additional arrays can be added to the function. For example,

$knicks = array(“sprewell”, “houston”, “Ewing”, “childs”);
$all_stars = array(“mourning”, “houston”, “carter”, “davis”,
“miller”);
$non_knick_allstars = array_diff($all_stars, $knicks,
array(“carter”));

Given this, “carter” will also be removed from the returned array.

ARRAY_INTERSECT() This returns the array elements that two (or more) arrays
have in common.

array array_intersect (array array1, array array2 [, array ...])

ARRAY_POP() The array_pop() function returns the last element in an array, and
removes that element from the original array.

mixed array_pop (array array)
For example,$array = array(1,2,3,4,5);
$int = array_pop($array);

After this runs, $array will contain (1,2,3,4), and $int will contain 5.

ARRAY_PUSH() This function will add elements to the array indicated in the first
argument.

array_push (array array, mixed var [, mixed ...])

The additional arguments will be values you wish to tack onto the array.

$array = array (1,2,3);
array_push($array,4,5,6);

146 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 146

The resulting array will contain 1,2,3,4,5,6.

ARRAY_RAND() This function will pick one or more random elements from an array.

mixed array_rand (array input [, int num_req])

Note that it does not pick the value; rather it picks the key of the chosen ele-
ments. For instance, given the following,

srand ((double) microtime() * 1000000);
$names = array(“jay”, “brad”, “john”, “Jeff”);
$rand_keys = array_rand ($names, 2);

$rand_keys will contain an array with two numbers. To get the values from the
$names array, you will first need to get to the key value extracted by array_rand(),
and so you will need to use something like this:

echo $names[$rand_keys[0]];

Seed the random number generator only once per script.

SHUFFLE() This function randomizes the elements in an array.

void shuffle (array array)

You will need to seed the random number generator before using it. For instance:

srand ((double) microtime() * 1000000)
shuffle ($array);

IN_ARRAY() This very convenient function will search all of the values of an
array, and return TRUE if the value in the first argument is found in the array in the
second argument.

bool in_array (mixed needle, array haystack)

You might be wondering if there is an in_keys() function. Actually, there is no
need for such a function, because the following will serve the same purpose.

if(isset($array[“key”]))

Tip

Chapter 6: PHP’s Built-in Functions 147

3537-4 ch06.f.qc 12/15/00 15:22 Page 147

SORT() If there is no second argument, this function will sort an array in ascend-
ing or alphabetical order.

void sort (array array [, int sort_flags])

The flags can be:

◆ SORT_NUMERIC — compare items numerically

◆ SORT_STRING — compare items as strings

If the array you wish to sort has only numbers, PHP will sort the array numeri-
cally; if the array contains only strings, it will be sorted alphabetically. If the array
has a mix of strings and numbers, it defaults to sorting by a string.

PHP4 offers many other ways to sort arrays. Please look at the manual entries

for arsort(),ksort(),rsort(), and usort().

Print functions
There are a few functions that you can use to print information to the screen. Only
two pop up in this book, but you should be aware of all the functions listed in this
section.

PRINT FUNCTIONS USED IN THIS BOOK
In this case the word “functions” may be something of a misnomer. For instance,
print() is probably better described as a language construct. In any case, you will
use all of these very much like you will use functions; thus, they are included here.

PRINT As you would expect, this prints what you specify.

print

ECHO This also isn’t a function, but a language construct. We use it constantly
throughout this book, so at this point you probably know what it does.

echo

Keep in mind that you can mix variables and code within double quotes.

$var = “this string”;
echo “Please print $var”;

Tip

148 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 148

However, within single quotes the string will be treated literally:

$var = “this string”;
echo ‘Please print $var’;

The preceding code will print “Please print $var”. This concept is discussed in
greater detail in Chapter 4.

print versus echo. Which should you use? This is very much a matter of per-

sonal preference: use whichever you think looks better on the page. There’s

only one major difference between the two, and this may influence your

decision. echo can take multiple arguments.That is, with echo, different por-

tions can be separated by commas.This will work:

echo “this is part 1”, “this is part 2”;

But this will not:

print “this is part 1”, “this is part 2”;

PRINT FUNCTIONS NOT USED IN THIS BOOK
They didn’t come up here, but these are really important to know about.

PRINTF() This function outputs a string using the format specified in the description
of the sprintf() function.

PRINT_R() This function is great for putting to productive use the time you’d other-
wise spend pulling your hair out. It prints the entire contents of any variable—most
notably arrays and objects— to the screen.

void print_r (mixed expression)

We use it frequently when we’re not getting the results we expect from arrays or
objects.

Do not do print_r($GLOBALS).You will create an infinitely recursive loop.

Caution

NOTE

Chapter 6: PHP’s Built-in Functions 149

3537-4 ch06.f.qc 12/15/00 15:22 Page 149

VAR_DUMP() This function behaves like print_r, but gives you a bit more infor-
mation.

void var_dump (mixed expression)

In addition to printing out the contents of a variable, it includes the data type —
including the data type for each element in an array or object. The same caution
given for print_r applies to var_dump().

Date/time functions
In point of fact, dealing with PHP and MySQL as a team, you will have to get to
know two sets of date/time functions — and they are quite different. This isn’t the
time or place to go into MySQL’s functions (see Appendix I for that). PHP’s
time/date functions are very well designed.

DATE/TIME FUNCTIONS USED IN THE BOOK
The following are some date/time functions used in the applications in this book.

DATE() You can use this function and the indicators outlined next to return the
date and time.

string date (string format [, int timestamp])

If you include a second argument, that value will be formatted as you prescribe.
Otherwise, the current time and date will be used.

The time and date the functions return are based on the time on the server.

You will need to make use of JavaScript to get an idea of the time on the

client’s computer.

Often the second argument will be the result of the mktime() function,

which we discuss next.

You can format the date using any of the indicators in Table 6-1.

NOTE

Tip

150 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 150

TABLE 6-1 INDICATORS FOR THE DATE() FUNCTION

Indicator Meaning

a am or pm

A AM or PM

B Swatch Internet time

d Day of the month, 2 digits with leading zeros; 01 to 31

D Day of the week, textual, 3 letters; e.g. Fri

F Month, textual, long; e.g. January

g Hour, 12-hour format without leading zeros; 1 to 12

G Hour, 24-hour format without leading zeros; 0 to 23

h Hour, 12-hour format; 01 to 12

H Hour, 24-hour format; 00 to 23

i Minutes; 00 to 59

I [capital i] 1 if Daylight Savings Time, 0 otherwise

j Day of the month without leading zeros; 1 to 31

l (lowercase l) Day of the week, textual, long; e.g. Friday

L Boolean for whether it is a leap year; 0 or 1

m Month; 01 to 12

M Month, textual, 3 letters; e.g. Jan

n Month without leading zeros; 1 to 12

s Seconds; 00 to 59

S English ordinal suffix, textual, two characters; e.g. th, nd

t Number of days in the given month; 28 to 31

T Time-zone setting of this machine; e.g. MDT

U Seconds since the epoch (midnight, January 1, 1970)

w Day of the week, numeric, 0 (Sunday) to 6 (Saturday)

Continued

Chapter 6: PHP’s Built-in Functions 151

3537-4 ch06.f.qc 12/15/00 15:22 Page 151

TABLE 6-1 INDICATORS FOR THE DATE() FUNCTION (Continued)

Indicator Meaning

Y Year, four digits; e.g. 1999

y Year, two digits; e.g. 99

z Day of the year; 0 to 365

Z Time-zone offset in seconds (-43200 to 43200)

For example, if you want to print the date in the format, “September 14, 2000
7:21 pm,” this would do the trick:

echo date(“F d, Y g:i a”);

In case you’re wondering about the significance of the above date: it was the
exact time we wrote this portion of this chapter.

MKTIME() This function is most useful for calculating valid dates.

int mktime (int hour, int minute, int second, int month, int day,
int year [, int is_dst])

For example, say that you have a form that collects a date, maybe the current
month, day, and year. You want to calculate and set a due date exactly 30 days
from the date submitted.

$year = 2000;
$month = 5;
$day = 24;
echo date(“l F d, Y”, mktime(0,0,0,$month,$day+30, $year));

This will output 30 days from May 24, 2000 and will print out “Friday June 23,
2000.”

Keep in mind that this function allows you to add or subtract dates without wor-
rying that PHP will return a fictitious result. In the previous example, you could
subtract 6 from the month value of 5, and PHP would return a meaningful date.
You can add or subtract any number of years, months, or days without worrying
that PHP will return a bad result. For instance, this is a perfectly acceptable way to
get date information on the last day of 1999.

152 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 152

$year = 2000;
$month = 1;
$day = 1;
echo date(“l F d, Y”, mktime(0,0,0,$month,$day-1, $year));

This code will let you know that December 31, 1999 was a Friday.
Notice that the preceding code first calculates the timestamp of the date indicated

by mktime() and then prints that out using the date function.
If you exclude arguments from the right, those parameters will be retrieved from

the current timestamp. So, to print what the date and time will be in five hours, this
will do the trick:

echo date(“l F d, Y g:i a”, mktime(date(H)+5));

Note the nesting of functions here. Starting at the innermost function, first
date(H) returns the current hour, in 24-hour format. Then five is added to that,
and the timestamp is calculated for five hours in the future. The timestamp is then
formatted using the string indicated.

TIME() This function returns the current time measured in the number of seconds
since the Unix Epoch (January 1 1970 00:00:00 GMT).

int time(void);

MICROTIME() This function returns the string “msec sec” where sec is the current
time measured in the number of seconds since the Unix Epoch (0:00:00 January 1,
1970 GMT), and msec is the microseconds part.

string microtime(void);

This function is only available on operating systems that support the gettime
ofday() system call.

The returned string will look something like 0.12082400 969034581. With this
function you can be reasonably sure that it will never return the same number
twice. It is often used to seed the random number generator.

DATE/TIME FUNCTIONS NOT USED IN THE BOOK
There a few other time/date functions that you might find useful. They include sev-
eral for printing the current date and time. If you need to know about something
specific that isn’t discussed here, take a look at the manual: http://www.php.net/
manual/ref.datetime.html.

Chapter 6: PHP’s Built-in Functions 153

3537-4 ch06.f.qc 12/15/00 15:22 Page 153

Filesystem functions
PHP has a whole range of functions that enable you to manipulate files and direc-
tories on the host computer. In the course of creating applications for this book,
there was only one occasion when files needed to be written to or taken from the
filesystem: in the Catalog (and Shopping Cart) when we needed to store images that
have been uploaded.

But if you work with PHP frequently there’s little doubt that you will need to
become familiar with these functions. By way of introduction, we will say that the
directory and filesystem functions in PHP are simply terrific. The programmers
have really done a great job of making working with files, either on the local sys-
tem or elsewhere on the Internet, a piece of cake. Just to give a quick example, it
took about two minutes to write this script, which will grab a stock quote from a
site we will not specify for legal reasons.

$farray = file(“http://domain.com/stockquote?symbols=ORCL”, “r”);
foreach ($farray as $value)
{

if(ereg(“last:.*$”, $value))
{

$value = strip_tags($value);
break;

}

}

This brief script slurps up an entire page and assigns each line to an element in
the $farray. We then loop through the array looking for the string “last”. On the site
we played with, the word “last” indicates the most recent quote. All we had to do
was strip the HTML tags, and we had all the information we needed. If we wanted
to, we could have done some more string processing to format the information in a
way we liked.

FILESYSTEM FUNCTIONS USED IN THIS BOOK
If you would like to see these in use, check out Chapters 10 and 14.

FOPEN() This opens a file pointer to the indicated file or URL in the first argument.
(The pointer is very much like the result identifier returned by mysql_connect().)

int fopen (string filename, string mode [, int use_include_path])

The mode will determine what you can do with the file. Table 6-2 shows the
available modes.

154 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 154

TABLE 6-2 MODES FOR THE FOPEN() FUNCTION

Mode Meaning

r Open for reading only; place the file pointer at the beginning of the file.

r+ Open for reading and writing; place the file pointer at the beginning
of the file.

w Open for writing only; place the file pointer at the beginning of the file and
truncate the file to zero length. If the file does not exist, attempt to create it.

w+ Open for reading and writing; place the file pointer at the beginning of the
file and truncate the file to zero length. If the file does not exist, attempt
to create it.

a Open for writing only; place the file pointer at the end of the file. If the file
does not exist, attempt to create it.

a+ Open for reading and writing; place the file pointer at the end of the file.
If the file does not exist, attempt to create it.

Note that this function returns a resource identifier. If you wish to read from or
write to a file you will need to do something like this:

//open a file and read contents into a variable
$filename=”test99.txt”;
$fp = fopen($filename, “r+”) or

die(“could not open file”);
$contents = fread ($fp, filesize($filename));
//replace all occurrences of Jayso
$new_contents = str_replace(“Jayson”, “Jay”, $contents);
//write out new file contents.
rewind($fp);
fwrite($fp, $new_contents);
//ftruncate assures there wont be extra
//characters if the resulting file is shorter
//than the original.
ftruncate($fp,ftell($fp));
fclose($fp);

FCLOSE() This function closes the pointer to a file.

int fclose (int fp)

Chapter 6: PHP’s Built-in Functions 155

3537-4 ch06.f.qc 12/15/00 15:22 Page 155

Make sure to use it when you are done with a file. If you don’t PHP will do it for
you, just like mysql_close().

FEOF() This function tests whether a file pointer has reached the end of a file.

int feof (int fp)

See the fgets() function for an example of feof().

FGETS() This function returns a single line from the file indicated by the file
pointer (usually taken from fopen).

string fgets (int fp, int length)

If you are working with a large file, it’s easier on the system to load files into
memory one line at a time, rather than in one big chunk as is done with fread().

This function will read a line up until a newline character. Optionally, you can
specify the maximum number of bytes to read within a line in the second argu-
ment. The number 2048 is traditionally used in the second argument because on
many filesystems that was the maximum line length. These days, you’re safe using
something larger. You shouldn’t use this function with binary files.

$fp = fopen(“/path/to/file”,”r”);
while ($fp && !feof($fp))
{

print fgets($fp,2048);
}
fclose($fp);

FILE() This function reads a file line by line, each line becoming an element in
an array.

array file (string filename [, int use_include_path])

UMASK() This function sets the umask value (see your Unix man page if you
don’t know what this is).

int umask (int mask)

umask() sets PHP’s umask to mask & 0777 and returns the old umask.

COPY() This function makes a copy of the file in argument one and copies it to
the location in argument two.

int copy (string source, string dest)

156 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 156

If the copy works, the function returns True. If not, it returns False. This function
is used in Chapter 10.

TMPNAME() This creates a unique file name in the directory indicated in the first
argument.

string tempname (string dir, string prefix)

The string prefix in argument two will be placed before each file name. This
could help you keep track of what files belong to what scripts.

On Windows, the behavior of this function can be a bit unpredictable.

DIRNAME() This function will return the directory name of the supplied string.

string dirname (string path)

For example:

echo dirname(“/www/htdocs/teswrite.txt”);

will return /www/htdocs.

FILESYSTEM FUNCTIONS NOT USED IN THIS BOOK
This is an important topic, and one you should spend some time learning. Most of
the more popular files system commands are available through PHP, and there are
many commands for opening, reading, writing and displaying files. But, as this
book deals with a relational database for data storage, we will not cover them here.

Random number generator functions
Every now and then you will need to pick something at random. It may be an indi-
vidual element, or it may have to do with randomizing an array with shuffle() or
getting a random element from an array with array_rand(). In any case you will
need to make use of PHP’s random number generator functions.

Note that the random number generator needs to be seeded before use. That is, it
has to be given a number that is reasonably unique to begin with. For this, as you
will see, the microtime() function will be of great use.

Keep in mind that there are really two sets of random number generators, There
are the standard rand() and srand(), which you need in order to seed the genera-
tor for shuffle() and array_rand(). However, if you just want to get a random

NOTE

Chapter 6: PHP’s Built-in Functions 157

3537-4 ch06.f.qc 12/15/00 15:22 Page 157

number and not use it with any other functions, use the mt functions described
below — they’re faster and more random

RANDOM NUMBER GENERATOR FUNCTIONS USED IN THIS BOOK
Now we will examine some important random number generator functions not
used in the applications in this book.

MT_SRAND() This function seeds your random number generator.

void mt_srand (int seed)

Use the following line and you can be sure your numbers are plenty random:

mt_srand ((double) microtime() * 1000000);

Seed the random number generator only once per script.

MT_RAND() This function returns a random number. You can specify a minimum
value and/or a maximum value.

int mt_rand ([int min [, int max]])

So to get a random number between 1 and 100, do the following:

mt_srand((double)microtime() * 1000000);
$number = mt_rand(1,100);
echo $number;

cURL functions
These are explained in detail in Chapter 14. cURL is a library that allows for commu-
nication between servers using a variety of protocols. For the sake of the applications
in this book, cURL was most useful for its ability to communicate with HTTPS. This is
a secure protocol used in the shopping cart to do credit card transactions.

Session functions
These are explained in detail in Chapter 14. Sessions are means of maintaining
state between pages. Remember that HTTP, the language of the Web, does not allow
servers to remember much of anything between requests for pages from a specific
user. Sessions allow the server to keep track of activities by a single user.

HTTP header functions
There are two vital HTTP header functions, both of which you will need to get to
know.

158 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 158

HEADER()
If you are going to be communicating with the browser or with other HTTP servers,
this is the function to use.

int header (string string)

Essentially, you can send any header that would be expected under RFC 2616
(ftp://ftp.isi.edu/in-notes/rfc2616.txt). The RFC itself is a handful (and
perhaps the sleepiest reading you’ll do all year). Here is a common header you are
likely to send.

header(“Location:http://www.php.net”);

This is nothing more than a redirect: it sends the browser to a page you specify. If
you have been working with straight HTML and the <META type=refresh> tag or
JavaScript to do your redirects, you should switch to this type of header whenever
possible. It will work for all browsers and the redirection will be totally transparent
to the user.

IMPORTANT: No, make that VERY IMPORTANT. You cannot send a header

after anything — ANYTHING — has been sent to the browser. If you send a

header after even a hard return, there will be an error. If there is a hard return

before your opening <?php tag, you will get error. If there is a hard return in

an included file that precedes your header() function, you will get an error.

This should not be a problem you encounter frequently; your pages should

be designed so that most of the logic is handled prior to the display.

However, if you have a situation you just can’t work around, take a look at the

output buffering functions.

SETCOOKIE()
This is basically a specialized header function, because a cookie is set by nothing
more than a specific HTTP header.

int setcookie (string name [, string value [, int expire [, string
path [, string domain [, int secure]]]]])

The first argument will be the name of the cookie. The second will be the value.
The expire value should be set with the time function. The following is a pretty typ-
ical use of setcookie():

setcookie(“id”,$id_val,time()+(24*60*60),”/”,”.domain.com”,0);

Tip

Chapter 6: PHP’s Built-in Functions 159

3537-4 ch06.f.qc 12/15/00 15:22 Page 159

This will set a cookie that will expire in 24 hours (24 ×60 ×60). The cookie will
be available to every directory within domain.com. It you want to restrict it to a
specific directory, you could change the / to a directory name.

You can find more on cookies in Chapter 4, in the discussion of variables.

In some versions of Internet Explorer, you must either give both time and

path values or neither.

HEADER_SENT()
This function can keep you from sending headers after some text has been sent to
the browser.

boolean header_sent(void)

If you are relying heavily on this function, you are probably not coding your
pages properly.

Mail function
If you have Sendmail or another suitable email program installed on your system,
this function will take all of the fuss out of sending e-mail from your PHP pages.

Sendmail is the program most commonly used with PHP’s Mail function, but

qmail with Sendmail wrappers will work, and on Windows, apparently

Pegasus (http://pegasus.usa.com/) can work (though we haven’t

tested it).

MAIL()
This sends an e-mail from your PHP script.

bool mail (string to, string subject, string message [, string
additional_headers])

NOTE

NOTE

XREF

160 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 160

Your basic e-mail will look like this:

mail(“name@domain.com”,”Subject Text”, “The Complete message goes
here”);

And if you want to get a little fancier and include a From and a Cc, use the fol-
lowing:

mail(“jay@trans-city.com”,”Test Message”, “Here I am”,
“From: Jay G\r\nCc: webmonkey@trans-city.com\r\nReply-to:
myname@mydomain.com”);

Additional headers have been added in the fourth argument, and the different
headers are separated by line feeds and newlines (\r\n).

If you want to set up a large e-mail system, don’t use PHP. There are better

tools out there. This function is intended for sending an occasional e-mail

from within PHP scripts.

If you’d like to send attachments in your PHP e-mail, check out this excellent

article at PHPbuilder.com:http://phpbuilder.com/columns/kartic

20000807.php3.

URL functions
If you’ve even looked at a querystring, you may have noticed that the text you
entered into your form fields has been changed. For examples, spaces are turned into
plus signs (+) and ampersands (&) are turned into %26. There are many other charac-
ters that are encoded. (All non-alphanumeric characters other than hyphen (-),
underscore (_) and dot (.) are replaced by a percentage sign and two characters).

There will be occasions when you need to encode or decode text. For that you
will use the functions below.

URLENCODE()
This function will encode a string so that it’s URL ready. Most often you will use
this if you want to send variable information to another page.

string urlencode(string)

NOTE

Tip

Chapter 6: PHP’s Built-in Functions 161

3537-4 ch06.f.qc 12/15/00 15:22 Page 161

For example:

$myvar=”this string with weird &* stuff”;
$encoded = urlencode($myvar);
header(“Location: http://www.mydomain.com?var=$encoded”);

Notice that this code snippet has only encoded the values of a querystring ele-
ment. If you were to urlencode the entire URL, you would not be happy with the
results. The result of this code

urlencode(“http://www.mydomain.com”);

is “http%3A%2F%2Fwww.mydomain.com”.

URLDECODE()
This function undoes the encoding process. It’s usually unnecessary because the
variable created from your GET or POST data is decoded in your variables.

string urldecode(string)

RAWURLENCODE()
Returns a string in which all non-alphanumeric characters except hyphen, underscore
and period have been replaced with a percent (%) sign followed by two characters.

string rawurlencode(string);

This is the encoding described in RFC1738 for protecting literal characters from
being interpreted as special URL delimiters, and for protecting URL’s from being man-
gled by transmission media with character conversions (like some e-mail systems).

RAWURLDECODE()
Unencodes according to the same provisions as rawurlencode().

string rawurlencode(string);

Output buffering
Output buffering is the process of writing the results of your script to a temporary
buffer. Instead of being sent out over the Web it will gather in a buffer, where you
can manipulate it if you wish.

162 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 162

Probably the most common use of output buffering is to ensure you don’t get
errors caused by sending headers after text has been sent to the browser. To prevent
this, you could start a buffer, write some of an HTML page to the buffer, and then,
given a specific condition, write a header (maybe a cookie), and then output the rest
of the page. When you flush the buffer, the contents will be written to the browser
without error.

If you are frequently using buffering to prevent headers from causing errors,

rethink your page logic. Decisions first, output second.

People have also been playing with using output buffering to gzip page contents.
Then, in browsers that are capable of unzipping, the page could be downloaded a lot
faster. However, given browser craziness, we wouldn’t recommend this.

BUFFERING FUNCTIONS USED IN THE BOOK
There are quite a few object buffering functions. We used very few of them.

OB_START() This starts the buffer.

void ob_start(void)

FLUSH() This clears the buffer.

void flush(void)

BUFFERING FUNCTIONS NOT USED IN THE BOOK
Check the manual for some more sophisticated buffering functions.

INFORMATION FUNCTIONS
These functions will give you information about the environment in which you are
working.

PHPINFO() Your guide to all that is available in your PHP environment. Use it.
Use it. Use it. And then take it off your system. No point in letting crackers get a
look at the specifics of your system.

PHPVERSION() Returns only the version of PHP you are using.

Tip

Chapter 6: PHP’s Built-in Functions 163

3537-4 ch06.f.qc 12/15/00 15:22 Page 163

Summary
As you’ve seen, PHP has more functions than you will be able to commit to mem-
ory any time soon. It can seem intimidating, but the quantity and quality of these
functions are what make PHP such a great language. Most anything you need to do
can be done quickly and painlessly.

At first, you may need to study and play with the functions in order to get them
to work. But in time, it will get a lot easier. You’ll be making use of more and more
functions, and keeping your scripts more compact and easier to read.

164 Part II: Working with PHP

3537-4 ch06.f.qc 12/15/00 15:22 Page 164

Chapter 7

Writing Organized and
Readable Code

IN THIS CHAPTER

◆ Keeping your code tidy

◆ Understanding the power and convenience of functions

◆ Using object-oriented code

◆ Learning the importance of comments

THIS CHAPTER PRESENTS A run-through of the preferred ways to present and organize
your code. Along the way you will see how to construct functions and classes in
PHP. By the end of this chapter, you should have a good idea of how write efficient,
readable applications in PHP. And you should be ready to dive into the applications
in Parts III and IV of this book.

Indenting
If you have done coding in any language, this point should be pretty obvious. But it
is an important point, and therefore deserves some mention. In the type of coding
needed for Web applications, following a few indenting rules could help make your
life a little easier.

How far should you indent? Some feel that each level of code should be

indented by three spaces. Others, like us, think a single tab is the way to go. If

you use spaces, it is possible that your code will look terrible in another text

editor (maybe the one used by your co-worker). We really believe tabs are a

better choice anyway.

NOTE

165

3537-4 ch07.f.qc 12/15/00 15:22 Page 165

Code blocks
The most obvious use of indenting comes in differentiating blocks of code. For
instance, it is fairly typical to have an if block within a while loop.

$i = 0;
while ($i < 100)
{

$i++;
if ($i < 50)
{

echo “Within the first 49.”;
}
else

{
echo “Between 50 and 99.”;

}
}

As you can see in this PHP code, each block is delimited by curly braces ({});
this goes for both loops and if blocks. When a block is entered with an opening
curly brace, the next line should indented. Each line following at the same level of
execution should be indented at the same level. Additional nested blocks should be
indented another level.

Looking at the preceding brief snippet of code, it is easy enough to see that there
are three distinct blocks. This may not seem like such a big deal with a small bit of
code like this, but as scripts get longer, and levels of nesting get deeper, you will see
how important this is. We’re not going to belabor this point, because it should be
pretty clear. But, for a quick example, we will re-present the previous code without
indents. Note that it will work just fine — PHP doesn’t care if you don’t write your
code neatly. But imagine coming back to this a month after you wrote it and having
to troubleshoot or add code. Life would be a lot easier if you could easily find the
block that needs work.

$i=0
while ($i < 100)
{
$i++;
if ($i < 50)
{
echo “Within the first 49.”;
}
else

166 Part II: Working with PHP

3537-4 ch07.f.qc 12/15/00 15:22 Page 166

{
echo “Between 50 and 99.”;
}
}

Are you getting a parse error you can’t identify? Make sure you have an

identical number of opening and closing curly braces and parentheses. If

you have, say, five closing curly braces in a page and only three opening, you

haven’t closed one of your code blocks.

Function calls
Indenting code should not stop at code blocks. Often you will need to use nested
function calls or complex variables that take up several lines. You will be much
happier in your coding life if you use indents in these situations. Take a look at the
following, which is borrowed from the Catalog application.

$file_ext = strtolower(
substr($file

, strrpos($file,”.”)
)

);

The purpose of this code is pretty simple: it takes the name of a file and assigns its
extension (the characters following the final dot (“.”)) to $file_ext. It takes three
separate built-in PHP functions to get this done. PHP will execute the innermost level
first. There, strrpos() finds the numeric position of the final dot. For instance, in the
stringmyfile.jpg, it would return 6. Then the substr() function would return only the
characters following the dot. Finally, that string would be set to lower case characters.

This could be written on one line, but as you can see, it becomes rather difficult
to read.

$file_ext = strtolower(substr($file, strrpos($file,”.”)));

Or maybe you find this easier to read. A lot of things we’ll talk about in this

chapter are matters of personal preference. The important thing is that you

spend a lot of time considering how to make your code as readable as possible.

NOTE

Tip

Chapter 7: Writing Organized and Readable Code 167

3537-4 ch07.f.qc 12/15/00 15:22 Page 167

In the first example of this code, it’s much easier to see what each of the closing
parentheses relate to, and you can more quickly get an idea of what this code
accomplishes and how.

You might be tempted to write the code above using temporary assignments

to variables. Something like:

$file_ext = strr_pos($file, “.”);
$ ext_letters = substr($file, $file_ext);
$lower_ext_letters = strtolower($file_ext);

But this is a good deal slower. Variable assignments do take time, and in a

short piece of code where they aren’t necessary, stay away from temporary

variable assignment. That said, you should never sacrifice readability. In

some places temporary variables can help make code much easier to read.

SQL statements
In Web database applications, SQL statements will be interspersed throughout PHP
code. Usually PHP variables will be included within SQL statements to get specific
results based on variable data. Indenting SQL statements will help keep the code read-
able and maintainable. In the following, we show a few examples of SQL statements
of various types. You will see many examples of these in the applications in Parts III
and IV of this book.

//2 table select
$query =”select n.fname, n.lname, c.co_name, c. co_address,

c.co_zip
from names n, companies c
where n.name_id = $name_id

and n.co_id = $c.co_id
“;

//update query
$query=”update products

set product = ‘$product’
, description = ‘$cleandsc’
, price = $nullprice
, image_src = $nullimage_src

where product_id = $product_id
“);

//insert query
$query=”insert into products

Tip

168 Part II: Working with PHP

3537-4 ch07.f.qc 12/15/00 15:22 Page 168

(category_id, product)
values ($category_id, ‘$product’)

“);

We’ve heard stories of database engines refusing to process queries, like the

ones above, that have newlines in them. This is not a problem with MySQL

and won’t be a problem with most databases. However, there are other

perfectly acceptable ways to write queries. Here are a couple of examples:

$query = “select col_1, col2 “;
$query .=”from table_1, table_2 “;
$query .=”where col_1 = $var”;

or:

$query = “select col_1, col_2 “
.”from table_1, table_2 “
.”where col_1 = $var”;

Choose whichever you like best.

Includes
Every language has a facility for including external files. PHP has four commands
that accomplish this. Before we get to those, we will briefly discuss why includes are
so critical for writing organized and readable code. We’ll start with a very common
example.

In most Web sites, header information will vary very little from page to page.
There are opening tags (<HTML>, <HEAD>, etc), and perhaps some navigation informa-
tion. The following is a typical header to an HTML page.

<HTML>
<HEAD>

<TITLE>My Page Name</TITLE>
</HEAD>
<body bgcolor=”#FFFFF” link=”#8e0402” vlink=”#20297c”>

It would be an absolute waste to type this text into every file within a Web site.
Moreover, it could be a real pain. Say you wanted to change the bgcolor attribute
of the <body> tag throughout the site. If this information were hard-coded in every
file, you would have no choice but to go into each file individually and make the
change, or write a script that would do it for you.

NOTE

Chapter 7: Writing Organized and Readable Code 169

3537-4 ch07.f.qc 12/15/00 15:22 Page 169

You are far better off keeping all of this information in a single file (maybe
called header.php) and then using a command that will spit the contents of that
into the file being accessed. For this, you would use one of the PHP functions dis-
cussed in the following section. For this example we will use include().

If you have access to your Apache httpd.conf file you will probably want to give

your include files a distinct extension; .inc is a typical choice.Additionally, if pos-

sible, you will want to keep your includes out of the htdocs directory, so that

they can not be accessed by a URL.We did not use either of these techniques in

this book because most who use ISPs to host their PHP/MySQL applications will

not be able to alter their setups in this way.

Let’s say we have two files, header.php and index.php. Notice that we have made
an important change in header.php: the <title> tags now contain a PHP variable

<HTML>
<HEAD>

<TITLE> <?php echo $page_title; ?> </TITLE>
</HEAD>
<body bgcolor=”#FFFFF” link=”#8e0402” vlink=”#20297c”>

Now for the index.php file.

<?php

$page_title = “Welcome to My Site”;
include(‘header.php’);

echo “Here are the contents of my PHP pages. Anything could be here.”;

?>

Notice that the variable $page_title will be picked up in the include. So when
the index.php is served, the source code of the PHP page will be as follows:

<HTML>
<HEAD>

<TITLE> Welcome to My Site </TITLE>
</HEAD>
<body bgcolor=”#FFFFF” link=”#8e0402” vlink=”#20297c”>

Tip

170 Part II: Working with PHP

3537-4 ch07.f.qc 12/15/00 15:22 Page 170

Any code, whether HMTL or PHP, that is needed in a variety of pages should be
kept within include files. Header and footer information, database connection code,
and pages that contain functions or classes are all good candidates for includes.

At the start of an include, PHP reverts to HTML mode. If code within your

include needs to be parsed as PHP, you must first indicate that with the

<?php marker.

Once again, PHP4 contains a variety of commands that do slightly different
things with includes. We will look at these commands in the following sections.

include() and require()
These commands are very similar and can usually be used interchangeably.
However, you should know what distinguishes the two, as at times using the wrong
one can cause problems.

The require() command imports the content of the specified file even if the file
is not used. This means, for starters, that even if the require() is within an if block
that tests false, the outside file will still be included. You can probably deduce that
this isn’t such a big deal because code within a block that tests false won’t be
executed. However, it does take time for PHP to do the import, and there’s no need
to add execution time to your script by placing a require within an if block that
could test false.

There are other differences between include and require listed in the PHP

manual, but these are more relevant to PHP 3. PHP 4 is pretty smart about

handling includes and decides for which is the best for you when it interprets

your script. It is very difficult to write a script that will behave differently using

include and require.

The include() command will work better in a situation like the one above. An
include() command will be executed each time it is encountered within a script.

include_once() and require_once()
In addition to include() and require(), PHP provides include_once() and
require_once(). These are provided to keep you, the developer, from stepping on
your own toes. As you might expect, they keep you from including the same file
twice, which could cause some problems when it comes to calling user-defined
functions.

NOTE

NOTE

Chapter 7: Writing Organized and Readable Code 171

3537-4 ch07.f.qc 12/15/00 15:22 Page 171

For example, say you had a file that contained a function, but that the function
relied on another function from an outside file. You’d do something like this:

require’helpful_file.php’;
another_function();
{

function_from_helpful_file();
}

Say we name this file short_function.php. If we needed both short_function.php
and helpful_file.php in a third file, we could have a problem. All functions in helpful_
file.php would in fact be included twice. If we called one of the twice-included
functions, PHP would not be able to resolve the ambiguity and would spit out an
error. So in cases like this, use include_once() or require_once(). Note that if files
are included more than once we might also have a problem dealing with variables
that inadvertently overwrite each other.

Note that include_once() and require_once() inherit behavior from include()
and require(): require_once() will only be processed once, and include_once()
can be executed multiple times within loops.

User-Defined Functions
In Chapter 6 you saw many of the functions built into the PHP processing engine.
If you are a humble person and look at Appendix E or visit the online PHP manual,
you should be duly impressed by the quantity and power of PHP’s built-in
functions. But it isn’t enough — and no matter how much work the able developers
put into the language, it never will be enough. That is because every developer on
the planet has unique needs. We need to accomplish specific tasks, and we need to
do it in ways that fit our own styles and predilections.

User-defined functions allow us developers to create blocks of code that achieve
specific tasks. The great thing about user-defined functions is that the code
becomes reusable. Any piece of code that you find yourself writing over and over
should be committed to a function. There’s little doubt that it will save you time in
the long run.

In the applications presented in this book nearly all of the code is within

functions. The files that you see in your browser are very much an assem-

blage of function calls. As you will see, this helps to keep things readable.

NOTE

172 Part II: Working with PHP

3537-4 ch07.f.qc 12/15/00 15:22 Page 172

Function basics
We’ll start by writing a simple function that writes out the start of an HTML table.

function start_table()
{

echo “<table border=1>\n”;
}

To call this function within my PHP page, we would access it just like a built-in
PHP function:

start_table();

That’s easy enough. But what if we want the border to vary in given situations?
We could make the border a variable, and then in the function call specify the value
for border.

function start_table($border)
{

echo “<table border=$border>\n”;
}

start_table(1);

Now say that most of the time we want the border to be 1, but would like to be
able to change the border within the function call. The following would do the trick:

function start_table($border=1)
{

echo “<table border=$border>\n”;
}

Here $border has been given a default value of 1. But we can overwrite that value
by specifying a different value when calling the function. For example, if we were to
call the function with the following command, the table would have a border of 2:

start_table(2);

Once again, 1 is the default value, so if this function is called with the following
code, the table border will be 1:

start_table();

Chapter 7: Writing Organized and Readable Code 173

3537-4 ch07.f.qc 12/15/00 15:22 Page 173

If you know your HTML, you know that the table tag can have multiple attributes:
cellspacing and cellpadding are two others. We could add those to the function, along
with default values.

function start_table($border=1, $cellspacing=2, $cellpadding=2)
{
echo “<table border=$border cellspacing=$cellspacing
cellpadding=$cellpadding>\n”;
}

Then, in the call to this function you could alter any of these:

start_table(4,2,5);

The table created with this command would have a border of 4, cellspacing of 2,
and cellpadding of 5.

The values that the function will accept are known as arguments. So the

start_table function shown here will take three arguments.

When constructing functions you should be aware that if you wish to change
one of the default values in your function call, you must specify all the arguments
that precede it (to the left). For instance, the first command in the following code
will produce an error. However, the second one will work and will create a table tag
with a border of 4, cellspacing of 3, and cellpadding of 2.

//this will cause an error
start_table(,5,5);
//this will work
start_table(4,3);

Functions can accept more than simple variables; you can pass any of the scalar
types (string, integer, double), any array (numeric, associative, or multi-dimensional),
or objects. You might want to make use of a function that turns an array into HTML
unordered list, using and .

function create_ul($array)
{

echo “\n”;
while(list(, $value) = each ($array))

NOTE

174 Part II: Working with PHP

3537-4 ch07.f.qc 12/15/00 15:22 Page 174

{
echo “$value\n”;

}
echo “\n”;

}

Returning values
Of course your functions will do more than print HTML. Functions may perform
database calls or mathematical computations or do some string handling. They can
do just about anything, and often you will want to make the rest of the script aware
of the results of your function. You can do this by using the keyword return. When
a function hits the word return it leaves the function, and it will return whatever
you specify — a variable, a boolean value (TRUE or FALSE), or nothing at all, if
that’s what you prefer.

function basic_math($val_1, $val_2)
{

$added = $val_1 + $val_2;
return $added;

}

You could then call this function and print the results.

$added_value = basic_math(5,4);
echo $added_value;

If fact, the following would work equally well:

echo basic_math(5,4);

Functions can return any variable type (strings, object, arrays, and the like), or, in
the case of database calls, they can return result identifiers. Additionally, functions
can return FALSE. If you read Chapter 5, you may remember that in PHP, any non-
zero, non-false value will be evaluated in an if statement as true. So we might want
to improve the previous function by making sure the values passed can be added.

function basic_math($val_1, $val_2)
{

if (!is_int($val_1) || !is_int($val_2))
{

return FALSE;
}
$added = $val_1 + $val_2;
return $added;

}

Chapter 7: Writing Organized and Readable Code 175

3537-4 ch07.f.qc 12/15/00 15:22 Page 175

If either of the arguments in the call to this function is not an integer, the function
will return FALSE and stop. A call to this improved function might look like this.

if(!($added_value = basic_math(7, 5)))
{

echo “What exactly are you doing?”;
}
else
{

echo $added_value;
}

If the function returns a value (any value), that value will be added. If not, a
special message will be printed. Notice how this mimics the behavior of many of
the PHP built-in functions. Its purpose is to perform a task, and if it fails to do so,
it returns false.

Actually, there’s something else that needs to be pointed out in this function.
What will happen if the sum of the arguments sent to the function equal zero, say
–1 and 1. In a case like that, your function will return 0. And, as we discussed
in Chapter 5, 0 is evaluated as FALSE in PHP. So you need to be careful about
situations like this. You may run into situations like this with some of PHP’s string
handling functions, strpos(), for example. You might be better off evaluating a
call to the previous function like this:

if (!is_int($added_value = basic_math(-1,1)))

Take a quick look at the following function. We think it’s a good example of how
functions can really save you time, headaches, and keystrokes. The mysql_query
function is fine; it sends a query from PHP to MySQL and, if it succeeds, returns
a result identifier. If it fails, however, it does not automatically return any error
information. Unless you do a bit of digging, you won’t know what the problem was
with the query. So for every query in your applications (and there will be plenty)
you tack on an or die phrase:

mysql_query(“select * from table_name”) or die
(“Query failed:” . mysql_error());

But life gets quite a bit easier if you create a function like the following, and
then send all of your queries through that function.

function safe_query ($query = “”)
{

if (empty($query)) { return FALSE; }
$result = mysql_query($query)

or die(“ack! query failed: “

176 Part II: Working with PHP

3537-4 ch07.f.qc 12/15/00 15:22 Page 176

.”errorno=”.mysql_errno()

.”error=”.mysql_error()

.”query=”.$query
);

return $result;
}

So your applications might include a file with this function on every page, and
then use safe_query() in place of mysql_query().

Using a variable number of arguments
One nice feature of PHP 4 is that you can pass an indefinite number of arguments
to a function and then assign the list of arguments to an array. Consider the follow-
ing code:

function print_input_fields()
{

$fields = func_get_args();
while (list($index,$field) = each($fields))
{

print “ <tr>\n”;
print “ <td valign=top

align=right>”.ucfirst($field).”:</td>\n”;
print “ <td valign=top align=left><input type=text

name=$field size=40 value=\””.$GLOBALS[$field].”\”></td>\n”;
print “ </tr>\n\n”;

}
}
start_table();
print_input_fields(“name”,”location”,”email”,”url”);
end_table();

The GLOBALS array is discussed later in this chapter in the “Variable Scope”

section.

This function prints out form fields within a table. First, using func_get_args()
creates an associative array, with the name of the argument as the key. Then each
form field is printed out. This is pretty convenient because we can call a function
in a number of situations and vary the output by including as many arguments
as needed.

XREF

Chapter 7: Writing Organized and Readable Code 177

3537-4 ch07.f.qc 12/15/00 15:22 Page 177

If you’re wondering how this would work if your function contained some
required parameters prior to the set of arguments that might vary, good for you: it’s
an excellent question.

There are two other PHP functions that will work in such situations: func_num_
args(), which returns the number of arguments sent to a function, and func_get_
arg(), which returns a specific argument based on its numeric index, starting at 0.
So, for example, you might have a function that prints an HTML form with a variable
number of input fields.

function print_form($action=””, $method=”POST”)
{

if (empty($action)){return FALSE;}
echo “<form action=$action method=$method>”;
$numargs = func_num_args();
for ($i = 2; $i < $numargs; $i++)
{

echo “<input type=text name=” . func_get_arg($i). “>”;
}
echo “</form>”;

}

print_form(“myurl.php”, “”, “myfield1”, “myfiels2”);

Variable scope
To work with functions you need to understand how PHP handles variable scope.
Scope is an important topic in any programming language, and PHP is no different.

In PHP, variables assigned outside of functions are known as global variables.
These can be variables that you create, they can come from HTML form elements
through either GET or POST, or they may be any of the variables inherited from
the Apache environment. All globals are accessible from an array known as
$GLOBALS. You can add to and delete from this array.

We’ve said it before, and we’ll say it again: use phpinfo() to get information

about variables in your environment or your configuration.

In PHP a global variable is not automatically available within a function. If you
want to use a global within a function, you must indicate within the function that
the variable you are accessing is a global.

Here is an example of using a global within a function:

function add_numbers($val_2)
{

Tip

178 Part II: Working with PHP

3537-4 ch07.f.qc 12/15/00 15:22 Page 178

global $number;
echo $number + $val_2;

}
$number = 10;
add_numbers(5);

This code will print “15”. Here $number is a global because it was assigned outside
of a function. Using the keyword global tells PHP that we want to fetch the specified
number from the $GLOBALS array. This code could also be written like this:

function add_numbers($val_2)
{

echo $GLOBALS[“number”] + $val_2;
}
$number = 10;
add_numbers(5);

In the applications in this book we will be using the technique shown in the first
example, because it seems a little cleaner. It’s nice to see where your variable is
coming from at the top of the function.

Within your functions, you may wish to make variables available as globals.
That way they will be available in the body of your script and in other functions. To
accomplish this, you must explicitly assign the variable to the $GLOBALS array.
Here’s a quick example:

function assign_to_global($val_1, $val_2)
{

global $sum;
$sum = $val_1 + $val_2;

}

assign_to_global(5,6);
echo $sum;

This script will print “11”. For something a bit more complicated, we’ll borrow a
function from the applications section of the book.

function set_result_variables ($result)
{

if (!$result) { return; }
$row = mysql_fetch_array($result,MYSQL_ASSOC);
while (list($key,$value) = each($row))

Chapter 7: Writing Organized and Readable Code 179

3537-4 ch07.f.qc 12/15/00 15:22 Page 179

{
global $$key;
$$key = $value;

}
}

This function expects a result identifier gathered from mysql_query(). Assume
that the query run prior to this function call will return a single row. That row is
then assigned to an associative array named $row. Then each column taken from the
query (which is now the key in the associative array) and its value will be available
as a global. This could be useful if the values retrieved from the query are needed in
many other functions. Note the use of variables in this code. See Chapter 5 for an
explanation of this concept.

All of the Apache variables ($DOCROOT, $REQUEST_URI, and so forth) are

available as globals.To use them within functions you will need to make the

function aware of them.

USING GLOBAL VARIABLES
Throughout the applications in this book you will see that global variables are used
sparingly within functions. This is because it is just easier to keep track of your vari-
ables if you are passing them through arguments and retrieving them through return
values. If you start using globals extensively, you may find that your variables are
returning unexpected values in different places — and finding the functions that are
causing the error can be a major pain.

Here’s another reason to avoid globals when possible: You will be using the
same variable name over and over and over again. We don’t know how many times
in these applications the variable names $query, $result, $row, or $i are used,
but trust us when we say they are used frequently. All kinds of hassle would be
introduced into my life if we had to keep track of each time we used one of these
variable names.

At times you will have little choice but to use global variables, but before you do,
make sure that you can’t accomplish the same thing using variables of local scope.

Object-Oriented Programming
A few years back there was a large move toward object-oriented programming.
Some people just thought that the procedural approach — that is, coding strictly
with functions — just wasn’t enough. Therefore, the folks working on languages like
C++ and Java popularized an approach that allows a developer to think about code
in a different way.

Tip

180 Part II: Working with PHP

3537-4 ch07.f.qc 12/15/00 15:22 Page 180

The idea behind object-oriented programming is to think of portions of your
application as objects. What is an object? Well, it’s an amorphous thing, a kind of
black box — a superstructure of variables and functions. But if you are new to the
concept, this description may not be so clear.

To make things clearer conceptually, we’ll give an example that comes up later
in the book. Chapter 10 presents a catalog, a place where your business could post
a listing of goods. In this application, there is an organizational breakdown. At the
highest level there is a list of categories, and each category will contain one or
more products. Knowing this, you could think about a category as an object.

As this is a catalog, you might expect certain things in a category. A category
would probably have a name and a caption; it might also have a unique ID number.
There might also be other parameters that further describe the category object.

In addition to these descriptive items, there are certain actions you will want to
perform on a category. Actions include things such as saving a new category, deleting
an existing category, or maybe just printing out a specific category.

Now all you need is the correct nomenclature. These descriptions of the object
(such as name and unique ID) are called properties, and the actions (save, delete,
print) are known as methods.

Before we get to using objects, we want to explain a couple of advantages to this
object-oriented approach. Say some programmer has created an object for cate-
gories and tells you about the methods and properties. You don’t really need to
know how any of it works; you just need to know that it does. You can make use of
the methods and properties of the object in your scripts with little effort.

Of course, the same could be said of a well-designed procedural approach. A
well-documented collection of functions could work equally well. In fact, many
programmers dislike object-oriented programming, feeling it is unnecessary. There
is no doubt, you should be able to write good procedural code before you move on
to objects.

Using objects, not only can you make use of methods and properties in the heart
of your scripts, you can extend the functionality of a class by making use of a
concept called inheritance. Going back to the catalog example, a category will have
one or more products. Thus every product will belong to a category. So a product
will have its own set of properties and methods, but in addition, it will inherit the
properties and methods from its category.

If you are coming from a language like Java, you will need to be aware of

some of PHP’s shortcomings in this department. There is no way to desig-

nate methods as “private” and there are no deconstructors.

Classes
In object-oriented programming, you will be working with classes. A class is a
structure that encompasses your methods and properties. Within a class, properties

NOTE

Chapter 7: Writing Organized and Readable Code 181

3537-4 ch07.f.qc 12/15/00 15:22 Page 181

(items that describe the object) are variables. And methods (actions to be take on
the object) are functions. Let’s start with a simple class called Category.

This is NOT the same set of classes used in the catalog application in Chapter

10. For instructive purposes, the code here has been simplified.

class Category
{

//here are the properties
var $category_name;
var $category_desc;
var $category_id;

Here, at the start of this class, we defined the properties. Notice the use of var to
declare each of the properties. You don’t need to declare properties elsewhere in
PHP, but in classes you must. Now we’re going to create the first method.

class Category
{

//here are the properties
var $category_name;
var $category_desc;
var $category_id;

//gets all the properties for a give category_id
function Category($category_id=0)
{

//expecting a category id when the object is
//instantiated
if ($category_id == 0)
{

return;
}

$query = “select category_name, category_desc from
categories where category_id = $category_id”;

$result = mysql_query($query) or
die(mysql_error());

list($category_name, $category_desc) =
mysql_fetch_array($result);

NOTE

182 Part II: Working with PHP

3537-4 ch07.f.qc 12/15/00 15:22 Page 182

$this->category_name=$category_name;
$this->category_desc=$category_desc;
$this->category_id=$category_id;

}
}

There are a few things here that require explanation. First, notice that the
method (i.e., the function) has exactly the same name as the class. That tells PHP
that this is the constructor. A constructor is automatically run as soon as a class is
instantiated. The other thing to note is the use of $this->. It indicates a property or
method within the current class. Above, we are assigning values to the properties:
category_id, category_name, and category_description. If we wanted to call
a method, we would indicate that with parenthesis: $this->method_call() or
$this->method_call($value)

To continue with this example, we will add a method for deleting a category.
Note that the method below assumes that the database contains two tables —
one named categories and one named products — and that there is a one-to-many
relationship between categories and products. Therefore, you would want to make
sure that a category isn’t deleted if it contains products.

class Category
{
//all the stuff you saw above goes here

function delete_category($category_id=0)
{

//make sure a category_id was defined in the
//constructor or is indicated explicitly
if($category_id == 0 && empty($this->category_id))
{

$this->error = “Nothing to delete”;
return FALSE;

}
//create where clause with the category_id
//retrieved from the proper place
if ($category_id !=0)
{

$where_clause = “where category_id =
$category_id”;

}
else
{

$where_clause = “where category_id =
$this->category_id”;

}

Chapter 7: Writing Organized and Readable Code 183

3537-4 ch07.f.qc 12/15/00 15:22 Page 183

//make sure there are no products left for this
//category
$query = “select * from products $where_clause”;
$result = mysql_query($query) or
die(mysql_error());

if (mysql_num_rows($result)>0)
{

$this->error = “There are
still products for this category”;

return FALSE;
}
$query=”delete from categories $where_clause”;
$result = mysql_query($query) or
die(mysql_error());

if(mysql_affected_rows() == 0)
{

$this->error = “There were no rows to delete”;
return FALSE;

}
return TRUE;

}
}

We now have a class with two methods, the constructor and delete_category,
and three properties. Now it is time to put this class to work.

Instantiating an object
Instantiating basically means “creating.” Let’s say we have a PHP page that is
intended to delete categories. To make this work with the above class, we need to
do a few things. First, we need to include the file containing the class.

require “classes.php;”

Next we have to create an instance of the object. We can do this with the key-
word new:

$c = new Category;

Now, using the object $c, we can access any of the properties or methods using
the same syntax seen in the previous example: $c-> property or $c->method().

Now we want to put together a page that actually removes a record from the
database. For the sake of this example, assume that a single $category_id has
been passed via the querystring.

184 Part II: Working with PHP

3537-4 ch07.f.qc 12/15/00 15:22 Page 184

<?

require classes.php;

$c = new Category($category_id);

if(!$c->delete_category())
{

echo “Deletion Failed: $c->error”;
}
else
{

echo “Deletion Succeeded for:”;
echo “

$c->category_name
$c->category_description
$c->category_id

“;

}

?>

As you can see this makes for a pretty clean page, which everyone is looking for
ultimately.

Inheritance
So far, we have worked with only one class. But one of the great advantages of
object-oriented programming is that methods and properties from one class are
inherited by another. We’ll show a very quick example of this by writing a class
called Product. Here’s the shell:

class Product extends Category
{

var $product_id;
var $product_name;
var $product_price;

}

Notice the use of the word extends. This tells PHP that all of the products and
methods available in Category should be available in Product. If we wanted to call
the delete_category() method from within the Product class, we could call it
with $this->delete_category($category_id).

Chapter 7: Writing Organized and Readable Code 185

3537-4 ch07.f.qc 12/15/00 15:22 Page 185

In PHP, constructor methods of parent classes are not automatically run

when the child class is called. For example, calling $p = new Product will

not run the Category() method.

Now we’ll add a quick constructor method:

class Product extends Category
{

var $product_id;
var $product_name;
var $product_price;

function Product($product_id=0)
{

//expecting a product_id to be passed
if ($product_id ==0)

{
return FALSE;

}

$query = “select product_name, product_desc,
product_price, category_id from
products where product_id = $product_id”;

$result = mysql_query($query);
list($this->product_name, $this->product_desc,

$this->product_price) =
mysql_fetch_array($result)
;

$this->Category($category_id);

}
}

Notice that this method not only assigns values to the properties for this product,
it also calls the constructor of the Category class, which then assigns values to those
properties. Note that because of inheritance, we could write a script as follows:

require ‘classes.php’;

$p = new Product($product_id);
echo $p->category_name;

You see that the properties of Category are available to the Product object.

Tip

186 Part II: Working with PHP

3537-4 ch07.f.qc 12/15/00 15:22 Page 186

Object-Oriented Code versus
Procedural Code
Here’s the million-dollar question: In your applications, should you use object-
oriented code or procedural code? This is another topic that inspires religious
debate. But really there is no need for that because there is a correct answer: It
depends. If you have an extensive background in object-oriented programming,
and you are more comfortable coding classes, do that. However, if you dislike the
way object-oriented code works, use only functions.

There are a few large class libraries on the included CD-ROM, including

some taken from Manual Lemos’ impressive site http://phpclasses.

upperdesign.com. His form creation and validation class is truly epic, but

it may be a bit unwieldy for some.

Object-oriented code comes with a couple of advantages and disadvantages.
Weigh them and decide for yourself if you should use classes or just functions.

Advantages:

◆ You can save time using the object-oriented approach.

◆ You can make highly reusable pieces of code.

◆ You can make use of extensive class libraries available for free on the Web.

Disadvantages:

◆ It’s slower than the procedural approach.

◆ The syntax can be confusing at first.

◆ Web programming does not make use of many of the advantages of
object-oriented code.

◆ If you’re using very large class libraries, there may be a performance hit.

Comments
In any programming language, comments are essential — not only to you as you’re
writing the code, but to those who come to the code after you. What may be
crystal-clear to you may be absolutely unreadable to others. Or, if you’ve had to do
something particularly complex, you might find that you don’t even understand

ON THE CD

Chapter 7: Writing Organized and Readable Code 187

3537-4 ch07.f.qc 12/15/00 15:22 Page 187

what you were thinking if you come back to the code a couple of months after you
wrote it.

In PHP, you can indicate comments with two slashes (//), with a hash (#), or by
surrounding commented code with /* and */. This last method is particularly helpful
for multi-line comments.

Comment all of your functions, what they do, what they are expecting, and what
they return. Make sure to make note of any variables that could be tough to track.

As you look through the /functions directory of the CD, you will see that every
function has an initial comment that mimics the style used in the PHP manual.
For example,

int fetch_record (string table name [, mixed key [, mixed value]])

Then we provide some description as to what these arguments mean and the sig-
nificance of the return value. When writing the body of the function, you should
comment on anything that would not be intuitive to someone coming to the script
at a later date. If you have a series of functions that perform some complex string
handling or use lengthy regular expressions, make sure to note exactly what those
functions are intended to accomplish. For example, we will reprise this line of code:

$file_ext = strtolower(substr($file, strrpos($file,”.”)));

This isn’t especially difficult to figure out, but you could sure help the next person
coming to this line with a simple comment.

//get characters following the final dot
//and make lowercase
$file_ext = strtolower(substr($file, strrpos($file,”.”)));

The other important thing to comment is the overall logic of pages, especially
long pages. Often a script will behave differently in varying circumstances.
Variables passed from forms, errors, and other factors will effect what portions of
script will run. At the top of the page, you can indicate what factors will affect the
page’s logic and then as you reach different if blocks, explain where the conditions
are coming from and what they mean.

For a brief example, take the confirm_delete.php page from Chapter 8,
Guestbook2k:

/*
his script will only run if the user is logged in.
It will be accessed in two circumstances:

-- The “Delete Entries” button was pressed on
the edit.php page. (Normally this will be the
first time to this script). The ids of the
records to be deleted are passed in the entry_id

188 Part II: Working with PHP

3537-4 ch07.f.qc 12/15/00 15:22 Page 188

array.
-- The “Confirm Delete” button was pressed on this

page. This will comfirm the deletion and run the
delete queries.

*/
include(“header.php”);
include(“authenticate.php”);

$page_title = “Confirm Changes”;
include(“start_page.php”);

//if coming from edit_page.php. The first time to
//this script. Print a form with checkboxes that
//the user must check in order to confirm deletion.
if ($submit == “Delete Entries”)
{

//the form contains no action, so it will submit
//to the same page, and the value of submit will be
//”Confirm Delete”
print “<form method=post>\n”;
if (is_array($entry_id))
{

while (list($key,$value) = each($entry_id))
{

print “Delete entry #$value?\n”;
print “<input type=hidden name=\”entry_id[]\”

value=\”$value\”>\n”;
}

}
print “
<input type=submit name=submit value=\”Confirm

Delete\”>\n”;
print “<input type=hidden name=offset value=\”$offset\”>\n”;
print “</form>\n”;

}

//if the page has been submitted to itself,
//to confim that the deletion should happen.
elseif ($submit == “Confirm Delete”)
{

//loop through each element in the entry_id array
//and run a delete query for each item.
while (list($key,$value) = each($entry_id))
{

print “Deleting entry #$value\n”;
$q = “delete from guestbook where entry_id = $value”;

Chapter 7: Writing Organized and Readable Code 189

3537-4 ch07.f.qc 12/15/00 15:22 Page 189

mysql_query($q) or die(“Invalid query:$q”);
}

}
else
{

print “No action to confirm\n”;
}

We will end this section on a word of caution: don’t over comment. Commenting
every single line, or making the obvious even more obvious is annoying. For example,
the following comments are completely unnecessary and will only make your scripts
difficult to read.

//make string lowercase
$str = strtolower($str);
//increase $i by 1
$i++

Commenting calls for good judgement. You don’t want to comment too much,
you don’t want to comment too little. My best advice is to take a look at how many
programmers comment their code and pick a style that you like. We use one method
for the applications in this book; others have different styles.

The PEAR directory of your PHP installation is a great place to look for tips on
good coding style. PEAR stands for PHP Extension and Application Repository. It is
a growing set of scripts that contains a series of best practices for programming
with PHP. The folks working on PEAR are real pros who write terrific code. We rec-
ommend looking through the scripts in that directory to glean some tips on writing
quality code.

Summary
In this chapter we have presented some ways to write clean and organized code.
When you look at your scripts, you should ask yourself a few questions. Are there
blocks of code that are common to every page? Maybe those blocks should be
moved into an include. Are there chunks of code that I’m writing over and over
again? Perhaps writing a function would save time. Is the next person who comes to
this script going to be able to figure out what I’ve been doing? If not, make sure that
you add enough comments to make things clear.

You will need to decide whether or not an object-oriented approach is good for
you and the application you’re writing. The fact is that if you’re not immediately
sure, the answer if probably no. Make sure you are comfortable writing clean pro-
cedural code before you jump into classes.

Now that you’ve done all the required reading, it is time to move into Part III,
where we put PHP and MySQL to work.

190 Part II: Working with PHP

3537-4 ch07.f.qc 12/15/00 15:22 Page 190

Chapter 8

Guestbook 2000, the
(Semi-)Bulletproof
Guestbook

IN THIS CHAPTER

◆ Learning the power of guestbook 2000

◆ Organizing your code in a reasonable way

◆ Writing good, reusable functions

IN THIS CHAPTER WE WILL develop the first of our applications — a guestbook.
Guestbooks aren’t complex and they aren’t very exciting. However, this application
does give us the chance to introduce some concepts such as validation and put
many of the practices discussed earlier in this book to work.

In the Introduction of this book we introduced some code that could be used for
the most basic guestbook possible. However, using that code for your guestbook is
not a good idea. It’s got all kinds of holes that will allow malicious people out there
to mess with your pages. There is another problem with the ultra-basic guestbook:
given the way the code is just dumped into one page, there’s not a line that’s
reusable. One of the top goals of developing any application is to create chunks of
reusable code.

Determining the Scope and
Goals of the Application
The easiest way to get yourself into trouble when coming at an application is to not
know exactly what you are trying to achieve. A vital part of the developer’s job is
to figure out exactly what is needed in the application. Usually this will involve
extensive discussion with the people for whom the application is being developed.
During these discussions, it is important to think a step ahead and ask questions
that may not have been considered. What if the scope increases in a certain way?

193

3537-4 ch08.f.qc 12/15/00 15:23 Page 193

What if additional information but related information needs to be tracked? All of
these things will affect the way you design your database and your scripts, and that
is why it is best to know the exact scope and goals of your application. Depending
on whom you’re working with, you may want to get some sketches of pages that
need to be developed.

The scope of this application is small and the goals are minimal. The guestbook
stores names, addresses and the like. (But, to tell the truth, the goal of this chapter
is not so much to show you how to write a guestbook as it to show you how to
write good, reusable, organized code for your applications.) In any case, you should
know what guestbook2k looks like before you proceed.

In this chapter, we’re not going to take the notion of creating good functions

as far as it can go. In the next chapter we’ll present a more extensive set of

functions that we’ll use throughout the rest of the book.

Necessary Pages
There are three basic pages: one for signing the guestbook, one for viewing the
guestbook, and one for administering the guestbook.

Figure 8-1 shows the page that gives the user the opportunity to sign the
guestbook. It’s pretty simple, a form with four text fields and one textarea field.
Additionally, there is a submit button and a reset button.

Figure 8-1: Page for signing the guestbook

NOTE

194 Part III: Simple Applications

3537-4 ch08.f.qc 12/15/00 15:23 Page 194

Next, there must be a way to see who has signed the guestbook. For the sake of
having readable Web pages, we created a page, shown in Figure 8-2, where only two
entries are printed on each page. At the bottom of the page are navigational ele-
ments that indicate whether there are previous or additional entries. These should be
conditional and should disappear appropriately when you are at the beginning or
end of the guestbook.

Figure 8-2: Page for viewing the guestbook

Finally, we need a page that enables you to delete entries you don’t want. The
page in Figure 8-3 seems to do the trick. Access to this page needs to be limited to
authorized users. You don’t want any old schmo going in and cleaning out your
guestbook.

What do we need to prevent?
The major problem that we need to tackle here is one that is common to any appli-
cation with form input. It is possible for vandals to input nasty code into your forms
that will screw up the pages for everyone else who comes along. If you used the
guestbook application in the Introduction you could be in serious trouble. Consider
what would happen if someone inserted the following code into a text field:

<script>alert(“boo”);</script>

Chapter 8: Guestbook 2000, the (Semi-)Bulletproof Guestbook 195

3537-4 ch08.f.qc 12/15/00 15:23 Page 195

Figure 8-3: Page for administering the guestbook

The next time the page loaded, the viewer would be greeted with the little treat
seen in Figure 8-4.

Figure 8-4: Results of a problem entry

196 Part III: Simple Applications

3537-4 ch08.f.qc 12/15/00 15:23 Page 196

If some jerk felt like it, he could screw up your page with all sorts of tags. This
code, for instance, would create the disaster seen in Figure 8-5.

Figure 8-5: Another problem entry

Additionally, this application requires some validation. When the user enters
information, this application is going to see that it makes sense. The application will
check for the following:

◆ E-mail addresses should contain an at symbol (@), one or more characters
before the @, and a dot somewhere after the @. E-mail validation can get
more complex (and will in later chapters).

◆ URLs should look like URLs, complete with an http:// prefix and at least
one dot.

◆ There must be some text entered in the name field. There’s little point in
a guestbook entry without a name.

◆ No e-mail address should appear more than once in the database.

Once the application has checked all of this, the user will need to be made aware
of any errors. Figures 8-6 and 8-7 show how we will indicate these errors.

Chapter 8: Guestbook 2000, the (Semi-)Bulletproof Guestbook 197

3537-4 ch08.f.qc 12/15/00 15:23 Page 197

Figure 8-6: Reporting bad information

Figure 8-7: Reporting duplicate entry

198 Part III: Simple Applications

3537-4 ch08.f.qc 12/15/00 15:23 Page 198

Designing the Database
We covered the normalization process in Chapter 1 and before long we’ll put these
normalization skills to work. For this application the set of information is pretty
simple. So simple, in fact, that a single table will do the job. Actually, this isn’t quite
true. For administrative purposes, you should create a table against which user
names and passwords can be authenticated. Here are the create statements that will
make the tables.

create table guestbook
(

entry_id integer not null auto_increment,
name varchar(40) null,
location varchar(40) null,
email varchar(40) null,
url varchar(40) null,
comments text null,
created timestamp,
remote_addr varchar(20) null

, key guestbook_key (entry_id)
);

create table guestbook_admin
(

username varchar(50) not null,
password varchar(255) not null

);

When adding a user to the guestbook_admin table, it would be best to encrypt
the password. The easiest way to do this is by using MySQL’s password function.

insert into guestbook_admin (username, password)
values (‘jay’, password(‘rules’));

After you’ve run this command, the actual value stored in the password column is
065cb7f12ad99fe3. When you need to find out whether a user knows the password,
you can use the password function again.

select * from guestbook_admin where
username = ‘jay’ and
password = (password(‘rules’));

Chapter 8: Guestbook 2000, the (Semi-)Bulletproof Guestbook 199

3537-4 ch08.f.qc 12/15/00 15:23 Page 199

Code Overview
In this, the first of your applications, you need to look at the architecture you
will use in constructing your applications. The applications on the CD have been
constructed so that they are as reusable and portable as possible.

To start with, there is a folder named book, which should be copied to the root
directory of your Web server. On Apache this folder is named htdocs by default. The
book folder contains all the applications documented in this book. If you need for
some reason to copy the book folder to a spot other than the root directory, you’ll
need to make sure to change the include commands at the top of header.php.
Figure 8-8 shows the folder structure.

Figure 8-8: Application folder structure

Within the book folder, there is a series of folders, one for each of the applica-
tions presented here and one labeled functions. In this application we will concern
ourselves with basic.php. This file will contain some functions that you will use in
a variety of applications. We’ll discuss the functions in basic.php that are used in
guestbook2k in the section entitled “Code Breakdown.” The code that is relevant
only to guestbook2k is kept in the guestbook2k folder. Here, the functions that will
need to be addressed across a number of pages are kept in the header.php file. We
will also explain these functions in detail in the “Code Breakdown” section.

200 Part III: Simple Applications

3537-4 ch08.f.qc 12/15/00 15:23 Page 200

The pages that are called from the browser are named intuitively: view.php,
sign.php, and edit.php. Each of these pages calls start_page.php and end_page.php.
These contain standard header and footer information and are easy enough to read,
so they we won’t discuss them here.

You may find the view.php, sign.php, and edit.php files surprisingly short. They
only contain a couple of dozen lines of code each. This is because just about every-
thing is written in reusable functions.

So once again the important thing is to understand the functions that are kept in
/book/functions/basic.php and /book/guestbook2k/header.php.

Code Breakdown
As mentioned in the previous section, the vast majority of the work is done in func-
tions, and these functions are kept in files that will be included in the pages called
from the browser.

Reusable functions
Here we will cover the contents of function/basic.php and guestbook/header.php

FROM FUNCTIONS/BASIC.PHP
We can address these in any order — alphabetical seems as good as any.

AUTHENTICATE() This little function sends a 401 HTTP response code. This header
forces your browser to open the username and password box shown in Figure 8-9.

function authenticate ($realm=”Secure Area”
,$errmsg=”Please enter a username and password”

)
{

Header(“WWW-Authenticate: Basic realm=\”$realm\””);
Header(“HTTP/1.0 401 Unauthorized”);
die($errmsg);

}

The values entered into these text fields are set to PHP variables $PHP_AUTH_
USER and $PHP_AUTH_PW. PHP can then query MySQL to check if the values are
stored in the database. Note that this function merely sends the header. It does
nothing to check the values entered in the text boxes. They are checked in the
guestbook2k/authenticate.php file. This function is called if either no values have
been entered or the values match nothing in the database.

If the user hits the Cancel button the string stored in $errmsg is printed.

Chapter 8: Guestbook 2000, the (Semi-)Bulletproof Guestbook 201

3537-4 ch08.f.qc 12/15/00 15:23 Page 201

Figure 8-9: Results of a 401 unauthorized header

This type of authentication is available only if PHP is installed as an Apache

module. If you are using PHP as a CGI, which is the only way to run it under

Windows, this will not work. If you are doing some development work on

Windows, go into the applications comment out the calls to authenticate()

and create an include for win_authenticate.php file.

CLENUP_TEXT() This function goes a long way toward making sure we don’t
insert malicious text in our database.

function cleanup_text ($value = “”, $preserve=””, $allowed_tags=””)
{

if (empty($preserve))
{

$value = strip_tags($value, $allowed_tags);
}
$value = htmlspecialchars($value);
return $value;

}

Tip

202 Part III: Simple Applications

3537-4 ch08.f.qc 12/15/00 15:23 Page 202

This function accomplishes two things. First, it removes all HTML tags. The
strip_tags() function takes care of that. No need to worry about malicious
Britney Spears pictures here — unless you want them. You can indicate tags you
want to keep with the second argument ($allowed_tag). For instance if you wanted
to allow bold and italic tags, the second argument to strip_tags() could be a string
like this: “<i>”.

Then html_specialchars() changes ampersands and double quotes to their proper
HTML entities (& and "). After being run through this little function,
your text is ready to be inserted in the database.

SAFE_QUERY() This function will save you from pulling your hair out when
you’re trying to get your queries right.

function safe_query ($query = “”)
{

if (empty($query)) { return FALSE; }
$result = mysql_query($query)

or die(“ack! query failed: “
.”errorno=”.mysql_errno()
.”error=”.mysql_error()
.”query=”.$query

);
return $result;

}

Throughout the application, you will run our queries through this function. This
way, if the query fails for some reason, you will get a pretty good idea of what
happened. This is another example of safe coding. After troubleshooting your code,
you won’t run into these problems often, but if a change is made somewhere
(perhaps without your knowledge) you’ll get a pretty good idea of what’s going on.

For a site that is publicly available, there is a danger in running every query

through this function. If a query fails, a hacker is likely to see more about

your setup than you’d like.To prevent this from happening you could define

a constant (discussed shortly) that prevents the function from printing out

descriptive errors. Something like this:

function safe_query ($query = “”)
{

if (empty($query)) { return FALSE; }

if(QUERY_DEBUG == “Off”)
{

$result = mysql_query($query) or

Tip

Chapter 8: Guestbook 2000, the (Semi-)Bulletproof Guestbook 203

3537-4 ch08.f.qc 12/15/00 15:23 Page 203

die (“Query failed: please
conatact the Webmaster”);

}
else
{
$result = mysql_query($query)

or die(“ack! query failed: “
.”errorno=”.mysql_errno()
.”error=”.mysql_error()
.”query=”.$query

);
}
return $result;

}

FROM /GUESTBOOK2K/HEADER.PHP
Once again, this file will be included in every page in this application. It will keep
all of the functions specific to this application. In addition, there are a few details
that the first few lines of this application will see to. Notice the use of the variable
$DOCUMENT_ROOT. This is an Apache variable, accessible through PHP, which indi-
cates the default root folder. By making use of this variable, our entire application
becomes portable. If we move the entire book folder and all of its sub-folders, these
files will be found and accessed properly. Keep in mind that this is an Apache vari-
able; your operating system and Web server may require a different variable. Check
phpinfo() to make sure.

include(“$DOCUMENT_ROOT/book/functions/charset.php”);
include(“$DOCUMENT_ROOT/book/functions/basic.php”);
$conn = mysql_connect(“localhost”, “username”,”password”) or

die(“could not connect to database”);
mysql_select_db(“guestbook2k”, $conn)

die(“could not select guestbook2k”);

define(“PAGE_LIMIT”, 2);

The first line includes our default character set. The charset.php file contains just
one line:

header(“Content-Type: text/html; charset=ISO-8859-1”);

204 Part III: Simple Applications

3537-4 ch08.f.qc 12/15/00 15:23 Page 204

This function will help prevent people from sending you values encoded in a dif-
ferent character set. If they did send text in a different character set, the functions
in cleanup_text() would fail, and you would still be open to some cross-site
scripting hacks. This is a difficult problem. If you want more details check out these
articles:

http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://www.apache.org/info/css-security/encoding_examples.html

Here we’ve included something interesting: a constant, here named PAGE_LIMIT.
A constant is like a variable in that it contains a value (in this instance, 2). However,
that value cannot be changed by a simple assignment or by functions other than
define(). Constants do not run into the same scope problems that are encountered
with variables, so they can be used within functions without having to pass them is
arguments or worry about declaring globals. After running the define() function,
the constant PAGE_LIMIT will be available everywhere in my script.

PAGE_LIMIT decides the number of entries that will be viewable on each page.
You are welcome to change this if you would like to see a larger number.

If you are putting together a query using a constant, you will have to end

your quoted string in order to make use of the constant value. For example,

query = “select * from db_name limit PAGE_LIMIT”

will confuse MySQL, because PHP has not replaced the name of the constant

with its value. However, this will work:

query = “select * from db_name limit “ . PAGE_LIMIT

PHP has many built-in constants you can use within your scripts. A list of

constants is included in the PHP manual: http://www.php.net/manual/

language.constants.php

PRINT_ENTRY() This prints the results of a query within a table.

function print_entry($row,$preserve=””)
{

$numargs = func_num_args();
for ($i = 2; $i < $numargs; $i++)
{

$field = func_get_arg($i);
$dbfield = str_replace(“ “, “_”, strtolower($field));

NOTE

Tip

Chapter 8: Guestbook 2000, the (Semi-)Bulletproof Guestbook 205

3537-4 ch08.f.qc 12/15/00 15:23 Page 205

$dbvalue = cleanup_text($row[$dbfield],$preserve);
$name = ucwords($field);
print “ <tr>\n”;
print “ <td valign=top align=right>$name:</td>\n”;
print “ <td valign=top align=left>$dbvalue</td>\n”;
print “ </tr>\n\n”;

}
}

The easiest way to see how this function works is to take a look at the line of
code that calls a function. This snippet was taken from the view.php file:

print_entry($row,$preserve,”name”,”location”,”email”,”URL”,”entry
date”,”comments”);

Notice that the function itself has only two default arguments ($row and
$preserve), while the call to the function has nine arguments. The first argument,
$row, is a row from a database call. It is expecting that a row was taken from a
query using mysql_fetch_array() so that the contents of row are an associative
array, the keys of which are equal to the column names of the database table. The
second argument, $preserve, is needed for the cleanup_text function, which we
have discussed previously. The rest of the arguments are equivalent to associative
keys in $row.

The arguments sent to any user-defined function make up an array. The number
of the final element in the array can be retrieved with func_num_args(). Using the
call to print_entry() seen above, the previous paragraph, func_num_args()
would return 8. (There are 9 arguments, the first of which is 0.)

The value of each argument can then be accessed with func_get_arg(). This
allows for a structure like the one used here, where a loop accesses and then
processes each argument sent to the function. The first time through the for loop,
$field is assigned the third element in the array, “name”. You can use the value in
$field to access an element in the associative array $row ($row[“name”]).

After you make sure the argument contains no capital letters or spaces, the value
is sent to the cleanup_text function and printed.

It’s nice to structure a function this way because it allows an arbitrary number of
arguments to be sent to the function. You could include one or many fields to print.

PRINT_INPUT_FIELDS() This function works much like print_entry(). func_
get_args() makes $field an array, each element of which is an argument sent to
the function. The list structure moves through all elements in the array and prints a
text field for each. The name of the field will be in one table cell, and the input box
will be in an adjoining cell.

function print_input_fields()
{

206 Part III: Simple Applications

3537-4 ch08.f.qc 12/15/00 15:23 Page 206

$fields =func_get_args();
while (list($index,$field) = each($fields))
{

print “ <tr>\n”;
print “ <td valign=top

align=right>”.ucfirst($field).”:</td>\n”;
print “ <td valign=top align=left><input type=text

name=$field size=40 value=\””.$GLOBALS[“last_$field”].”\”></td>\n”;
print “ </tr>\n\n”;

}
}

Notice the use of a global variable for the default value of the text field. This is
here in the event that the user enters bad information and the information needs to
be re-presented with the values he or she entered. Why would information need to
be printed a second time? That should make perfect sense after you read about the
next function, create_entry().

CREATE_ENTRY We are not going to simply dump user information into the data-
base. First it needs to be verified.

function create_entry($name,$location,$email,$url,$comments)
{

// remove all HTML tags, and escape any
//other special characters
$name = cleanup_text($name);
$location = cleanup_text($location);
$email = cleanup_text($email);
$url = cleanup_text($url);
$comments = cleanup_text($comments);

// start out with an empty
//error message. as validation tests fail,
// add errors to it.
$errmsg = “”;
if (empty($name))
{

$errmsg .= “you have to put in a name, at least!\n”;
}

// do a very simple check on the format of the email address
// supplied by the user. an email address is required.
if (empty($email) || !eregi(“^[A-Za-z0-9_-]+@[A-Za-z0-9_

-]+.[A-Za-z0-9_-]+.*”, $email))
{

Chapter 8: Guestbook 2000, the (Semi-)Bulletproof Guestbook 207

3537-4 ch08.f.qc 12/15/00 15:23 Page 207

$errmsg .= “$email doesn’t look like a valid email
address\n”;

}
else
{
// if the format is OK, check to see if this user has already
// signed the guestbook. multiple entries are not allowed.

$query = “select * from guestbook where email = ‘$email’”;
$result = safe_query($query);
if (mysql_num_rows($result) > 0)
{

$errmsg .=
“$email has already signed this guestbook.\n”;

}
}

// perform a very simple check on the format of the url supplied
// by the user (if any)
if (!empty($url) && !eregi(“^http://[A-Za-z0-9\%\?_\:\~\/\.

-]+$”,$url))
{

$errmsg .= “$url doesn’t look like a valid URL\n”;
}

if (empty($errmsg))
{

$query = “insert into guestbook “
.” (name,location,email,url,comments,remote_addr) values “
.”(‘$name’, ‘$location’, ‘$email’, ‘$url’,

‘$comments’,’$REMOTE_ADDR’)”
;
safe_query($query);

print “<h2>Thanks, $name!!</h2>\n”;
}
else
{

print <<<EOQ
<p>

$errmsg

Please try again

208 Part III: Simple Applications

3537-4 ch08.f.qc 12/15/00 15:23 Page 208

</p>
EOQ;

}
return $errmsg;

}

This function is going to make sure that the information entered is moderately
useful. If there are problems with the information, a text string describing the prob-
lem will be assigned to the variable $errmsg. If, after the function is executed,
$errmsg is empty, the values will be inserted into the database. Otherwise the error
message will be printed, and the values the user entered will be assigned to globals so
that they can be printed as the default values in the text fields the next time through.

In order, this function checks for the following:

◆ That the name field contains something

◆ That the e-mail address is potentially a proper address (contains text, an
@, and a period (.)) Note that this is not very strong validation of e-mail.
It takes a very long and complicated script to thoroughly validate an
email, as you will see in later chapters.

◆ If the e-mail looks okay, that this e-mail address hasn’t been entered in
the database already

◆ That the URL is potentially valid

Check Appendix F for more detail on regular expressions.

SELECT_ENTRIES() This function’s sole purpose is to put together your database call.

function select_entries ($offset=0)
{

if (empty($offset)) { $offset = 0; }

$query = “select *
, date_format(created,’%e %M, %Y %h:%i %p’) as entry_date
from guestbook
order by created desc
limit $offset, “ . PAGE_LIMIT

;
$result = safe_query($query);

return $result;

XREF

Chapter 8: Guestbook 2000, the (Semi-)Bulletproof Guestbook 209

3537-4 ch08.f.qc 12/15/00 15:23 Page 209

You already know that PAGE_LIMIT sets the number of records displayed per
page. As the second argument in the limit clause, the $offset variable indicates
which records will be returned from the query. If you are having problems under-
standing $offset, take a look at the explanation of the limit clause in Chapter 3. A
value for $offset will be passed through the navigational elements. We’ll examine
this in detail when we discuss the next function.

To retrieve the date value in a readable way, this query makes use of MySQL’s
date functions. MySQL stores the date and time as a 14-digit number (YYYY:MM:
DD:HH:SS), but it’s nicer to return the date information in a way that’s easier for
humans to read. The MySQL date_format function retrieves the information in the
way we want to use it. This function and many other MySQL functions are dis-
cussed in Appendix I.

NAV() This function’s sole purpose is to create navigational elements.

function nav ($offset=0,$this_script=””)
{

global $PHP_SELF;

if (empty($this_script)) { $this_script = $PHP_SELF; }
if (empty($offset)) { $offset = 0; }

// get the total number of entries in the guest book -
// we need this to know if we can go forward from where we are
$result = safe_query(“select count(*) from guestbook”);
list($total_rows) = mysql_fetch_array($result);

print “<p>\n”;
if ($offset > 0)
{

// if we’re not on the first record, we can always go
backwards
print “<a href=\”$this_script?offset=”.($offset-PAGE_

LIMIT).”\”><<Previous Entries “;
}
if ($offset+PAGE_LIMIT < $total_rows)
{

// offset + limit gives us the maximum record number
// that we could have displayed on this page. if it’s
// less than the total number of entries, that means
// there are more entries to see, and we can go forward
print “Next
Entries>> “;

210 Part III: Simple Applications

3537-4 ch08.f.qc 12/15/00 15:23 Page 210

}
print “</p>\n”;

}

When appropriate, this function will insert links that will enable the user to view
the next set of entries, the previous entries, or both. It is all determined by the
$offset variable and the PAGE_LIMIT constant.

The first time through there will be no value for $offset, and therefore there will be
no previous entries link (because $offset will not be greater than 0). But if there are
more rows to be displayed, a link will be created that creates a value for $offset to
be accessed if that link is followed.

Say it’s the first time we’re executing this function, so $offset has no value, and
there are 10 rows in the database. When it reaches the last if..., the script will see
that there are more rows to be displayed ($offset + PAGE_LIMIT = 2, which is less
than 10), and so the following link will be printed.

Next Entries>>

Interesting code flow
Once you understand how the functions presented thus far work, you should have
no problem figuring out how guestbook2k works. For the most part, very, very little
work is done in the pages called by the browser. These pages are pretty much an
assemblage of function calls.

We will break down one file in detail so you can get the feel of how this structure
works. Most of the rest you should be able to figure out by flipping between the files
and the explanations of the functions. In the following sections we will walk
through the view.php file.

VIEWING ENTRIES
Here is the logical flow of the code.

<?php
include “header.php”;

$page_title = “View My Guest Book!!”;
include “start_page.php”;
?>

The first thing you need to do in every page is include the header.php file. This
will allow access to all of the functions we outlined previously. After that you
should include standard header information from start_page.php. You have to
declare $page_title prior to including start_page.php, so that the title can be printed
in a standard way across every page.

Chapter 8: Guestbook 2000, the (Semi-)Bulletproof Guestbook 211

3537-4 ch08.f.qc 12/15/00 15:23 Page 211

<table border=0>

<?php

if (empty($offset)) { $offset = 0; }

$result = select_entries($offset);
$preserve = “”;
while ($row = mysql_fetch_array($result))
{

print_entry($row,$preserve,”name”,”location”,”email”,”URL”,”entry
date”,”comments”);
print “<tr><td colspan=2> </td></tr>\n”;

}
mysql_free_result($result);
?>

</table>
<?php
nav($offset);

include “end_page.php”;
?>

This is it. You determine a value for $offset, run the query with the select_
entries() function, and then print the results by running the print_entry()
function within a while loop. Navigational elements are determined by the nav()
function.

DELETING ENTRIES
The most complex portion of this application involves deleting entries from the
guestbook. This stands to reason because you don’t want your guestbook being
fooled by anonymous users. So the first thing you need to do before deleting
an entry is authenticate users. When discussing the authenticate() function, we
showed how an HTTP 401 header will bring up the browser’s username and
password dialog box. The values entered then need to be checked against the
guestbook_admin database table. The authenticate.php file takes care of this for
you, which is why this file is included in the edit.php file.

The heart of authenticate.php is this:

if (empty($PHP_AUTH_USER))
{

authenticate($realm,$errmsg,”header”);
}

212 Part III: Simple Applications

3537-4 ch08.f.qc 12/15/00 15:23 Page 212

else
{

$query = “select username from guestbook_admin where password =
password(lower(‘$PHP_AUTH_PW’)) and username =
lower(‘$PHP_AUTH_USER’)”;

$result = mysql_query($query);
if ($result) { list($valid_user) = mysql_fetch_row($result); }
if (!$result || empty($valid_user))
{

authenticate($realm,$errmsg,”query”);
}

}
print “<p>Editing as $PHP_AUTH_USER</p>\n”;

If no username has been entered the header is sent through your authenticate()
function. If the username does exist, a query is sent to the database to validate the
user. If a row is returned, the user is validated and can continue working; otherwise
the header is sent again.

Once a valid username and password have been entered, the remainder of the
edit.php file will be sent. But this time, in addition to all the other information, the
checkbox will be included, so the user can decide which entries should be deleted.
The value of the checkbox will be the primary key of the guestbook table.

while ($row = mysql_fetch_array($result))
{

print_entry($row,$preserve,”name”,”entry
date”,”location”,”email”,”URL”,”comments”);

print “ <tr>\n”;
print “ <td valign=top align=right>Delete?</td>\n”;
print “ <td valign=top align=left><input type=checkbox

name=\”entry_id[]\” value=\””.$row[“entry_id”].”\”> Yes, delete
entry #”.$row[“entry_id”].”</td>\n”;

print “ </tr>\n\n”;

print “<tr><td colspan=2> </td></tr>\n”;
}

This form is then submitted to the confirm_delete.php file. Notice how you’re
passing an array here. The name of the form element is entry_id[], which means
that when this form is passed to PHP, entry_id will become an array. The number of
values in the array depends on the number of boxes checked. HTTP will not send
the unchecked boxes at all.

Chapter 8: Guestbook 2000, the (Semi-)Bulletproof Guestbook 213

3537-4 ch08.f.qc 12/15/00 15:23 Page 213

The first time through the confirm_delete.php file, we will print out the entries.
This will make the person deleting these entries make sure he or she isn’t doing
something stupid.

while (list($key,$value) = each($entry_id))
{

print “Delete entry #$value?\n”;
print “<input type=hidden name=\”entry_id[]\”

value=\”$value\”>\n”;
}

If any of these entries are to be deleted, this page will submit to itself, with a
different value (Confirm Delete) sent with the submit button. This will make the
following code run:

while (list($key,$value) = each($entry_id))
{

print “Deleting entry #$value\n”;
$q = “delete from guestbook where entry_id = $value”;
safe_query($q);

}

We loop through the $entry_id array, deleting records for each member.

Scripts
There are a few more scripts, but these don’t warrant much discussion. sign.php,
start_page.php, end_page.php, and confirm_delete.php, are included on the CD. We
suggest you look at them and the comments to get a feel for how they fit into the
application.

Summary
The skills you learned here may not get you the big bucks as a programmer, but
there if you understand everything that is being done here, you should be in pretty
good shape as you move forward in your PHP programming life.

In particular, you should see the priority that is put on creating reusable code.
Nearly everything we have is in functions. This makes it much more likely that the
code we write will be usable in some future application.

Additionally, you got to see some basic validation. Validation is an important
concept and one you will need to take very seriously when your application allows
for user input. If you’d like to see how seriously some people take validation, check
out Manual Lemos’ form validation class, which is included on the CD.

214 Part III: Simple Applications

3537-4 ch08.f.qc 12/15/00 15:23 Page 214

Chapter 9

Survey
IN THIS CHAPTER

◆ Learning functions for creating HTML tags

◆ Understanding data that use a relational structure

◆ Putting MySQL’s date functions to work

IF A GUESTBOOK IS the most common application on the Web, a survey isn’t far
behind. Many sites have some sort of widget that lets you choose you favorite color
or sports hero, or whatever, to see what percentage of voters take what stance. So
let’s go forth and create a survey.

In this application there will be a bit more complexity than you saw in Chapter 8.
The programming will get a bit trickier, and the administration of the application
will require more work. Unlike the guestbook, this application will require some
knowledge of database theory. There are related tables, complete with the primary
and foreign keys discussed in Section 1 of this book. This means that your SQL
queries will include joins.

Determining the Scope and
Goals of the Application
A survey application could be ultra-simple. If you wanted only to gather responses
from a single question and return basic statistical information on the responses
(how many votes for choice A, B, and so on), you wouldn’t need a whole lot of code
(or a chapter explaining it). A single table that stored answers would do the trick.
The question could even be hard-coded into the HTML. But that would not make for
very interesting learning experience, would it?

It gets more interesting if there can be any number of questions. Instead of just
one, this application will allow for two, five, ten, or more — whatever you want. Not
only that, this survey will record demographic information (such as age and coun-
try of origin) and allow for sorting on the basis of this information. We also decided
to add the ability to pick a winner from those who filled out the personal informa-
tion — this might encourage people to give real rather than fictitious answers.

There is one more wrinkle to discuss here. There is really no way to create a sur-
vey application that records perfect data. Even if you go to extreme lengths, there 215

3537-4 ch09.f.qc 12/15/00 15:23 Page 215

will always be an opportunity for the shrewd and persistent to submit multiple
entries. But in all likelihood your survey will not have to pass muster with the
Federal Elections Commission. A small step to weed out those ruining your survey
should do the trick, and you will see one way to accomplish this later on.

Necessary Pages
Entering and viewing information will require three pages. The first is where the
questions will be presented and where the user will enter name, address, and geo-
graphic and demographic information. A second page will show the basic survey
results. A third will give a detailed breakdown. Figures 9-1, 9-2, and 9-3 show these
pages respectively.

Figure 9-1: Page for filling out survey

Note that for this application you will use a .gif file for your chart. The script will
change the size attributes of the gif in the tag to give a representation of the
information. This works, but isn’t necessarily ideal. You could install the gd
libraries and compile PHP with the –with-gd flag. These functions are beyond the
scope of this book.

This application, like all others, needs some administrative tools. For starters,
you will need to be able to add, delete, and edit questions. Additionally, there is a
page that selects a winner at random from the database. Figures 9-4 and 9-5 show
the administrative page and the select winner page, respectively.

216 Part III: Simple Applications

3537-4 ch09.f.qc 12/15/00 15:23 Page 216

Figure 9-2: Basic survey results

Figure 9-3: Detailed survey results

Chapter 9: Survey 217

3537-4 ch09.f.qc 12/15/00 15:23 Page 217

Figure 9-4: Survey administration page

Figure 9-5: Select winner page

218 Part III: Simple Applications

3537-4 ch09.f.qc 12/15/00 15:23 Page 218

Winners will be notified via e-mail and sent a URL that they will need to travel to
in order to claim their prize. This page will look like the one in Figure 9-6. Once there
they will need to confirm who they are, just so you have an extra level of security.

Figure 9-6: Claim prize page

What do we need to prevent?
In the previous chapter we discussed methods for removing junk information that
people attempt to send through the form elements. We will continue to use these
functions here. This application will also do some e-mail address validation.

Want to see what it really takes to verify that an email is in the proper for-

mat? It takes a lot of work. Take a look at the CheckEmail.php file in /func-

tions directory on the CD. You can see that it takes multiple regular

expressions to make sure the e-mail is just right. Given that regular expres-

sions are fairly slow, you may be wondering if it is even worth running a

script like that, especially if you are running a site with very heavy traffic.You

will need to decide that for yourself. Do you need to make sure e-mails are

perfect, or will a simpler, less-robust form of validation be good enough?

Even if you make sure the address is in the proper format, there’s almost no

way to know if the address is attached to an actual mailbox.

NOTE

Chapter 9: Survey 219

3537-4 ch09.f.qc 12/15/00 15:23 Page 219

This application will provide you with a simple means for blocking some people
from entering information at your site. It’s nothing terribly sophisticated; a savvy
Internet user would be able to work around it in a minute. Using the form shown in
Figure 9-6 you will be able to enter a domain of origin that will be blocked from
the site. All users who enter data will have their REMOTE_HOST variable checked
against a table in the database. If that host is found, the application will refuse that
user access. Again, this isn’t perfect. Depending on the ISP used, some clients won’t
even identify the REMOTE_HOST in the HTTP header. If you really have sensitive
information and need effective means of blocking users, you should work with
some sort of login scheme. This is just an example of what you could do with a
database and HTTP header information.

You’ll also need to take some steps to make sure that the wrong people won’t be
claiming prizes. You’ll need to make sure that the people coming to claim prizes are
who they say they are.

Designing the Database
This survey application allows for any number of questions. Each question can
have any number of answers. To create this relationship you’ll need two tables, one
named questions and one named responses, that have a one-to-many relationship.
(Each (1) question can have (n) any number of answers.)

User information is best represented with multiple tables as well. A table named
users will store the relevant user information. Two tables, named states and coun-
tries, serve as lookup tables and have one-to-many relationships with the users
table.

Finally, there are two tables with relationships to no others. They store other
information this application needs to track. They are aptly named blocked_domains
and survey_admin.

Figure 9-7 shows a visual representation of the structure of the database. The
create statements for making these tables are shown in Listing 9-1. Note that these
table definitions were copied from the mysqldump utility. If you’re not aware of
mysqldump, or the other mysql utilities, make sure to check up on Appendix C.

220 Part III: Simple Applications

3537-4 ch09.f.qc 12/15/00 15:23 Page 220

Figure 9-7: Survey database schema

Listing 9-1: Create Statements for Survey

Table structure for table ‘age_ranges’
#

CREATE TABLE age_ranges (
min_age int(11) NOT NULL,
max_age int(11) NOT NULL,
age_range varchar(10)

);

--
#
Table structure for table ‘answers’
#

CREATE TABLE answers (
answer_id int(11) NOT NULL auto_increment,
question_id int(11),
answer text,
PRIMARY KEY (answer_id)

);

questions

questionid
question

answers

answer_id
question_id
answer text,

responses

answerid
questionid
answer

states

statename
state

survery_admin

username
password

blocked_domain

domain
blocked_by
blocked_dt
released_dt
notes
modify_dt

Winners

userid
weekdate
notify_dt
claim_dt
confirm_dt

countries

countries

users

userid
name
email
country
state

Chapter 9: Survey 221

3537-4 ch09.f.qc 12/15/00 15:23 Page 221

--
#
Table structure for table ‘blocked_domains’
#

CREATE TABLE blocked_domains (
domain varchar(30) NOT NULL,
block_by varchar(10) NOT NULL,
block_dt datetime DEFAULT ‘0000-00-00 00:00:00’ NOT NULL,
release_dt datetime,
notes text,
modify_dt timestamp(14)

);

--
#
Table structure for table ‘countries’
#

CREATE TABLE countries (
country varchar(30) NOT NULL

);

--
#
Table structure for table ‘questions’
#

CREATE TABLE questions (
question_id int(11) NOT NULL auto_increment,
question text NOT NULL,
KEY question_key (question_id)

);

--
#
Table structure for table ‘responses’
#

CREATE TABLE responses (
user_id int(11) NOT NULL,
answer_id int(11) NOT NULL

);

222 Part III: Simple Applications

3537-4 ch09.f.qc 12/15/00 15:23 Page 222

--
#
Table structure for table ‘states’
#

CREATE TABLE states (
statename varchar(30) NOT NULL,
state char(2) NOT NULL

);

--
#
Table structure for table ‘survey_admin’
#

CREATE TABLE survey_admin (
username varchar(50) NOT NULL,
password varchar(255) NOT NULL

);

--
#
Table structure for table ‘users’
#

CREATE TABLE users (
user_id int(11) NOT NULL auto_increment,
name varchar(50),
email varchar(50),
country varchar(20),
state char(2),
age int(11),
remote_addr varchar(15),
remote_host varchar(80),
create_dt timestamp(14),
KEY user_key (user_id)

);

--
#
Table structure for table ‘winners’
#

Chapter 9: Survey 223

3537-4 ch09.f.qc 12/15/00 15:23 Page 223

CREATE TABLE winners (
user_id int(11) NOT NULL,
weekdate datetime DEFAULT ‘0000-00-00 00:00:00’ NOT NULL,
notify_dt datetime,
claim_dt datetime,
confirm_dt datetime

);

Code Overview
If you already read the section by the same name in Chapter 8, the structure we use
here should be familiar to you. Items in the /functions folder are included and ready
for reuse.

It’s obvious that this survey application requires several more pages than the guest-
book: there’s more that needs to be done. Though you can include several actions in a
single page, and sort through the ones you need by passing variables and using if state-
ments, it can make code difficult to keep track of. Better to have several intuitively
named files that perform specific tasks. That said, there are pages in this application
that make use of variables in order to decide what action to take on a given page.

If you’ve done any Web work at all you know how tedious it can be to deal with
HTML tables and forms. For that reason, in this and most of the other applications
in this book, we will try to ease the pain involved in dealing with tables and forms.
In the following sections you will see several functions that will make life, in the
long run at least, a lot easier. The functions in the coming sections will make a lot
more sense if you see what they accomplish first. Here’s some code that will work
just fine if used with the following functions.

print start_table();
print table_row(

table_cell(“Cell text”)
);
print end_table();

If you don’t like the functions we’ve created for tables, forms, and other HTML

elements, don’t use them. It is perfectly acceptable (and perhaps even more

common) to type out HTML elements, rather than create them through func-

tions. Like many things in programming, it comes down to a matter of prefer-

ence. In a case like this there’s no right answer: Do what you prefer.

This will create a table with one cell. You could build on the complexity of this
by adding additional table_cell() calls within the table_row function call. You

NOTE

224 Part III: Simple Applications

3537-4 ch09.f.qc 12/15/00 15:23 Page 224

can do this because of PHP’s ability to deal with a variable number of arguments.
You can design the table_row function to loop through all of the arguments (some
of which are calls to the table_cell() function). You may be wondering how
these functions deal with table attributes, like width, align, and others. How could
you alter those for particular tables? These attributes and their values must be
included in the function call, so the attributes must be another argument in the
function call. The function will identify the attributes by variable type. That is, the
function will check the variable type of the argument, and if it is an array (an asso-
ciative array), the function will assume it contains attribute information, and will
turn the key/value pairs from the array into name=value attribute pairs in a string.
A more complex function call would look like this:

print (table_row (array(“bgcolor” => $bgcolor),
table_cell(“New entry”),
table_cell(text_field(“entered_by”, “”, “10”)),
table_cell(submit_field(“submit”, “insert”))
)

);

Here the first argument, (array (“bgcolor”=> $bgcolor)), identifies the row’s
background color; the remaining arguments create table cells. As an added bonus,
these table cells contain form elements.

Keep in mind that the methods for achieving nested function calls will be
explained later. The application will also be using more of MySQL. Throughout this
application, there is more extensive use of MySQL functions than seen in Chapter 8.

Code Breakdown
As with the guestbook application, the code here is divided for convenience. The
functions used exclusively by this application are in the /book/survery/header.php
file. This will be included in every file. The start_page.php and end_page.php will
contain header and footer information, respectively.

Since we covered the functions sitting in the /book/functions/functions.php file
in Chapter 8, we’re not going to go over it again here. But we did add a little bonus
this time around.

Reusable functions
As your applications get more complex, you’re going to need to continually use
some HTML ingredients — forms, tables, paragraph tags, anchors, and the like. For
this reason we’ve added a series of functions that make it easier to create those
repetitive HTML elements. We’ve also moved some of the commonly used database
functions into their own file.

Chapter 9: Survey 225

3537-4 ch09.f.qc 12/15/00 15:23 Page 225

FUNCTIONS FROM /BOOK/FUNCTIONS/DB.PHP
Some of this will look familiar if you’ve gone through the guestbook application in
Chapter 8. But know that for the rest of the applications, you can find these func-
tions in this file. We’re not going to cover every function, just those that require
some explanation.

SET_RESULT_VARIABLE() This function turns results of a query into global vari-
ables.

function set_result_variables ($result)
{

if (!$result || !mysql_num_rows($result)) { return; }
$row = mysql_fetch_array($result,MYSQL_ASSOC);
if (!is_array($row))
{
print $query.”no array returned : result=$result row=$row”;

return $result;
}
while (list($key,$value) = each($row))
{

global $$key;
$$key = $value;

}
}

If you remember our discussion about variable scope in Chapter 7, you’ll remem-
ber that variables passed through either GET or POST or declared outside of a func-
tion are globals, and they are available within the GLOBAL’s array.

Frequently, you are going to want to use the column names used in your query
as variables. It’s nice to be able to use them without having to go through the asso-
ciative array returned by mysql_fetch_array(). This function will turn the vari-
ables used in a query into globals throughout your script.

$query = “select distinct fname, lname from table_1 where id=1”;
$result=safe_query($query);
set_result_variables($result);

So this code will make the variables $fname and $lname, along with their values,
available as globals. If a result set with multiple rows is sent to the query, only the
first row is used by this function.

Note the use of variable variables in this function.

while (list($key,$value) = each($row))
{

global $$key;

226 Part III: Simple Applications

3537-4 ch09.f.qc 12/15/00 15:23 Page 226

$$key = $value;
}

Each element is taken from the array retrieved from mysql_fetch_array(). The
key (the column name) is declared as a global variable. Then that global is assigned
the contents of $value. Variable variables are discussed in Chapter 7.

This function is intended to work with the fetch_record() function docu-
mented next.

FETCH_RECORD() This function helps create simple queries.

function fetch_record ($table, $key=””, $value=””)
{

$query = “select * from $table “;
if (!empty($key) && !empty($value))
{

if (is_array($key) && is_array($value))
{

$query .= “ where “;
$and = “”;
while (list($i,$v) = each($key))
{

$query .= “$and $v = “.$value[$i];
$and = “ and”;

}
}
else
{

$query .= “ where $key = $value “;
}

}
$result = safe_query($query);
if (!empty($key) && !empty($value) &&

mysql_num_rows($result) == 1)
{

set_result_variables($result);
}
return $result;

}

It won’t be of much use if you need to use MySQL’s functions or if you need to
use fancy predicates (LIKE, GROUP BY HAVING). It doesn’t take a list of columns to
be selected from the database, but it can take multiple parameters and values in the
where clause.

Chapter 9: Survey 227

3537-4 ch09.f.qc 12/15/00 15:23 Page 227

First, check whether one value or multiple values have been sent in the $key and
$value variables. If scalar variables are sent, only one item will be added to the
where clause. If arrays are sent, they will be looped through and added to the where
clause.

If there is only one row returned by the query, it calls the set_result_
variables() function to set the columns and their values as global variables. In all
cases, the function then returns the entire result identifier from the query.

DB_VALUES_ARRAY() This function is extremely useful for creating drop-down
boxes and other form elements from a database table.

function db_values_array ($table=””, $value_field=””,
$label_field=””

, $sort_field=””
, $where=””

)
{

$values = array();

if (empty($table) || empty($value_field)) { return $values; }

if (empty($label_field)) { $label_field = $value_field; }
if (empty($sort_field)) { $sort_field = $label_field; }
if (empty($where)) { $where = “1=1”; }

$query = “select $value_field as value_field
, $label_field as label_field
from $table
where $where
order by $sort_field

“;
$result = safe_query($query);
if ($result)
{

while (list($value,$label) = mysql_fetch_array($result))
{

$values[$value] = $label;
}

}
return $values;

}

In this application, and many others that you’ll come across, there will be tables
in your database that will serve as “look up” tables. These are tables whose sole
purpose is to ensure that good information ends up as other tables. Take a look at

228 Part III: Simple Applications

3537-4 ch09.f.qc 12/15/00 15:23 Page 228

the diagram in Figure 9-6, and you will see that the countries and states tables
serve this purpose.

A query is carefully crafted. Aliases are set (using “as”) so that the column names
will match the attributes you wish to have in the forms. An associative array is then
created; the $value will serve as the key in this associative array and will probably
become the value attribute in the HTML form.

FUNCTIONS FROM /BOOK/FUNCTIONS/HTML.PHP
These functions make it easier to create common HTML tags. Most of the functions
in this file are very similar. But before we get to these, you will need to understand
the get_attlist() function, which has been added to the basic.php file.

GET_ATTLIST() This function takes an associative array and creates name=”value”
pairs suitable for HTML tags.

function get_attlist ($atts=””,$defaults=””)
{

$localatts = array();
$attlist = “”;

if (is_array($defaults)) { $localatts = $defaults; }
if (is_array($atts)) { $localatts = array_merge($localatts,

$atts); }

while (list($name,$value) = each($localatts))
{

if ($value == “”) { $attlist .= “$name “; }
else { $attlist .= “$name=\”$value\” “; }

}
return $attlist;

}

No matter the base tag, all HTML tags take attributes in the form name=”value”.
This function will build an attribute list for any tag. The function will be called by
other functions that write out individual HTML tags. As you can see, this function
takes two arguments. The second is an array with a set of attributes required by a
specific tag. For instance, an tag isn’t much good without an src attribute.
So if the function is called from another function that creates images, the second
argument should be an array with one element, something like $myarray =
array(“src” =>”myimage.gif”).

The first argument will take another array containing other attributes. For the
 tag, that first array might contain alt text, width, and height — $myarray =
array(“alt” =>”My Image”, “width”=>”20”, “height”=>”25”.

Chapter 9: Survey 229

3537-4 ch09.f.qc 12/15/00 15:23 Page 229

If appropriate, these two arrays will be merged into one. Then, from this merged
array, a string is created that has the “name”= value pairs. If a value is empty, the
name will exist without a value.

Note that elements passed in the second array will overwrite those in the first,
enabling you to overcome default values easily. This occurs because in the array_
merge() function, if there are two elements with the same associative key, the last
one will overwrite the previous one. This allows other functions that create HTML
tags to keep a set of defaults in the first argument and values for the specific call in
the second.

Take a look at the following functions to get a better idea of how this works.

ANCHOR_TAG() This function creates an anchor tag.

function anchor_tag($href=””,$text=””,$atts=””)
{

$attlist = get_attlist($atts,array(“href”=>$href));
$output = “<a $attlist>$text”;
return $output;

}

For an anchor tag, there are only two things you could really expect every time:
an href attribute and some text to go between the opening enclosing <a> tags.
However, it is possible that a name attribute might be helpful. But more often than
not, the call to this function will be something like this:

anchor_tag(“myurl.com/index.html”, “this is a great link”);

Note that if there were a third argument, it would have to be in the form of an
array. These arguments are then sent to the get_attlist() function and turned
into a usable string, which is put together in the $output variable.

IMAGE_TAG() This creates an tag

function image_tag($src=””,$atts=””)
{

$attlist = get_attlist($atts,array(“src”=>$src));
$output = “”;
return $output;

}

This function works just like the anchor_tag() function described above.

PARAGRAPH() This function will print out opening and closing <p> tags and
everything between them.

230 Part III: Simple Applications

3537-4 ch09.f.qc 12/15/00 15:23 Page 230

function paragraph ($atts=””)
{

$output = “<p”;
$i = 0;
$attlist = get_attlist($atts);
if ($attlist > “”)
{

$output .= “ $attlist”;
$i++;

}
$output .= “>\n”;
$args = func_num_args();
while ($i < $args)
{

$x = func_get_arg($i);
$output .= $x.”\n”;
$i++;

}
$output .= “</p>\n”;
return $output;

}

The first thing to understand about this function is that it will print not only the
opening <p> tag along with its attributes, it will also print the closing </p> tag and
everything that could occur between the two. This could include anchor tags, image
tags, or just about anything else. The following function call would work just fine,
and in fact is used within the survey application:

print paragraph(anchor_tag(“admin_block.php”,
“Return to Domain List”));

There is one argument in this function call, which is another function call with
two arguments. In effect, when one function call is nested inside another, PHP exe-
cutes the internal one first. So first the anchor_tag() function is called and creates
a string like . Then the outer function is executed, so
the call to the paragraph function will actually be something like this:

print paragraph(“Return to Domain List”);

Note how flexible this becomes. By looping through the number of arguments,
you can send any number of additional function calls to the paragraph function.
And you can happily mix text and function calls together. In the while... loop, $x
can be set to a text string or the output of the function call. So the following is a
perfectly fine call to the paragraph function:

print paragraph(
“Blocked by: $block_by
”

Chapter 9: Survey 231

3537-4 ch09.f.qc 12/15/00 15:23 Page 231

, “Date blocked: $block_dt
”
, “Date released: $release_dt
”
, “Last Modified: $modify_dt
”
, hidden_field(“old_domain”,$domain)

);

UL_LIST() This function turns an array or a string into an unordered HTML list.

function ul_list ($values=””)
{

$output .= “\n”;
if (is_array($values))
{

while (list(,$value) = each($values))
{

$output .= “ $value\n”;
}

}
else
{

$output .= “ $values\n”;
}
$output .= “\n”;
return $output;

}

With this function you can create a bulleted list. Most frequently, an array will be
passed to the function, each member of which will be prepended with a tag.
The function also prepends a string with if the contents of $values is a string.

FUNCTIONS FROM /BOOK/FUNCTIONS/FORMS.PHP
Most of these functions are fairly straightforward and don’t require any explana-
tion. We will show a couple just for examples.

TEXT_FIELD() This prints out an HTML text field.

function text_field ($name=””, $value=””, $size=10, $maxlen=””)
{

$output = <<<EOQ
<input type=text name=”$name” value=”$value” size=”$size”
maxlength=”$maxlen”>
EOQ;

return $output;
}

232 Part III: Simple Applications

3537-4 ch09.f.qc 12/15/00 15:23 Page 232

All the expected attributes should be passed to the function. Most of the other
functions look similar to this one, the only real exceptions being the checkbox and
radio button.

CHECKBOX_FIELD() This function creates an HTML checkbox.

function checkbox_field ($name=””, $value=””, $label=””, $match=””)
{

$checked = ($value == $match || $label == $match) ? “checked” :
“”;

$output = <<<EOQ
<nobr><input type=checkbox name=”$name” value=”$value” $checked>
$label</nobr>
EOQ;

return $output;
}

The only thing that may be of interest in this function is how you should note in
your function call if a checkbox is to be checked by default. You do this by adding
an argument called $match. If $match equals either $label or $value it will be
checked by default. The radio_field function works in the same way.

FUNCTIONS FROM /BOOK/FUNCTIONS/TABLES.PHP
Until style sheets are a reliable means for positioning pieces of a Web page, it is
likely that you’ll be using tables extensively. These functions make creating tables
easier.

START_TABLE() This function creates an opening <table> tag.

function start_table ($atts=””)
{

$attlist = get_attlist($atts);
$output = <<<EOQ

<p>
<table $attlist>
EOQ;

return $output;
}

Again, this function calls the get_attlist() function to add attributes to the
opening table tag. Add an array of attributes to the function call to have attributes
added to the resulting tag.

END_TABLE() This function creates the closing </table> tag.

Chapter 9: Survey 233

3537-4 ch09.f.qc 12/15/00 15:23 Page 233

function end_table ()
{

$output = <<<EOQ
</table>
</p>
EOQ;

return $output;
}

This function does pretty much what you would expect. It is not really necessary,
but it supplies nice symmetry with the start_table() function.

TABLE_ROW() This function not only prints out the opening <tr> tag and its
attributes; it also prints the table cells that will be nested within the <tr> tags.

function table_row ()
{

$attlist = “”;
$cellstring = “”;

$cells = func_get_args();
while (list(,$cell) = each($cells))
{

if (is_array($cell))
{

$attlist .= get_attlist($cell);
}
else
{

if (!eregi(“<td”,$cell))
{

$cell = table_cell($cell);
}
$cellstring .= “ “.trim($cell).”\n”;
}

}
$output = <<<EOQ

<tr $attlist>
$cellstring
</tr>
EOQ;

return $output;
}

This function works by taking nested function calls.

234 Part III: Simple Applications

3537-4 ch09.f.qc 12/15/00 15:23 Page 234

print table_row(
table_cell(“hello world”, array(“align”=>”right”))

);

The table_row() call in the preceding code has one argument, which is itself
another function call. Since all the arguments sent to a function can be extracted
using the func_get_args() command, you can set an array that contains all of the
arguments. In the preceding code, that array is $cells.

Remember when we said earlier that inner function calls are executed prior to
outer ones? In the preceding example the table_cell call is executed first. Thus,
the call to table row will actually be something like:

print table_row(“<td align=”right”>hello world</td>”)

So when this function call becomes the active argument, the regular expression
will test false and the table_cell function will not be called. This makes sense:
Since you already have a table cell string, there is no need to call the table_cell
function.

You may be wondering why the function contains that regular expression and
the table_cell() function call. That’s for a case like the function call in the fol-
lowing code, where table cell isn’t called explicitly.

print table_row(“Cell text”);

FUNCTIONS AND CODE FROM /BOOK/SURVEY/HEADER.PHP
This file is included in every file in the survey application, so every one of these
functions will be available.

START OF PAGE Before we get to the functions in this file, there is some code that
does a bit of housekeeping.

if (!defined(“LOADED_HEADER”))
{

include “../functions/charset.php”;
include “../functions/basic.php”;
dbconnect(“survey”);
include “functions.php”;
define(“LOADED_HEADER”, “yes”);

}

$result = safe_query(“select 1 from blocked_domains
where ‘$REMOTE_HOST’ like concat(‘%’,domain)
and release_dt is null

“);

Chapter 9: Survey 235

3537-4 ch09.f.qc 12/15/00 15:23 Page 235

if (mysql_result($result,0) > 0)
{

print “<h2>sorry - your domain has been blocked from this
page</h2>\n”;

exit;
}

This preceding code contains information you’re going to need before working
with the heart of the application. The includes are clear enough. The includes have
been put inside an if statement as a precaution. There is no need to reload the
header once it has been loaded once. We can make sure that doesn’t happen by
creating a constant named LOADED_HEADER. If by chance, this page were loaded
a second time, you wouldn’t have to worry that includes would be imported more
than once.

Remember that PHP 4 has the include_once construct, which will ensure

that no files are included multiple time.

As we mentioned earlier, there is a facility here to block domains, and this appli-
cation will be doing that off the $REMOTE_HOST variable. This is hardly necessary,
and it is easy enough to comment out this code. In order to understand this code,
look more closely at the query, particularly the like predicate. When we dial in to
the net from my ISP (att.net), my REMOTE_HOST is something like this: 119.san-
francisco-18-19rs.ca.dial-access.att.net. When you block domains, you’ll
be doing it on the top-level domain — in this case, att.net. And this top-level
domain is what will reside in the database. So the query will have checked on any
number of wildcard characters prior to the top-level domain name.

To achieve this you will need to concatenate the domain names with the % wild-
card character. So, for instance, the query will work against %att.net. This may
seem somewhat different from your typical like predicate. It’s another powerful
technique to use with your SQL.

Also note that the start of the select statement doesn’t contain a select count(*),
instead opting for select 1. This is a good way of testing if any rows meet the con-
dition of the where clause. If the where clause matches any number of rows, the
query will return a single column with the value of 1, which in the programming
world means TRUE. If there are no rows returned you know the where portion of
the query had no matches.

WEEKSTART() This function creates a MySQL function to grab the day that starts
the week. You use this in the application to pick a winner for the current week.

NOTE

236 Part III: Simple Applications

3537-4 ch09.f.qc 12/15/00 15:23 Page 236

function weekstart ($when=””)
{

if (empty($when)) { $when = “now()”; }
elseif ($when != “create_dt”) { $when = “‘$when’”; }
return “from_days(to_days($when)-dayofweek($when) + 1)”;

}

It works like this: the MySQL to_days() function returns an integer of the number
of days since January 1, 0000. dayofweek() returns an integer representing the day of
the week (Sunday equals 1, Saturday equals 7). So the portion (to_days($now)-
dayofweek($when) + 1) will return an integer representing the Sunday of the week in
question. The from_days() function then turns that number into a date. Here is the
result of this query run on Thursday July 27, 2000 (the day this chapter was written):

mysql> select from_days(to_days(now())-dayofweek(now()) + 1);
+--+
| from_days(to_days(now())-dayofweek(now()) + 1) |
+--+
| 2000-07-23 |
+--+
1 row in set (0.00 sec)

Note that the value passed here can be a string representing a date, it can be
empty, or it can be a field from the users table — namely the create_dt field.

COUNTRYLIST() This function creates a drop-down list of country names.

function country_list ()
{

$countries[“”] = “”;
$countries = array_merge($countries

,db_values_array(“countries”,”country”)
);
return $countries;

}

Uses the db_values_array() function (discussed earlier in this chapter, in the
section “Reusable functions”) to get an array of countries and their abbreviations.

STATE_LIST() This creates a drop-down list of state names.

function state_list ()
{

$states[“”] = “”;

Chapter 9: Survey 237

3537-4 ch09.f.qc 12/15/00 15:23 Page 237

$states = array_merge($states
,db_values_array(“states”,”state”,”statename”,”state”)

);
return $states;

}

Uses the db_values_array() function (discussed earlier in this chapter, in the
section “Reusable functions”) to get an array of countries and their abbreviations.

FETCH_QUESTION() This function grabs the contents of a row in the questions
table and assigns the columns to global variables.

function fetch_question ($question_id=””)
{

if (empty($question_id)) { $question_id = 0; }
$result = fetch_record(“questions”,”question_id”,$question_id);
return $result;

}

This will run the fetch_record() function and return from the database all the
information regarding a particular question, based on the questionid.

FETCH_USER() This function grabs the contents of a row in the users table and
assigns the columns to global variables.

function fetch_user ($user_id=””)
{

if (empty($user_id)) { $user_id = 0; }
$result = fetch_record(“users”,”user_id”,$user_id);
return $result;

}

Returns the result set based on a user_id.

Interesting Code Flow
There are a few pages in this application that could stand some explanation.
However, you should be able to follow most of them if you understand the func-
tions in the previous section.

admin_question.php
This is a fairly lengthy page, and for good reason: it is used for adding, editing, and
deleting questions in the database. The portion of the page that will be run will be

238 Part III: Simple Applications

3537-4 ch09.f.qc 12/15/00 15:23 Page 238

determined by the values passed by forms or links. The first time through there will
be no variables passed, so a list of the current questions will be presented along
with a form for entering a new question. Each of the links to questions that already
exist in the database look like this:

When a link like this is clicked, and the admin_questions.php script is run again,
the very bottom of the script will run, as shown here:

else
{

$qform_title = “Edit A Question : $question_id”;
fetch_question($question_id);

}

print subtitle($qform_title);

print start_form(“admin_questions.php”);

print paragraph(“Question:”,
text_field(“question”,$question,60));

Notice how you can get all the information associated with $question_id with
one function call (fetch_question()). Because of the way the functions have been
created, this automatically gives you a global variable for $question.

Next, go into this loop:

$acount = 0;
if ($question_id > 0)
{

$result = safe_query(“select answer_id, answer
from answers
where question_id=$question_id
order by answer_id

“);
while (list($aid,$atxt) = mysql_fetch_array($result))
{

$acount++;
print text_field(“answer_text[$acount]”,”$atxt”,60);
print hidden_field(“answer_id[$acount]”,”$aid”);
print “ ($aid)
\n”;

}
}

Chapter 9: Survey 239

3537-4 ch09.f.qc 12/15/00 15:23 Page 239

The number 10 here limits the number of answers to each question to 10. This
block gets the answers for the selected question and prints them out inside text
fields. Additional information is put inside hidden fields. When printed out the
result for one answer will look like this:

<input type=”text” name=”answer_text[1]” value=”Answer”
size=”60” >
<input type=”hidden” name=”answer_id[1]” value=”10”>

When this form is submitted, $answer_text will be an array. $acount will see
that the key of the array is incremented by 1 for each additional form field. Note
that we need to make use of a hidden form element here. That is because each
answer requires three pieces of information: what the answer number is (1-10), the
answer text, and if the answer came from the database, we need to know the pri-
mary key of the row the answer came from. The hidden field will create an array
named $answer_id. The value in each element of that array will be the primary key
of the row storing the answer. The index of that array will be the match with the
index of $answer_text. So in code it looks like this,

$i = 1;
$answer_text[$i];
$answer_id[$i];

You’d know that $answer_id[$i] contains the primary key of a row, and
$answer_text[$i] is the answer text that belongs in that row.

The previous section of code will print out form elements only where there is an
answer. But you should offer blank form elements so the administrator can enter
new answers.

while ($acount < 10)
{

$acount++;
print text_field(“answer_text[$acount]”,””,60);
print hidden_field(“answer_id[$acount]”,0);
print “
\n”;

}

This will complete the form, giving all the blank elements you need. For these
blank answers, the form will contain the following:

<input type=”text” name=”answer_text[8]” value=”” size=”60” >
<input type=”hidden” name=”answer_id[8]” value=”0”>

240 Part III: Simple Applications

3537-4 ch09.f.qc 12/15/00 15:23 Page 240

In these form elements, the value of the hidden field is set to 0. That way, when
it comes time to process these form elements, the script will have something to
evaluate: if $answer_id[$i] is equal to zero or empty ($answer_id[$i]), this is a new
element.

When the form is submitted this chunk of code will run.
There will always be 10 elements to be looped through, so a for loop works

nicely.

for ($i = 1; $i <= 10; $i++)
{

if (!empty($answer_text[$i]))

First we make sure there is available answer text.

{
$answer = cleanup_text($answer_text[$i]);
if (empty($answer_id[$i]))
{

$query = “insert into answers
(question_id, answer)
values
($question_id, ‘$answer’)
“;

}

If the element of $answer_id is not empty (which means it can’t be equal to zero)
an insert statement is run.

else
{

$query = “update answers
set question_id = $question_id

, answer = ‘$answer’
where answer_id = “.$answer_id[$i]
;

}
safe_query($query);

}
}

}

Otherwise, if there was an existing answer, an update query will do the trick.

Chapter 9: Survey 241

3537-4 ch09.f.qc 12/15/00 15:23 Page 241

admin_get_winner.php
Most of this file is readable. Your goal is to draw a qualified winner at random from
the database. First you use the weekstart function (discussed earlier in this chap-
ter in the section “Functions and code from /book/survey/header.php”) to get the
date that the current week begins.

$qweekdt = weekstart($weekdate);
list($thisweek) = mysql_fetch_array(safe_query(“select $qweekdt”));
print subtitle(“Draw a winner for the week of $thisweek”);

You then create a query that will determine who is qualified. As you can see,
we’ve decided that in addition to signing in the last week, they need to have
entered a name and an e-mail address, and a legitimate age.

$query = “select name, email, user_id from users
where week(create_dt) = week(‘$thisweek’)

and year(create_dt) = year(‘$thisweek’)
and name is not null and name != ‘’
and email is not null and email != ‘’ and email like
‘%@%.%’

and age > 0
and country is not null and country != ‘’

“;
$result = safe_query($query);
$tot = mysql_num_rows($result);

With the total number of qualified entrants in hand, the script makes a couple of
decisions to determine a winner. First it needs to account for occasions when there
are no possible winners.

if($tot ==0)
{

echo “There were no entrants this week”;
}

We already ran a select query that has the potential winners. The first row in the
result set is row number zero. So if there’s only one possible winner, row 0 is the
only row returned.

else
{

if ($tot == 1)
{

// if there’s only one entry, they win.

242 Part III: Simple Applications

3537-4 ch09.f.qc 12/15/00 15:23 Page 242

$winner = 0;
}

However, if more than one possibility exists, the random number generator is
seeded, and a row number is pulled. Note that the total number of rows will be one
greater than the final row number (because the first row is numbered 0). This is why
the top range of the random number must by $tot-1.

else
{

mt_srand((double)microtime()*1000000);
$winner = mt_rand(0,$tot-1);

}

mysql_data_seek($result, $winner);
list($name, $email, $user_id) = mysql_fetch_array($result);
$urlthisweek = rawurlencode($thisweek)
print paragraph(

“$name $email “
, “WINNER! “
,anchor_tag(“admin_winners.php?weekdate=$urlthisweek”

.”&what=notify&user_id=$user_id”
, “Notify Winner”

)
);

This last chunk of code gets the information needed about the winner and pro-
vides a link to the admin_winners.php page that contains the correct user_id, the
week associated with this prize, and the variable $what, which will identify which
portion of the admin_winners.php page we want to run.

There’s more to this file, but you should be able to follow the comments included
with the code.

admin_winners.php
We created a few pages to ensure that the winner selected is notified of the exciting
news and that we give the notification in a way that gives some security. This isn’t
much, but to make reasonably sure that the person who claimed the prize was the
person you intended, you would need to make use of a login system, and users of a
silly little survey may not be interested in keeping track of yet another password.

The best we can do here is try to make sure that if some immoral person sees the
claim information one week, that person will not be able to easily spoof our system
in future weeks. When we send the winner notification, we will include an eight-
character claim code. This prize can only be claimed with knowledge of the code.

Chapter 9: Survey 243

3537-4 ch09.f.qc 12/15/00 15:23 Page 243

To make things as secure as possible, we want to make sure this code is unique and
very difficult to guess.

mt_srand ((double) microtime() * 1000000);
$claim_code = substr(md5(uniqid(rand())),0,8);

This uses the uniqueid() and md5() functions to create string that is very random.
There’s little for a hacker to latch onto when trying to figure out how the string is
constructed. md5() will create a string that is 32 characters, but that can be a bit
unwieldy. So we’re using substr() to limit the string to 8 characters.

The user_id, the claim code, and the week of interest are inserted into the win-
ners table.

$query = “replace into winners
(weekdate, user_id, claim_code, notify_dt)

values
(‘$weekdate’, $user_id, ‘$claim_code’, now())

“;

The winner is sent an email that is something like, where the claim code matches
what has been entered in the database: http://mydomain.com/claim.php?claim_
code=ki5g4ju9.

If the user is interested, she will go to this page.

CLAIM.PHP
If the winner comes to claim.php, we first need to check that the claim code exists
in the database. The query in the following code grabs queries the database to see
if the claim code exists, and if it does, the query performs a join and returns the
user information associated with the claim code.

$user_id = 0;
if (!empty($claim_code))
{

$query = “select u.user_id, u.email, w.weekdate
from users u, winners w
where w.claim_code = ‘$claim_code’

and w.user_id = u.user_id
“;
$result = safe_query($query);

If the query returns data, the pertinent information will be assigned to variables.

if ($result)
{

244 Part III: Simple Applications

3537-4 ch09.f.qc 12/15/00 15:23 Page 244

list($user_id, $winner_email, $weekdate)
= mysql_fetch_array($result);

}
}

If nothing was assigned to $user_id, we know that this is not a valid claim code.

if ($user_id == 0)
{

// we couldn’t find a record corresponding to the claim_code
// submitted (if any). print out an error and exit.
print <<<EOQ

<p>
I’m sorry, that doesn’t appear to be a valid claim code.
The URL may not have registered properly.
Make sure to copy the complete link into your browser and try again,
or forward your original prize notification to $admin_email.
</p>
EOQ;

exit;
}

Once it is established that a claim code is valid, we want to do a bit of double-
checking and make sure that the person who submitted this claim code knows the
e-mail address that the notification was sent to. The application accomplishes this
by sending a form asking the user to input the correct e-mail. That form is sent and
processed by this page. When the form is submitted, the following code will execute.

if(!empty($user_id)
{

if ($user_email != $winner_email)
{

$notice = <<<EOQ
I’m sorry, that email address doesn’t match our records.
Please try again, or forward your original prize notification
to $admin_email.
EOQ;

This comparison $user_email != $winner_email will work because the query that
ran at the top of the page retried the correct winner’s e-mail, and the form submit-
ted by the user creates $user_email. If that comparison fails, an error message
prints. However, if it does not fail, the following code updates the winners database,
recording the time the prize was claimed and sends an e-mail to the winner letting
them know that the claim was successful.

Chapter 9: Survey 245

3537-4 ch09.f.qc 12/15/00 15:23 Page 245

}
else
{

$claimquery = “update winners set claim_dt = now()
where user_id = $user_id
and claim_code = ‘$claim_code’
and weekdate = ‘$weekdate’

“;
$result = safe_query($claimquery);
if ($result && mysql_affected_rows() > 0)
{

$msgtext = <<<EOQ
The prize for $weekdate has been claimed by $email.
Confirm the prize at

http://$HTTP_HOST/book/survey/admin_winners.php

EOQ;
mail($admin_email,”Prize Claim”,$msgtext);

print <<<EOQ
<p>
Thanks! Your claim has been accepted. Your prize should be on its
way soon!
EOQ;
exit;

The final portion of this page simply prints the form where the user will enter the
e-mail. There’s really no need to show that here.

Summary
There’s quite a bit more code in the application, but there isn’t anything that you
shouldn’t be able to figure out with some close scrutiny of the files and reading of
the comments. Take a look at the complex_results.php page and its includes
(age_results.php, state_results.php, and country_results.php) for a look at how
MySQL aggregate functions can come in handy.

This application contains quite a bit more complexity than the guestbook. In this
application, we have a real database schema complete with related tables. In the
course of the application we need to make use of queries that contain MySQL func-
tions. (See Appendix I for more information on MySQL functions).

The other notable thing seen in this chapter is the function set we’ve created for cre-
ating common HTML elements. Whether you want to make use of these or something
similar is up to you. You may prefer typing out the individual form elements, tables,
and the like. But you will be seeing these functions used in the remainder of this book.

246 Part III: Simple Applications

3537-4 ch09.f.qc 12/15/00 15:23 Page 246

Chapter 10

Catalog
IN THIS CHAPTER

◆ Working with object-oriented code

◆ Looking at database schemas

◆ Working around MySQL limitations

◆ Running shell commands from within PHP

IN THE COURSE OF THIS chapter we are going to show one way of creating an on-line
catalog. You’ll see how to present and administer an application that presents some
typical retail items.

We, the authors of this book, feel that you are an intelligent person, as well as
someone with great taste in technical literature. We also believe that you picked up
this book because you want to learn as much as you can about applications devel-
opment with PHP and MySQL. That’s why we’re not wasting any time. Each chap-
ter introduces additional challenges, or at least presents something new and
different. This chapter will be no exception.

If this chapter were to use the functions presented in the survey application in
Chapter 9, there would be little new material to present here. All the application
would need is a simple database schema, a few queries with some joins, and calls to
the HTML functions in the /functions/ folder.

To keep things interesting, this application uses a completely different way of
organizing code. This survey makes use of object-oriented, or OO programming.
However, we’re not giving up on all of those functions. Some of them are just way
too convenient (safe_query() comes to mind).

Chapter 7 covers the concepts and nomenclature associated with object-

oriented programming. In this chapter we assume that you read and under-

stood that information.XREF

249

3537-4 ch10.f.qc 12/15/00 15:24 Page 249

Determining the Scope and
Goals of the Application
The goals we have in mind for this application are pretty modest. Imagine for a
moment that you own some sort of retail establishment that has goods you wish to
hawk. Further, assume that you have no interest in actually conducting transac-
tions over the Web. Maybe you are just paranoid about this new-fangled method of
processing credit cards. Or perhaps you are running an elaborate tax-fraud scheme
that requires you to deal solely in unmarked twenties.

The code used in this catalogue will be re-used in the shopping cart appli-

cation, where we will show how to process credit-card transactions.

Whatever the circumstance, all this site needs to do is show your wares in logi-
cal categories and breakdowns. You will hear more about the breakdown of the
information when we discuss the database schema.

The chief goal of this chapter is to create code that makes the best use of the
object-oriented approach. The classes must make use of inheritance and encapsula-
tion, and should make the task of writing individual scripts a whole lot easier. It’s also
important to think about modularity. The code created here will be reused in Chapter
14, so we want to write code in a way that it becomes easily reusable elsewhere.

We also wanted to throw in something really cool. One day on the PHP mailing
list some guy named Rasmus mentioned a set of free software utilities that run on
Unix that can be used to resize and otherwise manipulate all sorts of images. The
PHP scripts in this application will interface with these utilities (called PBMplus) to
automatically create thumbnails of the images of the catalogue items. We think
you’ll have to admit that this is pretty cool.

Rasmus Lerdorf started the language that would evolve into PHP. He is one

of the core developers, an active member of the mailing list, and an effective

advocate of PHP software. The history of PHP is actually pretty interesting. If

you have an MP3 player you can hear all about it from Rasmus and other

core developers at: http://hotwired.lycos.com/webmonkey/radio/

php.html.

NOTE

NOTE

250 Part IV: Not So Simple Applications

3537-4 ch10.f.qc 12/15/00 15:24 Page 250

PBMplus can be found on the CD.

Subscribe to the PHP mailing list.You’ll learn about all sorts of groovy things

you never would have guessed existed. If you are going to subscribe, be

ready for the volume. The list can generate over 100 emails on a given day.

Check Appendix H for a list of some of the other mailing lists.

Necessary Pages
The pages that display the catalogue aren’t very extravagant. For navigational pur-
poses there is a simple page that displays a list of categories. Figure 10-1 shows the
category list.

Figure 10-1: Category list page

Tip

ON THE CD

Chapter 10: Catalog 251

3537-4 ch10.f.qc 12/15/00 15:24 Page 251

From the list of categories, the viewer of the page will click through to see a listing
of products within that category. Figure 10-2 shows this rather underwhelming page.

Figure 10-2: Products list page

Finally, there is a page that lists the actual items for sale. Notice that a thumb-
nail of each item is shown, and that alongside each item is a listing of variants of
the item. In Figure 10-3, the items are t-shirts, and specific sizes are listed.

Like all the applications in this book, this one has a series of administrative
pages. Given what you have seen in the previous paragraphs and figures, it should
be no surprise that the administrative pages create, delete, and alter information on
the following levels: categories, products, items, and sub-items, the pages for which
are shown in Figures 10-4, 10-5, and 10-6 respectively.

Sub-items is the term that is applied to, for example, the sizes in which a spe-

cific t-shirt is available. Sub-items represent slight variations of specific items.

NOTE

252 Part IV: Not So Simple Applications

3537-4 ch10.f.qc 12/15/00 15:24 Page 252

Figure 10-3: Items list

Figure 10-4: Category administration page

Chapter 10: Catalog 253

3537-4 ch10.f.qc 12/15/00 15:24 Page 253

Figure 10-5: Products administration page

Figure 10-6: Item and sub-item administration page

254 Part IV: Not So Simple Applications

3537-4 ch10.f.qc 12/15/00 15:24 Page 254

What Do We Need to Prevent?
Unlike in the survey and the guestbook, there is no user interaction in this applica-
tion. To the world at large the catalog is read-only. So we don’t need to be quite as
concerned with bored people adding unwanted tags and scripts to our pages.

In this application there are more general concerns, the type of things that come
up in every application: are there bugs, is the code efficient, are our data normal-
ized properly, and other questions of that ilk.

The Data
For this application, we think it is useful to spend a few paragraphs discussing why
we did not use what might seem to be the easiest and most obvious schema.

A flawed data design
If you were attentive in reading the previous pages, you will remember the break-
down of the data. There are one or more categories, and each category will contain
many products. Each product will have many styles, and each style can have a
number of substyles.

This might lead you to believe that a simple hierarchical structure of our tables
would work just fine. Figure 10-7 shows the one-to-many relationships that would
create this hierarchical effect.

Figure 10-7: Flawed catalog schema

Now consider what would happen if we were to add data to these tables. Let’s
take the example of t-shirts. There is a category for t-shirts, and a number of prod-
ucts (different clever phrases stenciled on the t-shirts) for this category. Each prod-
uct will come in a number of styles (colors), and each color will come in a number
of substyles (sizes). Figure 10-8 shows what data in the hierarchical table form
might look like. (Note that the tables have been simplified).

categories

category_id
category
description

products

product_id
category_id
product
description
price
image_src

styles

style_id
product_id
style
description
price
image_src

substyles

substyle_id
style_id
substyle
price
description

Chapter 10: Catalog 255

3537-4 ch10.f.qc 12/15/00 15:24 Page 255

Figure 10-8: Sample hierarchical data

Take a look at the substyles table in Figure 10-8. It is already starting to get a bit
messy. Even with just a couple of t-shirts there is some repeating data. As you can
see, size small (S) appears several times, and as we add to the catalog, more rows
will be inserted and this table will get even messier.

Thinking about the data a bit more carefully, you might notice something inter-
esting: In the case of the t-shirts, the sizes are not dependent on the color of the
t-shirts at all. If you remember back to Chapter 1, you will remember that a lack of
a dependency is a bad thing. So the above data really aren’t properly normalized.

In fact, the sizes in which a t-shirt is available are not dependent on the color
(style table) or the phrase on the t-shirt (products table). Size is, in fact, dependent

categories

1
2

categorycategory_id
t-shirts
shoes

products

product_id
1
2

product
Just Say Oops
I Love Milk

category_id
1
1

styles

style_id
1
2

style
blue
green

product_id
1
1

3
4

red
blue

2
2

sub-styles

sub-style_id
1
2

sub-style
S
M

style_id
1
1

3
4

L
XL

1
1

5
6

S
M

2
2

7
8

L
XL

2
2

9 S 3

256 Part IV: Not So Simple Applications

3537-4 ch10.f.qc 12/15/00 15:24 Page 256

on the category. All t-shirts (category_id=1) will come in S, M, L, or XL. Therefore,
in the final schema there will be a relationship between the category table and the
substyle table.

Test your schemas. Before you go live with your own applications use some

test data and see what happens. What seems right in theory could have

some serious flaws in practice.

Before you make a single table in your database, work with pencil and paper

to draw out your tables and relationships. Erasing a line there is a lot less

trouble than deleting a column.

MySQL oddities
Before we get to the final schema, this is a good time to point out one of the weird-
nesses of MySQL. In Part I, we noted that MySQL doesn’t support unions or sub-
selects. Given these limitations, take a look at Tables 10-1 and 10-2, and tell me
how you could find all the names in Table 10-1 that are NOT in Table 10-2.

TABLE 10-1 NAMES

first_name

brad

jay

john

TABLE 10-2 OTHER_NAMES

first_name

brad

jay

William

Tip

Tip

Chapter 10: Catalog 257

3537-4 ch10.f.qc 12/15/00 15:24 Page 257

If MySQL supported sub-selects, this would work:

select name from Names where first_name not in (select first_name
from Other_names)

However, in MySQL the best way to go about this is to perform an outer join.
Something like this:

select N.first_name
from Names N
left join Other_names Otn on

N.first_name = Otn.first_name
where Otn.first_name is null

With an outer join we can be sure that the Names table will be preserved in its
entirety. Then, in the joined table, there will be non-null results where there are
matching values. For instance, since ‘Jay’ is in both tables, that string will exist in
both columns of the resulting query. But if there is no matching value, there will be
a null value in the joined table.

You will also see sub-selects used for statements such as this:

select first_name from Names where first_name in (select first_name
from Other_names)

In a case like this a straight join would produce the same result.

select N.first_name
from Names N, Other_names Otn
where N.first_name = Otn.first_name

MySQL will not support unions until version 3.24. However, there is a way to
work around this without too much difficulty in version 3.23. You can create a
temporary table into which you can insert different select statements. For instance
in other database packages you might do something like this:

select first_name, last_name from table_1
union
select first_name, last_name from table_2

In MySQL 3.23 you would create a temporary table and then insert the results
of the select statements into that table. The preceding code would be re-created
like this:

create temporary table name_union
select first_name, last_name from table_1;

258 Part IV: Not So Simple Applications

3537-4 ch10.f.qc 12/15/00 15:24 Page 258

insert into name_union
select first_name, last name from table_2;

Now that you have a table holding the union, you could perform a select on that
table. The temporary table created will be very fast because it is not written to the
disk; it is only stored in memory.

Note that this syntax was not available in version 3.22.

A better schema
Now that we’re done with that little digression, we’ll get back to the structure for this
application. Figure 10-9 shows the preferred schema, the one that we actually use.

Figure 10-9: Catalog database schema

category_id
category
description

categories

style_id
product_id
style
description
price
image_src

styles

style_id
substyle_id,
price
description
image_src

style_substyle_map

username
password

catalog_admin

substyle_id
category_id
substyle
price
description

substyles

product_id
category_id
product
description
price
image_src

products

Chapter 10: Catalog 259

3537-4 ch10.f.qc 12/15/00 15:24 Page 259

For starters, notice that there is a direct relationship between the categories and
the substyles tables. The reason for this was explained earlier. The tables in the top
half of the figure should make sense. They are the part of the hierarchy that still
made sense.

The neat and different thing in this application is the style_substyle_map table.
If you are going through this book in order, this will be the first time that you
encounter a many-to-many relationship. In this application a category can have
many substyles (e.g., t-shirts come in S, M, L, and XL). And any style of shirt (e.g,
“I Love Milk” in red) can come in zero, one, or more than one substyle (size). The
style_substyle_map tracks that intersection. Figure 10-10 illustrates how the data
come together.

Figure 10-10: Sample data

In Figure 10-10 the “Just Say Oops” t-shirt in blue comes in two sizes: S and M.
Listing 10-1 shows the statements that will create these tables.

1
2

categorycategory_ID
t-shirts
shoes

product_id
1
2

product
Just Say Oops
I Love Milk

category_id
1
1

substyle_id
1
3
1
2

style_id
1
1
2
2

style_id
1
2

style
blue
green

product_id
1
1

3
4

red
blue

2
2

sub-style_id
1
2

sub-style
S
M

style_id
1
1

3
4

L
XL

1
1

260 Part IV: Not So Simple Applications

3537-4 ch10.f.qc 12/15/00 15:24 Page 260

Listing 10-1: Create Statements for Catalog Application

--
#
Table structure for table ‘catalog_admin’
#
CREATE TABLE catalog_admin (

username varchar(50) NOT NULL,
password varchar(255) NOT NULL

);
--
#
Table structure for table ‘categories’
#
CREATE TABLE categories (

category_id int(11) NOT NULL auto_increment,
category varchar(255) NOT NULL,
description text,
PRIMARY KEY (category_id)

);
--
#
Table structure for table ‘products’
CREATE TABLE products (

product_id int(11) NOT NULL auto_increment,
category_id int(11) NOT NULL,
product varchar(255) NOT NULL,
description text,
price decimal(10,2),
image_src varchar(255),
PRIMARY KEY (product_id),
KEY product_category_id (category_id)

);
--
#
Table structure for table ‘styles’
#
CREATE TABLE styles (

style_id int(11) NOT NULL auto_increment,
product_id int(11) NOT NULL,
style varchar(255) NOT NULL,
description text,
price decimal(10,2),
image_src varchar(255),
PRIMARY KEY (style_id),
KEY style_product_key (product_id)

Chapter 10: Catalog 261

3537-4 ch10.f.qc 12/15/00 15:24 Page 261

);
--
#
Table structure for table ‘substyles’
#
CREATE TABLE substyles (

substyle_id int(11) NOT NULL auto_increment,
category_id int(11) NOT NULL,
substyle varchar(255) NOT NULL,
price decimal(10,2),
description text,
PRIMARY KEY (substyle_id),
KEY substyle_category_key (category_id)

);
--

Table structure for table ‘style_substyle_map’

CREATE TABLE style_substyle_map (
style_id int(11) NOT NULL,
substyle_id int(11) NOT NULL,
price decimal(10,2),
description text,
image_src varchar(255),
KEY map_style_key (style_id),
KEY map_substyle_key (substyle_id)
);

Code Overview
The code in this section is going to look substantially different from the chapters
you have seen so far. Only the shopping cart (which, in fact, builds on this applica-
tion) uses a similar method of organizing and accessing code. The other major dif-
ferences are the use of utilities outside of PHP and accessing the file system.

The object-oriented approach
In the preceding applications, and the ones that follow, we make use of a proce-
dural approach. That is, there is a series of functions, and each function performs a
fairly specific procedure. In the actual application, there is little to do but call these
functions. But in an application such as this, where the data are largely hierarchi-
cal, it’s helpful to make use of OO programming’s inheritance. After all, a Style is
really an extension of a product. The style may be red, but “red” means very little
without the inherited property of t-shirt, which comes from the Category table.

262 Part IV: Not So Simple Applications

3537-4 ch10.f.qc 12/15/00 15:24 Page 262

If you use objects, the contents within the files called by URLs will be even
sparser. Almost all of the work will be performed within the classes. Once you
understand what actions the class files perform, there will be little else for you to do.

To advocates of OO programming, this is a major advantage. You, the program-
mer, can get a class file and not really know what happens inside of it. All you need
to know is what attributes it has and what its methods do. Then you can just include
it in your application and painlessly make use of its sophisticated functionality.

We said it in Chapter 7 but it’s worth repeating here: You can write proce-

dural code that encompasses all of the benefits discussed here. If you’re not

careful with OO programming, your code can end up being much more dif-

ficult to maintain and use.

Accessing the filesystem
You have probably noticed by now that in this book, almost all of our data are
stored within the MySQL database. But even when you’re using MySQL, there are
times when you are better off using the filesystem for storage. Images (jpegs, gifs,
pngs) are a perfect example. Even if your database supports binary data, there’s lit-
tle advantage in putting an image in a database. You need a database for storing
and querying normalized data. In your database you are much better off storing the
path to the image stored in your filesystem. That way it will be easy enough to fill
in the src attribute in your tag.

Do not store images in a database. Put them on the filesystem.

Uploading files
This is the first application that lets users upload files; specifically, the administra-
tors of the catalog will need to be able to upload images of their products.
Uploading files is easy enough in PHP, but before you understand how the upload
works, you will need to know how PHP handles uploaded files.

In your HMTL page you will have a form, like the following.

<form action=”admin_product.php” method=”post”
enctype=”multipart/form-data” >
<input type=file name=”imagefile”>
</form>

Tip

NOTE

Chapter 10: Catalog 263

3537-4 ch10.f.qc 12/15/00 15:24 Page 263

When you allow file uploads, you open yourself up for denial of service (DoS)

attacks. If you’re not careful, someone could send many multi-megabyte files

to your system simultaneously, which could bring your machine to a crash-

ing halt. There are two things you can do about this. First is to put a hidden

form field prior to your <input type=”file”> tag.The hidden field should look

like this:

<INPUT TYPE=”hidden” name=”MAX_FILE_SIZE” value=”1000”>

where value is the maximum size allowed, in bytes. This is a reasonable first

step, and could be of help in stopping someone who didn’t know you had a

size limit. However, this will not stop anyone with malicious intent. All they

would have to do is look at the source code of your page and make the

needed changes. The php.ini file contains the upload_max_filesize item. If

you have access to your php.ini, you can set this to a number that you think

is reasonable. By default, php.ini will allow 2 MB uploads.

When a file is specified and this form is submitted, PHP automatically creates a
few variables. They would be:

◆ $imagefile: the name of the file as stored in the temporary directory on
the server

◆ $imagefile_name: the name of the file as it was on the user’s machine

◆ $imagefile_size: the size of the file, in bytes

◆ $imagefile_type: the mime type, in this case image/gif, image/png, or
image/jpg

The image will be stored in the temp directory specified in the php.ini file; if no
temp directory is specified in php.ini, the operating system’s default temporary
directory will be used.

The Paths and Directories category of the php.ini controls many of the file

upload options.

Accessing outside utilities
For this application, we need thumbnails for each of the images. The application
could require the user to include both a full-size image and a thumbnail. But that’s

NOTE

Caution

264 Part IV: Not So Simple Applications

3537-4 ch10.f.qc 12/15/00 15:24 Page 264

really not necessary, because the open-source world has provided all of us develop-
ers with a utility that powerfully and easily manipulates images. It’s called
PBMplus.

You can find the PBMplus package on the CD-ROM that accompanies this

book.

PBMplus contains several utilities that come in two basic flavors. One set of utili-
ties transfers images to and from an intermediary format. So, whether you have a gif,
a jpg, or a png, it must first be converted to the intermediary format, pbm. Another
set of utilities alters the pbm files. These utilities do a variety of things: check the
README file and the man pages that come with PBMplus to learn about them. Once
you have made the .pbm file, you can convert it to whatever format you need.

To use these utilities, you need to run shell commands from within your PHP
script. For the purposes of this application, the system() function will be the best
choice. More on that when we get to it in the code.

There is potential danger when using functions that run shell commands. If and

information supplied from the user is transported to the shell commands, you

should take great care to ensure that damaging commands cannot be exe-

cuted. The escapeshellcmd() function will help http://www.php.net/manual/

function.escapeshellcmd.php examine shell commands. In this application only

people who are logged in will reach commands that access the shell.

If you wish to output the results of PBMplus utilities directly to the browser,

use the passthrough() function.

Code Breakdown
In OO coding, good documentation is your best friend because, as already stated, it
almost shouldn’t matter how the classes you are using accomplish their tasks. You
just need to know that they work.

Tip

Caution

ON THE CD

Chapter 10: Catalog 265

3537-4 ch10.f.qc 12/15/00 15:24 Page 265

PHPbuider has an excellent article on software that can help document

classes:http://www.phpbuilder.com/columns/stefano20000824.php3.

Objects in theory
For instance, if we were to tell you about a class named Category, we could just tell
you the following:

Class Category:
Inherits Base
Properties:

◆ products

Methods:

◆ LoadCategory: Loads all of the columns for the categories table into
object properties, based on a unique category_id. Products belonging to
the category will be available as sub-objects.

◆ SaveCategory: Writes a new or updated category to the database.

◆ FetchCategory: Based on a unique category_id, assigns all columns for a
row to properties.

◆ DeleteCategory: Removes a Category from the database based on a
unique category_id.

◆ PrintCategory: Writes out a category to the browser.

Knowing this, and really nothing else, you could write a new script that dis-
played a category. The script below assumes that a category_id was passed through
the querystring, or via a POST.

<?php
$c = new Category;
$c -> LoadCategory($category_id);
$c -> PrintCategory();

But if we left it at this, the learning experience would only be a fraction of what
it should be. Of course we will go over the code in depth. But before we do, you
should see how objects are constructed.

Tip

266 Part IV: Not So Simple Applications

3537-4 ch10.f.qc 12/15/00 15:24 Page 266

Objects in practice
So far in this book you have seen variables of all shapes and sizes. There have been
strings, integers, arrays, associative arrays, and all other kinds of fun stuff.
However, here our variables are going to be quite a bit more complex. Take a look
at these two lines, which we have already explained:

$c = new Category;
$c -> LoadCategory($category_id);

If you read the previous section, you know that this creates an object with sub-
objects. It will be easier to understand with a visual representation. Figure 10-11
shows a sample Category object.

Figure 10-11: Sample category object

In Figure 10-11 you can see that the object contains not only properties. One of
its properties (products) contains an array of other objects. Just to make this is
clear, the following code will print, “You Bet”.

$c = new Category;
$c -> LoadCategory($category_id);
if(is_array($c->products))
{

category Object (
([whatami] => Category
[category_id] => 1
[category] => T-Shirts
[description] => The essential all-purpose item for any wardrobe.
[products] => Array (

[0] => product Object (
[product_id] => 1
[category_id] => 1
[product] => Plain
[description] => Old standby
[price] => 10.00

)
[1] => product Object (

[product_id] => 2
[category_id] => 1
[product] => Oops!
[desription] => A sentiment we can all share
[price] => 10.00

)
)

Chapter 10: Catalog 267

3537-4 ch10.f.qc 12/15/00 15:24 Page 267

if(is_object($c->products[0]))
{

echo “You Bet”;
}

}

The methods within the classes will be constructed so as to get these sub-objects.
Functions that perform administrative tasks will need to account for this structure.

Keep this in mind as you look at the other classes as well. A Products object
might have an array of sub-objects for styles and a Styles object will have an array
of sub-objects for sub-styles.

Classes
We designed the classes in this application so that most of them look and behave
similarly. As you look at the classes, you should notice that all but the Base class
have methods with similar names. Our hope is that once you understand one class,
the workings of the others will be pretty clear. For this reason, we’re only going to
break down two classes in this chapter. Note that the each method in each class is
extensively commented on the CD. So if you have a specific question as to the work-
ing of a snippet of code, you will likely find the explanation within the comments.

In the following pages, we will break down code in the following classes: Base
and Product. For the other classes, we will only describe how to use the methods
and properties. But once you understand the Product class, the other classes
(Product, Style, and Sub-style) should be easy enough to figure out.

The classes are pretty extensive; dumping them all into one file would make life
unnecessarily difficult. It is a better idea to create a file called classes.php, which
includes the actual classes. Here are the contents of classes.php

include “base_class.php”;
include “category_class.php”;
include “product_class.php”;
include “style_class.php”;
include “substyle_class.php”;

Please be sure that you have mastered the concepts in Chapter 7 before

reading this section.

Breaking the classes into includes also allows us to selectively reuse specific
classes when we need them. This becomes important in Chapter 14, when we reuse
some of these classes in creating the shopping cart.

Tip

268 Part IV: Not So Simple Applications

3537-4 ch10.f.qc 12/15/00 15:24 Page 268

BASE
There is always a base class on which the inherited classes are built (though it’s not
always named Base). In this application, Base will contain a set of utilities that all of
the other classes will make use of. The class is declared with the following statement:

class Base
{

Now on to the properties. There are only three default properties. The following
three come into play when dealing with images and thumbnails.

◆ $image_src;

◆ $thumb_src;

◆ $thumb_width

Other properties will be created dynamically in course of the methods.

METHOD SQL_FORMAT() This method helps build update and insert queries.

function sql_format ($field)
{

if (empty($this->$field))
{

return “null”;
}
elseif (is_numeric($this->$field))
{

return $this->$field;
}
else
{

return “‘“.$this->$field.”’”;
}

}

For the sake of a query, a variable may be null, a numeric quantity, or text
string. Each of the data types requires a slightly different format within a query.
Strings must be surrounded by single quotes. Numeric files can have no quotes, and
for nulls, this method will return the string “null” — with no single quotes sur-
rounding it.

METHOD SET_IMAGE_SRC() This method both saves the uploaded image to the
filesystem and creates the thumbnail.

Chapter 10: Catalog 269

3537-4 ch10.f.qc 12/15/00 15:24 Page 269

It is complex enough to break down section by section. First remember that the
$file_src is the sole argument of the method call. $file_src is a string that will
contain the path to the image. Most often, $file_src will be a string like
“images/image_product_8_style_7”.

function set_image_src ($file_src=””)
{

if (!empty($this->imagefile) && $this->imagefile != “none”)
{

if ($file_src === “”)
{

$file_src = “images/”.uniqid(“image_”);
}
umask(2);
$sizearr = GetImageSize($this->imagefile);

Here, imagefile is a file that has been uploaded by a user. If a file itself exists but
no file name is indicted by the $file_src argument, a variable called $file_src is
created. Using the uniqueid() function, we create a file name that starts with
“image_” and then contains some random characters. We want to make sure file
names are unique, so we don’t end up accidentally overwriting existing files. After
that the umask is set (see your Unix man page for a description of umask), and then
we use the getimagesize() function. This function returns an array with four ele-
ments: the first is the image height, the second is width, the third is the image type
(1 = GIF, 2 = JPG, 3 = PNG, 4 = SWF), and the fourth is the height and width in a
string that is ready for the tag. This information is really helpful in that the
script will be able to assign a correct extension, even if the supplied filename had a
faulty extension, or none at all.

if ($sizearr[2] == 1) { $file_ext = “.gif”; }
elseif ($sizearr[2] == 2) { $file_ext = “.jpg”; }
elseif ($sizearr[2] == 3) { $file_ext = “.png”; }
else {

$file_ext = strtolower(
substr($this->imagefile_name

, strrpos($this->imagefile_name,”.”)
)

);
}

Using the information in the third element of the array, we determine the appro-
priate extension. If the file type doesn’t match any of the possible values returned
by getimagesize(), we parse the string containing the uploaded file’s name. We
take the characters from the final dot on, make them lowercase, and assign them to
$file_ext.

270 Part IV: Not So Simple Applications

3537-4 ch10.f.qc 12/15/00 15:24 Page 270

$thumb_src = $file_src.”_thumb”.$file_ext;
$file_src .= $file_ext;
copy($this->imagefile, $file_src);

Now that we have a unique filename and the proper extension, we can put
together filenames for both the main file and the thumbnail that we’re going to
make. Then the source file is copied from its temporary home to the full path on the
filesystem, as indicated in $file_src.

if ($file_ext == “.jpg”)
{
$cmd = “../catalog/makeimagethumb $file_src $thumb_src $this-
>thumb_width”;

$out = system($cmd,$err);

If the image is a jpg, we call a shell script, using the system() function. Here it is:

#!/bin/sh
PATH=/usr/local/bin:/usr/new/pbmplus:$PATH
export PATH
rm ./$2
djpeg ./$1 | pnmscale -xysize $3 $3 | pnmmargin -black 1 | cjpeg >
./$2

This script will be passed two text strings ($file_src and $thumb_src), which
are assigned to variables $1 and $2. The shell script first removes the existing
thumbnail (if it exists), and then goes about creating a new one. djped converts the
jpg to the pbm format. The output of that is piped to pnmscale, which reduces the
picture to a 50 ×50 px image; the output of that is piped to pnmmargin, which adds
a black border. Finally, the resulting image is redirected to a file, as indicated by $2
(or $thumb_src).

The previous shell script could have been kept within PHP. It could have

been written more like this:

$path = “/path/to/pbmplus/”;
$djpeg = $path . “djpeg”;
$pnmscale = $path . “pnmscale”;
$pnmmargin = $path . “pnmmargin”;
$cjpeg = $path.”cjpeg”;
$cmd = “ $djpeg $file_src | $pnmscale -xysize 50 50 |
$pnmmargin -black 1 | $cjpeg > $thumb_src”;
$out = system($cmd,$err);

NOTE

Chapter 10: Catalog 271

3537-4 ch10.f.qc 12/15/00 15:24 Page 271

If this shell script had produced an error, it would have been returned to the sys-
tem function as the second argument, $err.

if ($err) { print “<h4>cmd=$cmd err=$err
out=$out</h4>\n”; }

}
else
{

copy($file_src, $thumb_src);
}

$this->image_src = $file_src;
$this->thumb_src = $thumb_src;

}
else
{

$this->set_thumb_src();
}

If the file wasn’t a jpeg, the uploaded file is copied to the place where the thumb-
nail would be kept. Following that, we place the full path location of the file and
the thumbnail to the image_src and thumb_src attributes.

Note the final if block. This portion will run if a file has not been uploaded.

METHOD SET_THUMB_SRC() This method sets a thumb_src property. It deter-
mines this property based on the image_src property stored in the database. We are
not storing the thumb_src property in the database, so when we need access to the
thumbnail, we will need to run this method.

The last period image_src is replaced with “_thumb.”. If no period is found in
image_src, thumb_src is set to image_src plus “_thumb”.

function set_thumb_src()
{

$last_period = strrpos($this->image_src,”.”);
if ($last_period === false)
{

$this->thumb_src = $this->image_src.”_thumb”;
}
else
{

$this->thumb_src = substr_replace(
$this->image_src
, “_thumb.”

, $last_period
, 1

272 Part IV: Not So Simple Applications

3537-4 ch10.f.qc 12/15/00 15:24 Page 272

);
}

}

METHOD BASE This is the constructor method for this class. As you can see it
does little but make calls to a method called Construct.

function Base ($parent=””,$atts=””)
{

$this->Construct(get_object_vars($parent));
$this->Construct($atts);

}

Notice the use of get_object_vars(). It’s a handy function that turns all of the
object properties into elements in an associative array. So if an object is passed to
this method (through the first argument), it can be passed to Construct as an array.

METHOD CONFIRM_DELETE_FORM() This method prints a form that forces the
administrator of the catalog to confirm that they want to continue with a delete.
This comes into play when a deletion is indicated for an item that contains related
child elements. For example, if the administrator indicates that a category should
be deleted but the category still contains products, this form will print.

confirm_delete_form($message=””, $label=””)
{

$warning = “Please confirm your delete request”;
if (!empty($message))
{

$warning .= “- $message”;
}
$output = <<<EOQ

<p>
<form method=”post”>
$warning
<input type=”hidden” name=”confirm” value=”Confirm Delete”>
<input type=”submit” name=”submit” value=”$label”>
</form>
</p>
EOQ;

return $output;
}

Chapter 10: Catalog 273

3537-4 ch10.f.qc 12/15/00 15:24 Page 273

METHOD CONSTRUCT() This method is expecting an associative array. Most
often, in the course of the application, the associative array will be the result of
mysql_fetch_array(). Each of the keys in the array will become properties of the
current object. Note that we have to run the set_thumb_src() property because
the thumb_src is not stored in the database.

function Construct ($atts=””)
{

if (is_array($atts))
{

while (list($name,$value) = each($atts))
{

if (!empty($value) && !is_array($value))
{

$this->$name = $value;
}

}
}
if (!empty($this->image_src))
{

$this->set_thumb_src();
}

}

METHOD BASE() This is the constructor of the Base class. Its major job is to call
the Contruct() method. If it receives an object in the first argument, the properties
of the object are turned into an associative array with the get_object_vars()
function before it is sent to Construct. The thumb_width property is set here
because a value of a default property cannot accompany the property’s declaration.

function Base ($parent=””,$atts=””)
{

$this->thumb_width = 50;
if (is_object($parent))
{

$this->Construct(get_object_vars($parent));
}
$this->Construct($atts);

}

PRODUCTS
Before we get started in explaining this class, let us re-state that this class is very
similar to the other classes in this application. If you understand how this works,
the rest of the classes should be relatively easy to figure out.

274 Part IV: Not So Simple Applications

3537-4 ch10.f.qc 12/15/00 15:24 Page 274

In Figure 10-11, a few pages back, you saw what a Catalog object looked like.
Now, we’ll show what a typical Product object looks like (Figure 10-12).

Figure 10-12: Sample Product object

product Object
(

[product_id] => 1
[category_id] => 1
[product] => Plain
[description] => Old standby
[price] => 10.00
[style_count] => 9
[substyle_count] => 9

[styles] => Array
(

[0] => style Object

[1] => style Object

(
[substyles] => Array ()
[product_id] => 1
[category_id] => 1
[product] => Plain
[description] => Old standby
[price] => 10.00
[style_count] => 9
[substyle_count] => 9
[style_id] => 1
[style] => black
[image_src] => images/product_1_style_1.jpg
[thumb_src] => images/product_1_style_1_thumb.jpg

)

(
[substyles] => Array ()
[product_id] => 1
[category_id] => 1
[product] => Plain
[description] => Old standby
[price] => 10.00
[style_count] => 9
[substyle_count] => 9
[style_id] => 2
[style] => white
[image_src] => images/product_1_style_2.jpg
[thumb_src] => images/product_1_style_2_thumb.jpg

)
)

)

Chapter 10: Catalog 275

3537-4 ch10.f.qc 12/15/00 15:24 Page 275

Notice that the Product object contains and array of related styles. That array,
named styles, contains Style objects. So at some point in this class, you can expect
some code that will manufacture this structure. Specifically, somewhere in this
class, we can expect the Product class to make calls to the Style class, in order to
create these sub-objects.

Additionally, if you look at Figure 10-11, you will notice that the Catalog object
contains an array of Product objects. You can probably now see the parallel struc-
ture we had mentioned. This is particularly important because as you look through
the product object you should expect to see places where the Catalog class would be
making calls to the Product class in order to create this structure. In fact, you will
see that in the constructor of the Product class.

METHOD PRODUCT() This is the constructor of the class. It is very brief.

function Product ($parent=””,$atts=””)
{

$this->styles = array();
$this->Base($parent,$atts);

}

Remember that we said that this will be called from the Category class. The $par-
ent variable will contain the name of the parent, and $atts will be a row retrieved
from the database. Though it’s not important to show all of the code that will call
to this method at this time, you should have an idea of what is needed to create the
data structure seen in Figure 10-12.

Somewhere in the Category class, a query to the database will retrieve a list of
all of the products associated with a category_id, something like select * from prod-
ucts where categorey_id = $category_id. The result set of this query will be looped
through and each time through the loop a row will be assigned to the second argu-
ment in the call to the Product object. You will see an example of this later in the
chapter, when the Product class makes calls to the Styles class.

The call to Base() will take each of the elements in the associative array and
assign them to object properties.

Note that this constructor will also run if a product object is instantiated within
a script. But after being instantiated, the information associated with the prod-
uct_id will not be automatically loaded. The FetchProduct() or LoadProduct()
methods will be needed for that. It is the LoadProduct() method that will make the
Style class. But before we break that down, you need to see the FetchProduct()
method.

METHOD FETCHPRODUCT() This method grabs the row form the products table
associated with the given product_id. It includes some error handling, for the event
that no product_id or a bad product_id was given. Then, using the Construct
method from the Base class, each of the returned fields is turned into a property of
the Product object.

276 Part IV: Not So Simple Applications

3537-4 ch10.f.qc 12/15/00 15:24 Page 276

function FetchProduct ($product_id=0)
{

if (!empty($product_id))
{

$this->product_id = $product_id;
}
if (empty($this->product_id))
{

$this->error = “no product_id specified for fetch”;
return FALSE;

}
$result = safe_query(“select * from products

where product_id = $this->product_id
“);
if (!$result)
{

return FALSE;
}
$row = mysql_fetch_array($result,MYSQL_ASSOC);
$this->Construct($row);
return TRUE;

}

Notice the use of $this->error. By using defining an error in this way, in our
scripts we can do the following:

$p = new Product;
if (!$p->FetchProduct(1))
{

echo $p->error;
} else{

echo “The product name is: $p->product”;
}

if the fetch didn’t work out. The method will return FALSE, and you will have
access to a meaningful error message.

METHOD LOADPRODUCT() As mentioned earlier, this is the method that will cre-
ate the structure seen in Figure 10-12. If you look at that figure, you will see there
is quite a bit of information: the number of associated styles, the number of associ-
ated sub-styles. Then there is the array that contains Style objects.

function LoadProduct ($product_id=0)
{

$this->FetchProduct($product_id);

Chapter 10: Catalog 277

3537-4 ch10.f.qc 12/15/00 15:24 Page 277

Before doing anything, we will need to have access to all of the information
associated with the product_id. As you saw, FetchProduct() will take care of that,
and will assign all of the columns to object properties.

$result = safe_query(“select count(s.style) as style_count
, count(s.price) as style_price_count
, count(m.substyle_id) as substyle_count
, count(m.price) as substyle_price_count
from products p
left join styles s on s.product_id=p.product_id
left join style_substyle_map m on m.style_id=s.style_id
where p.product_id = $this->product_id
group by p.product_id

“);
$row = mysql_fetch_array($result,MYSQL_ASSOC);
$this->Construct($row);

In the preceding code, the query will retrieve the number of associated styles and
substyles, as well as a number of prices for styles and substyles. After the query is
run and the row is fetched, the Construct() method assigns each of the columns
in the result to object properties.

if ($this->style_count > 0)
{

$squery = “select * from styles where product_id = “
.$this->product_id

;
$sresult = safe_query($squery);
while ($srow = mysql_fetch_array($sresult,MYSQL_ASSOC))
{

$this->AddStyle($this,$srow);
}

}
}

If there are styles for this Product, as indicated by style_count, a query is run to
get all of the information from the styles table. Each row returned will be sent to
the AddStyle() Method. There is only one line in the AddStyle() Method:

$this->styles[] = new Style($parent,$atts);

Here a new Style object is created, and is placed in the styles array. This creates
the structure seen in the previous two figures.

278 Part IV: Not So Simple Applications

3537-4 ch10.f.qc 12/15/00 15:24 Page 278

In case you’re wondering, the AddStyle() method isn’t really necessary here —
this code could easily be in the LoadProduct() method. We will show the reason-
ing for this in Chapter 14.

METHOD SAVEPRODUCT() In the administration of the catalog, you will need to
update existing products and save new products.

function SaveProduct()
{

if (empty($this->product_id))
{

safe_query(“insert into products
(category_id, product)
values ($this->category_id, ‘$this->product’)

“);
$this->product_id = mysql_insert_id();

}

If there is no existing product_id, we have MySQL assign one. By doing an insert
into the products table, mysql_insert_id() will return the primary key of the new
row. Now that we have the row, we need to format the fields that were uploaded.
Then we can run the query.

$cleandsc = cleanup_text($this->description);
$this->set_image_src(“images/product_image_$this->product_id”);
$nullprice = $this->sql_format(“price”);
$nullimage_src = $this->sql_format(“image_src”);
return safe_query(“update products

set product = ‘$this->product’
, description = ‘$cleandsc’
, price = $nullprice
, image_src = $nullimage_src
where product_id = $this->product_id

“);
}

METHOD DELETEPRODUCT() Finally, there needs to be a way to purge an exist-
ing product. Note the single argument to this method. For safety reasons, this
method forces the administrator to confirm any delete. To accomplish this, we make
use of the confirmation form seen in the Base class.

function DeleteProduct ($confirm=””)
{

if (empty($this->product_id))

Chapter 10: Catalog 279

3537-4 ch10.f.qc 12/15/00 15:24 Page 279

{
$this->error = “no product_id to delete”;
return FALSE;

}
$result = safe_query(“select style_id from styles

where product_id = $this->product_id
“);

As an added measure of safety, we are checking that the product intended for
deletion does not have any child styles. If it does, the form in the base class will be
printed with an appropriate error message.

if (mysql_num_rows($result) > 0)
{

if (empty($confirm))
{

$this->error = $this->confirm_delete_form(
“The product $this->product ($this->product_id) still

contains styles.”
.hidden_field(“category_id”,$this->category_id)
.hidden_field(“product_id”,$this->product_id)

, “Delete Product”
);
return FALSE;

}

We now loop through each of the styles_ids returned from the previous queries
and run queries that delete the style_ids from the style_substyle_map table, the
styles table, and the products table. Note that in other relational databases we could
delete rows from many tables at once by using a join. MySQL, however, does not
allow for joins when performing deletes.

while ($row = mysql_fetch_object($result))
{

safe_query(“delete from style_substyle_map
where style_id = $row->style_id

“);
}
safe_query(“delete from styles

where product_id = $this->product_id
“);

}
return safe_query(“delete from products
where product_id = $this->product_id

“);
}

280 Part IV: Not So Simple Applications

3537-4 ch10.f.qc 12/15/00 15:24 Page 280

OTHER CLASSES
Now that you have seen one class in its entirety, and have a feel for how the data
structures are created, it would be a waste of paper, as well as your time, to lay out
all of the other classes here. As we’ve said (about the 5 times now) they’re designed
to work similarly. If you understand one, you really understand all of them.

If you’d like more detail on any of the remaining classes, see the comments
within the files on the CD. In this section, we’re going to tell you all you need to
know to make use of the remaining classes. (Note that the Catalog class was
described earlier.)

Class Name: Style
Extends Product
Default Properties:

◆ $substyle_count;

◆ $substyle_price_count;

◆ $substyles;

Methods:

◆ Style. The class constructor. Takes two arguments: $parent and $atts. If
$atts is an array, the Base() method will be called, assigning each of the
array elements to Object properties. (Note, this method is similar to the
Product method).

◆ FetchStyle. Takes one argument, $style_id. Creates object properties for
every row in the style table associated with the $style_id. (Note, this
method is similar to the FetchProduct method).

◆ LoadStyles. Takes one argument, $style_id. First runs FetchStyle and the
creates an array, each element of which is a object containing sub-style
information. (Note, this method is similar to the LoadProduct method).

◆ SaveStyle. Takes no arguments, assumes a $this->style_id exists. Will
both update existing styles and create new ones. (Note, this method is
similar to the SaveProduct method).

◆ DeleteStyle. Takes no arguments. Removes a style from the database. It
will force confirmation if there are related substyles. It will delete that
style after if confirmation is provided. (Note, this method is similar to the
DeleteProduct method).

◆ PrintStyleRow. Takes two arguments: $product_price, $product_dsc. Prints
product information within a table row. If the arguments are equal to the
equivalent fields in the Style, then those style fields are not printed.

Class Name: SubStyle
Extends Style

Chapter 10: Catalog 281

3537-4 ch10.f.qc 12/15/00 15:24 Page 281

Default Properties:
None.
Methods:

◆ SubStyle. The class constructor. Takes two arguments: $parent and $atts.
If $atts is an array, the Base() method will be called, assigning each of the
array elements to Object properties. (Note, this is nearly identical in func-
tion to the Product method).

◆ FetchSubStyle. Takes one argument, $substyle_id. Creates object proper-
ties for every row in the substyle table associated with the $substyle_id.
(Note, this is nearly identical in function to the FetchProduct method).

◆ SaveSubStyle. Takes no arguments, assumes a $this->substyle_id exists.
Will both update existing styles and create new ones. (Note, this is nearly
identical in function to the DeleteProduct method).

◆ PrintSubStyle. Takes two arguments: $product_price,$product_dsc. Prints
product information within a table row. If either of the arguments contain
information, the values of those arguments will overwrite the information
from the database in the printed row.

Sample Script
Now that you have understanding of the classes available, we’ll show how they are
put to work in one of the scripts. We’ll look at display.php. This page is expecting
at least a category_id to be passed via the querystring. If there is a category_id and
a product_id, all of the product information will be printed. If only a category_id
exits, a list of products is printed.

<?php
if (empty($category_id))
{

header(“Location: index.php”);
exit;

}

The above code is just some error handling. We need to have a category_id.

include “header.php”;
$page_title = anchor_tag(“index.php”, “Bag’O’Stuff”);

We are going to be using breadcrumbs for navigation. This is the fist link, which
takes the user to the home page. Since we already know that there is a category_id,
we can instantiate a Category object, which we’re calling $c. Note that at this point

282 Part IV: Not So Simple Applications

3537-4 ch10.f.qc 12/15/00 15:24 Page 282

the $c really doesn’t contain much, because we haven’t used either FetchCategory
or LoadCategory.

$c = new Category;

if (empty($product_id))
{

$c->LoadCategory($category_id);

$page_title .= “: $c->category”;
include(“start_page.php”);

// print out a description of this category and a list of its
// products
$c->PrintCategory();

If there is no product_id, we know that we are only concerned with the category,
so we call the LoadCategory() method. This creates a structure like the one seen in
Figure 10-11. Then to print the category, all we have to do is call the Print
Category() method.

}
else
{

This portion will run if there is a product_id. A product object is instantiated,
and then LoadProduct() loads all of the associated style objects. See Figure 10-12
to see the data structure it creates. Then the LoadStyles() method grabs all the
substyles associated with each of the styles.

$p = new Product;
$p->LoadProduct($product_id);
$p->LoadStyles();

$c->FetchCategory($p->category_id);

$page_title .= “: “
.anchor_tag(“display.php?category_id=$c->category_id”, $c-

>category)
.”: $p->product”

;
include(“start_page.php”);

$p->PrintProduct();

Chapter 10: Catalog 283

3537-4 ch10.f.qc 12/15/00 15:24 Page 283

}

include(“end_page.php”);

Then all we need is another Method call and the page is ready to go.

Summary
You might have found this chapter to be quite a handful. In addition to adding code
for file uploads and accessing utilities outside of PHP, we’ve used a completely dif-
ferent method for the organization of the code.

The object-oriented approach used here may not be your cup of tea. And if it’s not,
you’re in good company. Many people who work with PHP feel that object-oriented
programming makes little sense in a Web development environment. But there are
advantages.

As you can see in this application, once the classes are created, there’s very little
you need to do get great functionality within your scripts. You will see in Chapter
14 that we can take the code created here and build on it.

284 Part IV: Not So Simple Applications

3537-4 ch10.f.qc 12/15/00 15:24 Page 284

Chapter 11

Content Management
System

IN THIS CHAPTER

◆ Creating an affordable content-management system.

◆ Maintaining security in your databases

◆ Anticipating shortcomings in MySQL’s privilege scheme

WELCOME TO OUR FAVORITE application in this book. Don’t get me wrong, we love
the guestbook, we love the shopping cart, and we adore the problem tracker. But, as
we spent our formative years dealing with Web sites that produced a steady stream
of prose, we know the importance of having some sort of content-management sys-
tem in place.

Content-management systems come in all shapes, sizes, and costs. Depending on
your needs or your company’s, you might be inclined to make a five-figure investment
in something like Vignette or a six- to seven-figure investment in Broadvision. But
your choices don’t end there. Zope (http://www.zope.org) and Midgard (http://
www.midgard-project.org/) and eGrail (http://www.egrail.com/) are just three of
the open-source options for content management.

Given all of these options, you might wonder why you should consider using the
application presented here — why not just run off one of the aforementioned appli-
cations? There is, in fact, an excellent reason. Content management is a field in
which a high degree of customization is necessary. Your company’s concerns are
going to be distinct from any other’s, and no matter what system you end up using,
you are going to need to do a lot of coding to get your systems working just the
way you want.

If you decide on Vignette, you’ll need to learn a nasty little language called Tcl
(pronounced “tickle”). If you want to use Zope, you will have to add Python to your
repertoire. Midgard is a PHP-based solution, and there’s no question that there’s a
lot of good code in there. It’s open source, and presents a nice opportunity to con-
tribute to the development of an increasingly sophisticated piece of software.

285

3537-4 ch11.f.qc 12/15/00 15:25 Page 285

But you may just want something you can call your own, a solution that you
know inside out, something that is built to solve the problems specific to your orga-
nization. So take a look at what’s available, see if your challenges, budget, and
temperament make one of the ready-made solutions a good fit. If not, you can look
at the framework and code presented here and adapt them to your needs, or maybe
just re-code from scratch.

Determining the Scope and
Goals of the Application
First off, you are going to need a site that presents content. For the sake of present-
ing this content-management application, we’ve created a fairly basic site (which is
in the book/netsloth/ directory on the CD-ROM). But whatever site you create is
going to require all the design and editorial resources you can muster, and we’re
not going to worry about that too much here.

Your content-management system is going to need to do several things. Its most
obvious purpose is to offer an environment where writers, editors, and administra-
tors can create new stories. Additionally, it must offer a flexible series of stages
through which a story moves. For example, if originally implemented with a single
editorial stage, the application must be flexible enough to accommodate an addi-
tional editorial stage (or several of them) if needed.

Additionally, this application must meet the various demands of a staff. There
will be a series of writers, and some by-line information will be presented with each
story. Further, in the editorial process staff members will be assigned specific func-
tions. Various levels of permission will ensure that not everyone will have the
authority to edit, proofread, or make a story available to the world at large.

Finally, there must be a sort of super-user authority. A few select people will
have the authority to add users and authorities to the editorial staff.

Necessary pages
First off, you need a site, a place where the articles will be displayed. As this isn’t
really the focus of this application, we’ve dealt with it very briefly. You will obviously
need to code a site that fits your needs. Figures 11-1 and 11-2 show the Netsloth site
in all its glory.

This application manages content and the creators of the content. You will need a
series of editorial stages and a series of users. Users will have access only to the
stages that involve them. Figure 11-3 shows a page that lists sample stages and
users. Figures 11-4 and 11-5 show pages that administer these rights and stages,
respectively.

286 Part IV: Not So Simple Applications

3537-4 ch11.f.qc 12/15/00 15:25 Page 286

Figure 11-1: Netsloth index page

Figure 11-2: View story page

Chapter 11: Content Management System 287

3537-4 ch11.f.qc 12/15/00 15:25 Page 287

Figure 11-3: Rights and stages page

Figure 11-4: Rights administration page

288 Part IV: Not So Simple Applications

3537-4 ch11.f.qc 12/15/00 15:25 Page 288

Figure 11-5: Stages administration page

This application also needs a workspace, a page where writers and editors can
create stories, and where stories can work their way through the editorial process.
The workspace will contain a few fields that identify the author, the date, the body
of text, and other necessary information. Additionally, the stage of the editorial
process that the story is in is indicated. This page is shown in Figure 11-6.

Another important aspect of an editorial environment is versioning. It’s very
important to be able to track pieces as they work through the process. You’ll want
to know who is making bad changes. Remember: good project management is all
about keeping your hands clean and assigning blame. (Note: be completely arbi-
trary in your assignations — it will keep your staff off balance). Figure 11-7 shows
the page that tracks versions, or the story history page.

This application performs a few more tasks, but they are minor enough to over-
look here. Anyway, now that we’re well into the “Not-So-Simple” portion of the
book, you should be able to figure this stuff out. Right?

Chapter 11: Content Management System 289

3537-4 ch11.f.qc 12/15/00 15:25 Page 289

Figure 11-6: Editorial workplace

Figure 11-7: Story history page

290 Part IV: Not So Simple Applications

3537-4 ch11.f.qc 12/15/00 15:25 Page 290

What do you need to prevent?
The major issue in this application is ensuring that users do only what they are per-
mitted to do, and absolutely no more. To do this, the application makes use of
MySQL administrative privileges.

In all of the previous applications, there was a simple header file that called a
function to log into the database. Each file ended up using the same dbconnect()
call, with the same username and password. But that won’t work here because dif-
ferent users need different levels of access.

Moreover, in this application some users are going to need the ability to grant
access to others. Workers will come and go and their responsibilities will change. An
administrator will need to be able to change these rights. Since we don’t want every-
body who logs into the database to have the same rights, this application will need
the facility to have different people log in using different names and passwords.

Privileges in MySQL are granted and revoked with the aptly named grant state-
ment. It’s fairly painless and is described in Appendix D. So before you move forward
with this application, it might be worth taking a quick look at that appendix.

It’s worth mentioning here that in this application you will run into some of the
weirder aspects of MySQL. If some of the design of this application seems a little
strange, that’s because it is. But that proverbial bridge will be crossed in due time.

Designing the Database
The schema represented in Figure 11-8 shows how this application divides its data.
Keep in mind as you look at this that in database-development land there is usually
more than one decent way to go about things. You might find a different way to
arrange this type of data that works equally well. In fact, you may even prefer
another way. That’s fine with the writers of this book. We encourage independent
thought and creativity, as long as it does not result in immoral or ungodly behav-
ior. So normalize your data as you see fit, but in the process please don’t violate
any natural laws.

Start by looking at the story_author_map table. Notice how it is on the many
end of one-to-many relationships with two tables: the story table and the author
table. This is a classic many-to-many relationship. The reason for this is as follows:
It is possible that a single story will have more than one author, and it’s more than
likely that an author will contribute to more than one story. The forms as set up in
the application do not at this point have a facility for adding multiple authors, but
that’s easy enough to change if you wish. It’s best to start with this flexibility, even
if you don’t need it right away.

Chapter 11: Content Management System 291

3537-4 ch11.f.qc 12/15/00 15:25 Page 291

Figure 11-8: Content manager schema

The table story_author_map makes it possible for simple SQL statements with a
couple of joins to get either a listing of specific authors and the stories they’re
involved with or specific stories and the authors who have worked them. For exam-
ple, the following would get all the stories in the database written by Jay Greenspan.

select s.headline, s.byline_prefix, a.author
from stories s, story_author_map m, authors a

content_admin

username
password

authors

author_id
author
email

story_author_map

story_id
author_id

user_stage_map

user_id
stage_id

editing_stories

story_id

Note: each of these
tables below
corresponds to an
entry in the
content_stages table.
The tables will change
as stages are added
and deleted.

killed_stories

story_id

proofreading_stories

story_id

live_stories

story_id

writting_stories

story_id

stories

story_id
stage_id
publish_dt
headline
subtitle
byline_prefix
summary
body

content_stages

stage_id
stage varchar
stage_dsc

content_users

user_id
username
name
email

story_versions

story_id
modify_dt
modify_by
stage_id
publish_dt
headline
subtitle
byline_prefix
summary
body

292 Part IV: Not So Simple Applications

3537-4 ch11.f.qc 12/15/00 15:25 Page 292

where s.story_id = m.story_id and
m.author_id = a.author_id and
a.author = ‘Jay Greenspan’

The next thing to be aware of is the relationship between the stories table and
the story_versions table. As we already mentioned, versioning is very important to
a content-management system. In this case, it means that you must have access to
old versions of articles. The way this schema is set up, the most current version of
an article is always kept in the stories table. Additionally, every version of a story,
including the most recent, is kept in the story_versions table.

Now on to the tables that define the stages in the editorial process and the users
who will have access to those stages: content_users, content_stages, and user_stage_
map. Once again, a many-to-many relationship ensures that the application will
track the users and stages and the intersections of the two easily enough. Want to
find all the users that have the rights to make content publicly available? This
will work:

select c.user_id
from content_users c, user_stage_map m, content_stages s
where s.stage=’Live’ and

s.stage_id = m.stage_id and
m.user_id = c.user_id

This setup enforces some of the security needed in this application. If a user does
not have a listing in the user_stage_map for a particular item, he will not be able to
perform that task.

You might be wondering who has the rights to grant these privileges. Those peo-
ple are listed in the content_admin table.

If you decide to tweak this application for your own purposes, you may find that
using these tables may be all the security you need. If your users don’t have access
to the Unix box storing the database server, these tables should be enough.
However, if your users are able to get at the data in others ways — perhaps by log-
ging into the server and launching the MySQL command line client and running
queries directly — you may need a bit more.

In a case such as this, you want to grant users privileges to log into the database.
So you have to give them usernames and passwords using the grant statement dis-
cussed in Appendix D. Then no matter where the users are accessing the data from
they will only have access to the appropriate data.

Sounds great, right? Well, it would be great, but when you try to do this your
application runs into some of the limitations of MySQL, and working around these
limitations makes for some weird solutions.

As of the writing of this book, MySQL is missing two things you could have
made great use of here. First is a feature known as Views. A view is pretty easy
concept to understand. When creating a view, an administrator defines a virtual
table that may be a join of many tables and may only show some of the columns in

Chapter 11: Content Management System 293

3537-4 ch11.f.qc 12/15/00 15:25 Page 293

the used tables. By restricting the user to a view of the data, the administrator can
restrict what the user is permitted to see. Note that in most SQL servers, views are
read only.

There isn’t a development tool on the planet that doesn’t have its quirks.

Every language and every database presents it own challenges.The more of

these that you are aware of before you start writing your application, the

better off you will be.

The second thing missing from MySQL that would have been nice to use here is
a more restrictive grant statement (please see Appendix D). As it stands, MySQL can
grant authorities on several levels: for an entire installation, for a specific database,
for tables within a database, or for columns within a table. While this may sound
quite extensive, it is really not as complete as it could be.

Consider this problem: in MySQL, using table- or column-level grants, how
could you prevent user john, who needs to have only editorial privileges, from
updating stories that are already live? The best way to go about it would be to have
very specific privileges in the stories table. If the stage_id for Live is 4, you’d want
a grant to john that gave him access to alter any of the rows in the stories table,
except those where stage_id = 4. Other databases allow this, but MySQL does not.

The best you could do with MySQL is provide backup security to the content_
users, content_stages, and user_stage_map tables. This backup plan will only work
within the PHP scripts that access the database. If you grant users permission, they
will be able to log into the database via avenues other than the Web. And, as we
already mentioned, the rights you can grant may not be as restrictive as you like.
Grant rights at your own discretion.

Here’s how the secondary security works within the PHP scripts. When the
administrator creates a stage, a row is added to the content_stages table. In addi-
tion, a create query makes a table with a single column to store the story_ids. For
the proofreading stage, there is a table called proofreading_stories.

When new users are created, rights to these tables will be granted when appropri-
ate. As a story works its way through the editorial process, the story_id is written to
the corresponding stage table, such as proofreading_stories. If the user does not have
rights for that table, the update is rejected.

Here’s a quick example of how this would work. Say that you, the administrator
of this content management system, decided that you needed to add another stage
to your editorial process, called format_review. If you are logged into the applica-
tion as a user listed in the content_admin table, you will have the rights to create
this stage. The stage will first be added to the content_stages table. When you cre-
ate the stage, you will indicate which of the users should have the authority to use
this stage. Those users will be added to the user_stage_map table with a different
row for each user_id/stage_id combination. This is our primary security, and if

Tip

294 Part IV: Not So Simple Applications

3537-4 ch11.f.qc 12/15/00 15:25 Page 294

you’re adapting this application for use in your system, you would probably leave
it at this.

However, using MySQL grants we’re taking another step. MySQL grants won’t
allow us to say “grant all authority to user on stories table where stage_id=4”.
Instead we create an additional table named format_review_stories. Rights to this
table will be granted to only those who need format review capability. As a story
makes its way through the editorial process, the story_id will be copied to the
appropriate stage table. When it reaches format_review, the story_id will be copied
to the format_review_stories table. Because we can enforce grants on a table, we
know that unauthorized users will not be able to access the format_review_stories
table. If an unauthorized user tries to update the format_review_stories table, the
query will be refused.

This is hardly ideal. In fact, it’s pretty sloppy. If we were to deploy this applica-
tion in the real world it is doubtful that we’d actually try to make this work with
grant statements. We’d probably just make sure that the user had no direct access to
the database whatsoever and let the user_stage_map table make sure the users were
properly restricted. However, we thought it would be useful to show an example of
how to work with MySQLs grant statements from a PHP interface.

Listing 11-1 shows the tables in the content administration application.

Listing 11-1: Create Statements for the Content Management System

Table structure for table ‘authors’
#
CREATE TABLE authors (
author_id int(11) DEFAULT ‘0’ NOT NULL auto_increment,
author varchar(50),
email varchar(255),
bio text,
PRIMARY KEY (author_id)

);

#
Table structure for table ‘content_admin’
#
CREATE TABLE content_admin (
username varchar(50) DEFAULT ‘’ NOT NULL,
password varchar(255) DEFAULT ‘’ NOT NULL

);

#
Table structure for table ‘content_stages’
#
CREATE TABLE content_stages (
stage_id int(11) DEFAULT ‘0’ NOT NULL auto_increment,
stage varchar(20) DEFAULT ‘’ NOT NULL,

Chapter 11: Content Management System 295

3537-4 ch11.f.qc 12/15/00 15:25 Page 295

stage_dsc text,
PRIMARY KEY (stage_id)

);

Table structure for table ‘content_users’
#
CREATE TABLE content_users (
user_id int(11) DEFAULT ‘0’ NOT NULL auto_increment,
username varchar(20) DEFAULT ‘’ NOT NULL,
name varchar(50),
email varchar(255),
PRIMARY KEY (user_id)

);

#
Table structure for table ‘editing_stories’
#
CREATE TABLE editing_stories (
story_id int(11) DEFAULT ‘0’ NOT NULL,
UNIQUE story_id (story_id)

);

#
Table structure for table ‘killed_stories’
#
CREATE TABLE killed_stories (
story_id int(11) DEFAULT ‘0’ NOT NULL,
UNIQUE story_id (story_id)

);

#
Table structure for table ‘live_stories’
#
CREATE TABLE live_stories (
story_id int(11) DEFAULT ‘0’ NOT NULL,
UNIQUE story_id (story_id)

);

#
Table structure for table ‘proofreading_stories’
#
CREATE TABLE proofreading_stories (
story_id int(11) DEFAULT ‘0’ NOT NULL,
UNIQUE story_id (story_id)

296 Part IV: Not So Simple Applications

3537-4 ch11.f.qc 12/15/00 15:25 Page 296

);

#
Table structure for table ‘stories’
#
CREATE TABLE stories (
story_id int(11) DEFAULT ‘0’ NOT NULL auto_increment,
stage_id int(11) DEFAULT ‘0’ NOT NULL,
publish_dt date,
headline varchar(255),
subtitle varchar(255),
byline_prefix varchar(20),
summary text,
body text,
PRIMARY KEY (story_id),
KEY story_stage_key (stage_id)

);

#
Table structure for table ‘story_author_map’
#
CREATE TABLE story_author_map (
story_id int(11) DEFAULT ‘0’ NOT NULL,
author_id int(11) DEFAULT ‘0’ NOT NULL,
PRIMARY KEY (story_id),
KEY author_story_map_key (author_id)

);

#
Table structure for table ‘story_versions’
#
CREATE TABLE story_versions (
story_id int(11) DEFAULT ‘0’ NOT NULL,
modify_dt timestamp(14),
modify_by varchar(20) DEFAULT ‘’ NOT NULL,
stage_id int(11) DEFAULT ‘0’ NOT NULL,
publish_dt date,
headline varchar(255),
subtitle varchar(255),
byline_prefix varchar(20),
summary text,
body text,
KEY story_version_key (story_id,modify_dt)

);

Chapter 11: Content Management System 297

3537-4 ch11.f.qc 12/15/00 15:25 Page 297

#
Table structure for table ‘user_stage_map’
#
CREATE TABLE user_stage_map (
user_id int(11) DEFAULT ‘0’ NOT NULL,
stage_id int(11) DEFAULT ‘0’ NOT NULL,
PRIMARY KEY (user_id,stage_id),
KEY stage_user_map_key (stage_id)

);

#
Table structure for table ‘writing_stories’
#
CREATE TABLE writing_stories (
story_id int(11) DEFAULT ‘0’ NOT NULL,
UNIQUE story_id (story_id)

);

Code Overview
At this point, we assume that you are getting comfortable with the way the applica-
tions in this book have been constructed. You should be familiar with the functions
introduced in Chapter 8, and the way PHP embeds MySQL commands within the
scripts.

As you work through, less and less of the code should require explanation. Thus,
the descriptions of the code will deal only with those parts that are really new
or tricky.

Here, most of the newer-looking code will come from assigning the privileges
discussed in the previous section. The application sends queries that you haven’t
used before.

Code Breakdown
Once again, the code in this application will make heavy use of the functions in the
/functions/ folder. A lot of the code presented here will make calls to those functions.

Reusable functions
In this application, there is only one file with application-specific functions: /content/
functions.php.

298 Part IV: Not So Simple Applications

3537-4 ch11.f.qc 12/15/00 15:25 Page 298

FUNCTIONS FROM /CONTENT/FUNCTIONS.PHP
These will be used throughout the application. There will be many references to
Chapter 9 in this section.

LIST_STORIES() As mentioned in Chapter 10, in MySQL version 3.23 you can
work MySQL’s lack of support for unions by creating temporary tables. However,
we developed all of the applications on this book using MySQL version 3.22, which
does not support the create temporary table feature. This gets to be a problem when
you need to print out the contents of two queries within a single table. If you look
at the source code on the CD-ROM, you will see that the pages start by printing all
of the stories currently within the workflow that the current user has access to.
Following that, if the user has access to live stories, the live stories should be
printed within the same table.

To create this table, we need to call this function twice, passing the result iden-
tifier of the query as the first argument. If the query has at least one row, the table
header will be printed, and $in_table will be set to 1. The next time the function is
called, the value of $in_table will be passed as the second argument. If the value of
$in_table is 1 the header will not print.

Again, if you are using MySQL version 3.23, use the create temporary table feature.

function list_stories($result, $in_table=””)
{

if (empty($in_table)) { $in_table = 0; }

while ($row = mysql_fetch_array($result))
{

if ($in_table == 0)
{

print subtitle(“Edit Stories”);
print start_table();
print table_row(“Stage”

, “Story”
, “Publish Date”

);
$in_table = 1;

}
print table_row($row[“stage”],

anchor_tag(“edit_story.php?story_id=”.$row[“story_id”]
, $row[“headline”]

)
, $row[“publish_dt”]

);
}
return $in_table;

}

Chapter 11: Content Management System 299

3537-4 ch11.f.qc 12/15/00 15:25 Page 299

FETCH_STORY() This function, like most of those in this section, makes use of the
fetch_record() function, which is discussed in Chapter 9. In the call to the fetch_
record(), a story_id, which is the primary key of the table, is specified. Therefore,
you can be sure that the query created by fetch_record will have only one row. The
query in fetch_record will get all columns for the story_id.

function fetch_story ($story_id=””)
{

$result = fetch_record(“stories”,”story_id”,$story_id);
return $result;

}

Because there is only one row, the fetch_record will call the set_result_
variable() function (also discussed in Chapter 9). That function will make all of
the columns for that story_id available as globals. From the schema in Figure
11-7, you can see that those columns are story_id int, stage_id, publish_dt, head-
line, subtitle, byline_prefix, summary, and body.

So after running fetch_story you can access any of the columns as global
variables.

fetch_story(1);
echo $headline;

The fetch_record() function is discussing in Chapter 9.

FETCH_STORY_VERSION() This function works almost identically to the fetch_
story() function just described, the only difference being that multiple attributes are
being passed to the fetch_record function. These are added to the SQL statement.
Note that the modify_dt column is 14 digits (YYYYMMDDHHMMSS). The combina-
tion of a story_id and the second at which it was modified makes for a pretty good
two-column primary key, so any query here should only return one row.

function fetch_story_version ($story_id=””,$modify_dt=””)
{

$result = fetch_record(“story_versions”
,array(“story_id”,”modify_dt”)
,array($story_id,”’$modify_dt’”)

);
return $result;

}

XREF

300 Part IV: Not So Simple Applications

3537-4 ch11.f.qc 12/15/00 15:25 Page 300

FUNCTION FETCH_AUTHOR() This function works similarly to the fetch_story
function. It creates global variables from row retrieved from the author table.

function fetch_author ($author_id=””)
{

$result = fetch_record(“authors”,”author_id”,$author_id);
return $result;

}

FUNCTION FETCH_CONTENT_USER() This function also works identically to the
fetch_story function. It creates global variables from the row retrieved from
the content_user table.

function fetch_content_user ($user_id=””)
{

$result = fetch_record(“content_users”,”user_id”,$user_id);
return $result;

}

FUNCTION FETCH_CONTENT_STAGE() Once again, this function works identically
to fetch_story. It creates global variables from a row retrieved from the content_
stages table.

function fetch_content_stage ($stage_id=””)
{

$result = fetch_record(“content_stages”,”stage_id”,$stage_id);
return $result;

}

Interesting Code Flow
Since most of the more complicated stuff in this application has to do with main-
taining users and stages, we will start the breakdown of code with the pages that
take care of these stages. Later we will move on to the other features performed by
this application.

content/authenticate.php
As we already mentioned, this application differs from the previous ones in that
each user will be logging into the database with his or her own username and pass-
word. The script that performs this login will need to be just a touch more flexible
than the one you used in the other applications.

Chapter 11: Content Management System 301

3537-4 ch11.f.qc 12/15/00 15:25 Page 301

This application is going to use the same 401-type authentication used in the pre-
vious examples, but here the values for $PHP_AUTH_USER and $PHP_AUTH_PW
will also be the values used to log into the database.

$PHP_AUTH_USER and $PHP_AUTH_PW are only available if PHP is installed

as an Apache module. If you are working on Windows, you will not be able to

use this type of authentication.

The header.php file, which is included in every page in the content management
system, contains the following code:

if ($authentication == “admin”)
{

include “admin_authenticate.php”;
}
else
{

include “authenticate.php”;
}
$this_username = $PHP_AUTH_USER;

This if ... else block determines which authentication script will run. In pages
that require administrative access you will see a variable assignment like the fol-
lowing prior to the include of header.php.

$authentication = “admin”;

If this does not exist, the authenticate.php will be included.
Here are the contents of the authenticate.php file.

$realm = “Netsloth Content”;
$errmsg = “You must enter a valid name & password to access this
function”;
if (empty($PHP_AUTH_USER)

|| (!empty($newuser) && $olduser == $PHP_AUTH_USER)
)
{

$what = empty($PHP_AUTH_USER) ? “login” :
“newuser($newuser,$olduser)”;
authenticate($realm,$errmsg.”:$what”);

}

Caution

302 Part IV: Not So Simple Applications

3537-4 ch11.f.qc 12/15/00 15:25 Page 302

$mylink = @mysql_connect(“localhost”, $PHP_AUTH_USER, $PHP_AUTH_PW)
or authenticate
($realm,”Could not login to db as $PHP_AUTH_USER”);

mysql_select_db(“netsloth”);

As you look at the preceding code, keep in mind that in this script people using
the application need to be able to change the usernames and passwords that they
are using to log into the application — i.e., log in as a different user. If you go
through the script step by step, you should see how to do it. We’ll go through it
line-by-line after one quick explanation.

Within the index.php page, there is a submit button that, when pressed, will
indicate that the user wants to login in under a different username and password.
The following creates the form with the submit button.

print paragraph(
start_form(“index.php”)
, hidden_field(“olduser”,$PHP_AUTH_USER)
, submit_field(“newuser”,”Log In As New User”)
, end_form()

);

Using the functions described in chapter Chapter 9, this code creates a form, that,
if submitted, sends the variables $olduser and $newuser back to the index.php
page. When the form is submitted and the variables are sent, they will hit this por-
tion of the authenticate.php page.

if (empty($PHP_AUTH_USER)
|| (!empty($newuser) && $olduser == $PHP_AUTH_USER)

)

The preceding if block will test true under two conditions. First, if the user has
not yet logged in, because in that case $PHP_AUTH_USER will be empty. The other
condition comes from the form we just discussed. If that submit button is pressed,
$newuser will not be empty and $olduser will contain the value of $PHP_AUTH_
USER, meaning the user wishes to change her login name and password. If either of
these is true, the following code will run:

{
$what = empty($PHP_AUTH_USER) ? “login” :

“newuser($newuser,$olduser)”;
authenticate($realm,$errmsg.”:$what”);

}

Chapter 11: Content Management System 303

3537-4 ch11.f.qc 12/15/00 15:25 Page 303

The preceding code is a trinary operator that will determine the value of $what.
If $PHP_AUTH_USER is empty (meaning the user is not yet logged in) $what will
be assigned a value of “login”. Otherwise, what will be assigned is a string of
“newuser()” along with the values in $newuser and $olduser. The value of what is
appended to the error message, which is sent to the authenticate() function, which
is discussed in Chapter 9. If the user cancels the login an error message like one of
the following will appear:

You must enter a valid name & password to access this function:login

You must enter a valid name & password to access this
function:newuser(Log In As New User,tater)

At this point all that’s left to do is connect to MySQL and select the database.

$mylink = @mysql_connect(“localhost”, $PHP_AUTH_USER, $PHP_AUTH_PW)
or authenticate
($realm,”Could not login to db as $PHP_AUTH_USER”);

mysql_select_db(“netsloth”);

content/admin_user.php
This page, like many you have seen before, has many purposes. The exact portion
of the script that will run will depends on the variables that are sent to the page. It
will do the following:

◆ Enable an administrator to create new users.

◆ The information specific to a single user_id will be displayed, including
the stages associated with that user.

◆ Additional stages can be granted to an exiting user.

◆ Rights to a stage can be revoked from a user.

If the page is accessed without any variable information in the querystring or
from POST, the form elements for user information will be blank. This information
must be filled in before the form is submitted. When the form is submitted the
admin_user.php page will be called again, this time holding the entered form data
and with the $submit variable equal to “Save Changes”.

When submitted, the condition in the if statement at the top of the page will
test true:

if (!empty($submit) && $submit == “Save Changes”)

304 Part IV: Not So Simple Applications

3537-4 ch11.f.qc 12/15/00 15:25 Page 304

As the same form updates an existing user’s information and creates a new user,
there is a second condition that must be tested. If the user’s information must be
updated, the form passes a user_id from a hidden form element; otherwise the
$user_id variable is empty. The result of this statement decides whether the script
is to perform an update or insert query.

if (empty($user_id))
{

safe_query(“insert into content_users (username, name, email)
values (‘$username’, ‘$name’, ‘$email’)

“);
$user_id = mysql_insert_id();

}
else
{

safe_query(“update content_users set
username=’$username’,

name=’$name’, email=’$email’
where user_id = $user_id

“);

}
“);

Note that when this section of the script is completed, the user_id is known:
either it was passed from the form or it was retrieved with the mysql_insert_id()
function.

That brings this script to a series of MySQL grant statements that are sent via the
safe_query() function. Notice the first two queries, which are within if blocks.
These test whether this is a new user who has previously been granted rights. If it is
a user whose rights are being updated, she will already have an entry in the user
table in the mysql database. If not, she will need to be placed in that table. Note
that the “grant usage” query enters the person in the mysql table but gives no spe-
cific rights to any databases or tables.

$result = safe_query(“select 1 from mysql.user
where User = ‘$username’

“);
$rows = mysql_num_rows($result);
if ($rows == 0) {

safe_query(“grant usage on netsloth.* to $username”);
}
if (!empty($password))
{

safe_query(“set password for $username

Chapter 11: Content Management System 305

3537-4 ch11.f.qc 12/15/00 15:25 Page 305

= password(‘$password’)
“);

}

Now that the user has an entry in the mysql table, the script removes all rights
to the netsloth database. You do this in order to start fresh, and grant only the
needed privileges. If you didn’t delete every entry, you would need to go through
and test whether each privilege already existed, and revoke those that didn’t
belong. In the end, wiping away privileges and granting only those indicated by the
checkboxes is the easiest way to go. But before granting user-specific rights, the
following code cleans out the mysql.tables_priv table and grants rights needed by
every user of the application.

safe_query(“delete from mysql.tables_priv
where Db = ‘netsloth’ and User = ‘$username’

“);
safe_query(“flush privileges”);

safe_query(“grant select,insert,update,delete
on netsloth.stories to $username

“);
safe_query(“grant select,insert,update,delete

on netsloth.story_versions to $username
“);
safe_query(“grant select,insert,update,delete

on netsloth.authors to $username
“);
safe_query(“grant select,insert,update,delete

on netsloth.story_author_map to $username
“);
safe_query(“grant select on netsloth.content_admin

to $username”);
safe_query(“grant select on netsloth.content_users

to $username”);
safe_query(“grant select on netsloth.content_stages

to $username”);
safe_query(“grant select on netsloth.user_stage_map

to $username”);

Now the script removes entries from user_stage_map (which is the primary
source of security here) because again we want to start fresh. The stages were pre-
sented in a series of checkboxes, and the ones that are checked when the form is

306 Part IV: Not So Simple Applications

3537-4 ch11.f.qc 12/15/00 15:25 Page 306

submitted are passed as an array named $stages. The script loops through the array
granting rights to the appropriate stage table (for example, proofreading_table) and
making the needed inserts into the user_stage_map table.

safe_query(“delete from user_stage_map where user_id = $user_id”);
if (is_array($stages))
{

while (list(,$stage) = each($stages))
{

$stage_table = strtolower(trim($stage)).”_stories”;
safe_query(“grant select,insert,update,delete
on $stage_table to $username
“);
$pquery = “insert into user_stage_map

(user_id, stage_id)
select $user_id, stage_id
from content_stages
where stage = ‘$stage’

“;
safe_query($pquery);

}
}

Finally this script prints out the appropriate user information (if existing user
information exists) and the stages as a series of checkboxes. The checkboxes are
checked if the user has rights for that stage.

The following query is intended to work with the checkbox_field() function
you created earlier. That function takes three arguments (for name, value, and
matchvalue). If the second and third match, the checkbox will be marked as checked.

$query = “select distinct
if(m.user_id is null,’-’,s.stage) as matchvalue
, s.stage_id, s.stage, s.stage_dsc
from content_stages s, content_users u
left join user_stage_map m

on s.stage_id = m.stage_id
and m.user_id = u.user_id

where u.user_id=$user_id
“;

Chapter 11: Content Management System 307

3537-4 ch11.f.qc 12/15/00 15:25 Page 307

This query gathers all of the stages and does an outer join on the content_users
table. If the user has been granted access to a stage, that stage name appears in the
returned record set, in the matchvalue field. If not, a dash is returned in the field.
When the checkbox_field() function is run later in the loop, the third argument will
either be a dash or will have the same value as the stage field. The results of this
query might look like this:

+------------+----------+--------------+----------------------+
| matchvalue | stage_id | stage | stage_dsc |
+------------+----------+--------------+----------------------+
| Writing | 1 | Writing | Being written. |
| Editing | 2 | Editing | Ready for review. |
| - | 3 | Proofreading | Spellchecking, etc. |
| Live | 4 | Live | Story is available. |
| Killed | 5 | Killed | Dead. |
+------------+----------+--------------+----------------------+

This knowledge should allow you to read the rest of this script. And, of course,
there are further comments included with the application on the CD-ROM.

content/edit_story.php
At almost 500 lines, this script is long, but it isn’t especially complicated. Given the
data structure we discussed earlier, it needs to create new stories and update exist-
ing stories after they have been through an editorial pass. Along the way the script
will need to check if the user has the rights to do the work on the story, and clean
up text that a users put into the forms.

The file should be readable by examining the comments within the page, which
are supplied on the accompanying CD-ROM. There are quite a few decisions that
need to be made in order to get this page to work correctly, and that adds to the
length. But decisions that are made within the file are pretty straight forward.
Additionally, there are quite a few insert and update statements. If you keep figure
11-8 close by while you’re reading through the code, this shouldn’t be too tough to
get through.

This chapter has spent a fair amount of space discussing how to assign rights to
a user using MySQL’s grant statements. Hopefully at this point you see how those
rights are assigned. The short piece of script following tests whether the current
user has the rights to work on a story, based on the rights in the grants tables.

It first gets the stage name, based on a stage_id, then creates the string of the
table name by appending the stage name with “_table”. Then a select statement
runs that includes the table name you have just created. If that query is not
allowed, the query will fail and return false. Also within the query, we are involv-
ing the user_stage_map table. That table provides our primary security, and the
user must have rights for the current stage in the user_stage_map table. If the user

308 Part IV: Not So Simple Applications

3537-4 ch11.f.qc 12/15/00 15:25 Page 308

does not have rights defined in that table, the query will return no rows. If the
query fails or returns nothing, an error will print and the script will exit.

$result = safe_query(“select stage from content_stages
where stage_id = $stage_id
$result = safe_query(“select stage from content_stages

where stage_id = $stage_id
“);
$stage = mysql_result($result,0);
if (!empty($stage))
{

$stage_table = strtolower(trim($stage)).”_stories”;
$result = mysql_query(“select a.story_id

from $stage_table a, content_users u, user_stage_map m
where a.story_id = $story_id

and u.username = ‘$this_username’
and u.user_id = m.user_id
and m.stage_id = $stage_id

“);
if ($result === false || mysql_num_rows($result) == 0)
{

print subtitle(“You do not have the ability to edit
stories in the $stage stage.

“);
print paragraph(anchor_tag(“index.php”,”Main Page”));
exit;

}
}

The other item of particular interest is the extensive text processing done in this
script. This is an example of the type of processing you might need to do if your
users are working with some sort of text processing tool (HTML editor, word
processor). Every tool has its own little quirks that you will need to account for. The
only way you are going to find out exactly what type of cleanup you need to do is
examine the code created be the text editor in your workplace.

For instance, you are not going to want to have <body> tags in the body of an
article.

$body = eregi_replace(“^.*<body[^>]*>”,””,$body);
$body = eregi_replace(“</body.*$”,””,$body);

Of course, PHP’s strip_tags() function could work for you, if you want to allow a
limited tag set and remove all others tags.

Chapter 11: Content Management System 309

3537-4 ch11.f.qc 12/15/00 15:25 Page 309

It’s very important to run the stripslashes function on text that has been
uploaded by a form and is being re-presented on an HTML page. In all likelihood,
your magic_quotes_gpc setting (see Appendix B) will automatically escape and
quotes or hyphens with backslashes in uploaded text. If you then send it out to the
browser at that point, the user will see the backslashes on the screen. Furthermore,
if the text is uploaded again, another set of backslashes will be added.

$body = stripslashes($body);
$headline = stripslashes($headline);
$subtitle = stripslashes($subtitle);
$summary = stripslashes($summary);

Starting at line 300 of the edit_story.php file there is a nice block of code that
will do a couple of neat things. If it appears the user input the story without using
<p> tags, the script will add them where it seems appropriate, assuming the user
indicated paragraphs with newlines (hard returns). If the user did use <p> tags, the
script examines the text, making sure that there are no funky spaces or malformed
tags. We recommend that you look at the code and comments provided on the
CD-ROM to get a good feel for how to do complex text handling.

Summary
In this chapter you saw some of the nifty things that can go into creating a content
management system. Of course an application such as this can be far, far more com-
plex than this. But this is a good start and presents a reasonable way to organize
your code and database tables.

We also made use of MySQL’s grant statements when creating this application.
As we’ve said throughout this application, the grant scheme that we’ve used here
may not be terribly practical. However, it does provide a good example of how you
could go about setting up a system where one login name and password for the
entire application isn’t enough.

Also, make sure to take a look at some of the text handling code in edit_story.php.
Some of the code provides an excellent example of what you can do with PHP’s
string handling functions and regular expressions.

310 Part IV: Not So Simple Applications

3537-4 ch11.f.qc 12/15/00 15:25 Page 310

Chapter 12

Threaded Discussion
IN THIS CHAPTER

◆ Adding community to your Web site

◆ Using an advanced technique to write functions

◆ Looking at other criteria to use when designing a database

IF YOU’VE CREATED A Web site or are looking to create one, it’s probably safe to
assume that you would like people to return frequently to your pages. But as every-
one in the Web industry knows, loyalty is fleeting, and people are always looking
for something better, more engaging, or closer to their interests. After all, there’s
always someone with a better collection of Britney Spears photos. One way to keep
the anonymous masses involved with your site is to offer your visitors a way to
contribute to its content. If someone has accessed your site, it’s likely that he or she
has an opinion on the topic you are presenting. And, if my conclusions from 30-
plus years of observation are correct, people love to share their opinions. Using the
threaded discussion application in this chapter, you can create an area on your Web
site where your users can share their opinions and interact with you and each other.

Once you have this piece of your site up and running, you will be well on your
way to creating your own Web community. I make special mention of the word
community for two reasons. First, it is a huge buzzword within the industry.
Everyone is looking to create a sense of familiarity and inclusion that will tempt
users to return. The second — and perhaps more important — reason is that you, the
webmaster, should know what you’re getting yourself into. From personal experi-
ence, I can tell you that “community” can be a real pain in the butt. On the Web,
everyone is pretty much anonymous, and there is little consequence associated with
antisocial behavior. Thus, in many discussion groups, opinionated windbags have a
way of ruining a promising discussion.

Before too long, you will undoubtedly see things that are mean or distasteful,
and you must be prepared to deal with it. I’m not trying to scare you away from
including a discussion list on your site. I’m just letting you know that you’ll need to
put some effort into administering it. Whether you monitor the list yourself or
appoint someone to do it for you, somebody will need to make sure your users
behave if you want it to be orderly and functional.

311

3537-4 ch12.f.qc 12/15/00 15:25 Page 311

Determining the Scope and
Goals of the Application
The purpose of any discussion board is reasonably simple. Any visitor to the site
should be able to post a new topic to the board or reply to any of the existing top-
ics. Furthermore, the board must be flexible enough to deal with any number of
replies to an existing topic, or replies to replies, or replies to replies to replies, and
so on and so forth. Put another way, this board must be able to deal with an indef-
inite level of depth. The script needs to react appropriately whether the discussion
goes one level deep, five levels deep, or ten levels deep. This will require some new
techniques, both in your data design and our scripts.

What do you need?
You will need only two files to generate all the views needed for this application.
But these two files will have very different looks depending on what information is
displayed.

The first file will display topics and their replies. The first time users come to the
message board they will not know what threads they wish to read. Therefore a list
of topics will be displayed. Figure 12-1 shows the list of top-level topics.

Figure 12-1: List of top-level topics

312 Part IV: Not So Simple Applications

3537-4 ch12.f.qc 12/15/00 15:25 Page 312

Once a user chooses a topic, the page will list all of the posts within that topic.
As you can see in Figure 12-2, the top of the page shows the text and subject of the
post being read. Below that, immediate replies to that post are indicated with a col-
ored border, and the text of the immediate replies is also printed. Figure 12-2 also
shows that the application provides a subject, name, and a link to posts that are
more than a level deep in the thread. You can see that it is rather easy to see who
has replied to what.

Figure 12-2: Display of a thread

This same page provides another view. If a user clicks through to a post that does
not start a topic, the page will show all threads beneath. At the top of the page the
script will print the top-level post (or root) and the post immediately prior to the
one being viewed (or parent). Figure 12-3 shows an example of this view.

Everything you saw in the previous figures was handled by one page. The sec-
ond page will post threads to the board. This requires only a simple form that con-
tains form elements for a subject, a name, and room for the comment. The form will
need to be aware of where in the thread the message belongs. For new top-level
topics a form without any context will be fine (see Figure 12-4), but for replies
within an existing thread some context will be helpful (see Figure 12-5).

Chapter 12: Threaded Discussion 313

3537-4 ch12.f.qc 12/15/00 15:25 Page 313

Figure 12-3: View further down a thread

Figure 12-4: Form for posting a top-level topic

314 Part IV: Not So Simple Applications

3537-4 ch12.f.qc 12/15/00 15:25 Page 314

Figure 12-5: Form for posting a lower-level topic

What do you need to prevent?
As you’ve seen in previous chapters, you need to spend quite a bit of time making
sure things work properly. We’ve talked before about the cross-site scripting bug.
You’ll surely want to prevent that from happening here.

Unless every post is reviewed before it becomes available on the site, there is no
good way of preventing users from posting nonsense and then replying to their
own meaningless posts. This kind of thing can get pretty distracting — and again,
there is no foolproof way of preventing it. However, you can make it a bit more
obvious to other users that the nefarious poster is a jerk. For that reason, this appli-
cation collects the IP of origin and displays it for every post. This isn’t great pro-
tection, but it is better than nothing.

As one of the reviewers of the book pointed out, all users behind the same

firewall will have the same IP, and users who dial-up through an ISP will get a

different IP every time. Furthermore, the reviewer felt including the IP

address of someone who actually had a static IP was bad etiquette. After

thinking about it, I tend to agree. However, we kept this code in the applica-

tion just to keep the example.You could remove it from your code in a mat-

ter of seconds if you wish.

NOTE

Chapter 12: Threaded Discussion 315

3537-4 ch12.f.qc 12/15/00 15:25 Page 315

The Data
Of all the applications discussed in this book, this one has what I believe is the most
unexpected data structure. In fact when I (Jay) saw what Brad had come up with for
this section I broke down crying, unable to deal with the beauty of it.

I’ll take a moment right here to tell you a little secret about database development:
Though you can usually figure out the structure of a database by going through the
normalization process, sometimes you’re better off concentrating more on the hoped-
for end result. You’ll see what I mean as you read the rest of this section.

But before I show you what he created and why it works so well, let me give you
an indication of what I was expecting — and why that would have been so prob-
lematic. You might think that this application would start with a table looking
something like Table 12-1.

TABLE 12-1 PROBLEMATIC ROOT_TOPICS

root_ root_topic_ root_topic_ root_topic_ root_topic_
topic_id date name subject text

1 08/20/2000 Jack Snacks Rule I love em.

2 08/20/2000 Edith More Cheetos I want my fingers
orange.

3 9/1/2000 Archie M&Ms Mmmmore.

This table, as you can probably guess, would list the root topics. A simple
SELECT * FROM root_topics would return a recordset of all the root topics. This
table doesn’t allow for any data below the root level. To take care of this, I envi-
sioned a structure where each root_topic_id would be associated with another table.
Whenever I inserted a row into the RootTopics table, I’d also run a CREATE TABLE
statement to make a table that would store the replies to the root topic.

For instance, all the replies to the “Snacks Rule” post would be stored in a table
that looked like Table 12-2. This would work. There would be a one-to-many rela-
tionship between the tables, and information would be available pretty readily. But
now consider what would happen when somebody wanted to reply to one of these
posts. I’d have to create yet another table. And what if I were to go another level or
two deeper? I think it’s easy to see that before long this would get completely out
of control. With just a couple of active threads I could end up with dozens of tables
that needed to be managed and joined. This would be no fun at all.

316 Part IV: Not So Simple Applications

3537-4 ch12.f.qc 12/15/00 15:25 Page 316

Chapter 12: Threaded Discussion 317

TABLE 12-2 PROBLEMATIC TOPICS

topic_id topic_date topic_author topic_subject topic_text

1 08/20/2000 Ellen Re: Snacks Rule You betcha

2 08/20/2000 Erners Re: Snacks Rule Indeed

Now let’s move away from this ill-considered idea and move toward Brad’s
sound plan. Think about what information needs to be stored for each post to the
mailing list. Start with the obvious stuff. You need a column that stores the subject
of the thread (for instance, “Nachos, food of the gods”), one that stores the author’s
name, and one that records the date the item was posted. So the table starts with
these columns — I’ve thrown in some sample information in Table 12-3 and an
auto_increment primary key just to keep it clear.

TABLE 12-3 START OF A USEABLE TABLE

post_id Subject Author Date

1 Nachos rule Jay 3/12/2000

2 Cheetos are the best Brad 3/12/2000

But of course this isn’t enough. Somehow there needs to be a way to track the
ancestry and lineage of any specific post. (Look again at Figure 12-1 if you are not
sure what I mean.) So how are you going to be able to do this? If you are looking
to track the ancestry of any particular thread, it would probably make sense to add
a field that indicated the post that started the thread, which we’re calling the root.

Take a close look at Table 12-4. Start with the first row. Here the root_id is the
same as the post_id. Now look at the third row. Here the root_id (1) matches the
post_id of the first row. So you know that the thread to which row three belongs
started with post_id 1 — “Nachos Rule.” Similarly, row 6 must be a reply to row 2.

3537-4 ch12.f.qc 12/15/00 15:25 Page 317

TABLE 12-4 A MORE COMPLETE TABLE

post_ID Root_ID Subject Author Date

1 1 Nachos rule Jay 3/12/2000

2 2 Cheetos are the best Ed 3/12/2000

3 1 Re: Nachos rule Don 3/12/2000

4 1 Re: Nachos rule Bill 3/13/2000

5 5 What about cookies Evany 3/14/2000

6 2 Re: Cheetos are the best Ed 3/13/2000

Now look at rows 1, 2, and 5. Notice that in these rows the post_id and root_id
are identical. At this point you can probably guess that whenever these two are the
same, it indicates a root-level subject. Easy enough, right? The following SQL state-
ment that would retrieve all of the root-level posts

select * from topics where root_id=post_id.

However, in this application, you will see us using a self join to get root-level
topics.

select distinct current.topic_id, current.parent_id,
current.root_id, current.name, current.description,
current.author, current.author_host, current.create_dt,
current.modify_dt

from topics current, topics child
where current.topic_id = child.root_id

This join will have the same effect, finding rows where the topic_id and root_id
columns are the same. We use it here because, even though it’s a little slower, it’s
more flexible, and is easier to adapt in the event there are changes to the system.

Now that you’ve added a root_id field to the table you should know the begin-
ning of a thread. But how can you get all the posts that came between the original
post and the one you’re interested in? Initially you may think that it would be pru-
dent to add a column that lists the ancestors. You could call the column ancestors
and in it you’d have a listing of topic_ids. It might contain a string like “1, 6, 9, 12”.
This would be a very, very bad idea. Why, you ask? Well, the most important rea-
son worth mentioning is that you should never put multiple values in a single
field — you’ll open yourself up to all kinds of hassles.

318 Part IV: Not So Simple Applications

3537-4 ch12.f.qc 12/15/00 15:25 Page 318

MySQL does have a column type that takes multiple values. It is called set. It

is not used anywhere in this book because Dr. Codd would not approve. Do

you remember Dr. Codd from Chapter 1? He’s the guy who originally devel-

oped relational database theory in the first place.

So what options are you left with? Create another table to keep track of a post’s
lineage? I’m not sure how that would work, and as it turns out, it isn’t necessary.
The easiest thing to do is add a single column to the previous table that tracks the
parent of the current post, as shown in Table 12-5.

TABLE 12-5 AN EVEN BETTER TABLE

post_id root_id parent_id Subject Author Date

1 1 0 Nachos rule Jay 3/12/2000

2 2 0 Cheetos are the Ed 3/12/2000
best

3 1 1 Re: Nachos rule Don 3/12/2000

4 1 3 Re: Nachos rule Bill 3/13/2000

5 5 0 What about Evany 3/13/2000
cookies

6 2 2 Re: Cheetos are Ed 3/14/2000
the best

7 1 4 Cheetos, are you Jeff 3/15/2000
kidding

8 5 5 Re: What about Jay 3/15/2000
cookies

When you look at the first couple of rows in Table 12-5, you might see little dif-
ference between the fields. And that sort of makes sense: if the post_id and the
parent_id are the same, you already know it’s a root level and that therefore the par-
ent is irrelevant. Move your attention to row 7. Here you can see that root is row 1,
“Nachos rule.” That’s easy enough. Now look at the parent_id, which is row 4. If you
look at the parent of number 4, you will find that it’s number 3 — and further that
the parent of that row is row 1, which is also the root. So with just this information

NOTE

Chapter 12: Threaded Discussion 319

3537-4 ch12.f.qc 12/15/00 15:25 Page 319

you can follow a thread to its origin. A very simple script that traces a post to its ori-
gin would look something like this:

Select all fields from current topic
If parent_id is not equal to 0 and parent_id does not equal root_id

Make parent ID current topic
Go to line 1

So that will about do it. Using this data structure, you can get all the informa-
tion you are going to need. Throw in a couple of timestamps for safekeeping and
it’s all set. Here’s the SQL statement that will create the table:

create table topics (
topic_id integer default 0 not null auto_increment,
parent_id integer default 0,
root_id integer default 0,
name varchar(255),
description text,
create_dt timestamp(14),
modify_dt timestamp(14),
author varchar(255),
author_host varchar(255)

, primary key topics_key (topic_id)
);

Code Overview
As we mentioned earlier, there are two main functions involved in this application:
displaying a listing of posts and inserting a new post to the database. Thus, it
should come as little surprise that at the base level there are only two files:
display_topic.php and write_topic.php. In addition to these files, you’ll have a sep-
arate file that stores all of your functions (functions.php). If you read the previous
section, you probably won’t be surprised to find that most of the effort involved in
developing this application, and therefore most of the code we’ll be introducing,
relates to displaying the ancestors and children of a particular post. Keep in mind
that a post can have any number of ancestors and any number of children. So your
script will have to be flexible enough to deal with a post with one reply or twenty.

The portion that writes a topic to the database should be pretty easy to deal with.
In your form you’ll need to have hidden fields that mark the root_id and parent_id,
and you’ll want to validate the contents of the forms, but other than that it should
be pretty easy. Let’s break it down.

320 Part IV: Not So Simple Applications

3537-4 ch12.f.qc 12/15/00 15:25 Page 320

Code Breakdown
As per usual, most of the fun occurs in the functions. In fact, in this application the
only two files actually referenced by URLs are practically empty.

Reusable functions
Again, this application will make use of the functions described in Chapter 8. There
are just a few other functions, one of which uses a technique that requires some
explanation.

FUNCTIONS FROM /BOOK/DISCUSSION/FUNCTIONS.PHP
The concept that is new to this application is called recursion. It comes up in the
display_kids() function.

DISPLAY_KIDS () Usually, in this part of the book, a function is displayed and
then described. However, this function must be treated a bit differently because
recursion can be somewhat difficult conceptually. So before I display the function,
let’s take a look at recursion. (If you already know your way around recursive func-
tions, feel free to skim.)

The important thing to keep in mind is that you have no idea how deep any
thread will be: there may be one level of replies, or there may be twenty. So to
properly lay out all the children of any one thread you need a very, very flexible
script. It will need to do something like this:

print current topic
while the current topic has unprocessed child topics

set current topic to next unprocessed child
go to line 1

end while
if current topic has a parent

set current topic to that parent and go to line 2
else

exit
end if

This must be repeated indefinitely until there are no other answers. But how do
you tell a script to do something until it runs out of answers? The looping mecha-
nisms we’ve discussed so far won’t really work. The for.., while..., and do...while
loops that we talked about in Chapter 2, and that we’ve used in the previous chap-
ters, are of no help.

If that isn’t clear take a look at Table 12-6 and the code that follows.

Chapter 12: Threaded Discussion 321

3537-4 ch12.f.qc 12/15/00 15:25 Page 321

TABLE 12-6 SAMPLE TABLE

post_ID root_ID parent_ID Subject Name Date

1 1 0 Nachos rule Jay 3/12/2000

2 2 0 Cheetos are the Ed 3/12/2000
best

3 1 1 Re: Nachos rule Don 3/12/2000

4 1 3 Re: Nachos rule Bill 3/13/2000

5 5 0 What about Evany 3/13/2000
cookies

6 2 2 Re: Cheetos are Ed 3/14/2000
the best

7 1 4 Cheetos, are you Jeff 3/15/2000
kidding

8 5 5 Re: What about Jay 3/15/2000
cookies

Say you want each level to be indented a little further than the previous one,
with the HTML blockquote tag. Now assume that you’re calling the below function
by passing the topic_id of 7.

function RecurForMe($topic_id)
{

$query = “SELECT * from topics WHERE topic_id = $topic_id;
$result = mysql_query($query) or

die(“Query failed”);
$row = mysql_fetch_array($result);
echo “<blockquote>”;
echo $row[“name”], “\n”;
RecurForMe($row[“parent_id”]);

}

You know by now not to actually run a script like this — there’s no error check-
ing, and eventually, when there are no responses to the query, it will cause an error.
I wrote this function so you can look at the last line. You see what it does: the func-
tion calls itself. If you’re not clear about the impact this will have, let’s walk
through it.

322 Part IV: Not So Simple Applications

3537-4 ch12.f.qc 12/15/00 15:25 Page 322

The first time through, given the $topic_id of 7, the query will return (surprise,
surprise) row number 7. Then a blockquote tag and the name (Jeff) will be printed
out. Then the function will call itself, this time passing the parent_id of 4. The next
time through, the query will return row 4, the next time through it will return row
3, and finally it will call row 1. When done, the script output (before the error) will
look like this.

<blockquote>Jeff
<blockquote>Bill
<blockquote>Don
<blockquote>Jay

The DisplayKids function will work in pretty much the same way. It will call
itself for as long as necessary. But in the final script you will have to take a lot more
into consideration. For instance, the description field of immediate children will be
printed out, but further down the ancestral path you’ll show only subject and name.
Before you get caught up in the larger script, let’s look at how to change layout
based on ancestry in your simplified script.

function RecurForMe($topic_id, $level = 1)
{

$query = “SELECT * from topics WHERE topic_id = $topic_id”;
$result = mysql_query($query);
$row = mysql_fetch_array($result);
echo “<blockquote>”;
echo $row[“name”], “\n”;
if($level == 1) {echo $row[“subject”];}
RecurForMe($row[“parent_id”], $level + 1);

}

I’ve added another variable ($level) to this function to keep track of the level.
The default value is 1, and it will be incremented each time through. The first time
through the subject will be printed, but in iterations after the first, the subject will
not be printed.

Recursion is an expensive process; it takes up quite a bit of processor time.To

prevent a system from being overwhelmed, you might want to limit the

depth of any topic

Armed with this information, you should be able to get through the DiplayKids
function. There’s a lot of info in there to assure good layout, but other than that, it’s
all pretty readable. There are some comments here to help you get through.

Caution

Chapter 12: Threaded Discussion 323

3537-4 ch12.f.qc 12/15/00 15:25 Page 323

function display_kids ($topic_id=0, $level=0)
{

$child_count = 0;
if (empty($topic_id)) { $topic_id = 0; }

// retrieve topic records from the MySQL database having
// this topic_id value in their parent_id column (i.e. those
// for whom this topic is the parent_topic
$query = “select topic_id, name, author, author_host, create_dt

, description
from topics where
parent_id = $topic_id
order by create_dt, topic_id

“;
$result = safe_query($query);

while
(list($r_topic_id,$r_name,$r_author,$r_author_host,$r_create_dt

,$r_description
) = mysql_fetch_row($result)

)
{

if ($level)
{

// non-zero level - use unordered list format
if (!$child_count)
{

// this is the first child record
// - begin the list
print “\n”;

}
// begin the list item tag
print “”;

}
else
{

// zero (first) level - print inside a table
if (!$child_count)
{

// this is the first child record:
// - print out a header
print “Comments:
\n”;

}
print start_table();
print “ <tr bgcolor=skyblue>\n”;
print “ <td colspan=2 width=500>\n”;

324 Part IV: Not So Simple Applications

3537-4 ch12.f.qc 12/15/00 15:25 Page 324

}
$child_count++;

if ($r_author == “”) { $r_author = “[no name]”; }

if ($r_topic_id != $topic_id)
{

print anchor_tag(
“index.php?topic_id=$r_topic_id”
, $r_name

);
print “ by $r_author”;

}
else
{

// this should never happen, but just in case -
// don’t print a link back to this topic
print “$r_name by $r_author”;

}

print “ ($r_author_host)”;
if ($level)
{

// not the first level - close the list item
print “\n”;

}
else
{

// first level - close the table cell & row containing
// the topic name & author, then print out the text
// of the topic and close the table
print “ </td>\n”;
print “ </tr>\n”;
print table_row(

table_cell(“ ”, array(“width”=>2))
, table_cell($r_description,array(“width”=>498))

);
print end_table();

}
// display any child topics of this child, at the next
// higher level
display_kids($r_topic_id, $level+1);

}
if ($level && $child_count)
{

Chapter 12: Threaded Discussion 325

3537-4 ch12.f.qc 12/15/00 15:25 Page 325

// if not the first level and at least one child was found,
// an unordered list was begun - close it.
print “\n”;

}
}

DISPLAY_TOPIC() This function displays information about a given topic. If no
topic_id is indicated, a list of the root-level topics is displayed.

function display_topic ($topic_id=0, $show_kids=1, $level=0)
{

if (empty($topic_id)) { $topic_id = 0; }

$fields = array(“topic_id”, “parent_id”, “root_id”, “name”
, “description”, “author”, “author_host”, “create_dt”
, “modify_dt”

);
$query = “select distinct current.”.implode(“, current.”,

$fields);

The next query that this script will send is a self join that uses aliases for the two
copies of the table. One copy is named “current”, the other “child”. The implode
function in the previous line will place the string “, current.” between each array
element. After this line of code runs, $query will be ready for the alias and will
contain “select distinct current.topic_id, current.parent_id, current.root_id, current.
name, current.description, current.author, current.author_host, current.create_dt,
current.modify_dt”.

The following portion executes if no topic_id is indicated. It will display the
root-level topics.

if (!$topic_id)
{

$query .= “ from topics current, topics child
where current.topic_id = child.root_id

“;
$result = safe_query($query);
if (!$result)
{

print subtitle(“Damn! result = $result”);
}
else
{

326 Part IV: Not So Simple Applications

3537-4 ch12.f.qc 12/15/00 15:25 Page 326

The query in the preceding snippet gets all of the root-level topics. The while...
loop directly below prints each topic as an HTML anchor, something like Topic name. Finally, the portion below
returns an empty array.

while ($row = mysql_fetch_array($result))
{

print paragraph(anchor_tag(
“index.php?topic_id=”.$row[“topic_id”]
, $row[“name”]

));
}

}
return array();

}

If a topic_id is available, the following query gets the parent and root of the
indicated topic_id. An outer join assures that the information regarding the current
topic is returned by the query.

$query .= “, parent.name as parent_name
, root.name as root_name

from topics current
left join topics as parent

on current.parent_id = parent.topic_id
left join topics as root

on current.root_id = root.topic_id
where current.topic_id = $topic_id

“;
$result = safe_query($query);
if (!$result)
{

print subtitle(“Damn! result = $result”);
return array();

}
list($topic_id, $parent_id, $root_id, $name

, $description , $author, $author_host
, $create_dt, $modify_dt, $parent_name
, $root_name

) = mysql_fetch_row($result);

Chapter 12: Threaded Discussion 327

3537-4 ch12.f.qc 12/15/00 15:25 Page 327

if ($author == “”) { $author = “[no name]”; }

if ($root_id != $topic_id && $root_id != $parent_id)
{

if ($root_name == “”) { $root_name = “[no topic name]”; }
print paragraph(

“root:”
, anchor_tag(“index.php?topic_id=$root_id”

, $root_name
)

);
}

If there is a parent topic, the name of the topic is printed, along with a link to it.

if (!empty($parent_name))
{

print paragraph(
“parent:”
, anchor_tag(“index.php?topic_id=$parent_id”

, $parent_name
)

);
}

// print out the current topic
print paragraph(“$name by $author ($author_host)

on $create_dt
“);
print paragraph($description);

if ($show_kids)
{

// print out a link to where the user can reply to
// the current topic
print paragraph(

anchor_tag(“write_topic.php?topic_id=$topic_id”
, “Reply to this”

)
);

// now display any children of the current topic
print paragraph(display_kids($topic_id, $level));

}

328 Part IV: Not So Simple Applications

3537-4 ch12.f.qc 12/15/00 15:25 Page 328

// return information retrieved about the current topic
return array($root_id, $parent_id, $name);

}

CREATE_TOPIC() This function inserts the data taken form a form and inserts it
into the database. As mentioned earlier, we are taking the IP address from the
Apache $REMOTE_ADDR variable, which will also be inserted in the database.
Many of the fields (for instance, $root_id) will be coming from hidden form fields.
And root_id will be set to 0 if the user is attempting to create a new top-level topic.
In those cases the parent_id will need to be set to the same value as the topic_id.

function create_topic ($name=”[no name]”, $author=”[no author]”
, $description=”[no comments]”, $parent_id=0, $root_id=0

)
{

global $REMOTE_ADDR;

$name = cleanup_text($name);
$description = cleanup_text($description);
$author = cleanup_text($author);

$query = “insert into topics
(name,description, parent_id, root_id, author, author_host)
values
(‘$name’, ‘$description’, $parent_id

, $root_id, ‘$author’, ‘$REMOTE_ADDR’
)

“;
$result = safe_query($query);
if (!$result)
{

print subtitle(“hey! insert failed, dammit.”);
}
$topic_id = mysql_insert_id();

if (!empty($topic_id))
{

if ($root_id == 0)
{

safe_query(“update topics set root_id = $topic_id
where topic_id = $topic_id and root_id = 0

“);
}

}

Chapter 12: Threaded Discussion 329

3537-4 ch12.f.qc 12/15/00 15:25 Page 329

else
{

print subtitle(“Hey! that didn’t work.”);
}
return $topic_id;

}

This function simply inserts the data into the database. All the information will
be coming from an HTML form.

Other Files
If you understand the functions in the preceding section, the other files will be a
piece of cake. In fact, they’re so easy we’ll only look at one.

index.php
As you can see, this file contains almost nothing. The display_topic() function
does all the heavy lifting.

<?php
include “header.php”;
include “start_page.php”;

display_topic($topic_id);

include “end_page.php”;
?>

Summary
If you would like to see how the rest of the code comes together, take a look at the
accompanying CD. The other files are well-commented and should be relatively
easy to follow.

You should come away from this chapter with the understanding of two con-
cepts. The first is recursion. Recursion is a nifty tool that can be very helpful at
times. If you’d like to see another example of recursion at work, check out the
recurse_directory() function in Appendix G, which will display all of the con-
tents on a Web server.

The other key thing is the way we went about organizing the data. We didn’t fol-
low a strict normalization procedure, like the one described in Chapter 1. Here we
were more concerned with what gets the job done. In the end that’s what all us
application developers are trying to do, right?

330 Part IV: Not So Simple Applications

3537-4 ch12.f.qc 12/15/00 15:25 Page 330

Chapter 13

Problem Tracking System
IN THIS CHAPTER

◆ Designing a tracking system

◆ Protecting yourself from redundant data.

◆ Creating a site that has both publicly available and private portions.

GOT PROBLEMS? Don’t worry, we’ve all got problems. Relationships falter, bosses
make capricious demands, and family — oh, we all know about family. Sadly, in the
crazy lives that we all live, PHP and MySQL can do nothing to make your
girl/boyfriend love you more or make your dealings with your parents or in-laws
any easier. But it must be said that no scripting language or relational database is
better equipped in these areas.

But if you’re working for a company that sells or otherwise dispenses goods, it is
a virtual guarantee that someone somewhere is going to be unhappy with what he
or she has received. When that person complains you are going to want to have a
place where you can record the problems and the steps required for resolution.

The problem-tracking application in this chapter can be used for that purpose.
What we have here is fairly generic, and depending on the goods involved with your
business, it is likely that you are going to want some fields that apply to your specific
products. Anyhow, this application should get you moving in the right direction.

Determining the Scope and
Goals of the Application
This problem-tracking system should have aspects that are publicly available and
others that only someone with the proper authorization can view. It makes sense to
have a form that users can access over the Web to report their problems.
Alternatively, someone on the support staff should be able to report problems — for
example, while taking a phone call from a dissatisfied customer.

331

3537-4 ch13.f.qc 12/15/00 15:25 Page 331

Once the problem is entered, it should be tracked by the staff. Each action made
in the attempt to solve the problem should be noted. And the tracking should have
a public and a private realm — actions that you want the user to see must be differ-
entiated from those that you do not want the user to see.

Those with issues should be able to keep track of their problems in two ways.
They should be e-mailed whenever an update is made to their case that should be
publicly viewable, and — it should go without saying — a Web page detailing their
problem should be available.

What do you need?
The first thing you need is a form into which people can enter their complaints.
What we present in Figure 13-1 is fairly generic; remember that for your own appli-
cations you will probably want to add information regarding specific products.

Figure 13-1: Problem entry form

332 Part IV: Not So Simple Applications

3537-4 ch13.f.qc 12/15/00 15:25 Page 332

Once a problem is entered, there must be a place for the staff to work on the
complaint. It should include all of the information about the user, the history of the
complaint, and a place to enter new information. This problem update form would
look something like the one in Figure 13-2.

Figure 13-2: Problem update form

The support staff members need a home, a place where they can log in and see
both the unassigned tasks and those that are assigned to them and are still open.
The staff page would look something like the one in Figure 13-3.

If you want to see if any of your users are hypochondriacs, you can use the user
history page in Figure 13-4, which lists all problems associated with a user.

Chapter 13: Problem Tracking System 333

3537-4 ch13.f.qc 12/15/00 15:25 Page 333

Figure 13-3: Staff page

Figure 13-4: User history page

334 Part IV: Not So Simple Applications

3537-4 ch13.f.qc 12/15/00 15:25 Page 334

What do you need to prevent?
There is nothing terribly unique about what you need to prevent here. In fact, if you
decide to put an application like this into production, you might want to take more
safeguards than we show here. We’ll make some suggestions along the way.

Designing the Database
As you can see from Figure 13-5 the problems table is at the center of the schema.

Figure 13-5: Tracking system schema

Each customer can have one or many problems. The history table records the
steps taken to remedy the problem or problems.

customer_id
firstname
lastname
address
address2
city
state
zip
zip4
email
day_area
day_prefix
day_suffix
day_ext
day_start
day_end
eve_area
eve_prefix
char(3),
eve_ext
eve_start
eve_end

customers problems

problem_id
customer_id
status_id
owner
summary
problem
entered_by
source_id
entry_dt
modify_dt

history

entry_id
problem_id
entry_type_id
entered_by
source_id
entry_dt
notes

tracking_admin

username
password
staff_name
active

staff

username
password
staff_name
active

entry_types

entry_type_id
entry_type

username_calls

problem_id
entry_dtsources

source_id
source

status

status_id
status

Chapter 13: Problem Tracking System 335

3537-4 ch13.f.qc 12/15/00 15:25 Page 335

The status table is a lookup table, containing the possible states of a problem;
notably “open,” “closed,” “in processing,” etc. The sources table is another lookup
table that records where the problem was originally recorded. If a user enters a
complaint over the Web, the sources table will record that; complaints received by
the support staff might originate from a phone call, e-mail, or flaming arrow.

The entry_types table notes whether a specific item in the history table should be
public or private. If it is private it will not be available on the Web page when the
user comes to view the progress of the problem and an e-mail will not be sent to the
user when there is an update. The “public” updates will be viewable and the user
will receive e-mail notification.

There is something a bit strange in this schema; namely, the calls table. The pur-
pose of the calls table is to store the most recent entry for each call that has an
owner. If you look at this schema, you might wonder why this is necessary. After
all, there are relationships between staff, problems, and history. Therefore, there
should be a way to join these three tables to get the information you are after.
Normally you would use sub-selects for something like this.

select problem.*, history.*, staff.*
from problem , history, staff
where problem.owner = ‘$PHP_AUTH_USER’
and history.entry_dt in (
select max(n.entry_dt) from history)

If we were using MySQL version 3.23, we would make use of temporary tables.

create temporary table calls
select max(entry_dt) from history

Then you could join the problem and history table onto this temporary table.
However, since this isn’t available in version 3.22, which we used when creating
these applications, we had to use a make shift temporary table. Each time it is
accessed, the calls table will be emptied out and repopulated with information we
need to complete the joins. See the staff.php page for the specific SQL we used.

Now for a couple of notes on this schema and the create statements that follow.
Depending on how you plan on running your site, you may wish to add a table or
change a column definition or two. First off, you might want to add a password
column to the user table, so that you can ensure that the people looking at the site
should be there.

Notice that we have a problem_code column in the problems table. However, if you
will be e-mailing users regarding the status of problems, you may want something
a little less transparent than the following: http://yoursite.com/tracking/
problems.php?problem_id=7.

If you remember back to Chapter 9, we took some precautions when we ran into
a similar situation. We didn’t want people to be able to access to restricted parts of
our data by simply guessing at variable names in the URL. Here we will adopt the

336 Part IV: Not So Simple Applications

3537-4 ch13.f.qc 12/15/00 15:25 Page 336

same technique we used in the survey application, creating a random 8-character
alpha-numeric string from the md5() and uniqueid() functions.

Listing 13-1 shows the create statements for the tables we used in this applica-
tion. In addition to the create statements, this listing includes some of the default
data you will need to start the application. Note that if you install this application
from the CD-ROM you will have a full set of dummy data you can play with.

Listing 13-1: Create statements used in the problem tracking system

CREATE TABLE customers (
customer_id int(11) NOT NULL auto_increment,
firstname varchar(40),
lastname varchar(40),
address varchar(40),
address2 varchar(40),
city varchar(20),
state char(2),
zip varchar(5),
zip4 varchar(5),
email varchar(255),
day_area char(3),
day_prefix char(3),
day_suffix varchar(4),
day_ext varchar(5),
day_start varchar(8),
day_end varchar(8),
eve_area char(3),
eve_prefix char(3),
eve_suffix varchar(4),
eve_ext varchar(5),
eve_start varchar(8),
eve_end varchar(8),
PRIMARY KEY (customer_id)

);

--
#
Table structure for table ‘entry_types’
#

CREATE TABLE entry_types (
entry_type_id tinyint(4) NOT NULL auto_increment,
entry_type varchar(10) NOT NULL,
PRIMARY KEY (entry_type_id)

);
INSERT INTO entry_types VALUES (1,’private’);

Chapter 13: Problem Tracking System 337

3537-4 ch13.f.qc 12/15/00 15:25 Page 337

INSERT INTO entry_types VALUES (2,’public’);

--
#
Table structure for table ‘history’
#

CREATE TABLE history (
entry_id int(11) NOT NULL auto_increment,
problem_id char(32) NOT NULL,
entry_type_id tinyint(4) NOT NULL,
entered_by varchar(20),
source_id tinyint(4) NOT NULL,
entry_dt timestamp(14),
notes text,
PRIMARY KEY (entry_id),
KEY history_problem_id (problem_id)

);

--
#
Table structure for table ‘problems’
#

CREATE TABLE problems (
problem_id char(32) NOT NULL,
customer_id int(11) NOT NULL,
status_id tinyint(4) NOT NULL,
owner varchar(20),
summary text,
problem text,
entered_by varchar(20),
source_id tinyint(4) NOT NULL,
entry_dt datetime,
modify_dt timestamp(14),
problem_code char(8) not null
PRIMARY KEY (problem_id),
KEY problem_customer_id (customer_id)
KEY problem_code_key (problem_code)

);

--
#
Table structure for table ‘sources’

338 Part IV: Not So Simple Applications

3537-4 ch13.f.qc 12/15/00 15:25 Page 338

#

CREATE TABLE sources (
source_id tinyint(4) NOT NULL auto_increment,
source varchar(10) NOT NULL,
PRIMARY KEY (source_id)

);
INSERT INTO sources VALUES (1,’web’);
INSERT INTO sources VALUES (2,’email’);
INSERT INTO sources VALUES (3,’phone’);
INSERT INTO sources VALUES (4,’in-store’);
INSERT INTO sources VALUES (5,’staff’);
INSERT INTO sources VALUES (6,’program’);
--
#
Table structure for table ‘staff’
#

CREATE TABLE staff (
username varchar(20) NOT NULL,
password varchar(255) NOT NULL,
staff_name varchar(50) NOT NULL,
active tinyint(4) DEFAULT ‘1’,
PRIMARY KEY (username)

);

--
#
Table structure for table ‘status’
#

CREATE TABLE status (
status_id tinyint(4) NOT NULL auto_increment,
status varchar(20) NOT NULL,
PRIMARY KEY (status_id)

);

INSERT INTO status VALUES (1,’Opened’);
INSERT INTO status VALUES (2,’In Progress’);
INSERT INTO status VALUES (3,’Closed’);
INSERT INTO status VALUES (4,’Re-opened’);
--
#
Table structure for table ‘tracking_admin’
#

Chapter 13: Problem Tracking System 339

3537-4 ch13.f.qc 12/15/00 15:25 Page 339

CREATE TABLE tracking_admin (
username varchar(50) NOT NULL,
password varchar(255) NOT NULL

);

Code Overview
There’s nothing terribly new and exciting in the code presented in this chapter. Some
of the queries are lengthier than in previous chapters. But it’s really nothing major.

Code Breakdown
This application makes more liberal use of includes then some of the previous ones
you have seen. There are a couple of very long forms that could really clutter up a
page. They have been pushed off to includes.

Reusable functions
The base function set, described in Chapter 9, will be used here once again.

FUNCTIONS FROM /BOOK/TRACKING/FUNCTIONS.PHP
The first few of these are for convenience. The ones a little further down do some
pretty heavy and cool work.

DB_AUTHENTICATE() This calls our standard authentication function, first
described in Chapter 9.

function staff_authenticate()
{

db_authenticate(“staff”, “Bricks and Mortar Support”);
}

PRINT_ROW() This small function simply makes a call to the table_row() func-
tion in /book/functions/tables.php. It’s basically a shortcut so you can print a sim-
ple two-column row.

function print_row ($label=””,$what=””)
{

$label = empty($label) ? “” : “$label:”;
print table_row($label,$what);

}

You can think of the arguments as names and values.

340 Part IV: Not So Simple Applications

3537-4 ch13.f.qc 12/15/00 15:25 Page 340

FETCH_STAFF () If you’ve looked at some of the other applications in this book,
this type of function should be clear.

function fetch_staff ($username = “”)
{

$result = fetch_record(“staff”, “username”, “‘$username’”);
return $result;

}

It calls to /book/functions/db.php, where the fetch_record() creates a query,
runs it, and then sets the columns returned by the query to global variables.

FETCH_CUSTOMER () See the previous function for an explanation.

function fetch_customer ($customer_id = “”)
{

$result = fetch_record(“customers”, “customer_id”,
$customer_id);

return $result;
}

FETCH_PROBLEM () This function, which essentially does the same thing as the
previous three, takes a slightly different form. This is because the fetch_record()
function can only assemble simple queries: one table is all it can manage. However,
since the set_result_vars() function is the one that actually assigns the results
of the query to globals, you can pass the results of a query directly to it.

function fetch_problem ($problem_id = “”, $problem_code = “”)
{

$query = “select p.*
, s.status
, u.source
from problems p
left join status s on p.status_id = s.status_id
left join sources u on p.source_id = u.source_id

“;
if (!empty($problem_id))
{

$query .= “ where p.problem_id = $problem_id “;
}
else
{

$query .= “ where p.problem_code = ‘$problem_code’

Chapter 13: Problem Tracking System 341

3537-4 ch13.f.qc 12/15/00 15:25 Page 341

“;
}
$result = safe_query($query);
if (!$result) { die(“no such problem: <pre>$query</pre>”); }
set_result_variables($result);
return $result;

}

Here you are gathering all the information associated with a single problem_id.
For that, you need to join problems on the sources status tables.

FIND_CUSTOMER() Remember that you would like to enable users to report their
problems over the Web. In this application, we’ve decided that while there is a
numeric primary key for each user, the application should be able to identify the
user by either a phone number or an e-mail. So when a user enters information,
you will need to check if someone with an identical e-mail or phone number has
come along.

function find_customer($email=””
,$day_area=””,$day_prefix=””,$day_suffix=””
,$eve_area=””,$eve_prefix=””,$eve_suffix=””

)
{

$where = “”;
$sep = “”;
if ($day_prefix != “”)
{

// there must be a prefix for this to be a valid phone
number

$where .= “
(day_area = ‘$day_area’

and day_prefix = ‘$day_prefix’
and day_suffix = ‘$day_suffix’

)
“;

// separate each part of the qualification with OR -
// any part constitutes a valid match.
$sep = “ or “;

}
if ($eve_prefix != “”)
{

// there must be a prefix for this to be a valid phone
//number

342 Part IV: Not So Simple Applications

3537-4 ch13.f.qc 12/15/00 15:25 Page 342

$where .= “
$sep
(eve_area = ‘$eve_area’

and eve_prefix = ‘$eve_prefix’
and eve_suffix = ‘$eve_suffix’

)
“;
$sep = “ or “;

}
if ($email != “”)
{

$where .= “
$sep
(email = ‘$email’)

“;
}
if ($where == “”)
{

// nothing to look for
return FALSE;

}

// run a query with the constructed qualification
// and return the result
$query = “select * from customers

where $where
order by customer_id

“;
$result = safe_query($query);
return $result;

}

With this function you will know if the user has an existing record that can be
used or that might need to be updated.

Notice the grouping of the portions of the where clause. It is looking for any one
of three circumstances, each of which must meet a few criteria. If the e-mail, day-
time phone and evening phone fields are filled in, this function will create a query
that looks like this:

select * from customers
where (day_area = ‘415’

and day_prefix = ‘555’
and day_suffix = ‘0410’)

or (eve_area = ‘212’
and eve_prefix = ‘555’

Chapter 13: Problem Tracking System 343

3537-4 ch13.f.qc 12/15/00 15:25 Page 343

and eve_suffix = ‘9999’)
or (email = ‘jay@trans-city.com’)

order by customer_id

If you were interested, you could set a cookie to make identifying the user a

bit easier.

PRESENT_DUPS() You need to plan for a couple of eventualities: if there are iden-
tical e-mail addresses or phone numbers, but some other personal information has
changed, you need to let the user either update the database or discard the data.
This function spots the redundancy and alerts the user.

function present_dups ($result)
{

// we have to start the call entry form inside the function -
// use a global variable to indicate that this was done.
global $in_form;
$in_form = 1;

// start the form
print start_form(“create_call.php”);

print paragraph(“”
.”We may have found you in our database.”
.” Please let us know what you would like to do:”
.””

);

print start_table();

// for each customer record in the result set
while ($row = mysql_fetch_array($result,MYSQL_ASSOC))
{

// print out the ID value for the record in a radio field,
// allowing the user to choose only one if more than
// one is displayed.
print table_row(

Tip

344 Part IV: Not So Simple Applications

3537-4 ch13.f.qc 12/15/00 15:25 Page 344

radio_field(
“customer_id”
, $row[“customer_id”]
, “Use this row”

)
, “Record #”.$row[“customer_id”].””

);

// print out the name & address information from this record
print table_row(“”,$row[“firstname”].” “.$row[“lastname”]);
if (!empty($row[“address”]))
{

print table_row(“”,$row[“address”]);
}
if (!empty($row[“address2”]))
{

print table_row(“”,$row[“address2”]);
}
if (!empty($row[“city”]) || !empty($row[“state”])

|| !empty($row[“zip”])
)
{

print table_row(“”
, $row[“city”].”, “.$row[“state”].” “

.$row[“zip”]
);

}
if (!empty($row[“day_prefix”]))
{

$daycell = “Day: “
.$row[“day_area”]
.” “
.$row[“day_prefix”]
.”-”
.$row[“day_suffix”]

;
if (!empty($row[“day_ext”]))
{

$daycell .= “ “.$row[“day_ext”];
}
if (!empty($row[“day_start”]))
{

Chapter 13: Problem Tracking System 345

3537-4 ch13.f.qc 12/15/00 15:25 Page 345

$daycell .= “ from “.$row[“day_start”];
}
if (!empty($row[“day_end”]))
{

$daycell .= “ until “.$row[“day_end”];
}
print table_row(“”,$daycell);

}
if (!empty($row[“eve_prefix”]))
{

$evecell = “Eve: “
.$row[“eve_area”]
.” “
.$row[“eve_prefix”]
.”-”
.$row[“eve_suffix”]

;
if (!empty($row[“eve_ext”]))
{

$evecell .= “ “.$row[“eve_ext”];
}
if (!empty($row[“eve_start”]))
{

$evecell .= “ from “.$row[“eve_start”];
}
if (!empty($row[“eve_end”]))
{

$evecell .= “ until “.$row[“eve_end”];
}
print table_row(“”,$evecell);

}
if (!empty($row[“email”]))
{

print table_row(“”,$row[“email”]);
}

// print out a checkbox field allowing the user to
// indicate that this record should be overwritten
// with the information from the form.
print table_row(“”

, checkbox_field(
“override”

346 Part IV: Not So Simple Applications

3537-4 ch13.f.qc 12/15/00 15:25 Page 346

, $row[“customer_id”]
, “Override this entry with the new”

.” information in the form below.”
)

);

// print out a checkbox field allowing the user to
// indicate that this record should be merged
// with the information from the form and the result
// written back to the database.
print table_row(“”

, checkbox_field(
“merge”
, $row[“customer_id”]
, “Merge this entry with the new”

.” information in the form below.”
)

);
}
print end_table();

// print out a final radio field indicating that, rather than
// using any of the records found in the database, a new record
// should be created.
print paragraph(radio_field(

“add_as_new”
, “yes”
, “Create a new record with the information in the form

below.”
));

}

All the duplicate rows are printed, and the user can choose what to do with the
data. You can see this in action if you go to the index.php page of this application
and attempt to enter two different tickets with, say, the same phone number. Figure
13-6 gives an example.

Chapter 13: Problem Tracking System 347

3537-4 ch13.f.qc 12/15/00 15:25 Page 347

Figure 13-6: Form for updating customer information

HISTORY_ENTRY() When a staff member enters an update on a problem, the step
is stored in the history table. If the entry is “public” the user will be e-mailed with
the update; if not, there will be no e-mail.

Notice the interesting query. Here the insert contains a select statement. The only
thing this select is actually getting is the source_id related to the variable $source.
All the rest of the insert information comes from variables.

function history_entry
($problem_id=””,$entry_type_id=””,$entered_by=””

,$source=””,$notes=””
)
{

if (empty($problem_id)) { return FALSE; }

if (empty($entered_by)) { $entered_by = “customer”; }

// create a record in the history table, getting the ID value
// of the source from the sources table.
$query = “insert into history

(problem_id,entry_type_id,entered_by,source_id,notes)
select ‘$problem’_id,$entry_type_id,’$entered_by’,

348 Part IV: Not So Simple Applications

3537-4 ch13.f.qc 12/15/00 15:25 Page 348

source_id, ‘$notes’
from sources where source = ‘$source’

“;
$result = safe_query($query);
if ($result)
{

// get the ID value of the new history record
// (automatically assigned by MySQL).
$entry_id = mysql_insert_id();

// get the email address of
// the customer who opened this call
// if this was a public history
// entry, and if the email address
// is not empty
$cresult = safe_query(“select c.email

from problems p, customers c, history h, entry_types et
where h.entry_id = $entry_id
and et.entry_type_id = h.entry_type_id
and et.entry_type = ‘public’
and h.problem_id = p.problem_id
and p.customer_id = c.customer_id
and c.email != ‘’ and c.email is not null

“);
if ($cresult && mysql_num_rows($cresult))
{

// we have a valid email address - use it to
// notify the customer that the call record
// has been updated.
list($email) = mysql_fetch_array($cresult);
notify_customer(‘$problem_id’,$email,$notes);

}
}

// return the result of the creation of the new history record
return $result;

}

If the update is public, the notify_customer() function is run.

NOTIFY_CUSTOMER() This function constructs an e-mail and sends it.

function notify_customer ($problem_id=””, $email=””, $notes=””,
$problem_code=””)
{

Chapter 13: Problem Tracking System 349

3537-4 ch13.f.qc 12/15/00 15:25 Page 349

// the Apache global variable $SERVER_NAME is the name
// of the server we’re running on, minus any port number.
global $SERVER_NAME;

// remove any HTML tags and backslashes from $notes.
$notes = stripslashes(cleanup_text($notes));

if (empty($problem_code))
{

$result = safe_query(“select problem_code from
problems
where problem_id = $problem_id

“);
$problem_code = mysql_result($result,0);
if (empty($problem_code))
{

$problem_code = create_problem_code();
safe_query(“update problems

set problem_code = ‘$problem_code’
where problem_id = $problem_id

“);
}

// build an absolute URL calling the problem_status.php page
// to check on this problem
$problem_url =

regular_url(“problem_status.php?problem_code=$problem_code”);

// set the body of the email
$msgtext = <<<EOQ

Problem Update:

$notes

You can check the current status of this problem at

$problem_url
Thanks for your patience.

EOQ;

// set the headers of the email
$headers = “From: webmaster@”.$SERVER_NAME.”\n”

.”Reply-To: webmaster@”.$SERVER_NAME.”\n”

.”X-Mailer: PHP/”.phpversion()

350 Part IV: Not So Simple Applications

3537-4 ch13.f.qc 12/15/00 15:25 Page 350

;

// send the email
return mail($email, “Problem Update”, $msgtext, $headers);

}

PHP will have to be able to find sendmail or another SMTP-compliant mail

server in order for this to work. Check your php.ini file is you’re having

problems.

STATUS_CHANGE() The status of a problem is going to be something like “open,”
“closed,” or “pending.” If it changes you are going to want to mark the exact
change and record something like “status changed to closed by John.” The change
should be recorded in the history table.

function status_change($problem_id=””
,$new_status_id=””
,$old_status_id=””
, $entered_by=”customer”

)
{

if (empty($problem_id) || empty($new_status_id)
|| $old_status_id == $new_status_id

)
{

return;
}

if (empty($entered_by)) { $entered_by = “customer”; }

// get the ID of the entry_type ‘public’, and construct
// a string containing the new status value and either
// the real name of the staff member who made the change,
// or the value of $entered_by if no matching staff
// member is found. for example, if the staff member Joe Blow
// closes a call, the notes field will be set to
// “Status set to Closed by Joe Blow”. if a customer
// re-opens a call, notes will be set to
// “Status set to Re-opened by customer”.

// all of this depends on the value in $new_status_id
// being a valid ID of a record in the status table.
$query = “select et.entry_type_id

NOTE

Chapter 13: Problem Tracking System 351

3537-4 ch13.f.qc 12/15/00 15:25 Page 351

, concat(‘Status set to ‘
, ns.status
, ‘ by ‘
, ifnull(t.staff_name,’$entered_by’)

) as notes
from entry_types et, status ns

left join staff t on t.username = ‘$entered_by’
where et.entry_type = ‘public’
and ns.status_id = $new_status_id
“;

$result = safe_query($query);
if ($result)
{

// $new_status_id is a valid status ID - use the
// history_entry() to make an entry in the history table
// recording the status change, and send email notifiying
// the user.
list($entry_type_id, $notes) = mysql_fetch_array($result);
history_entry($problem_id, $entry_type_id, $entered_by

, ‘program’, $notes
);

}
}

DISPLAY_CALL_LIST() This is another function of convenience. It prints the
results of a query along with a header row.

function display_call_list($query=””,$subtitle=”Call List”
, $script=”edit_problem.php”

)
{

if ($query == “”) { return; }
$result = safe_query($query);
if (!$result) { return; }

$calls = 0;
while ($row = mysql_fetch_array($result))
{

if ($calls == 0)
{

// we want to print out the table header only once,
// and only if there is at least one row -
// do it when processing the first row
// of the result set.

352 Part IV: Not So Simple Applications

3537-4 ch13.f.qc 12/15/00 15:25 Page 352

print subtitle($subtitle);

print start_table();

print table_row(
“Problem #”
, “Date”
, “Customer”
, “Problem”
, “Source”
, “Status”

);
}
$calls++;

// print out information about the call, including
// a link to the given script for updating its
// status and history.
print table_row($row[“problem_id”]

, $row[“entry_dt”]
, anchor_tag($script.”?problem_id=”

.$row[“problem_id”]
, $row[“firstname”].” “.$row[“lastname”]

)
, $row[“summary”]
, $row[“source”]
, $row[“status”]

);
}
if ($calls > 0)
{

// there was at least one call, so the table was opened -
// close it.
print end_table();

}
}

CREATE_PROBLEM_CODE() This function creates a unique and highly random
8-character alphanumeric code.

function create_problem_code()
{

return substr(md5(uniqid(rand())),0,8);
}

Chapter 13: Problem Tracking System 353

3537-4 ch13.f.qc 12/15/00 15:25 Page 353

Scripts
Here are the pages that are actually called by URLs and the includes.

CALL_ENTRY.PHP
This page does little but call the call_entry_form.php, which is discussed next.

Remember, it is possible that this form will be accessed by a staff member who is
logged in. Note that staff members should start at the staff.php page to log in. Or
again, you may want to work with cookies to determine staff members.

If either a staff member or a user is identified, all the information regarding the
user is set to globals with the appropriate fetch function.

include “header.php”;

if ($use_staff_name == “yes”)
{

db_authenticate(“staff”, “Bricks and Mortar Support”);
fetch_staff($PHP_AUTH_USER);

}

$page_title = $default_page_title.”: Call Entry”;
include “start_page.php”;

if (!empty($customer_id))
{

// a customer ID value was submitted - get the customer’s
// contact information from the database.
fetch_customer($customer_id);

}

// call the script that actually displays the call entry form.
include “call_entry_form.php”;

include “end_page.php”;

CALL_ENTRY_FORM.PHP
Mostly this form makes calls to the functions in your /book/functions/ folder. It
prints the form shown in Figure 13-1 and determines the default information in the
form. The call_entry.php page will include this page.

The form will be submitted to the create_call.php page, which is discussed next.

if (!$in_form)
{

354 Part IV: Not So Simple Applications

3537-4 ch13.f.qc 12/15/00 15:25 Page 354

// if the user has submitted the form once and existing
// contact information was found for the customer,
// the present_dups() function (defined in functions.php)
// will have already started the form, in order to
// display the contact records to the user. in this case,
// the function will set the global variable $in_form to 1.
// if $in_form is not set, begin the form here.
print start_form(“create_call.php”);

}

print start_table();

// print out the customer’s contact information.
print table_row(table_cell(“Customer
Information”,array(“colspan”=>2)));

print_row(“First Name”, text_field(“firstname”,”$firstname”,40));
print_row(“Last Name”, text_field(“lastname”,”$lastname”,40));
print_row(“Email Address”, text_field(“email”,”$email”,40));
print_row(“Street Address”, text_field(“address”,”$address”,40));
print_row(“”, text_field(“address2”,”$address2”,40, 40));
print_row(“City”, text_field(“city”,”$city”,40, 40));
print_row(“State/Zip”, text_field(“state”,”$state”,2, 2)

.” ”

.text_field(“zip”, “$zip”, 5, 5)

.”-”

.text_field(“zip4”, “$zip4”, 4, 4)
);

// by default, daytime phone numbers cover the hours of 9 AM to 5
PM.
if (empty($day_start)) { $day_start = “9:00 AM”; }
if (empty($day_end)) { $day_end = “5:00 PM”; }

print_row(“Daytime Phone”, “(“
.text_field(“day_area”,”$day_area”,3,3)
.”) “
.text_field(“day_prefix”,”$day_prefix”,3,3)
.text_field(“day_suffix”,”$day_suffix”,4,4)
.” ”
.”Ext:\n”
.text_field(“day_ext”,”$day_ext”,5,5)
.” ”
.”Hours:\n”
.text_field(“day_start”,”$day_start”,8,8)

Chapter 13: Problem Tracking System 355

3537-4 ch13.f.qc 12/15/00 15:25 Page 355

.text_field(“day_end”,”$day_end”,8,8)
);

// by default, evening phone numbers cover the hours of 5 PM to 8
PM.
if (empty($eve_start)) { $eve_start = “5:00 PM”; }
if (empty($eve_end)) { $eve_end = “8:00 PM”; }

print_row(“Evening Phone”, “(“
.text_field(“eve_area”,”$eve_area”,3,3)
.”) “
.text_field(“eve_prefix”,”$eve_prefix”,3,3)
.text_field(“eve_suffix”,”$eve_suffix”,4,4)
.” ”
.”Ext:\n”
.text_field(“eve_ext”,”$eve_ext”,5,5)
.” ”
.”Hours:\n”
.text_field(“eve_start”,”5:00 PM”,8,8)
.text_field(“eve_end”,”8:00 PM”,8,8)

);

// spacer row to separate the two main areas of the form - we have
// to use a blank space () to fill out the table cell, or it
// won’t show up (much).
print table_row(table_cell(“ ”,array(“colspan”=>2)));

// print out fields for describing the problem.
print table_row(table_cell(“Problem
Description”,array(“colspan”=>2)));

if (!empty($use_staff_name))
{

// if a staff member is entering a problem record, record
// the fact in hidden fields.
print_row(“Entered by”, $username

.hidden_field(“entered_by”, $username)

.hidden_field(“use_staff_name”, $use_staff_name)
);

// allow the staff member to indicate the original source of the
// problem report.
print_row(“Source”

, db_select_field(“source_id”, “sources”, “source_id”,
“source”)

356 Part IV: Not So Simple Applications

3537-4 ch13.f.qc 12/15/00 15:25 Page 356

);
}

print_row(“Brief summary of problem”
, textarea_field(“summary”,$summary, 40, 2)

);

print_row(“Complete Problem Description”
, textarea_field(“problem”,$problem, 40, 15)

);

print end_table();

print paragraph(
submit_field(“submit”,”Submit Problem Report”)
, reset_field()

);

print end_form();

CREATE_CALL.PHP
This page is long, if not terribly complicated. I will discuss interesting parts as they
present themselves. When you’re looking at it, it’s easiest to know the variety of
actions it can accomplish. Here’s an overview of the logic in the page:

customer or staff comes to call_entry
if customer_id is available

fetch that record
display it in the form

else
display blank form

if email or phone number have no match in db
create new customer address

else
if more than one records match

present records to customer
allow customer to:

- create new record with new info
- use an existing record
- override an existing record with new info
- merge new info with an existing record;

Chapter 13: Problem Tracking System 357

3537-4 ch13.f.qc 12/15/00 15:25 Page 357

where existing has values and new
does not, existing will be used

- mark one of the records as a duplicate
to be purged; calls tied to it
will be linked to the record
used for this call

present new info in form to allow for updating
else

if no new info overrides existing record
use existing record

else
present record to customer
allow customer to:

- create new record with new info
- use existing record
- override existing record with new info
- merge new info with existing record;
where existing has values and new
does not, existing will be used

present new info in form to allow for updating

Armed with this overview, you should be able to read through the source of this
page, which of course is on the CD-ROM, without much difficulty.

STAFF.PHP
This is where you expect the staff members to log into the application. Note the use
of the staff_authenticate() function, which calls the authenticate() function
you’ve been using throughout the book. Before a staff member can log in, he or she
must enter a valid password and username.

The page is going to show two lists of queries, a list of calls owned by the cur-
rently logged-in staff member, and a list of unowned calls, probably stuff that has
been entered over the Web.

include “header.php”;
staff_authenticate();

fetch_staff($PHP_AUTH_USER);

$page_title = $default_page_title.”: $PHP_AUTH_USER”;
include “start_page.php”;

// first, get a list of all open unowned calls and display them,
// in the hopes that the user might grab one.
$query = “select c.customer_id, c.firstname, c.lastname

, p.problem_id

358 Part IV: Not So Simple Applications

3537-4 ch13.f.qc 12/15/00 15:25 Page 358

, date_format(p.entry_dt, ‘%Y-%c-%e %l:%i %p’) as entry_dt
, p.source_id, p.summary, p.entered_by
, s.status
, so.source

, p.entry_dt as real_entry_dt
from customers c, problems p, status s, sources so
where p.status_id = s.status_id and s.status = ‘Opened’

and p.customer_id = c.customer_id
and p.source_id = so.source_id

order by real_entry_dt desc
“;
display_call_list($query, “Unowned Calls”);

The above query retrieves a list of calls that are marked “Opened.” Note that
“Opened” will be the status only for unowned calls. As soon someone performs an
action, the status will change. The display_call_list() function prints the results of
the query, if there are any.

If you remember back to the Defining the Database section, we had to use some
trickery to get a listing of the most recent entries to calls that belong to a specific
user. We need to create that make shift table we talked about, but before we do that,
we need to clear out any old data that may be in there.

safe_query(“delete from calls where username = ‘$PHP_AUTH_USER’”);

Then we load up the temporary table with data that is needed for the join.

safe_query(“insert into calls (username, problem_id, entry_dt)
select p.owner

, h.problem_id
, max(h.entry_dt) as entry_dt

from problems p, history h
where p.problem_id = h.problem_id

and p.owner = ‘$PHP_AUTH_USER’
group by p.problem_id

“);

Finally, we perform the following on the newly loaded table.

$query = “select c.customer_id, c.firstname, c.lastname
, p.problem_id, p.source_id, p.entered_by
, date_format(h.entry_dt, ‘%Y-%c-%e %l:%i %p’) as entry_dt
, h.notes as summary
, s.status
, so.source

Chapter 13: Problem Tracking System 359

3537-4 ch13.f.qc 12/15/00 15:25 Page 359

, h.entry_dt as real_entry_dt
from customers c, problems p, status s, sources so

, history h, calls m
where p.status_id = s.status_id and s.status != ‘Closed’

and p.customer_id = c.customer_id
and p.source_id = so.source_id
and p.problem_id = h.problem_id
and p.owner = m.username
and h.entry_dt = m.entry_dt
and h.problem_id = m.problem_id
and m.username = ‘$PHP_AUTH_USER’

order by real_entry_dt desc
“;
display_call_list($query, “Open Calls”);

// print out a link to allow the user to create a new call
print paragraph(anchor_tag(“call_entry.php?use_staff_name=yes”,”Call
Entry”));

include “end_page.php”;

EDIT_PROBLEM.PHP
This is the final file in this application. It is fairly brief and the source code on the
CD-ROM should be readable.

Summary
The application presented in this chapter is very useful, since just about every infor-
mation services department at every company will have some sort of system to track
user complaints. As we stated at the beginning of this chapter, the problem tracking
system presented here is fairly generic. However, it can definitely be the basis for a
more detailed application that you’d custom design for use in the workplace.

360 Part IV: Not So Simple Applications

3537-4 ch13.f.qc 12/15/00 15:25 Page 360

Chapter 14

Shopping Cart
IN THIS CHAPTER

◆ Creating a secure site

◆ Working with PHP sessions

◆ Communicating with a credit-card authorization service

OK, FRIENDS. THIS IS IT, the final application in this book. I don’t know about you,
but I’m a little weepy. Sure, there were hard times. But all in all I feel great about
what we’ve accomplished, and I hope you do too.

But before we start reminiscing, there’s some more work to be done. You are
going to learn what you need to create a shopping cart application using PHP and
MySQL. But unlike with the other applications in this book, it’s really impossible
to talk about what you need for this application without delving into some other
topics. In addition to understanding the schema and the PHP code, you’ll need to
have a basic understanding of know how to maintain state between pages. (If you
don’t know what that means, don’t worry, I’ll get to it momentarily.) Also, you will
need to know how to securely process credit-card transactions.

Don’t read another sentence if you have not read through Chapter 10. You

must understand how the catalog works before you can take this on. For rea-

sons that shouldn’t be too tough to understand, we built the shopping cart

atop the catalog.

Determining the Scope and
Goals of the Application
Anyone familiar with the Web knows what a shopping cart does. But it will be a bit
easier to understand what the code for this application is doing if I explicitly state
some of the goals of the shopping cart.

Caution

361

3537-4 ch14.f.qc 12/15/00 15:25 Page 361

First, the application is going to have to display your wares; for this you will
reuse the code from Chapter 10. Further, users will have to be able to choose items
that they want to buy. Obvious, I know. Note what must happen after a user chooses
an item: the exact item must be noted, and the user should have the opportunity to
continue shopping. The server must remember what has been ordered. As the user
continues to browse, the server must keep track of the user and allow him or her to
check out with his or her requested items.

This requires you to use some method for maintaining state. That is, the Web
server will need to remember who the user is as he/she moves from page to page.
Now, if you remember back to the Introduction, the Web and the HTTP protocol
that the Web makes use of is stateless. That is, after responding to an HTTP request,
the server completely and totally forgets what it served to whom. The server takes
care of requested information serially — one at a time as requests come in. There is
no persistence, no connection that lasts after a page has been served.

In order to give your site memory, so that, in this case, the cart can remember
who ordered what, some information that identifies the user must be sent with each
page request. On the Web there are exactly three ways to store this information:

◆ You can set a cookie, and then each time a request is made, the information
stored in the cookie will be sent to the server. Note that the browser stores
the cookie information in a small text file and sends the information to the
server with each request.

The setcookie() function is covered in Chapter 6.

◆ You can place hidden form elements on every page, and then design your
pages so that the navigation is done through form submit buttons.

◆ Or you can tack on some sort of unique identifier to the querystring, so
that with each page request the URL identifies the user.

But, as they have done with everything else in PHP, the developers have made
maintaining state relatively painless. As with ColdFusion and ASP, they have
included a facility for sessions. (Only sessions in PHP are much better.) If you are
unfamiliar with the term, sessions automate the process of tracking users during a
visit. They will be discussed in further detail later in the chapter.

The other major challenge in this application is to securely gather user information
from the user— specifically data that will allow for the authorization of credit-card

XREF

362 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 362

purchases. Information will need to be gathered over a connection that is relatively
secure, and then that information will need to be verified by a qualified institution.
This is going to require some new configurations and the use of some custom tools.

What do you need?
Since you are building this application atop the catalogue, much of the code and
information should be very familiar. The one notable thing that is going to be added
to every page is a button that lets people go directly to the checkout. Figure 14-1
shows an example.

Figure 14-1: Category page with checkout button

On the pages that list the items, there must be a set of forms that will enable people
to indicate the items they would like to purchase. Figure 14-2 shows a page that will
allow people to add items to their shopping carts by pressing the Order! button.

Then there must be a page that lists all of the items currently in the cart. This
page should enable people to add or subtract quantities of an item, or remove items
entirely. The page in Figure 14-3 should do the trick.

Chapter 14: Shopping Cart 363

3537-4 ch14.f.qc 12/15/00 15:25 Page 363

Figure 14-2: Item pages with order buttons

Figure 14-3: The cart page

364 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 364

Then, toward the end of the process, there will be a page that gathers user informa-
tion and preferences. Depending on your specific needs, you may require something
more complex than what is shown in this chapter. But at least the fields shown in
Figure 14-4 are a good start. This page should indicate errors if the information is false
or if the authorization of the credit card is rejected by the processing agency.

Figure 14-4: Checkout page

Finally, there should be a receipt — a page that confirms the order and tells the
user what the order number is.

Some information that might be important to you is not included with the

code here. For instance, there are no administrative pages for adding or

deleting shipping methods. At this point, you’ve probably seen enough

admin pages to know how to create one for yourself.

What do you need to prevent?
There are essentially two things you need to be careful about here. The first is making
sure you can track your users from page to page. The second is keeping credit-card
numbers and other personal information away from prying eyes.

Caution

Chapter 14: Shopping Cart 365

3537-4 ch14.f.qc 12/15/00 15:25 Page 365

The Data
The database used here will be added to the catalog database. Information about
goods will still come from the tables reviewed there, while information on orders
will be stored in the tables shown here.

The data schema here, represented in Figure 14-5, offers few surprises.

Figure 14-5: Cart schema

A couple of things here are worth noting. First notice how the order is really the
center of the works. Every table, in one way or another, is related to the order. The
order table stores a user_id, address_id, and all the needed payment information.
Notice that the order table has a one-to-many relationship with the items table.
That’s because each order can have many items, which makes sense.

Think about whether or not you want to store credit-card numbers in your

database. We have included a column for the credit card number, but that

doesn’t mean you should use it. First consider if your box is secure enough. If

you’re not sure of the answer, the answer is no. If you are using a shared server,

maybe a secure server offered by your ISP, you should consider it unsafe for

storing credit card numbers. Other people will have access to that box and

Caution

addresses

address_id
user_id
address
address2
city
state
zip
phone

items

order_id
item_id
product_id
style_id
substyle_id
qty
price
total_price

users

user_id
email
firstname
lastname

shipping

shipping_id
shipping
per_order
per_item

cc_types

cc_type_code
cc_type

orders

order_id
user_id
address_id
status_id
total_price
shipping_id
ship_cost
cc_number
cc_exp_yr
cc_exp_mon
cc_type_code
create_dt

status

status_id
status

366 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 366

they will be able to see what you’ve written to the database.Keep in mind that

there is no requirement that you store the credit-card numbers anywhere.You

can simply validate the number and then drop it from memory. If it is never

written to a disk, it will be very hard for anyone to steal.

Notice that user and address information is separated. This is so you can enable
a single user (who will identify him- or herself by an e-mail address) to supply two
addresses — maybe work and home.

The shipping table will store options you supply for moving your goods. It might
have options for UPS, USPS, and Fed Ex, if you choose. I’ll talk a little more about
these options in the “Code Overview” section.

The status table will enable you to note if the order is backordered, shipped, or
cancelled, or has any other status that might come up in your shop.

And the cc_types table stores credit cards that you’re willing to accept.

Table structure for table ‘addresses’
#

CREATE TABLE addresses (
address_id int(11) NOT NULL auto_increment,
user_id int(11) NOT NULL,
address varchar(40),
address2 varchar(40),
city varchar(40),
state char(2),
zip varchar(10),
phone varchar(20),
PRIMARY KEY (address_id),
KEY address_user_key (user_id)

);
--
#
Table structure for table ‘cc_types’
#

CREATE TABLE cc_types (
cc_type_code char(3) NOT NULL,
cc_type varchar(30) NOT NULL

);

--
#
Table structure for table ‘orders’
#

Chapter 14: Shopping Cart 367

3537-4 ch14.f.qc 12/15/00 15:25 Page 367

CREATE TABLE orders (
order_id int(11) NOT NULL auto_increment,
user_id int(11) NOT NULL,
address_id int(11) NOT NULL,
status_id tinyint(4) NOT NULL,
total_price decimal(10,2) DEFAULT ‘0.00’ NOT NULL,
shipping_id tinyint(4) NOT NULL,
ship_cost decimal(10,2) DEFAULT ‘0.00’ NOT NULL,
cc_number varchar(30) NOT NULL,
cc_exp_yr int(11) NOT NULL,
cc_exp_mon tinyint(4) NOT NULL,
cc_type_code char(3) NOT NULL,
create_dt timestamp(14),
PRIMARY KEY (order_id),
KEY order_user_key (user_id)

);
--
#
Table structure for table ‘shipping’
#

CREATE TABLE shipping (
shipping_id tinyint(4) NOT NULL auto_increment,
shipping varchar(20) NOT NULL,
per_order decimal(10,2) DEFAULT ‘0.00’ NOT NULL,
per_item decimal(10,2) DEFAULT ‘0.00’ NOT NULL,
PRIMARY KEY (shipping_id)

);

--
#
Table structure for table ‘status’
#

CREATE TABLE status (
status_id tinyint(4) NOT NULL auto_increment,
status varchar(20) NOT NULL,
PRIMARY KEY (status_id)

);
--
#
Table structure for table ‘users’
#

368 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 368

CREATE TABLE users (
user_id int(11) NOT NULL auto_increment,
email varchar(255) NOT NULL,
firstname varchar(40),
lastname varchar(40),
PRIMARY KEY (user_id),
UNIQUE user_email_key (email)

);

Configuration Overview
This application is specialized enough to require its own configuration. All of the
challenges discussed earlier (maintaining state, secure gathering of credit-card
information, and processing of credit cards) not only require specialized code, they
require some unique installation options.

Configuring for encryption and security
If you have a lot of experience with Apache and its related tools, this may not be too
big a deal, or if you are using an ISP and don’t have the authority to install programs
on a box, then you won’t need to worry about the specialized installation necessary
to work with e-commerce.

But in any case, you should have an idea of the tools you’ll need to get all of this
working. First I will cover the basic theories behind encryption and Web security. I
will then cover some of the mandatory tools for your Apache installation. Finally,
I will cover some of the options for maintaining state and processing credit card
transactions offered in PHP.

ENCRYPTION AND SECURITY THEORY
One of the best things about working around the Web is having first-hand knowl-
edge of the work done by people far, far smarter than myself. Some of the most
intense, complex and brain-intensive work being done is in the realm of security.
This is algorithm-heavy stuff, and to really understand how the protocols work,
you need to know quite a bit of math. Luckily, you don’t need to have an advanced
degree to understand the theories; and putting the stuff into practice really isn’t
too bad.

PUBLIC-KEY/PRIVATE-KEY ENCRYPTION Machines on the Web make use of a
Public-key/Private-key security scheme. Basically this means that computers that
wish to communicate using encrypted data must have two keys to encrypt and
decrypt data. First there is the Public key. As the name suggests the Public key is
not hidden. It is available to all those you wish to communicate with. So everybody

Chapter 14: Shopping Cart 369

3537-4 ch14.f.qc 12/15/00 15:25 Page 369

out there who wishes to communicate with you securely will have a copy of your
Public key.

You might think that this is potentially dangerous. After all, everyone has access
to your Public key, and thus they’ll understand how you encrypted your data. But
actually, it’s just fine, because the messages can only be decrypted by the Private
key. The Private key is kept . . . well . . . private. No one else has access to it.

So, for example, say you are going process a credit card with a bank. You will
have access to the bank’s Public key, with which you will encrypt the information.
But because of the complex algorithms involved, only the Private key held by the
bank can decrypt the data.

CERTIFICATES Even with the Public key/Private key safeguards, the banks will
have one major concern: that the messages they are getting are not from the
sources they appear to be from. That is, if you are running sofamegastore.com, the
bank needs to make sure that the request for credit-card authorization for that
loveseat is actually from Sofa Megastore, not someone who is pretending to be Sofa
Megastore. This requires a third party.

The encrypted messages that you send and receive will have a signature of sorts,
but that signature must be verified. For this reason, organizations that wish to
communicate over the Web make use of organizations that distribute certificates
that verify the sender of a message. So it should make sense that you need to go to
one of these organizations to get your Public and Private keys.

Probably the best-known organization involved in security certificates is

VeriSign. You can find out about their offerings at this site: http://

www.verisign.com/products/site/ss/index.html.

SECURE PROTOCOL HTTP by its very nature is open to eavesdropping. Packets
that move across the Internet’s routers are full of messages just waiting to be
sniffed and read. Normally, the fact that you can easily read data sent via HTTP is
a good thing. It makes the transfer and rendering of information quite easy.
However, in cases where you need security, HTTP won’t work well.

For example, if you are giving credit-card information to a site— say the commerce
site you set up—you want to make sure that the information is unreadable. In order to
do that, you need to make use of the Secure Socket Layer, or SSL. SSL is an additional
protocol by which the keys and certificates from your site will be transferred to a
browser or another server. Over SSL, your browser will be able to verify the certificate
from your site so that it knows you are who you say you are. And sites will be able to
verify each other.

NOTE

370 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 370

All the encryption in the world will not stop someone who has hacked into

your box or has legitimate access. Most credit-card theft is done by dishonest

employees with too much access.

This has been a quick and dirty introduction to Web security. If you would

like to learn more, I suggest starting with this page, and following any inter-

esting links provided there:http://www.modssl.org/docs/2.6/ssl_

overview.html

Encryption and security tools
Given what you have just read about encryption and security, it probably stands to
reason that you are going to need some new tools. Here’s a basic rundown.

First off, you are going to need to add SSL to Apache. As with everything else
discussed in this book, adding SSL does not require you to pay for specialized soft-
ware. All you need to do is install Apache with mod_ssl. You can read more about
it at http://www.mod_ssl.org. To get SSL to work with Apache in the United
States, you will need an additional piece of software called rsaref from RSA.

The installation of these tools with Apache is well documented in INSTALL.SSL
file, so we won’t cover it here. If you are having trouble getting mod_ssl, PHP, and
MySQL to work for you, we recommend this site, which goes through the installation
step by step: http://www.devshed.com/Server_Side/PHP/SoothinglySeamless/
page8.html.

Make sure you read about the credit-card authorization options in the

following section before you configure Apache with PHP.

But before any of this will work for you, you are going to need to get a certifi-
cate. As I already mentioned, VeriSign is the most frequently used certification
organization. And if you use a VeriSign certificate along with the PayfloPro (which
is a service of VeriSign) functions described below, you may be able to get a good
deal. Thwate, which used to be the second-largest certification organization, is now
owned by VeriSign. Other options in this area can be found at the following URL:
http://dmoz.org/Computers/Security/Public_Key_Infrastructure/PKIX/
Tools_and_Services/Third_Party_Certificate_Authorities/.

NOTE

XREF

Caution

Chapter 14: Shopping Cart 371

3537-4 ch14.f.qc 12/15/00 15:25 Page 371

Configuring for credit-card authorization
When Apache is configured with SSL your site will be able to talk to browsers
securely. If the URL starts with https://, the browser knows to look on Port 443 and
to look for a certificate. However, there is still the question of how your site will talk
with the entity that will process credit cards and either accept or reject the transaction.
PHP has many great features for dealing with other sites. For instance, fopen() is
URL-aware. But none of the filesystem or URL functions work with SSL, so you will
need to make use of a specialized function set or a program outside of PHP.

I wholeheartedly recommend you look at some of the new options available in
PHP4 before deciding on which payment processing services to use. I’ll cover them
briefly here.

PAYFLOPRO
If you decide to use Verisign to process credit cards, you will want to make use of
these functions. You will need to install a code library that you will get from Verisign.
You will then need to compile PHP so that it will recognize the new functions. Details
can be found at http://www.php.net/manual/ref.pfpro.php.

PayfloPro is very easy to work with. A function or two will process your request
and you will get back a response. Once that response is compared to a set of known
codes, you will know whether or not the transaction succeeded. This is very nice
and will help keep your code very clean.

CYBERCASH
Similarly, to make use of Cybercash, you will need to do a custom installation of
PHP, using the libraries that come with the PHP distribution found at http://www.
php.net/manual/ref.cybercash.php. The functions that come with PHP are not
as clean as those that work with PayfloPro. However, there is a nice library in
/ext/cybercash of your PHP installation that should make credit-card process-
ing relatively easy.

CURL:
This acronym stands for Client URL Library functions. It is a code library that you
can use for communicating over the Internet using just about any protocol out
there. It supports Gopher, Telnet, and (the best for our purposes) HTTPS.

You can now access this library through PHP functions if you installed PHP
using with the --with-curl flag. You will first have to download the library from
http://curl.haxx.se/.

We don’t think the cURL functions are as clean as the PayflowPro functions.
However, the are open-source. We’ll cover the functions in the Code Breakdown
section.

Configuring for session handling
When I start breaking down the code, you will see the exact functions you need to
work with sessions. But while you are reading about configuration options, it’s best

372 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 372

to cover the different ways sessions can be implemented in PHP. But first a little on
what sessions in PHP actually do.

Say you want to track the activity of your users across a number of pages, as with
this shopping cart. You need to remember who has put what in a cart. To accomplish
this, you could pass some rather complex variables via a cookie that held the all of the
elements and their prices. But this is kind of messy, and it may expose more of the
workings of your application than you are comfortable exposing. Moreover, the
cookie specification (http://www.netscape.com/newsref/std/cookie_spec.html)
allows for only 20 cookies per domain and only 4 bytes per cookie.

A better idea is give each person who visits your site a unique identifier, some
value that identifies who that person is. Then, as the user adds items to the cart,
information associated with the unique identifier can be stored on the server. If you
were to code a function that stored the information by hand, you might create a
unique string that would be put in a cookie; then, in some directory on the server,
you could have a file that has the same name as the unique user ID. Within that file
you could store all the variables associated with the user. For example, you might
have an array of items that a specific user put in his or her cart.

In fact, this is almost exactly what sessions do. When you indicate in your code
(or by settings in your php.ini) that you’d like to start a session, PHP will create a
unique identifier and an associated file, which is stored on the server (the location is
set in the php.ini, and by default is in the /tmp directory). Then as a user moves from
page to page, all the variable information that the user chooses can be stored in the
file on the server, and all the script needs to keep track of is the unique identifier.

There are many configuration options when it comes to sessions, but probably
the most important decision is where the session id will be propagated, in a URL or
in a cookie. Most e-commerce sites make use of cookies. However, there is the
chance that some of your users will not be able to use your site properly if they
have their browsers set to reject cookies. For this reason, in PHP it is very easy to
add the session id to the querystring. There are two ways to go about it.

The code <?= SID ?> will print the session id. To append the session id to a URL,
you would have to manually add it, like this:

<a href=mydomain.com?sid=<?=SID?>

This can make for some tedious work if you want to put the session id on every
link in your site. However, if you compile PHP with the flag --enable-trans-sid,
the session id will be automatically appended to every relative link in your pages
once a session has been started.

Code Overview
As you might have guessed by now, there are two function sets used here that are
relatively unique: the functions that deal with sessions and the functions associated
with the cURL library. I will cover both sets of functions in some detail in this section.

Chapter 14: Shopping Cart 373

3537-4 ch14.f.qc 12/15/00 15:25 Page 373

First, though, I need to make another note about the advantages of the object-
oriented approach. When you read Chapter 10 (you did read Chapter 10, right?) you
saw some of the principles of object-oriented programming in practice. Specifically,
you should have noticed how inheritance is used. When a class inherits the proper-
ties and methods of a parent class, it has access to all of the methods and properties
of the parent.

In this application, you are extending the code you used in the catalog, so it
makes sense that this application would create classes that extend the classes used
in the catalog. Please be sure you are familiar with the catalog classes in Chapter 10
before proceeding.

Session functions
If you head over to the session page in the PHP manual (http://www.php.net/
manual/ref.session.php), you will find 16 different functions. Depending on your
needs, you may have to use a majority of these, but in many circumstances you could
get away with using a single function: session_register(). We’ll explain.

There are many functions and settings regarding sessions that we don’t

cover here. As always, make sure to check the manual.

The first thing you will need to do is let PHP know that you wish to start a ses-
sion. You can do that explicitly by using session_start(). Then you will need to
let PHP know what variables you want to store. You can do this with session_
register(“variable_name”). Take the following page, for example:

The start session() and session_register() functions should be

at the very top of your PHP pages.These functions send cookies, which are a

type of HTTP header. If you attempt to send any type of header after text has

been sent to the browser, you will get an error.

<?
session_start();
session_register(“mystring”);

$mystring = “testing for a string”;
?>

Tip

NOTE

374 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 374

When accessed the first time, this page will start a session, and depending on the
configuration either the script will send a cookie or a session id will be appended to
relative links. The session_register command tells PHP to search the session file
for the variable $mystring. If it exists, it will become available as a global, or if
you wish you can access it through the $HTTP_SESSION_VARS array. After the
page is processed the most current value for the registered variables is written to
the session file. So if you have another page that contains the following code:

<?
session_start();
session_register(“mystring”);

echo $mystring;
?>

It will print “testing for a string”.
The fact is that the session_start() function isn’t really necessary; if you have a

session_register() in your code, PHP is smart enough to start the session for you.
Note that although in the preceding code the variable is a simple string, you are

by no means limited to a string. Simple arrays, complex arrays, and objects are all
viable session variables.

Here are some other session functions that you may find useful.

SESSION_DESTROY()
This function kills a session and all of the variables associated with it.

SESSION_UNREGISTER()
This function erases the value of a variable in the session file.

SESSION_SET_SAVE_HANDLER()
This interesting function allows you to set your own methods for storing,

retrieving, and writing your own session handlers.

void session_set_save_handler (string open, string close, string
read, string write, string destroy, string gc)

For a good deal of the time, the file-based session management in PHP will be
fine. However, there are a couple of circumstances in which it may not suit you. If
you happen to be working in a clustered environment, where several machines are
serving the same site, writing to the local filesystem really won’t work. Similarly,
your SSL-enabled Apache installation may sit on a different box than your
main server.

Chapter 14: Shopping Cart 375

3537-4 ch14.f.qc 12/15/00 15:25 Page 375

In this case a better choice is to have all of the machines connect to the same
database, and to have your database (MySQL, of course) store the session data. It
was unnecessary for us to make use of this function when we created this applica-
tion because we were only working with one physical server. However, if you need
to store session data in a MySQL database, you can use the functions in Appendix G.

SESSION_ENCODE()
In order to write variables to a database, the variables needs to be put in a format
that makes sense to the database. That is what the session_encode function does.
You can see examples of this in Appendix G.

$str = session_encode(string)

SESSION_DECODE() This function reverses the process of encoding, so that
the variable is turned into a representation that PHP can work with. You can see
examples of this in Appendix G.

cURL functions
You can use the cURL library for many things, but for the shopping cart application,
you are only concerned with one piece of functionality: communicating with a
credit-card validation service. Basically, the application will send a secure message
over HTTPS, and the service that validates credit cards will send back a response,
which can then be processed in PHP.

There are only four cURL functions to work with.

CURL_INIT()
This function returns an integer that is similar to the result identifier returned by
mysql_connect() or the file pointer returned by fopen(). In this case, it’s called
the cURL handle, or ch. In the sole argument of this function you indicate the URL
you wish to access.

int curl_init ([string url])

For example:

$cc_company_url =
“https://secure.process.site/transact.dll?exp=foo&cardtype=bar
$ch = curl_init($cc_company_url);

Note that this function only starts the cURL session. The call to the URL doesn’t
happen until the curl_exec() function is executed.

376 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 376

CURL_SETOPT()
bool curl_setopt (int ch, string option, mixed value)

Before you execute the communication, there are over 40 options you can set for
cURL. Many of these aren’t really necessary, given the quality of PHP’s function set.
Others aren’t really relevant to the application presented here. See the manual
(http://www.php.net/manual/ref.curl.php) if you’d like to see the full list of
cURL’s functions. For the sake of this application, all you need is to have the results of
the https request returned to a PHP variable. For that you can use the CURLOPT_
RETURNTRANSFER option.

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

CURL_EXEC()
This function executes the transfer. The one argument should be the results of the
curl_init() function and you should set all the necessary options.

bool curl_exec (int ch)

CURL_CLOSE()
This function finishes the cURL connection using the curl handle:

void curl_close (int ch)

In the end, this set of functions will conduct the transaction and return a result
to the $data variable.

$ch = curl_init($authorize_net_url);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
$data = curl_exec($ch);
curl_close($ch);

Dealing with the credit-card processor
You are going to need to get some information directly from the entity processing the
transaction. Most processing companies that we’ve seen work similarly. You send
them a request with all the expected credit card information: number, expiration date,
address, and so forth, and they send you some codes in response.

Your PHP script will need to compare the codes it receives with the values you
get from the processing agency.

Chapter 14: Shopping Cart 377

3537-4 ch14.f.qc 12/15/00 15:25 Page 377

For this application you will use Authorize.net as the credit card processor,
which seems to work just fine.

Remember to look into the PayfloPro and Cybercash functions before

settling on a payment method.

Code Breakdown
As with the Catalog, here you’ll start by looking at the classes that will come into
play in this application. Again, the files accessed via the URLs are very high-level
files; all the tough work is done in the Class files.

A peek at classes.php will show the classes of interest here:

include “cart_base_class.php”;
include “../catalog/category_class.php”;
include “../catalog/product_class.php”;
include “../catalog/style_class.php”;
include “../catalog/substyle_class.php”;

include “cart_category_class.php”;
include “cart_product_class.php”;
include “cart_style_class.php”;
include “cart_substyle_class.php”;

include “user_class.php”;
include “address_class.php”;
include “order_class.php”;
include “item_class.php”;

As already mentioned, one of the goals of this application is to make use of the
classes we created in the catalog. We want to write as little new code as possible. So
the new classes here will inherit the methods and properties in the classes we
already created.

One class from Chapter 10 doesn’t quite do enough for inclusion in the cart. That
is the Base class. We’re going to create another Base class with some extended
functionality. Then all we have to do is make sure that the categories that extend
Base call our new version. This is easily done with includes. In our classes.php file
we include the new Base class, and then, when a class that extends Base is
included, it sees the new class. When you look at the classes.php file, remember that
the entire content of each of the included files is sucked into this file when it is
parsed by PHP.

Tip

378 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 378

It will be easier to get a feel for the inheritance chain with some visual represen-
tation. Figure 14-6 shows the inheritance chain.

Figure 14-6: Cart Classes Inheritance Chain

Base

User

Order

Item

Category

cart_category

Product

cart_product

Style

Substyle

cart_style

cart_style

Chapter 14: Shopping Cart 379

3537-4 ch14.f.qc 12/15/00 15:25 Page 379

As you can see from this figure, inheritance can be a bit more complicated than
a straight hierarchy. Keep this figure handy as you read through this chapter and
the source files on the CD-ROM.

Classes
The first classes we will discuss are on the right-hand side of Figure 14-6.

These classes have methods that look very much like the methods in the Category,
Product, and other classes from Chapter 10. Those worked well because there is a
natural hierarchy when dealing with products: categories contain products, products
contain styles, and styles contain sub-styles. For a shopping cart there is a hierarchy
of user information: a user can have many addresses, many orders can go to an
address, and many items can belong in a single order.

Given this similarity it makes sense to create classes for user information that
mimic the classes seen in Chapter 10. You will see what I mean when I get to the
User class

Let’s start at the top of the chain, looking at the changes to the Base class.

BASE CLASS
PHP classes do not support multiple inheritance. If they did, we could create a class
named CartBase as an extension of Base, and then have the Catalog class extend
both Base and CartBases. Since this isn’t possible, we copied all of the methods
from the Base class in the catalog (sql_format(), function set_image_src (),
set_thumb_src(), construct(), and base()). All of these methods are described
in Chapter 10. We added a single method, which prints a form.

METHOD ORDER_FORM() There’s nothing terribly special in this form. It will print
all the data necessary to gather information on an item to be put in the shopping cart.

function order_form ()
{

$output = start_form(“cart.php”)
.””.$this->item.””
.” ”
.$this->price
.” ”
.”Qty “
.text_field(“quantity”,1,4,4)
.” ”
.submit_field(“order_item”,”Order!”)
.hidden_field(“category_id”,$this->category_id)
.hidden_field(“product_id”,$this->product_id)
.hidden_field(“style_id”,$this->style_id)
.hidden_field(“substyle_id”,$this->substyle_id)
.hidden_field(“price”,$this->price)

380 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 380

.end_form()
;
$output .= “\n”;
return $output;

}

USER CLASS
As mentioned, this class will look very much like the classes from the catalog.
Here’s the vital information on this class:

Class Name: User
Extends Base
Default Properties:

◆ $ addresses

Methods:

◆ User. The class constructor. Takes two arguments: $parent and $atts.
Calls the Base() method, assigning each element of the $atts array to
Object properties.

◆ FetchUser. Takes one argument, $user_id. Creates object properties for
every row in the user table associated with the $user_id.

◆ LoadUser. Takes one argument, $user_id. First runs FetchUser and then
creates an array, each element of which is an object containing address
information.

◆ SaveUser. Takes no arguments, assumes a $this->user_id exists. Will
both update existing styles and create new ones as needed.

◆ DeleteUser. Takes no arguments. Removes a user from the database. It
will force confirmation if there are related addresses. It will delete the
user after confirmation is provided.

This should look familiar. You should expect to see the same sorts of data structures
that were created in Chapter 10 and shown in Figures 10-11 and 10-12. Using this
class you can expect an object created from the User class to contain an array called
address, each element of which is an object containing complete address information.

CLASS ADDRESS
This looks very similar to the previous class.

Class Name: Address
Extends User
Default Properties:

◆ $orders

Chapter 14: Shopping Cart 381

3537-4 ch14.f.qc 12/15/00 15:25 Page 381

Methods:

◆ Address. Calls the Base() method, assigning each element of the $atts
array to Object properties.

◆ FetchAddress. Takes one argument, $address_id. Creates object properties
for every row in the user table associated with the $address_id.

◆ LoadAddress. Takes one argument, $address_id. First runs FetchOrder and
then creates an array, each element of which is an object containing
address information.

◆ SaveAddress. Takes no arguments, assumes a $this->order_id exists. Will
both update existing styles and create new ones as needed.

◆ DeleteAddress. Takes no arguments. Removes a user from the database. It
will force confirmation if there are related addresses. It will delete the user
after confirmation is provided.

CLASS ORDER
Finally, in this class we add something new and interesting.

Class Name: Order
Extends Address
Default Properties:

◆ $items

Methods:

◆ Order. Calls the Base() method, assigning each element of the $atts array
to Object properties.

◆ FetchOrder. Takes one argument, $order_id. Creates object properties for
every row in the user table associated with the $order_id.

◆ LoadOrder. Takes one argument, $order_id. First runs FetchOrder and then
creates an array, each element of which is an object containing address
information.

◆ SaveOrder. Takes no arguments, assumes a $this->order_id exists. Will
both update existing styles and create new ones as needed.

◆ DeleteOrder. Takes no arguments. Removes a user from the database. It
will force confirmation if there are related addresses. It will delete the user
after confirmation is provided.

◆ CalculateTotals. Takes no arguments. This method calculates total prices
for each item of the order and for the order as a whole. Items that are
flagged for deletion are removed from the items array property.

382 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 382

◆ ValidateCard. Takes no arguments. This method does not conduct a trans-
action with a credit-card processing agency. It runs through a function
(seen in Appendix G) that makes sure the credit card number supplied is
potentially valid. If the credit card is not in a proper format, the method
will return false.

◆ ChargeCard. Takes no arguments. Communicates with the credit-card
processor.

◆ PrintOrder. Takes no arguments. Prints out the results of an order.

The ChargeCard method deserves some added discussion.

METHOD CHARGECARD() This method will make use of the cURL functions
described earlier in this chapter. First we start by calculating the totals.

function ChargeCard()
{

$this->CalculateTotals();
$total_charged = $this->total_price + $this->ship_cost;
$exp = sprintf(“%02d/%04d”,

$this->cc_exp_mon, $this->cc_exp_yr);

The following code prepares a URL that we will use to communicate with autho-
rize.net. For legal reasons we did not include the actual variables you will need to send
to authorize.net to get a meaningful response. However, that information is available
at the authorize.net site. Following that, we prepare an error message, just in case.

$authorize_net_url =
“https://url.to.authorize.net?var1=FALSE&var2=foo”;

$this->error = “connection to authorize.net failed”;

Now it is time to make the connection and see if the credit card is verified. The
cURL functions are a little strange at this point. They are fairly new and aren’t quite
as polished as some of the other function sets. But by the time you read this, there
may be a PEAR (PHP Extension and Application Repository) class that makes dealing
with cURL easier. Make sure to check in at the php.net site for the latest updates to the
cURL functions.

global $ch;
$ch = curl_init($authorize_net_url);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
$data = curl_exec($ch);
curl_close($ch);

Chapter 14: Shopping Cart 383

3537-4 ch14.f.qc 12/15/00 15:25 Page 383

authorize.net returns a string of comma-separated values. The script will compare
the results from the returned string against their known meanings (supplied by
authorize.net). In the code that follows, the first element in the returned string is
tested. If it has a value of 1, this method will return TRUE, meaning the transaction
was successful.

$this->rvars = explode(“,”,$buffer);
$this->auth_result = $this->rvars[0];
$this->error = $this->rvars[3];
if ($this->auth_result != 1) { return FALSE; }
return TRUE;

}

CLASS ITEM
This class is at the base of the hierarchy.

Default Properties:

◆ none

Methods:

◆ Item. The class constructor. Takes two arguments: $parent and $atts. Calls
the Base() method, assigning each element of the $atts array to Object
properties.

◆ SaveItem. Takes no arguments, assumes a $this->item_id exists. Will both
update existing styles and create new ones as needed.

CLASS CARTCATEGORY
This is the first of the new classes that directly extend the classes created for the
catalog application.

Class Name: CartCategory
Extends Category
Default Properties:

◆ none

Methods:

◆ CartCategory. The class constructor. Calls the Base() method, assigning
each element of the $atts array to Object properties.

◆ AddProduct. This method overwrites the AddProduct() method that is in
the parent (Category) class. It creates an array, called $products, each
member of which is an object formed by calling the CartProducts() class.

384 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 384

In creating the data structure in Chapter 10, you saw how the LoadCategory()
method instantiated objects within an array. Instead of having the LoadCategory()
class instantiate the object directly, we had LoadCategory() call another method,
named AddProduct(), which instantiated the objects. By breaking out AddProduct()
into its own separate method, we gained some flexibility, which becomes convenient
in this application.

When you instantiate the CartCategory class, the AddProduct() method of this
child class overwrites the AddProduct() method of the parent (Category) class. So if
you write the following code:

$c = new CartCategory;
$c->LoadProduct($product_id);

you can be sure that the AddProduct() method from the CartCategory call
will execute.

Here are the contents of AddProduct() method of the CartCategory class.

function AddProduct($parent,$atts)
{

$this->products[] = new CartProduct($parent,$atts);
}

CLASS CARTPRODUCT
This is similar to the CartCategory class and includes a method for printing
Products that is better for the shopping cart.

Class Name: CartProduct
Extends Product
Default Properties:

◆ none

Methods:

◆ CartProduct. The class constructor. Takes two arguments: $parent and $atts.
Calls the Base() method, assigning each element of the $atts array to Object
properties.

◆ AddStyle. This method overwrites the AddStyle() method that is in the
parent (Product) class. It creates an array, called $styles, each member of
which is an object formed by calling the CartStyles() class.

◆ PrintProdct. Takes no attributes. Overwrites the PrintProduct() method of
the parent (Product) class.

Chapter 14: Shopping Cart 385

3537-4 ch14.f.qc 12/15/00 15:25 Page 385

CLASS CARTSTYLE
This is similar to the CartStyle class and includes a method for printing Styles that
is better for the shopping cart.

Class Name: CartStyle
Extends Style
Default Properties:

◆ none

Methods:

◆ CartStyle. The class constructor. Takes two arguments: $parent and $atts.
Calls the Base() method, assigning each element of the $atts array to
Object properties.

◆ AddSubStyle. This method overwrites the AddSubStyle() method that is in
the parent (Style) class. It creates an array, called $substyles, each member
of which is an object formed by calling the CartSubStyles() class.

◆ PrintStyleRow. Takes no attributes. Overwrites the PrintStyleRow() method
of the parent (Style) class.

CLASS CARTSUBSTYLE
This is similar to the CartSubStyle class and includes a method for printing substyles
that is better for the shopping cart.

Class Name: CartSubStyle
Extends SubStyle
Default Properties:

◆ none

Methods:

◆ CartSubStyle. The class constructor. Takes two arguments: $parent and $atts.
Calls the Base() method, assigning each element of the $atts array to Object
properties.

◆ AddSubStyle. This method overwrites the AddSubStyle() method that is in
the parent (Style) class. It creates an array, called $substyles, each member
of which is an object formed by calling the CartSubStyles() class.

◆ PrintSubStyle. Takes three attributes, $style_price, $style_dsc, $product_dsc.
Overwrites the PrintSubStyle() method of the parent (Style) class.

386 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 386

Scripts
These are the pages called by URLs and the includes. Once again, you will probably
notice that there isn’t a whole lot involved. Almost all of the work is done in
the Classes.

DISPLAY.PHP
This will print out either a list of categories or a specific product.

include ‘header.php’;

if (empty($category_id))
{

header(“Location: index.php”);
exit;

}

$page_title = anchor_tag(“index.php”, “Bag’O’Stuff”);

$c = new CartCategory;

if (empty($product_id))
{

$c->LoadCategory($category_id);

$page_title .= “: $c->category”;
include “start_page.php”;

$c->PrintCategory();
}
else
{

$p = new CartProduct;
$p->LoadProduct($product_id);
$p->LoadStyles();
$c->FetchCategory($p->category_id);
$page_title .= “: “

.anchor_tag(“display.php?category_id=$c->category_id”
, $c->category

)
.”: $p->product”

;

Chapter 14: Shopping Cart 387

3537-4 ch14.f.qc 12/15/00 15:25 Page 387

include “start_page.php”;

$p->PrintProduct();
}

include “end_page.php”;

It doesn’t get a whole lot more basic: If this page is to display a Category (not a
product), a Category is loaded and then printed. The same will happen for a Product if
appropriate. If you remember the display.php page from Chapter 10, you might notice
that the only real difference is that the objects instantiated here are created from the
classes new to this application. That gives us access to the new print methods, which
were designed to work with this application.

CART.PHP
Here’s the page that creates our shopping cart.

include “header.php”;

session_register(“cart”);
session_register(“last_item”);

$page_title = anchor_tag(“index.php”,”Bag’O’Stuff”).”:
Shopping Cart”;

include “start_page.php”;
include “cart_form.php”;
include “end_page.php”;

What? Expecting a little more code from your shopping cart? Well, most of it is
in the include (cart_form.php). Just note here that the session is started. And that
there are two session variables you will be tracking. The cart object, as you will see
in a moment, is created with the Order class. Remember that when the two variables
are registered on the page, two things happen. First, if they exist already, they are
pulled into memory from the session file. Second, if they are changed in the course
of the page, they will be written out with those changes at the end of the page.

Note that the $last_item variable holds the description of the last item ordered
by the user. We use it to prevent multiple orders of the same item, typically caused
by the user hitting the Order! button more than once. If the user wants two of an
item instead of one, they can change the quantity for the item.

Now let’s look at the include.

CART_FORM.PHP
As you can see here, if the cart does not exist in the session a new one will be instan-
tiated. There are extensive in-line comments, which should help you get through
this script.

388 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 388

// if $cart is not an Order object, make it one
if (!is_object($cart)) { $cart = new Order; }

// initialize the URL for displaying
// items from the cart with the name
// of the display script, formatted as
// an absolute URL to the regular
// (non-secure) server by the regular_url() function (defined in
// /book/functions/basic.php).
$href = regular_url(“display.php”);

if ($order_item == “Order!”)
{

// create a new CartSubStyle object. as the lowest class in our
// class hierarchy (low == furthest from Base),
// it is an extension
// of all the other classes, and so can access
// all of their methods.
// we will use this to hold any new item to be
// added to the cart.
$t = new CartSubStyle;

// the $last_item variable holds the description of the last
// item ordered by the user. we use it to prevent multiple
// orders of the same item, typically caused by an itchy
// finger on the ‘Order!’ button. if the user wants two of
// an item instead of one, they can change the quantity for
// the item.

// if the cart is empty, of course, there is no previously
// ordered item - set $last_item to an empty string.
if (count($cart->items) == 0) { $last_item = “”; }

// the $item variable will be set to a description of the
// ordered item. initialize it to an empty string.
$item = “”;

if (!empty($product_id))
{

// we at least have a product ID. get information about
// the product category and its category from the database,
// and add links to the category and product to the item
// description.
$t->FetchCategory($category_id);

Chapter 14: Shopping Cart 389

3537-4 ch14.f.qc 12/15/00 15:25 Page 389

$href .= “?category_id=$t->category_id”;
$item .= anchor_tag($href,$t->category);

$t->FetchProduct($product_id);
$href .= “&product_id=$t->product_id”;
$item .= “- “.anchor_tag($href,$t->product);

}
if (!empty($style_id))
{

// we have a style ID. get information about the style
// from the database and add the style name to the item
// description. (styles are not individually displayed.)
$t->FetchStyle($style_id);
$item .= “- $t->style”;

}
if (!empty($substyle_id))
{

// we have a substyle ID. get information about the substyle
// from the database and add the substyle name to the item
// description. (substyles are not individually displayed.)
$t->FetchSubStyle($substyle_id);
$item .= “- $t->substyle”;

}

if (!empty($item) && $last_item != $item)
{

// if we have an item description and it is not the
// same as the last item ordered, add the new item
// to the user’s shopping cart.
$cart->AddItem($cart, array(

“item”=>$item
, “product_id” => $product_id
, “style_id” => $style_id
, “substyle_id” => $substyle_id
, “price” => $price
, “quantity” => $quantity

));
}

// set $last_item to the item just ordered (if any)
$last_item = $item;

}
elseif ($again == “please”)
{

// which just means, we’re coming from a submitted cart form,

390 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 390

// where $again is set to “please” in a hidden field. we test
// this, rather than the value of $submit as in other examples,
// so the user can hit the ENTER key after typing in a new
// quantity or checking remove boxes and get a recalculation,
// without actually pressing the ‘Recalculate’ button.

// for each item in the cart, set its quantity property
// to the corresponding value from the $quantity[] array
// built by PHP from the ‘quantity[$row]’ fields submitted
// from the form.
$quantity = (array)$quantity;

reset($cart->items);
while (list($row,) = each($cart->items))
{

// by adding 0 explicitly, PHP will set the value
// of the quantity property to at least 0, even if,
// for some reason, the user has set the field to
// a blank value.
$cart->items[$row]->quantity = $quantity[$row] + 0;

}

$remove = (array)$remove;
while (list($row,$value) = each($remove))
{

// tag the item for removal by CalculateTotals()
$cart->items[$row]->killme = $value;

}
}

// recalculate the total price for each item in the cart
$cart->CalculateTotals();

// display the contents of the shopping cart
print start_form();
print hidden_field(“again”,”please”);

print start_table(array(“border”=>1));
print table_row(“Item”

, “Quantity”
, “Price”
, “Total”
, “Remove?”

);

Chapter 14: Shopping Cart 391

3537-4 ch14.f.qc 12/15/00 15:25 Page 391

reset($cart->items);
while (list($row,$item) = each($cart->items))
{

// display each item in the cart. the item description
// will include links to the display page for the
// various elements of the item (category, product,
// style, as applicable). (see above where $item is
// constructed.)

// display the total price for each item as a US dollar
// value (2 decimal places with a dollar sign in front).

// display a checkbox allowing the user to remove an item
// from the cart.
print table_row($item->item

, text_field(“quantity[$row]”,$item->quantity,3)
, table_cell($item->price, array(“align”=>”right”))
, table_cell(money($item->total_price)

, array(“align”=>”right”)
)
, checkbox_field(“remove[$row]”, “yes”, “remove”)

);

// keep a running total of the quantity and price of items
// in the cart.
$total_price += $item->quantity * $item->price;
$total_quantity += $item->quantity;

}

// print out totals
print table_row(“Grand Total:”

, “$cart->total_quantity”
, “”
, table_cell(“”.money($cart->total_price).””

, array(“align”=>”right”)
)

);

print end_table();

// the ‘Continue Shopping’ button displayed by the keep_shopping()
// function (defined in functions.php) runs in its own form.
// so we display it in an HTML table with the ‘Recalculate’
// button of the shopping cart form to keep them side-by-side.
print start_table();

392 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 392

print table_row(
submit_field(“recalc”,”Recalculate”)

.end_form()
,
//keep shopping is defined in the functions.php file
keep_shopping($category_id,$product_id)

);
print end_table();

CHECKOUT.PHP
Now, finally, it’s time to check out. Note that this is really the only file that needs to be
on the secure server. There’s no need for the catalog portions or even the cart page to
be on a secure server, because there’s really no information that needs to be protected.
However, on this page we’re going to be accepting credit card information.

Once again, there are extensive comments within the script to help you get
through the page’s logic.

include “header.php”;

// if a session ID has been passed in, use it
if (isset($sessid)) { session_id($sessid); }

// get the session variables for the shopping cart and the user’s
email address
session_register(“cart”);
session_register(“email”);

// if a value for ‘email’ was posted to the script from a form, use
that
// in preference to the session variable
if (!empty($HTTP_POST_VARS[“email”])) { $email =
$HTTP_POST_VARS[“email”]; }

// set up variables defining the values of the buttons of the form
// (defining the values once helps avoid errors caused by spleling
problems.)
$order_button = “ORDER NOW!”;
$info_button = “Get My Info”;

if (!is_object($cart))
{

// if $cart isn’t an Order class object (defined in
order_class.php),

// we’re not going to do much - the shopping cart will have no

Chapter 14: Shopping Cart 393

3537-4 ch14.f.qc 12/15/00 15:25 Page 393

// items in it. initialize it as one anyway, to keep the script
from

// breaking.
$cart = new Order;

}

// load any posted variables into the cart using the Construct()
// method of the Base class (defined in cart_base_class.php).
$cart->Construct($HTTP_POST_VARS);

if (!empty($zapthis) && is_array($zapthis))
{

// if multiple addresses were found for the user from past
orders,

// the user can ask to have one or more of the addresses removed
// from the database. this is done by checking HTML checkbox

fields
// named “zapthis[]”, set to the ID values of the addresses.
// if at least one of the checkboxes was set, PHP will return
// the values in array variable $zapthis. (if no checkboxes
// are checked, $zapthis is not necessarily empty, but it
// will not be an array.)
while (list(,$aid) = each($zapthis))
{

// delete the address records using the DeleteAddress()
// method of the Address class (defined in

address_class.php)
$cart->DeleteAddress($aid);

}
}
if (!empty($usethis))
{

// if multiple addresses were found for the user from past
orders,

// the user can ask to use one of them for this order by
clicking

// on a radio button field named “usethis”, set to the ID value
// of the address. if $usethis is set, get the address record
// for the ID value, using the FetchAddress() method of the
// Address class.
if ($cart->FetchAddress($usethis))
{

// there is now one and only one address for this order
$cart->address_count = 1;

}
}

394 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 394

if ($ordernow == $order_button)
{

// the user hit the big ORDER button. validate their credit
// card and charge it, using the ValidateCard() and ChargeCard()
// methods of the Order class.
if ($cart->ValidateCard() && $cart->ChargeCard())
{

// the charge went through - write the order to the
// database using the SaveOrder() method of the Order class.
$cart->SaveOrder();

// redirect the user to the receipt page for a receipt
// they can print or save to a file, and exit the script.
// pass on the ID value of the new order record and
// the session ID that was passed in to this script.
header(“Location: receipt.php?order_id=$cart->order_id”

.”&sessid=$sessid”
);
exit;

}
}
elseif ($getdata == $info_button || (empty($cart->user_id) &&
!empty($email)))
{

// either the user has asked to look up their information in the
// database, or we don’t yet have an ID value for the user but
// do have an email address. use the LoadUser() method of the
// User class (defined in user_class.php) to try looking up
// address information stored for the user from past orders.
$cart->LoadUser($email);

}

$page_title = “Check Out”;
include “start_page.php”;

// include the shopping cart form
include “cart_form.php”;

// begin the order form. we pass on the session ID value that was
passed
// into this script as a GET-style argument because it makes it
easier
// to see if we’re in the right session or not.
print start_form(“checkout.php?sessid=$sessid”);

Chapter 14: Shopping Cart 395

3537-4 ch14.f.qc 12/15/00 15:25 Page 395

// store the user ID of the user (if any)
print hidden_field(“user_id”,$cart->user_id);

print subtitle(“User Info”);

print start_table();

// display the user’s email address, along with the button they
// can use to ask to check the database for address information.
print table_row(“Email:”,text_field(“email”,$cart->email,20)

.submit_field(“getdata”,$info_button)
);

print table_row(“First Name:”,text_field(“firstname”,$cart-
>firstname,40,40));
print table_row(“Last Name:”,text_field(“lastname”,$cart-
>lastname,40,40));

print table_row(“”);

if ($cart->address_count == 1)
{

// if we’ve only got one address, load its properties
// as properties of the shopping cart. the easy case.
$cart->Construct(get_object_vars(&$cart->addresses[0]));

}
elseif ($cart->address_count > 1)
{

// we have more than one possible address from the database
// for the user. the hard case.
// begin building an HTML table to display them.
$useme_cell = start_table(array(“border”=>1));

// begin building a list of address cells
$useme_row = “”;

// walk through the array of addresses
while (list($i,) = each($cart->addresses))
{

// use a reference to avoid copying the object
$a = &$cart->addresses[$i];

// build an HTML table cell containing the address
// and fields for the user to indicate how they

396 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 396

// would like to use it (if at all), and add the
// cell to the row string.
$useme_row .= table_cell(

$a->PrintAddress()
.”
”
.radio_field(“usethis”

, $a->address_id
, “Use this address”

)
.”
”
.checkbox_field(“zapthis[]”

, $a->address_id
, “Delete this address”

)
);

}

// add the address cells and close the table.
// (note: this somewhat presumes there
// won’t be more than two or three addresses - the table
// will get unwieldy otherwise.)
$useme_cell .= table_row($useme_row);
$useme_cell .= end_table();

// display the addresses
print table_row(“”,table_cell($useme_cell));
print table_row(“”);

}

// these fields contain any address information that might have been
// directly entered by the user before the database was searched, or
// the information from an address from the database that has been
// selected by the user. in any case, *these* fields are what will
// be used in the order.
print table_row(“Address:”,text_field(“address”,$cart-
>address,40,40));
print table_row(“”,text_field(“address2”,$cart->address2,40,40));
print table_row(“City:”,text_field(“city”,$cart-
>city,40,40));
print table_row(“State:”,select_field(“state”,states(),$cart-
>state));
print table_row(“Zip:”,text_field(“zip”,$cart->zip,10,10));
print table_row(“Phone:”,text_field(“phone”,$cart-
>phone,20,20));

Chapter 14: Shopping Cart 397

3537-4 ch14.f.qc 12/15/00 15:25 Page 397

if (!empty($cart->address_id))
{

// allow the user to create a new address
print table_row(“”

, checkbox_field(“save_as_new”
, “yes”
, “Save this as a new address”

)
);

}

print end_table();

// display the available shipping methods
print subtitle(“Shipping Info”);

print start_table();

print table_row(
“Shipping Method”
, table_cell(“Per Order”,array(“align”=>”right”))
, table_cell(“Per Item”,array(“align”=>”right”))
, table_cell(“Total for This

Order”,array(“align”=>”right”))
);

// if no shipping method has been chosen, use the first one as a
default
if (empty($cart->shipping_id)) { $cart->shipping_id = 1; }

// get the list of shipping methods from the database
$result = safe_query(“select shipping_id,shipping,per_item,per_order

from shipping
“);
while ($ship = mysql_fetch_object($result))
{

// calculate the cost of using this method. we use a simplistic
// system: a fixed cost per order, and a per item charge.
$shiptotal = $ship->per_order + ($cart->total_quantity * $ship-

>per_item);

// display the shipping method with a radio field allowing the
// user to choose it

398 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 398

print table_row(
radio_field(“shipping_id”,$ship->shipping_id,$ship-

>shipping,$cart->shipping_id)
, table_cell(money($ship-

>per_order),array(“align”=>”right”))
, table_cell(money($ship->per_item),array(“align”=>”right”))
, table_cell(money($shiptotal),array(“align”=>”right”))

);
}
print end_table();

// display payment information
print subtitle(“Credit Card Info”);

print start_table();

if ($cart->error)
{

// if the user tried to place an order and there was an error
// when validating or charging the card, display it here.
print table_row(

table_cell(“$cart->error”
,array(“colspan”=>2)

)
);
$cart->error = “”;

}

// display a test card number in the form for this example by
default.
// it has a valid format, and since we’re not really trying
// to charge any cards here, AuthorizeNet will accept it.
if (empty($cart->cc_number)) { $cart->cc_number = “4912-7398-07156”;
}

// pick Visa as the default type, to match the default test card
number
if (empty($cart->cc_type_code)) { $cart->cc_type_code = “vis”; }

// use the db_radio_field() function (defined in
/book/functions/forms.php)
// to display the accepted credit card types as radio button fields

Chapter 14: Shopping Cart 399

3537-4 ch14.f.qc 12/15/00 15:25 Page 399

print table_row(“Credit Card:”
,

db_radio_field(“cc_type_code”,”cc_types”,”cc_type_code”,”cc_type”
, “cc_type_code”,$cart->cc_type_code

)
);

print table_row(“Number:”,text_field(“cc_number”,$cart-
>cc_number,20));

// set the variables used to enter the credit card expiration date

// set the $months array to a list of possible months
for ($i = 1; $i <= 12; $i++) { $months[$i] = $i; }

// set the $years array to a list of plausible years
for ($i = 2000; $i <= 2005; $i++) { $years[$i] = $i; }

// use January 2001 as a default expiration date
if (empty($cart->cc_exp_mon)) { $cart->cc_exp_mon = 1; }
if (empty($cart->cc_exp_yr)) { $cart->cc_exp_yr = 2001; }

print table_row(“Expires:”
, select_field(“cc_exp_mon”,$months,$cart->cc_exp_mon)

.select_field(“cc_exp_yr”,$years,$cart->cc_exp_yr)
);
print end_table();

// save the ID of the address used in this order (if any)
print hidden_field(“address_id”,$cart->address_id);

// display the order button
print paragraph(submit_field(“ordernow”,$order_button));

print end_form();

include “end_page.php”;

?>

400 Part IV: Not So Simple Applications

3537-4 ch14.f.qc 12/15/00 15:25 Page 400

Summary
In this, the final application of the book, you’ve seen a few interesting things.
You’ve learned that an application like a shopping cart requires some method of
maintaining state. Probably the best way to maintain state with PHP for something
like a shopping cart is with sessions.

If you wish to process credit cards, you will need a secure server, an SSL certifi-
cate, and a set of functions for processing cards. In this application we used the
cURL functions for credit card processing, but there are two other function sets
(PayfloPro and Cybercash) that you should look into.

The final thing to note in this chapter is how classes were used. By extending
existing classes, and writing methods to overwrite previous methods, we were able
to flexibly use large blocks of code.

Chapter 14: Shopping Cart 401

3537-4 ch14.f.qc 12/15/00 15:25 Page 401

3537-4 ch14.f.qc 12/15/00 15:25 Page 402

Appendix A

HTML Forms
IF YOU WANT YOUR APPLICATIONS to take user data, you are going to need a place for
them to enter the information. That requires HTML forms. HTML forms are easy
enough to work with. There are several commonly used input types, and in
browsers that make use of HTML 4.0 and Cascading Style Sheet there are some
techniques that you can use to make your forms a bit fancier. A full discussion of
everything you can do with forms is beyond the scope of this book. If you need
more information on forms and how they can work with CSS or JavaScript, or
some of the newer browser-specific form types, check out the documentation at
http://microsoft.com or http://mozilla.org.

Form Basics
Each form is delimited by opening and closing <form> tags. The <form> tag takes
the following attributes:

◆ action— This attribute specifies the URL of the page that a form will be
sent to for processing. It can contain a relative URL (e.g., “myscript.php” or
“../myfolder/myscript”) or a complete URL (e.g., http://www.mydomain/
myscript.php”).

◆ method— This attribute indicates the HTTP request type the browser will
send to the server. It must be set to either GET or POST. If you set it to
GET, the name=value pairs will appear in the browser location bar (e.g.,
http://mypage.com?name1=value1&name2=value2). The advantage of
using GET is that results can be bookmarked in the browser. The disad-
vantage is that the variables you send will be more transparent. If you
set this attribute to POST the name=value pairs will not be visible. The
default value is GET.

◆ name— This attribute is most useful for addressing portions of a form
through JavaScript. The form name is not sent to the server when the
form is submitted.

◆ enctype— The default is “application-x-www-form-urlencoded”, and
this will normally be fine. But if you are uploading files (using <input
type=”file”>, you should use “multipart/form-data”.

405

3537-4 AppA.f.qc 12/15/00 15:26 Page 405

A typical form shell will look something like this:

<form name=”myform” action=”processor.php” method=”post”>
...
</form>

Input Types
Most of the work in your forms will be done by the input types. An input tag and
the type attribute will determine what kind of form element is rendered in your
browser. Every input type must have a name attribute. That’s how you’re going to
pass variables to your scripts, so make sure you don’t forget them. (To be absolutely
accurate, you don’t need to supply name attributes to submit and reset buttons.)

As a quick example, the following would create a simple form with a single text
box and a submit button. The text box has the default value of “hello there”, as shown
in Figure A-1.

<form>
<input type=”text” size=”50” maxlength=”15”
value=”hello there”>

<input type=”submit” name=”submit” value=”OK?”>

</form>

Figure A-1: Simple HTML form

406 Part V: Appendixes

3537-4 AppA.f.qc 12/15/00 15:26 Page 406

The input types are as follows. Note that different input types have different
attributes associated with them. Each of them takes a name attribute.

◆ Text—This type is shown in the above example. It can take these attributes:

■ Size, which indicates the length of the box rendered in the Web browser.

■ Maxlength, which limits the number of characters that can be input
into the field. Keep in mind that older browsers will ignore maxlength,
and even in newer browsers, you should not rely on this attribute to
limit uploads. Check your upload_max_filesize item in your php.ini
to set the limit on the server.

■ Value, which is the default value in the box. The user can override it
by typing in different information.

◆ Password — This type is identical to the text field, except that the text
that is typed into the box is shown as asterisks.

◆ Hidden — This type does not render on the screen. It is very useful for
passing values between pages. The name and value attributes are all
you need with hidden fields. Consider using hidden fields if you’re
uncomfortable with cookies or sessions. Note that by simply viewing
the source of your Web page, a savvy user will be able to see your
hidden form elements. Do not put any sensitive data in hidden form.

◆ Submit — This type places a submit button on the page. The text in the
value attribute will appear on the submit button. When the form is sub-
mitted, the name and value of the submit button are passed along like
all other form elements.

◆ Image — This type will serve the same purpose as the submit button, but it
will allow you to specify an image to use instead of that ugly old submit
button. Treat this form element as you would any tag. Provide both
scr and alt attributes.

◆ Reset — This type provides a button that, when pressed, alters your form
to the state it was in when the page was initially loaded. The default text
on the reset button is “Reset”. By adding a value attribute, you can change
the text on the reset button. A Reset button does not involve PHP or the
server in any way.

◆ File — This type gives what looks like a textbox and a button with the
text “browse” on it. When users hit browse, they are given a window
that allows them to go through their operating system to find the file
they would like to upload. If using this input type, be sure to change the
form enctype attribute to “multipart/form-data”. See Chapter 10 for a
discussion of file uploads with PHP.

Appendix A: HTML Forms 407

3537-4 AppA.f.qc 12/15/00 15:26 Page 407

◆ Checkbox — The name and value of the checkbox will only be passed if the
checkbox is checked when the form is submitted. If the word “checked”
appears in the tag, the checkbox will be checked by default. Remember
to use name=box_name[] to pass multiple checkboxes as an array. See
Chapter 4 for a discussion of passing arrays with PHP.

◆ Radio — Radio buttons allow the user to select only one of several choices.
Radio buttons with the same name attribute belong to the same group.
The “checked” command signifies the default choice.

The following form makes use of most of the form elements we just covered,
except for the image type. Figure A-2 shows how it is rendered in the browser.

<h2>Please Enter Personal Information</h2>
<form>

<input type=”text” size=”25” maxlength=”15” name=”name”
value=”Name Here”>

<input type=”password” size=”25” maxlength=”15” name=”password”
value=””>

<input type=”hidden” value=”you can’t see me”>
<input type=”checkbox” name=”telemmarket” value=”yes” checked>If

checked, I have permission to clear out your bank account.
<p>
What is your eye color?

<input type=”radio” name=”eye_color” value=”blue”

checked>blue

<input type=”radio” name=”eye_color” value=”green”>green

<input type=”radio” name=”eye_color” value=”brown”>brown

<input type=”radio” name=”eye_color” value=”red”>red

<input type=”submit” name=”submit” vaule=”submit”>

<input type=”Reset”>

</form>

Select, multiple select
The select form element creates drop-down boxes and (to use the Visual Basic term)
list boxes. To create drop-down boxes, you must have an opening <select> tag
with a name attribute. Within the select element, <option> tags will indicate pos-
sible choices. Each of these will have a value attribute.

408 Part V: Appendixes

3537-4 AppA.f.qc 12/15/00 15:26 Page 408

Figure A-2: More form elements

The following HTML creates a drop-down box with 3 elements.

<form name=”tester” action=”script.php” method=”get”>
<select name=”dinner”>

<option value=”1”>chicken
<option value=”2”>fish
<option value=”3”>vegetarian

</select>
</form>

By adding the word “multiple” to the select element you enable the user to pick
more than one of the choices. The size attribute determines how many of the
options are visible at one time.

The following code creates a list box with 3 visible elements. Figure A-3 shows
how this HTML looks in the browser.

<form name=”tester” action=”script.php” method=”get”>
<select name=”side_dishes” multiple size=3>

<option value=”1”>potato
<option value=”2”>pasta

Appendix A: HTML Forms 409

3537-4 AppA.f.qc 12/15/00 15:26 Page 409

<option value=”3”>carrot
<option value=”4”>celery
<option value=”5”>mango

</select>
</form>

Textarea
The textarea element creates a large block for text entry. Add a row and column
attribute to specify the size of the box. Textarea is different from other form
elements in that opening and closing tags surround the default text. For instance:

<textarea name=”mytext” rows=”5” colums=”20”>Here’s the default
text</textarea>

Keep in mind that if you have spaces or hard returns between your <textarea>
tags, those characters will be carried to the form element.

Add the wrap attribute to change how text wraps when it reaches the end of a
line in the box. If the value is wrap=physical, carriage returns are added at the
end of line; if the value is wrap=virtual, the lines will appear to wrap but will be
submitted as a single line. This is almost always the best choice.

These attributes came about from the folks at Netscape, and you still may need
to use them. The official W3C HTML 4.0 attribute values for wrap are none, hard,
and soft.

Figure A-3 adds the select, multiple select and textarea elements to a form with
this code.

<h2>Please Enter Personal Information</h2>
<form>
<fieldset id=”fieldset1”

style=”postion:absolute;
width:300;
height:100;
top:20;
left:10;”
>

<legend>Food Questions</legend>
What did you eat for dinner?

<select name=”dinner”>
<option value=”1”>chicken
<option value=”2”>fish
<option value=”3”>vegetarian

</select>

410 Part V: Appendixes

3537-4 AppA.f.qc 12/15/00 15:26 Page 410

Any Side dishes?

<select name=”side_dishes” multiple size=3>

<option value=”1”>potato
<option value=”2”>pasta
<option value=”3”>carrot
<option value=”4”>celery
<option value=”5”>mango

</select>

How are you feeling about dinner?

<textarea name=”mytext” rows=”5” colums=”20”>
Here’s the default text</textarea>
</fieldset>
<p>
<button>

<img src=”disk.gif” width=”32” height=”32” border=”0”
alt=”disk”>

Pretty Little Button
</button>
</form>

Figure A-3: Additional form elements

Appendix A: HTML Forms 411

3537-4 AppA.f.qc 12/15/00 15:26 Page 411

Other attributes
With HTML 4.0 and the newest browsers some additional attributes have been
introduced. Make sure to test these as part of your QA process because they will not
work on all browsers.

ACCESSKEY
An accesskey is the same as a hotkey. If this attribute appears in a form element, the
user can hit (on a PC) Alt and the designated key to be brought directly to that form
element. The hotkey is generally indicated by underlining of the hot letter.

<input type=”text” name=”mytext” acceskey=”m”><u>M</u>y text box.

TABINDEX
Users can use the Tab key to move through form elements. The tabindex attribute
specifies the order in which focus will move through form elements.

Other elements
Internet Explorer 5 and Mozilla support a couple of new and seldom-used form
elements that you might want to consider using.

BUTTON
The button is a fancier version of the submit button. It allows for both text and an
image to be put on the same button. There are opening and closing <button> tags,
and everything inside of them appears on the button. Figure A-3 shows an example
of the button.

FIELDSET AND LEGEND
These are nice for grouping elements in forms. All text and tags within the <fieldset>
tags will be surrounded by a thin line. Text within the <legend> tags will serve as the
caption for that grouping.

Figure A-3 shows all of the form types.
In the year 2001, it is still not a great idea to use most of the HTML 4.0 form

elements and attributes. Generally speaking, they add very little, and they may look
very strange on many browsers.

412 Part V: Appendixes

3537-4 AppA.f.qc 12/15/00 15:26 Page 412

Appendix B

Brief Guide to PHP/MySQL
Installation and
Configuration

WHEN INSTALLING MYSQL AND PHP, you are faced with all kinds of options. The
variety of operating systems and installation options creates more permutations
than could possibly be handled in this book. Luckily, installation procedures for
both packages are documented well in each package’s respective documentation.

In this appendix we will cover the basic installation and configuration of MySQL
and PHP on Windows 98 and Unix systems. I’m assuming that you will be using
the Apache Web server on all platforms. For the Unix installation, this book will
document only the method of compiling the source code. If you wish to use RPMs
for your installation, you should consult the online manuals.

Windows 98 Installation
Start by copying the MySQL binaries from the CD-ROM accompanying this book or
the mysql.com site to your local drive. Do the same for Apache and PHP (the
appropriate download sites here are http://www.apache.org/dist and http://
www.php.net/download). The names of the files will be something like the follow-
ing (they may be slightly different, depending on the version you are using):

◆ mysql-3.23.22-beta-win.zip

◆ apache_1_3_9_win32.exe

◆ php-4.0.1pl2-Win32.zip

Start by unzipping the mysql file and php files with your favorite unzip tool. (If you
don’t have one, we recommend Winzip, at http://www.winzip.com/.) Unzip them
into a directory you find convenient. We prefer using a separate directory for each.

Start with MySQL. In the directory where you unzipped the file, you will have a
file named setup.exe. Execute that file. Choose a directory (e.g. d:\mysqlinstall)
where you want it installed, and then in the next screen select a Typical installation.
(You may wish to examine the custom options, but with the Windows install there
are very few real options.) 413

3537-4 AppB.f.qc 12/15/00 15:26 Page 413

At this point your MySQL installation is complete. To test it, go to the DOS
prompt and move to the directory you specified for your MySQL installation. Then
move to the subcategory named \bin. If you then type mysqld, the mysql daemon
should start. To test if your daemon is working, start up the mysql command-line
client by typing mysql. If the monitor starts up and looks like Figure B-1, MySQL is
working properly.

Figure B-1: MySQL monitor running on Windows

Next, you should install Apache.
This requires little more than double-clicking on the executable you copied from

the CD or the apache.org site. The installation is pretty easy: all you really need
to do is select a directory where you would like Apache to be installed. When it’s
completed, an Apache Group item will be added to the Start menu.

Don’t start up Apache just yet. A little more configuration information

will follow.

NOTE

414 Part V: Appendixes

3537-4 AppB.f.qc 12/15/00 15:26 Page 414

Now on to PHP. You should have a folder into which you unzipped all the PHP
files. In that folder copy MSVCRT.DLL and PHP4TS.DLL to c:\windows\system. Then
rename php.ini-dist to php.ini and keep it in the same directory were you have the
php.exe file.

All you need to do at this point is make sure that Apache is aware of PHP and
that PHP is aware of MySQL.

First go to the directory where you installed Apache, find the httpd.conf file within
the \conf directory, and open it in a text editor. Add these three lines to the file:

ScriptAlias /php4/ “d:/php4/”
AddType application/x-httpd-php4 .php
Action application/x-httpd-php4 “/php4/php.exe”

Note that we indicated the d: drive because that’s how we set up our own system.
The c: drive will work just as well.

The first line indicates the path where PHP resides. The second tells Apache what
file extensions must be parsed as PHP, and the third gives the path to the php
executable file. Note using this type of installation, PHP will run as an executable,
not an Apache server module.

If you would like other file extensions to by parsed by PHP, simply add another
AddType line to the conf file; for example:

AddType application/x-httpd-php4 .phtml

There are a couple of other alterations you may have to make to your httpd.conf
file. If the server refuses to start, you may need to add something to the Server
Name directive. If you are using TCP/IP in your local area network, you may need
to add the IP address of your machine, for instance:

ServerName 192.168.1.2

Or if your machine is not networked, you may want to user the following
ServerName

ServerName 127.0.0.1

If you also have Personal Web Server running on your machine, you may wish
to change the port on which Apache runs. By default, Web servers listen on Port 80,
but you can change that by altering the Port line in the httpd.conf to something
else — perhaps 8080.

And that should do it. Start Apache through the Start Menu. Add a file to your
\htdocs folder that contains the phpinfo() function. When you call that function
you should see that everything is working properly, and that there is an entry for
MySQL. Figure B-2 shows the results of phpinfo().

Appendix B: Brief Guide to PHP/MySQL Installation and Configuration 415

3537-4 AppB.f.qc 12/15/00 15:26 Page 415

Figure B-2: phpinfo() on Windows

Note that you don’t need to make any alterations in the php.ini file to make PHP
work with MySQL. MySQL support is, in fact, built into PHP for Windows.

If you uncomment the directive extension=php_mysql.dll, you will have all

kinds of problems getting a PHP page to load.

These are the basics you need to get going with PHP and MySQL on Windows.
Note that you can also install PHP as an ISAPI filter for Internet Information Server
(IIS) and PWS. The instructions for doing so are included in the readme.txt file
included in the PHP zip file. As of this writing, running PHP as an IIS filter is not
recommended in a production environment.

Installation on Unix
On Unix, there are far more options you may wish to avail yourself of. You may
wish to install by compiling the source code yourself or (on Linux) by using rpm
files. This appendix will only cover compiling from source. We strongly recommend

Caution

416 Part V: Appendixes

3537-4 AppB.f.qc 12/15/00 15:26 Page 416

that you do not use rpm files. The convenience that rpms sometimes offer does not
extend to this type of configuration.

There are a variety of libraries and optional functions that you can compile into
PHP, and additional libraries and functions are being added all the time. In this
quick guide, we will cover only some highlights.

If you have other priorities, need rpms, or wish to include options not covered
here, seek out the documentation in the online manuals. This really isn’t a very
difficult install procedure, and you should be able to customize as you see fit with
minimal effort. First stop, MySQL.

MySQL Installation
Complete information on MySQL installation can be found in Chapter 4 of the MySQL
online manual: http://www.mysql.com/documentation/mysql/bychapter/manual_
Installing.html. Check it out if you are having problems.

You will need to get the .tar.gz file either from the accompanying CD-ROM or
from http://www.mysql.com/downloads/. Copy it to a directory you wish to work
in and then unpack this file with the following command:

gunzip mysql-3.23.22.tar.gz
tar xf mysql-3.23.22.tar

This will create a directory with the name of the mysql distribution (for instance
mysql-3.23.22). Use cd to move into the directory. Note that the exact version may
be different, depending on the when you download the software.

The first step is to run configure. There are many options you can set with config-
ure flags. To get a complete list run ./configure --help.

In the installations I’ve run, I’ve found it convenient to specify the --prefix.
If you do not specify a prefix, /usr/local will be used, and this is almost always
perfectly fine. Additionally, mysql allows you to specify the location of any of the
subdirectories (the data directory, the bin directory, etc). Usually that will not be
necessary. Normally you can run

./configure --prefix=/path/to/installation

If you need to make use of database transactions in your applications, you will
need to make use of the Berkeley Database (BDB) tables. At the time of this writing,
this feature is still in beta release. You can get the BDB tables from http://
www.mysql.com/downloads.

If you want to use BDB tables you would run the following configure line, not
the one shown previously.

./configure --prefix=/path/to/installation --with-berkeley-db=/path/
to/files

Appendix B: Brief Guide to PHP/MySQL Installation and Configuration 417

3537-4 AppB.f.qc 12/15/00 15:26 Page 417

Next, run the following two commands:

make
make install

That’s it. You should now have a directory that contains all of your files and
subfolders.

The next thing you want to do is cd into the bin directory and run the following
command:

./mysql_install_db

This creates your default databases and permissions tables. You should now be able
to start the mysql daemon using the safe_mysql command from the /bin directory.

By default, mysql uses port 3306 and keeps the all important socket file at /tmp/
myslq.sock. This is generally OK. PHP will look for the socket file in this location.
However, if you have multiple installations of MySQL you will need to change the
port and socket location, which can be a pain. You will need to play with your
my.cnf file. See Chapter 4 of the MySQL manual for more information.

PHP/Apache
On Unix, PHP will be loaded as an Apache module. Thus the installation of the two
will need to be done in concert. Once again, there are many, many installation
options. You can create PHP as an executable for use with CGI or command-line
processing, as a shared Apache module (apxs), or for DSO. Here we will only cover
installation as an Apache module.

Start by unpacking both Apache and PHP.

gunzip apache 1.3.x.tar.gz
tar xf apache1.3.x.tar
gunzip php-4.02.tar.gz
tar xf php-4.02

Here “x” is the version number of apache.
Use cd to move into the Apache directory and run configure, specifying the

path where you would like Apache installed.

./configure --prefix=/path/to/apache

This ‘preps’ Apache to set up machine-specific information that PHP needs to
compile. You’ll come back later and finish up the Apache installation.

418 Part V: Appendixes

3537-4 AppB.f.qc 12/15/00 15:26 Page 418

Then move to the directory holding PHP. Here there are a variety of flags you
may or may not wish to specify. We would suggest using the following:

./configure --with-mysql=/path/to/mysql --enable-trans-id --enable-
track-vars

Here, the three flags do the following:

◆ --with-mysql—You may know that client libraries for MySQL will be auto-
matically installed even if you don’t specify --with-mysql. However, if you
installed MySQL someplace other than /usr/local, you will need to use this
flag and specify the directory. It’s good practice to specify this anyway.

◆ --enable-track-vars— If this flag exists, variables from GET, POST, and
COOKIES will be available in the appropriate arrays, HTTP_GET_VARS,
HTTP_POST_VARS, HTTP_COOKIE_VARS.

◆ --enable-trans-sid— This option allows for Session ID to be included
automatically in URLs after a session is started. The Shopping Cart in
Chapter 10 makes use of this option.

Additionally, you may wish to include one or more of the following flags:

◆ --with-gd=path/to/gd— The GD functions allow you to create images
on the fly, using nothing but code. GD requires a library from http://
www.boutell.com/gd/.

◆ --with-config-file-path=/path/to/file— The php.ini file specifies
many options for the PHP environment. PHP expects to find the file in
/usr/local/lib/php.ini. If you wish to change the location, use this flag.

◆ --with-curl/with-pfpro/with-cybyercash— If you wish to use any
of these libraries to process credit-card transactions, you will need to
download the appropriate library and specify the location of that library
with a path, for example, --with-pfpro--path/to/pfpro.

There are many other flags and libraries that you can incorporate into PHP.
Please see the online manual (http://www.php.net/manual/install-unix.php)
or run --configure --help for the latest and most complete list.

After running configure, run the following two commands:

make
make install

Appendix B: Brief Guide to PHP/MySQL Installation and Configuration 419

3537-4 AppB.f.qc 12/15/00 15:26 Page 419

Now you will need to go back to the Apache directory and rerun the configure
command:

./configure --prefix=/path/to/apache --activate-module=
src/modules/php4/libphp4.a

Note that the libphp4.a will not yet exist. It will be created after the compiling is
completed.

Now it’s time to run the great twosome.

make
make install

Apache should now be installed in the directory you specified.
Now move back to the PHP directory and copy the file named php-ini.dist

to /usr/local/lib/php.ini (or to the directory you specified in the --config-file-
path flag).

The final step is to go into the /conf directory of your Apache installation and
open the httpd.conf file. There you should uncomment the following line:

AddType application/x-httpd-php .php

Then move into the /bin directory and start Apache.

./apachectl start

Your installation should now be complete.

PHP will look for the socket to MySQL in /tmp/mysql.sock. If you have more

than one MySQL installation and need PHP to connect to the socket in

another location, you will need to specify that in the mysql_connect()

function.

mysql_connect(“localhost:/path/to/mysql.sock”,
“username”, “password”);

PHP Configuration
The php.ini file is extremely large, and has more options than we can cover here. A
full list of options and potential settings can be found at http://www.php.net/
manual/configuration.php. Here are a few highlights.

NOTE

420 Part V: Appendixes

3537-4 AppB.f.qc 12/15/00 15:26 Page 420

MySQL configuration entries
The following are some of the MySQL configuration entries.

mysql.allow_persistent =
mysql.max_persistent =
mysql.max_links =
mysql.default_port =
mysql.default_host =
mysql.default_user =
mysql.default_password =

If you want to forbid persistent connections, change that setting to Off, or if you
want to limit the number of persistent links to MySQL, change the setting on
max_persistent and max_links from –1 to an appropriate number. Persistent con-
nections are explained in Chapter 6, in the discussion of the mysql_pconnect()
function.

You can use the default_user, default_host, and default_password entries if
you want to save yourself the trouble of entering these strings in your mysql_
connect() command. Note that putting your MySQL password here is a probably a
very bad idea.

ERROR REPORTING
This specifies the error reporting level.

error_reporting =

The default value here is 7, and generally that will be fine. The following is a list
of the other potential values. If you indicate a number that is the sum of any of
these values, all of the values that create the sum will be used. For instance 7
includes 1, 2, and 4.

1 = Normal errors

2 = Normal warnings

4 = Parser errors

8 = Notices

Note if you include 8, you will get a lot of messages, including things like unini-
tialized.

MAGIC QUOTES
magic_quotes_gpc
magic_quotes_runtime

Appendix B: Brief Guide to PHP/MySQL Installation and Configuration 421

3537-4 AppB.f.qc 12/15/00 15:26 Page 421

If the first is set to On, all single quotes (‘), double quotes (“), backslashes (\) and
NULLs will be prepended with a backslash immediately upon being uploaded from
a form element. This will make doing your inserts into MySQL a lot easier.

If set to On, data retrieved from the filesystem or a database will automatically be
escaped with backslashes.

EXECUTION TIME
max_execution_time = 30
memory_limit = 8388608

These settings are intended to protect you in the event of an infinite loop or an
endlessly recursive function. All scripts will automatically be terminated if they
reach either of these limits. If you want to have a script you expect to take more
than 30 seconds, you can set the maximum execution time within a script with the
set_time_limit () function. This can contain the number of seconds; if you wish
to specify no limit, use set_time_limit(0).

AUTO PREPEND AND APPEND
auto_prepend_file =
auto_append_file =

With these settings you can specify files that will automatically be included at
the start and end of your php files. It may be useful for connection information or
common headers.

INCLUDE PATH
include_path

This should contain a list of paths separated by colons (:). These paths will
automatically be searched for every include() and require().

SESSION
There are many session settings you may with to change. Here are a few of them:

session.save_handler = files
session.save_path = /tmp
session.use_cookies = 1
session.auto_start = 0

Appendix H contains a set of functions for using MySQL for session handling. If
you wish to use it, you must set the session.save.handler to user.

save_path indicates where in the filesystem PHP will save session information.
If use_cookies is set to 0, you must use another means of storing cookies,

either by using <?=SID ?> or by configuring PHP--with-trans-sid
Finally, if auto_start is set to 1, sessions will be started automatically on

every page.

422 Part V: Appendixes

3537-4 AppB.f.qc 12/15/00 15:26 Page 422

Appendix C

MySQL Utilities
THIS APPENDIX PRESENTS A BRIEF OVERVIEW of some of the MySQL administrative
utilities. These are the tools that you’ll use to build and maintain your databases.
Whether or not you’ll have access to them depends on the exact version number you
are running.

The best place to get the full details about the tools you have available to you is
the Docs subdirectory of your local installation of MySQL. (Note: This is the install
directory, not the data directory.) You can also check the online version of the
MySQL documentation at http://www.mysql.com/documentation/

But be warned — the online manuals always document the most recent version of
MySQL, which at the time of this writing is the beta release 3.23.

If you’re running the production release, 3.22, many of the features you’ll read
about on the Web site won’t be available to you. I’ve marked off version 3.23 enhance-
ments in this document where I could. You can always find out just what your version
of a tool supports by running it with the --help option (e.g., mysql --help).

mysql
This is the command-line interface to MySQL; it allows you to run any arbitrary SQL
command, as well as the MySQL-specific commands like describe table. It’s a tool
you should get to know. You can use it to test out or debug queries for your code, cre-
ate your database, create tables, add columns to existing tables— everything, really. It
also has some batch-oriented options that make it handy to use in maintenance
scripts, or as a quick no-frills reporting tool.

Syntax:

mysql [options] [database name] [<inputfile] [>outputfile]

If you just type mysql, you’ll start the tool up, but you won’t be anywhere. When
you try to do anything that involves interaction with a database, you’ll get this error:

ERROR 1046: No Database Selected

423

3537-4 AppC.f.qc 12/15/00 15:26 Page 423

To select one, type

use databasename;

use’ is one of the mysql tool’s built-in commands. Type help to see a list of them:

help (\h) Display this text
? (\h) Synonym for ‘help’
clear (\c) Clear command
connect (\r) Reconnect to the server. Optional arguments are and
host
edit (\e) Edit command with $EDITOR
exit (\q) Exit mysql. Same as quit
go (\g) Send command to mysql server
ego (\G) Send command to mysql server; Display result
vertically
print (\p) Print current command
quit (\q) Quit mysql
rehash (\#) Rebuild completion hash
status (\s) Get status information from the server
use (\u) Use another database. Takes database name as
argument

** new in 3.23:
source (\.) Execute a SQL script file. Takes a file name as an
argument

Of course, it’s simpler if you just give a database name on the command line. But
this command does let you switch between databases in a single session.

Once you’re in a database, you can run an SQL statement by typing it in,
followed by a semicolon, ‘go’ (this may not work by default in 3.23 installations)
‘\g’, or ‘\G’, and hitting return/enter.

Table C-1 list some of the more useful command-line options.

TABLE C-1 COMMON MYSQL COMMAND-LINE CLIENT OPTIONS, PART I

Flag Alternate Flag Description

-? --help Display this help and exit

-B --batch Print results with a tab as separator, each row on a
new line. Doesn’t use history file.

-D, --database=.. Database to use; this is mainly useful in the my.cnf file,
to specify a default database.

424 Part V: Appendixes

3537-4 AppC.f.qc 12/15/00 15:26 Page 424

Flag Alternate Flag Description

e --execute=... Execute command and quit. (Output like with --batch)

-E --vertical Print the output of a query (rows) vertically. Without
this option you can also force this output by ending
your statements with \G.

Vertical means that each field of each row is on a line by itself. For instance,
looking at the STATUS table from the problem-tracking example, here is a standard
query and output:

mysql> select * from status
-> go

+-----------+-------------+
| status_id | status |
+-----------+-------------+
1	Opened
2	In Progress
3	Closed
4	Re-opened
+-----------+-------------+

Here is the same query with vertical output:

mysql> select * from status
-> go

*************************** 1. row ***************************
status_id: 1
status: Opened
*************************** 2. row ***************************
status_id: 2
status: In Progress
*************************** 3. row ***************************
status_id: 3
status: Closed
*************************** 4. row ***************************
status_id: 4
status: Re-opened

If you’re feeding the output of your queries to another program for processing,
like a Perl script, this form can be much easier to parse.

Tables C-2 and C-3 list additional mysql command-line client options.

Appendix C: MySQL Utilities 425

3537-4 AppC.f.qc 12/15/00 15:26 Page 425

TABLE C-2 COMMON MYSQL COMMAND-LINE CLIENT OPTIONS, PART II

Flag Alternate Flag Description

-f --force Continue even if we get a SQL error.

-h --host=... Connect to the given host.

-H --html Produce HTML output.

-L --skip-line-numbers Don’t write line number for errors.
Useful when one wants to compare
result files that include error messages.

-n --unbuffered Flush buffer after each query.

-p[password] --password[=...] Password to use when connecting to
server. If password is not given on the
command line, you will be prompted
for it. Note that if you use the short
form (-p) you can’t have a space
between the option and the password.

Examples:

mysql -u root -pfoobar

or

mysql --username=root --password=foobar

TABLE C-3 COMMON MYSQL COMMAND-LINE CLIENT OPTIONS, PART III

Flag Alternate Flag Description

-P --port=... TCP/IP port number to use for connection.

-q --quick Don’t cache result, print it row by row. This may
slow down the server if the output is suspended.
Doesn’t use history file. If you have problems
due to insufficient memory in the client, use
this option. It forces mysql to use mysql_
use_result() rather than mysql_store_
result() to retrieve the result set.

426 Part V: Appendixes

3537-4 AppC.f.qc 12/15/00 15:26 Page 426

Flag Alternate Flag Description

-r --raw Write column values without escape conversion.
Used with `--batch’

--safe-mode Sends the following command to the MySQL
(new to 3.23) server when opening the connection:

SET SQL_SAFE_UPDATES=1,SQL_SELECT_
LIMIT=#select_limit#,
SQL_MAX_JOIN_SIZE=#max_join_size#”
where `#select_limit#’ and `#max_join_
size#’ are variables that you can set from the
mysql command line.

The effect of the previous command is:

◆ You are not allowed to do an UPDATE or DELETE if you don’t have a key
constraint in the WHERE part. One can however force an UPDATE/DELETE
by using LIMIT: UPDATE table_name SET not_key_column=’some value’
WHERE not_key_column=’some value’ LIMIT 1;

◆ All big results are automatically limited to #select_limit# rows.

◆ SELECTs that will probably need to examine more than #max_join_size
row combinations will be aborted.

Table C-4 lists additional mysql command-line client options.

TABLE C-4 COMMON MYSQL COMMAND-LINE CLIENT OPTIONS, PART IV

Flag Alternate Flag Description

-t --table Output in table format. This is default in
non-batch mode.

-u --user=# User for login if not current user.

-w --wait Wait and retry if connection is down instead
of aborting.

Appendix C: MySQL Utilities 427

3537-4 AppC.f.qc 12/15/00 15:26 Page 427

mysqladmin
This is the command-line utility for performing administrative tasks.

Syntax:

mysqladmin [OPTIONS] command command....

The mysqladmin commands are listed in Table C-5:

TABLE C-5 MYSQLADMIN COMMANDS

Command Description

create databasename Create a new database.

drop databasename Delete a database and all its tables.

extended-status Gives an extended status message from the server.

flush-hosts Flush all cached hosts.

flush-logs Flush all logs.

flush-tables Flush all tables.

flush-privileges Reload grant tables (same as reload).

kill id,id,... Kill mysql threads.

password newpassword Change old password to the string newpassword.

ping Check if mysqld is alive.

processlist Show list of active threads in server.

reload Reload grant tables.

refresh Flush all tables and close and open logfiles.

shutdown Take server down.

status Give a short status message from the server.

variables Print variables available.

version Get version info from server.

slave-start Start slave replication thread.
(new to 3.23)

slave-stop Stop slave replication thread.
(new to 3.23)

428 Part V: Appendixes

3537-4 AppC.f.qc 12/15/00 15:26 Page 428

Each command can be shortened to its unique prefix. For example:

mysqladmin proc stat
+----+-------+-----------+----+-------------+------+-------+------+
| Id | User | Host | db | Command | Time | State | Info |
+----+-------+-----------+----+-------------+------+-------+------+
| 6 | monty | localhost | | Processlist | 0 | | |
+----+-------+-----------+----+-------------+------+-------+------+
Uptime: 10077 Threads: 1 Questions: 9 Slow queries: 0 Opens: 6
Flush tables: 1 Open tables: 2 Memory in use: 1092K Max memory
used: 1116K

Table C-6 shows the columns created by the mysqladmin status command.

TABLE C-6 COLUMNS CREATED BY MYSQLSADMIN STATUS COMMAND

Column name Description

Uptime Number of seconds the MySQL server has been up.

Threads Number of active threads (clients).

Questions Number of questions from clients since mysqld was started

Slow queries Queries that have taken more than`long_query_time’ seconds.

Opens How many tables `mysqld’ has opened.

Flush tables Number of `flush ...’, `refresh’ and `reload’ commands.

Open tables Number of tables that are open now.

Memory in use Memory allocated directly by the mysqld code (only available
when *MySQL* is compiled with --with-debug).

Max memory used Maximum memory allocated directly by the mysqld code
(only available when MySQL is compiled with –with-debug).

In MySQL 3.23, if you do myslqadmin shutdown on a socket (in other words, on a
computer where mysqld is running), mysqladmin will wait until the MySQL pid-file
is removed to ensure that the mysqld server has stopped properly.

Table C-7 presents some of the more useful or common command-line options.

Appendix C: MySQL Utilities 429

3537-4 AppC.f.qc 12/15/00 15:26 Page 429

TABLE C-7 MYSQLSADMIN COMMAND-LINE OPTIONS

Flag Alternate Flag Description

-? --help Display help and exit.

-# --debug=... Output debug log. Often this is d:t:o,filename.

-f --force Don’t ask for confirmation on drop database;
with multiple commands, continue even if an
error occurs.

-h --host=# Connect to host.

-p[...] --password[=...] Password to use when connecting to server.
If password is not given on the command line,
you will be prompted for it. Note that if you
use the short form -p you can’t have a space
between the option and the password.

-P --port=... Port number to use for connection.

-I --sleep=sec Execute commands again and again with a
sleep between.

-r --relative Show difference between current and previous
values when used with -i. Currently works
only with extended-status.

-s --silent Silently exit if one can’t connect to server.

-t --timeout=... Timeout for connection to the mysqld server.

-w --wait[=retries] Wait and retry if connection is down.

-W --pipe Use named pipes to connect to server.
(Windows only)

-E --vertical Print output vertically. Is similar to
-relative, but prints output vertically.

mysqldump
This is the command-line utility for dumping out schema information and data
from your databases. This is what you would use to back up your database, or move
it from one machine to another.

430 Part V: Appendixes

3537-4 AppC.f.qc 12/15/00 15:26 Page 430

The output from mysqldump will most commonly be a script of SQL commands,
to create tables and then insert data into them. mysqldump can also create plain
data files (i.e., a tab-delimited file) from your tables.

Syntax:

mysqldump [OPTIONS] database [tables]

or, as of 3.23:

mysqldump [OPTIONS] --databases [OPTIONS] DB1 [DB2 DB3...]
mysqldump [OPTIONS] --all-databases [OPTIONS]

A typical use of mysqldump would look like this:

mysqldump --opt mydatabase > backup-file.sql

You can read this back into MySQL with the mysql command-line tool:

mysql mydatabase < backup-file.sql

or, as of 3.23:

mysql -e “source /patch-to-backup/backup-file.sql” mydatabase

You could also use it to copy data from one MySQL server to another:

mysqldump --opt mydatabase | mysql --host=remote-host mydatabase

Table C-8 lists the command-line options:

TABLE C-8 MYSQLDUMP COMMAND-LINE OPTIONS

Flag Alternate Flag Description

-? --help Display this help message and exit.

-a --all Include all MySQL specific create
options.

--add-locks Add LOCK TABLES before and UNLOCK
TABLE after each table dump (to get
faster inserts into MySQL).

Continued

Appendix C: MySQL Utilities 431

3537-4 AppC.f.qc 12/15/00 15:26 Page 431

TABLE C-8 MYSQLDUMP COMMAND-LINE OPTIONS (Continued)

Flag Alternate Flag Description

--add-drop-table Add a DROP TABLE IF EXISTS statement
before each CREATE TABLE statement.

--allow-keywords Allow creation of column names that
are keywords. This option works by
prefixing each column name with
the table name.

-c --complete-insert Use complete insert statements (with
column names).

--delayed Insert rows with the INSERT DELAYED
command.

-F --flush-logs Flush log file in the MySQL server
before starting the dump.

-f --force Continue even if you get a SQL error
during a table dump.

-h --host=.. Dump data from the MySQL server
on the named host. The default host
is localhost.

-l --lock-tables Lock all tables before starting the dump.

-t --no-create-info Don’t write table creation info.

-d --no-data Don’t write any row information for
the table.

--opt Same as –quick --add-drop-table
--add-locks –extended-insert
--lock-tables. Should give you the
fastest possible dump for reading
into a MySQL server.

-p[...] --password[=...] Password to use when connecting to
server. If password is not given on the
command line, you will be prompted
for it. Note that if you use the short
form `-p’ you can’t have a space
between the option and the password.

-P --port=port_num The TCP/IP port number to use for
connecting to a host.

432 Part V: Appendixes

3537-4 AppC.f.qc 12/15/00 15:26 Page 432

Flag Alternate Flag Description

-q --quick Don’t buffer query, dump directly
to stdout.

-T path-to- --tab=path-to- For each table, creates a table_
some-directory, some-directory name.sql file containing the SQL

CREATE commands, and a table_
name.txt file containing the data
from the table.

Here’s an example of the -T flag on a Unix installation:

mysqldump -T . tracking problems

This will create two files in the current directory (that’s what ‘.’ means): ‘problems.
sql’ and ‘problems.txt’. ‘problems.sql’ will have the SQL statements to create the
‘problems’ table. ‘problems.txt’ is a tab-delimited (the default format) copy of the
data now in the ‘problems’ table in the ‘tracking’ database.

This only works if mysqldump is run on the same machine as the mysqld

daemon. The format of the .txt file is made according to the --fields-xxx

and --lines--xxx options.

Table C-9 lists more mysqldump command-line options.

TABLE C-9 MORE MYSQLDUMP COMMAND-LINE OPTIONS

Flag Alternate Flag Description

--fields-terminated-by=... These options have
--fields-enclosed-by=... the same meaning as
--fields-optionally-enclosed-by=... the corresponding clauses
--fields-escaped-by=... for the LOAD DATA INFILE
--lines-terminated-by=... statement.

Continued

NOTE

Appendix C: MySQL Utilities 433

3537-4 AppC.f.qc 12/15/00 15:26 Page 433

TABLE C-9 MORE MYSQLDUMP COMMAND-LINE OPTIONS (Continued)

Flag Alternate Flag Description

-u user_name, --user= The MySQL user name to
user_name use when connecting to

the server.

-w --where= Dump only selected
’where- records; Note that
condition’ QUOTES are mandatory!

Example:

--where=
user=’jimf’”
“-wuserid>1”
“-wuserid<1”

Table C-10 displays the mysqldump command line options that are new to
version 3.23.

TABLE C-10 MYSQLDUMP COMMAND-LINE OPTIONS NEW IN VERSION 3.23

Flag Alternate Flag Description

-A

--all-databases Dump all the databases. This is the same as
--databases with all databases selected.

-B

--databases Dump several databases. Note the
difference in usage; in this case no tables
are given. All name arguments are regarded
as database names. USE db_name; will be
included in the output before each new
database.

-e --extended-insert Use the new multiline INSERT syntax.

434 Part V: Appendixes

3537-4 AppC.f.qc 12/15/00 15:26 Page 434

Flag Alternate Flag Description

-n --no-create-db ‘CREATE DATABASE IF NOT EXISTS
db_name;’ will not be put in the output.
The above line will be added otherwise, if
--databases or --all-databases option
was given.

--tables Overrides option –databases (-B).

-O net_buffer_length=#, where # < 24M
When creating multi-row-insert statements
(as with option --extended-insert or --opt),
mysqldump will create rows up to net_
buffer_length length. If you increase this
variable, you should also ensure that the
max_allowed_packet variable in the
MySQL server is bigger than the net_
buffer_length.

mysqlimport
The mysqlimport tool provides a command line interface to the ‘LOAD DATA INFILE’
SQL statement. Most options to mysqlimport correspond directly to the same options
to ‘LOAD DATA INFILE’.

Syntax:

mysqlimport [options] database textfile1 [textfile2....]

For each text file named on the command line, mysqlimport strips any extension
from the filename and uses the result to determine which table to import the file’s
contents into. For example, files named patient.txt, patient.text, and patient would
all be imported onto a table named patient.

You typically use mysqlimport to bring data into a MySQL database from some
other source — another DBMS, a spreadsheet, or the like. You can also use it together
with the mysqldump tool. Take the example I gave earlier:

mysqldump -T . tracking problems

Appendix C: MySQL Utilities 435

3537-4 AppC.f.qc 12/15/00 15:26 Page 435

This created two files, problems.sql and problems.txt. To reload the problems
table from these files, you could do as follows:

mysql tracking <problems.sql
mysqlimport tracking problems.txt

Some of the most common or useful command-line options are shown in
Table C-11.

TABLE C-11 MYSQLIMPORT COMMAND-LINE OPTIONS

Flag Alternate Flag Description

-? --help Display a help message and exit.

-d --delete Empty the table before importing
the text file.

--fields-terminated-by=... These options have the same
--fields-enclosed-by=... meaning as the corresponding
--fields-optionally- clauses for ‘LOAD DATA INFILE’.
enclosed-by=...
--fields-escaped-by=...
--lines-terminated-by=...

-f --force Ignore errors. For example, if
a table for a text file doesn’t
exist, continue processing any
remaining files. Without ‘--force’,
mysqlimport exits if a table
doesn’t exist.

-h host_name --host=host_name Import data to the MySQL server
on the named host. The default
host is ‘localhost’.

-l --lock-tables Lock all tables for writing before
processing any text files. This
ensures that all tables are
synchronized on the server.

-L --local Read input files from the client.
By default, text files are assumed
to be on the server if you connect
to ‘localhost’ (the default host).

436 Part V: Appendixes

3537-4 AppC.f.qc 12/15/00 15:26 Page 436

Flag Alternate Flag Description

-p[...] --password[=...] Password to use when connecting
to server. If password is not given
on the command line, you will be
prompted for it. Note that if you
use the short form `-p’ you can’t
have a space between the option
and the password.

-P port_num --port=port_num The TCP/IP port number to use for
connecting to a host. (This is used
for connections to hosts other
than ‘localhost’, for which Unix
sockets are used.)

-I --ignore The --replace and --ignore
-r --replace options control handling of input

records that duplicate existing
records on unique key values. If
you specify --replace, new
rows replace existing rows that
have the same unique key value. If
you specify --ignore, input rows
that duplicate an existing row on
a unique key value are skipped. If
you don’t specify either option, an
error occurs when a duplicate key
value is found, and the rest of the
text file is ignored.

-s --silent Silent mode. Write output only
when errors occur.

-u user_name --user=user_name The MySQL user name to use
when connecting to the server.
The default value is your Unix
login name.

-c --columns=... This option takes a comma-
separated list of field names as an
argument. The field list is passed
to the LOAD DATA INFILE MySQL
sql command, which mysqlimport
calls MySQL to execute. For more
information, please see ‘LOAD
DATA INFILE’.

Appendix C: MySQL Utilities 437

3537-4 AppC.f.qc 12/15/00 15:26 Page 437

Other Utilities
Please check the /bin directory for other utilities that come with MySQL. If you are
using 3.23 you will want to look at myisamchk and myisampack. The first repairs
corrupted tables and the second will ensure that tables are set up as efficiently as
possible. These utilities only work with the MyISAM tables. If you are using 3.22,
you will need to use of the isamchk utility, which operates on the ISAM tables used
in this version of MySQL.

438 Part V: Appendixes

3537-4 AppC.f.qc 12/15/00 15:26 Page 438

Appendix D

MySQL User
Administration

THIS APPENDIX WILL TEACH you to work with MySQL’s grant tables, which control
permissions in MySQL.

Administration of any relational database management system (RDBMS)
requires some work. Each system presents its own unique methods for administra-
tion and difficulties when it comes to tasks like adding and deleting user accounts,
backing up, and assuring security. Administering MySQL isn’t especially difficult,
but it can be a bit bewildering at first.

This book focuses on applications development, not server administration. Thus
extensive details on administration are beyond the scope of this tome. If you are
responsible for backup and security of your server, you should delve deep into the
MySQL online manual, focusing on Chapters 21 (for backup) and Chapter 6 (for
security).

For the purposes of this book, and we hope also for you, the application devel-
oper, it is enough to know a bit about user administration and the methods for
assigning rights for users.

Grant Tables
MySQL user rights are stored in a series of tables that are automatically created
with the MySQL installation. These tables are kept in a database called mysql. If
you start up the MySQL daemon (with mysqld) and the MySQL monitor (with
mysql), and run the query show databases just after installation, you will see two
databases, test and mysql.

Running the show tables query on the mysql database lists the tables that store
user permissions.

mysql> use mysql

Database changed
mysql> show tables;
+-----------------+
| Tables in mysql |
+-----------------+
| columns_priv | 439

3537-4 AppD.f.qc 12/15/00 15:26 Page 439

| db |
| func |
| host |
| tables_priv |
| user |
+-----------------+
6 rows in set (0.00 sec)

mysql>

Each of these tables corresponds to a level of access control. You can create any
number of users, and users can be allowed access from any variety of hosts. For
each user/host combination, you can grant access to an entire database, to specific
tables within a database, or to a number of columns within a table. Additionally,
these tables grant administrative privileges. Users can be given permission to add
and drop databases or permission to grant other users permissions.

In practice you will want to grant no more permissions than necessary. You want
to protect your data from the overzealous and the incompetent. The best way to do
that with MySQL is to use the proper grant table when assigning rights, keeping the
following in mind: Rights are granted in a hierarchical way. Rights granted in the
user table will be universal. If a user is granted drop privileges in the user table, that
user will be able to drop any table in any database in that MySQL installation.

Then there is the db table, which grants privileges on a database-specific basis.
Using this table, you can grant rights for an entire database. For any one table or
set of tables, make use of the tables_priv table. Finally, the columns_priv table
allows you to grant rights on specific columns within a table. If you don’t need to
grant rights to an entire table, see that rights are assigned in the columns_priv
table.

Recent releases of MySQL make use of a couple of very convenient commands
that make creating users and assigning rights fairly easy. I’ll discuss these com-
mands after a brief look at the user, db, tables_priv, and columns_priv tables.

user table
Every user who needs to get at MySQL must be listed in this table. Rights may be
granted elsewhere, but without a listing here, the user will be refused a connection
to the database server. Here is the listing of columns in the user table.

mysql> show columns from user;
+-----------------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------------+---------------+------+-----+---------+-------+
Host	char(60)		PRI		
User	char(16)		PRI		
Password	char(16)				

440 Part V: Appendixes

3537-4 AppD.f.qc 12/15/00 15:26 Page 440

Select_priv	enum(‘N’,’Y’)			N	
Insert_priv	enum(‘N’,’Y’)			N	
Update_priv	enum(‘N’,’Y’)			N	
Delete_priv	enum(‘N’,’Y’)			N	
Create_priv	enum(‘N’,’Y’)			N	
Drop_priv	enum(‘N’,’Y’)			N	
Reload_priv	enum(‘N’,’Y’)			N	
Shutdown_priv	enum(‘N’,’Y’)			N	
Process_priv	enum(‘N’,’Y’)			N	
File_priv	enum(‘N’,’Y’)			N	
Grant_priv	enum(‘N’,’Y’)			N	
References_priv	enum(‘N’,’Y’)			N	
Index_priv	enum(‘N’,’Y’)			N	
Alter_priv	enum(‘N’,’Y’)			N	
+-----------------+---------------+------+-----+---------+-------+
17 rows in set (0.00 sec)

mysql>

As you must have seen by now, the PHP mysql_connect() function takes three
arguments: username, host, and password. In the preceding code you will see the
corresponding field names. MySQL identifies a user by the combination of the user-
name and host. For instance, user jay can have a different set of rights for each host
that he uses to connect to MySQL. If you or your PHP scripts are accessing MySQL
from the local machine, you will usually assign a host of localhost.

The other columns are intuitively named. As you can see, all but the Host, User,
and Password columns allow only Y or N as column values. As we mentioned ear-
lier, any of these rights that are set to Y will be granted to every table of every data-
base. Most of the columns’ names correspond to SQL statements (e.g. delete, create,
and so forth).

The user table also contains a set of columns that grant administrative rights.
These columns are File_priv, Grand_pirv, Process_priv, Reload_priv, and
Shutdown_priv. The following is a brief explanation of the meaning of these
columns. If you are security-minded, grant these rights sparingly.

◆ File_priv — If granted, this privilege allows the database server to read and
write files from the file system. You will most often use it when loading a
file into a database table.

◆ Grant_priv — A user with this right will be able to assign his privileges to
other users.

◆ Process_priv — This right gives a user the ability to view and kill all run-
ning processes and threads.

Appendix D: MySQL User Administration 441

3537-4 AppD.f.qc 12/15/00 15:26 Page 441

◆ Reload_priv — Most of the privileges granted by this column are not cov-
ered in the course of this book. This privilege is most often used with the
mysqladmin utility to perform flush commands. See the MySQL online
manual for more details.

◆ Shutdown_priv — Allows the user to shut down the daemon using
mysqladmin shutdown.

db table
For database-specific permissions, the db table is where you will be doing most of
your work. The following is a list of columns from the db table:

mysql> show columns from db;
+-----------------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------------+---------------+------+-----+---------+-------+
Host	char(60)		PRI		
Db	char(32)		PRI		
User	char(16)		PRI		
Select_priv	enum(‘N’,’Y’)			N	
Insert_priv	enum(‘N’,’Y’)			N	
Update_priv	enum(‘N’,’Y’)			N	
Delete_priv	enum(‘N’,’Y’)			N	
Create_priv	enum(‘N’,’Y’)			N	
Drop_priv	enum(‘N’,’Y’)			N	
Grant_priv	enum(‘N’,’Y’)			N	
References_priv	enum(‘N’,’Y’)			N	
Index_priv	enum(‘N’,’Y’)			N	
Alter_priv	enum(‘N’,’Y’)			N	
+-----------------+---------------+------+-----+---------+-------+
13 rows in set (0.01 sec)

mysql>

This works like the user table, except that permissions granted here will only
work for the database specified in the db column.

tables_priv and columns_priv
These two tables look pretty similar, and to save a bit of space, I’ll only show the
tables_priv table.

mysql> show columns from tables_priv;
+-------------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |

442 Part V: Appendixes

3537-4 AppD.f.qc 12/15/00 15:26 Page 442

+-------------+---------------+------+-----+---------+-------+
Host	char(60)		PRI		
Db	char(60)		PRI		
User	char(16)		PRI		
Table_name	char(60)		PRI		
Grantor	char(77)		MUL		
Timestamp	timestamp(14)	YES		NULL	
Table_priv	set(‘Select’,’Insert’,’Update’,				
	‘Delete’,’Create’,’Drop’,’Grant’,				
	‘References’,’Index’,’Alter’)				
Column_priv	set(‘Select’,’Insert’,				
	‘Update’,’References’)				
+-------------+---------------+------+-----+---------+-------+
8 rows in set (0.00 sec)

For users who only get access to a table or set of tables within a database, the
exact rights will be stored in this table. Note the use of the set column type for
table_priv and column_priv tables. All of the rights available to a specific user will
be crammed into these two cells.

At a couple of points in the course of this book, we advised against using the

set column type. In fact the db table is a good example of where set makes

sense. There are few potential values for the column and the number of

potential values is not likely to change.

Grant and Revoke Statements
Since the tables discussed above are regular MySQL tables, you can alter them with
the SQL statements you are already familiar with. But consider the nightmare that
would be. If you wanted to grant a new user table-level access, you would first need
to insert a row into the user database with an SQL statement that looked like this:

INSERT INTO user (Host, User, Password, Select_priv, Insert_priv,
Update_priv, Delete_priv, Create_priv, Drop_priv, Reload_priv,
Shutdown_priv, Process_priv, File_priv, Grant_priv, References_priv,
Index_priv, Alter_priv) VALUES (‘localhost’, ‘juan’, ‘password’,
‘N’, ‘N’, ‘N’, ‘N’, ‘N’, ‘N’, ‘N’, ‘N’, ‘N’, ‘N’, ‘N’, ‘N’, ‘N’,
‘N’)

NOTE

Appendix D: MySQL User Administration 443

3537-4 AppD.f.qc 12/15/00 15:26 Page 443

Then you’d need to grant specific rights with another insert statement to another
table.

If you are thinking you could script these functions with a Web front end, that is
definitely a possibility. But you’d want to be very careful, because the script would
have the equivalent of root access to the database, which could be very unsafe.

Happily, the MySQL has some built-in statements that make user administration
a whole lot easier. Knowing the grant and revoke statements will save you from
having to send individual queries.

Grant
Before we get into specifics of this statement, take a look at the statement that
would grant all rights on the database named guestbook to user jim; jim’s password
will be pword.

mysql> grant all on guestbook.* to jim@localhost
identified by “pword”;

This command will make all the necessary changes to the user and db tables.
The first part of the grant statement can take the word all, or it can take any of

the options listed in the user table. Most often, you will be granting rights to use
SQL statements (select, create, alter, delete, drop, index, insert, and update).

The second portion (on guestbook in the example) identifies where privileges
will be applied: universally, to a single database, to tables, or to columns. Table
D-1 shows how to indicate where privileges should be applied.

TABLE D-1 PERMISSION LEVEL

Identifier Meaning

grant all on *.* Universal rights; inserted into the user
table

grant all on database.* Applies to all tables in a single
database

grant all on database.table_name Rights apply to a single table

grant all(col1, col2) on database.table_name Rights apply only to specific columns in
a specific database and table.

The third portion (to jim@localhost in the example) indicates the user to be
given access. As we mentioned earlier, MySQL needs both a name and a host. In the
grant statement, these are separated by the @ symbol.

444 Part V: Appendixes

3537-4 AppD.f.qc 12/15/00 15:26 Page 444

Finally the identified by portion gives the user a password.
Here are a few more examples of grant statements.

grant select, update, insert on guestbook2k.guestbook to
alvin@localhost identified by “pword”;

The preceding statement allows alvin to view, update, and insert records into the
table guestbook in database guestbook2k.

grant select, update (name, url) on guestbook2k.guestbook to
chipmunk@localhost identified by “Mel12068”;

With the preceding statement, the user can only view and update two columns
(name and URL). No deletes or inserts allowed.

grant all on *.* to josh@localhost identified by “pword”;

The preceding statement gives this user all privileges. This means that josh@
localhost is even allowed to grant privileges to other users.

Revoke
If you want to remove some of a user’s privileges, you can use the revoke state-
ment. To remove shutdown privileges from a user who had been granted all privi-
leges, like josh above, you could run the following:

revoke Shutdown on *.* from josh@localhost;

Notice that the word from is used in the revoke statement in place of to.
Otherwise revoke works just like grant.

Note that to remove a user entirely you must run a delete statement against the
user table. Since the user is identified by a name and host, the following should do it:

delete from user where user=’user’ and host=’host’

Viewing grants
Starting in version 3.23.4, MySQL incorporated the show grants statement, which
allows you to see the exact grants available at a given time. All you need to know
is the user name and host.

mysql> show grants for jayg@localhost;
+---+
| Grants for jayg@localhost |
+---+

Appendix D: MySQL User Administration 445

3537-4 AppD.f.qc 12/15/00 15:26 Page 445

| GRANT ALL PRIVILEGES ON my_test.* TO ‘jayg’@’localhost’ |
+---+
1 row in set (0.00 sec)

Reloading grants
The grant tables are loaded into memory when the MySQL daemon is started.
Changes made to the grant tables that did not make use of the grant command will
not take effect until you restart the program or tell MySQL to reload the table with
the flush command.

Simply run:

flush privileges

446 Part V: Appendixes

3537-4 AppD.f.qc 12/15/00 15:26 Page 446

Appendix E

PHP Function Reference
AT THIS POINT, PHP contains more functions than could possibly be listed in this
book, and the function list is growing daily. Tables E-1 to E-43 are lists of just some
of the functions available. Keep up with the online manual at www.php.net/man-
ual to see the most current list.

TABLE E-1 PHP INFORMATION FUNCTIONS

Function Returns Action

phpinfo(void) void Outputs a page of useful information about PHP
and the current request

phpversion(void) string Returns the current PHP version

phpcredits(void) void Prints the list of people who’ve contributed to the
PHP project

TABLE E-2 VARIABLE TYPE FUNCTIONS

Function Returns Action

intval(mixed var [, int base]) int Gets the integer value of a
variable using the optional base
for the conversion

doubleval(mixed var) double Gets the double-precision value
of a variable

strval(mixed var) string Gets the string value of a
variable

gettype(mixed var) string Returns the type of the variable

Continued

447

3537-4 AppE.f.qc 12/15/00 15:26 Page 447

TABLE E-2 VARIABLE TYPE FUNCTIONS (Continued)

Function Returns Action

settype(string var, string type) int Sets the type of the variable.
Returns 1 if the conversion is
successful

is_bool(mixed var) bool Returns true if variable is a
Boolean

is_long(mixed var) bool Returns true if variable is a
long (integer)

is_double(mixed var) bool Returns true if variable is a
double

is_string(mixed var) bool Returns true if variable is a
string

is_array(mixed var) bool Returns true if variable is an
array

is_object(mixed var) bool Returns true if variable is an
object

is_numeric(mixed value) bool Returns true if value is a
number or a numeric string

TABLE E-3 QUOTE SETTING FUNCTIONS

Function Returns Action

set_magic_quotes_ Sets the current active configuration
runtime(int new_setting) int setting of magic_quotes_runtime and

returns the previous setting

get_magic_quotes_ Gets the current active configuration
runtime(void) int setting of magic_quotes_runtime

get_magic_quotes_ Gets the current active configuration
gpc(void) int setting of magic_quotes_gpc

448 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 448

TABLE E-4 DATETIME FUNCTIONS

Function Returns Action

time(void) int Returns current UNIX timestamp

mktime(int hour, int min, int Composes UNIX timestamp for a date
int sec, int mon, int
day, int year)

gmmktime(int hour, int int Gets UNIX timestamp for a GMT date
min, int sec, int mon,
int day, int year)

date(string format string Formats a time/date
[, int timestamp])

gmdate(string format string Formats a GMT/CUT date/time
[, int timestamp])

localtime([int timestamp array If the associative_array argument is
[, bool associative_ set to 1, returns the results of the C
array]]) system call localtime as an associative

array; otherwise returns a regular array

getdate([int timestamp]) array Gets date/time information

checkdate(int month, int bool Returns 1 if it is a valid date
day, int year)

strftime(string format string Formats a local time/date according
[, int timestamp]) to locale settings

gmstrftime(string format string Formats a GMT/CUT time/date
[, int timestamp]) according to locale settings

strtotime(string time, int Converts string representation of
int now) date and time to a timestamp. Will

accept strings in most typical date
formats. For example, YYYY-MM-DD
and MM/DD/YYYY

microtime(void) string Returns a string containing the current
time in seconds and microseconds

gettimeofday(void) array Returns the current time as array

getrusage([int who]) array Returns an array of usage statistics
taken from the getrusage Unix
command. See your Unix man page
for further details

Appendix E: PHP Function Reference 449

3537-4 AppE.f.qc 12/15/00 15:26 Page 449

TABLE E-5 DIRECTORY FUNCTIONS

Function Returns Action

opendir(string path) int Opens a directory and return a
dir_handle

dir(string directory) class Returns an object with three
methods (read, rewind, and close)
and two properties (handle and path)

closedir([int dir_handle]) void Closes directory connection
identified by the dir_handle

chdir(string directory) int Changes the current directory

getcwd(void) string Gets the current directory

rewinddir([int dir_handle]) void Rewinds dir_handle back to the start

readdir([int dir_handle]) string Readsdirectory entry from dir_handle

TABLE E-6 FILESYSTEM FUNCTIONS

Function Returns Action

diskfreespace(string path) double Gets free diskspace for filesystem
that path is on, in bytes

chown(string filename, bool Changes file owner. Returns TRUE on
mixed user) success, otherwise FALSE

chgrp(string filename, bool Changes file group. Returns TRUE on
mixed group) success, otherwise FALSE

chmod(string filename, bool Changes file mode. Retruns TRUE on
int mode) success, otherwise FALSE

touch(string filename bool Sets modification time of file
[, int time])

clearstatcache(void) void Clears file stat cache

fileperms(string filename) int Gets file permissions in octal

fileinode(string filename) int Gets file inode

filesize(string filename) int Gets file size

450 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 450

Function Returns Action

fileowner(string filename) int Gets file owner’s userid

filegroup(string filename) int Gets file’s groupid

fileatime(string filename) int Gets last access time of file

filemtime(string filename) int Gets last modification time of file

filectime(string filename) int Gets inode modification time of file

filetype(string filename) string Gets file type

is_writable(string int Returns true if file can be written
filename)

is_readable(string int Returns true if file can be read
filename)

is_executable(string int Returns true if file is executable
filename)

is_file(string filename) int Returns true if file is a regular file

is_dir(string filename) int Returns true if file is directory

is_link(string filename) int Returns true if file is symbolic link

file_exists(string bool Returns true if filename exists
filename)

lstat(string filename) array Gives information about a file or
symbolic link. The returned array
contains the following elements:
device, inode; inode protection mode;
number of links; user id of owner;
group id owner; device type if inode
device; size in bytes; time of last
access; time of last modification;
time of last change; blocksize for
filesystem I/O; number of blocks
allocated

stat(string filename) array Gives information about a file, the
same as described in lstat

Appendix E: PHP Function Reference 451

3537-4 AppE.f.qc 12/15/00 15:26 Page 451

TABLE E-7 EXECUTION FUNCTION

Function Returns Action

exec(string command int Executes an external program
[, array output [, int
return_value]])

system(string command int Executes an external program and
[, int return_value]) displays output

passthru(string command void Executes an external program and
[, int return_value]) displays raw output. Will usually be

used with something like PBMPlus

escapeshellcmd(string string Escapes shell metacharacters
command)

TABLE E-8 FILE MANIPULATION FUNCTIONS

Function Returns Action

flock(int fp, int bool Locks a file so that it is not
operation accessible by other PHP scripts. The
[, int wouldblock]) locking will not keep other processes

from opening the file

get_meta_tags(string array Extracts all <meta> tag content
filename [, int use_ attributes from a file and returns
include_path]) an array

file(string filename array Reads entire file into an array, with
[, int use_include_path]) each line as an array element

tempnam(string dir, string Creates a unique filename in a
string prefix)directory

tmpfile(void) int Creates a temporary file that will be
deleted automatically after a call the
fclose() function or at the end of
the script

fopen(string filename, int Opens a file or a URL and returns a
string mode [, int use_ file pointer
include_path])

452 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 452

Function Returns Action

fclose(int fp) int Closes an open file pointer

popen(string command, int Executes a command and opens
string mode) either a read or a write pipe to it

pclose(int fp) int Closes a file pointer opened by
popen()

feof(int fp) int Tests for end-of-file on a file pointer

set_socket_blocking(int int Sets blocking/non-blocking mode on
socket_descriptor, a socket
int mode)

socket_set_timeout(int bool Sets timeout on socket read to
socket_descriptor, seconds + microseconds
int seconds, int
microseconds)

socket_get_status(resource array Returns an array describing socket
socket_descriptor) status. The array contains four

elements: timed_out (bool), blocked
(bool), eof (bool), and unread bytes
(int)

fgets(int fp, int length) string Gets a line from file pointer

fgetc(int fp) string Gets a character from file pointer

fgetss(int fp, int length string Gets a line from file pointer and
[, string allowable_tags]) strips HTML tags

fscanf(string str, string mixed Formats a file using the specified
format [, string ...]) format

fwrite(int fp, string str int Implements a binary-safe file write
[, int length])

fflush(int fp) int Flushes output

set_file_buffer(int fp, int Sets file write buffer; the default size
int buffer) is 8 kb

rewind(int fp) int Moves the position of a file pointer
to the beginning of a file

ftell(int fp) int Gets file pointer’s read/write position

Continued

Appendix E: PHP Function Reference 453

3537-4 AppE.f.qc 12/15/00 15:26 Page 453

TABLE E-8 FILE MANIPULATION FUNCTIONS (Continued)

Function Returns Action

fseek(int fp, int offset int Seeks the position of a file pointer
[, int whence])

mkdir(string pathname, int Creates a directory
int mode)

rmdir(string dirname) int Removes a directory

readfile(string filename int Outputs a file or a URL
[, int use_include_path])

umask([int mask]) int Returns or changes the umask. See
the Unix man page on umask for
further details

fpassthru(int fp) int Outputs all remaining data from a
file pointer

rename(string old_name, int Renames a file
string new_name)

unlink(string filename) int Deletes a file, similar to the C unlink
function

ftruncate (int fp, int int Truncates file to the size indicated in
size) the second argument

fstat(int fp) int Returns the same information as
stat() (described eariler) on a file
handle

copy(string source_file, int Copies a file
string destination_file)

fread(int fp, int length) int Conducts a binary-safe file read

fgetcsv(int fp, array Gets line from file pointer and parses
int length) for CSV fields

realpath(string path) string Returns the resolved path, from root.
Works on symbolic links and
references using .. or .

454 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 454

TABLE E-9 PRINT FUNCTIONS

Function Returns Action

sprintf(string format string Returns a formatted string
[, mixed arg1
[, mixed ...]])

printf(string format int Outputs a formatted string
[, mixed arg1
[, mixed ...]])

print_r(mixed var) void Prints out information about the
specified variable

var_dump(mixed var) void Dumps a string representation of the
variable to output

TABLE E-10 HTTP HEADER FUNCTIONS

Function Returns Action

header(string header) void Sends a raw HTTP header

setcookie(string name void Sends a cookie
[, string value [, int
expires [, string path
[, string domain
[, string secure]]]]])

headers_sent(void) int Returns true if headers have already
been sent; returns false otherwise

Appendix E: PHP Function Reference 455

3537-4 AppE.f.qc 12/15/00 15:26 Page 455

TABLE E-11 HTML FUNCTIONS

Function Returns Action

htmlspecialchars(string string Converts special characters
string) (ampersand, double quotes, single

quotes, less than, and greater than)
to HTML entities

htmlentities(string string) string Converts all applicable characters to
HTML entities

get_html_translation_ array Returns the internal translation table
table([int whichone]) used by htmlspecialchars and

htmlentities

TABLE E-12 MAIL FUNCTION

Function Returns Action

mail(string to, string int Sends an e-mail message
subject, string message
[, string additional_
headers])

TABLE E-13 RANDOM NUMBER FUNCTIONS

Function Returns Action

srand(int seed) void Seeds random number generator

rand([int min, int max]) int Returns a random number

getrandmax(void) int Returns the maximum value a
random number can have

mt_srand(int seed) void Seeds Mersenne Twister random
number generator

456 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 456

Function Returns Action

mt_rand([int min, int max]) int Returns a random number from
Mersenne Twister

mt_getrandmax(void) int Returns the maximum value a
random number from Mersenne
Twister can have

TABLE E-14 REGULAR EXPRESSION FUNCTIONS

Function Returns Action

ereg(string pattern, int Conducts a regular expression match
string string [, array
registers])

eregi(string pattern, int Case-insensitive regular expression
string string [, array match
registers])

ereg_replace(string string Replaces regular expression
pattern, string
replacement, string
string)

eregi_replace(string string Conducts a case-insensitive replace
pattern, string regular expression
replacement, string
string])

split(string pattern, array Splits string into array by regular
string string [, int expression
limit])

spliti(string pattern, array Splits string into array by a case-
string string [, int insensitive regular expression
limit])

sql_regcase(string string Makes regular expression for case-
string) insensitive match

Appendix E: PHP Function Reference 457

3537-4 AppE.f.qc 12/15/00 15:26 Page 457

TABLE E-15 STRING MANIPULATION FUNCTIONS

Function Returns Action

bin2hex(string data) string Converts the binary representation of
a number to hex

strspn(string str, int Finds length of initial segment
string mask) consisting entirely of characters

found in mask

strcspn(string str, int Finds length of initial segment
string mask) consisting entirely of characters

not found in mask

rtrim(string str) string Alias for chop()

chop(string str) string Strips trailing white space

trim(string str) string Strips white space from the
beginning and end of a string

ltrim(string str) string Strips white space from the
beginning of a string

wordwrap(string str string Wraps buffer to selected number of
[, int width [, string characters using the specified width.
break]]) The line is broken with the character

in the third argument or \n. If no
width is given, the string will be
broken at 75 characters

explode(string separator, array Splits a string on string separator
string str [, int limit]) and returns array of components

implode(array src, string Joins array elements by placing glue
string glue) string between items and returns

one string

join(array src, string Alias for implode()
string glue)

strtok([string str, string Tokenizes a string
] string token)

strtoupper(string str) string Makes a string uppercase

strtolower(string str) string Makes a string lowercase

basename(string path) string Returns the filename component of
the path

458 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 458

Function Returns Action

dirname(string path) string Returns the directory name
component of the path

strstr(string haystack, string Finds first occurrence of a string
string needle) within another

strchr(string haystack, string Alias for strstr()
string needle)

stristr(string haystack, string Finds first occurrence of a string
string needle) within another (case-insensitive)

strpos(string haystack, int Finds position of first occurrence of a
string needle string within another
[, int offset])

strrpos(string haystack, int Finds position of last occurrence of a
string needle) character in a string within another

strrchr(string haystack, string Finds the postion of the last
string needle) occurrence of a character in a string

within another

chunk_split(string str string Splits a line by inserting, by default,
[, int chunklen \r\n every 76 chracters. The length of
[, string ending]]) the chunks and the separation string

can be indicated

substr(string str, string Returns part of a string, as specified
int start [, int length]) by the start position and length. If

the length is a negative number,
position is determined from the end
of the string

substr_replace(string str, string Replaces part of a string with
string repl, int start another string
[, int length])

quotemeta(string str) string Returns a string with the following
characters prepended by a backslash:
. \ + * ? [^] ($)

ord(string character) int Returns ASCII value of character

chr(int ascii) string Converts ASCII code to a character

Continued

Appendix E: PHP Function Reference 459

3537-4 AppE.f.qc 12/15/00 15:26 Page 459

TABLE E-15 STRING MANIPULATION FUNCTIONS (Continued)

Function Returns Action

ucfirst(string str) string Makes a string’s first character
uppercase

ucwords(string str) string Makes the first character of every
word in a string uppercase

strtr(string str, string string Translates characters in str using
from, string to) given translation tables

strrev(string str) string Reverses a string

similar_text(string str1, int Returns the number of charcters that
string str2 [, double are the same in the two strings. By
percent]) using a referenced varaible in the

third argument, the precentage of
similar characters is passed to the
third argument

addcslashes(string str, string Escapes all chars mentioned in
string charlist) charlist with backslashes

addslashes(string str) string Escapes single quotes, double quotes,
and backslash characters in a string
with backslashes

stripcslashes(string str) string Strips backslashes from a string. Uses
C-style conventions

stripslashes(string str) string Strips backslashes from a string

str_replace(string needle, string Replaces all occurrences of needle in
string str, string haystack with str
haystack)

hebrev(string str string Converts logical Hebrew text to
[, int max_chars_per_line]) visual text

hebrevc(string str string Converts logical Hebrew text to
[, int max_chars_per_line]) visual text with newline conversion

nl2br(string str) string Inserts HTML line breaks after each
newline

strip_tags(string str string Strips HTML and PHP tags from a
[, string allowable_tags]) string

setlocale(string category, string Sets locale information
string locale)

460 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 460

Function Returns Action

parse_str(string void Parses GET/POST/COOKIE data and
encoded_string) sets global variables

str_repeat(string input, string Returns the input string repeated
int mult) mult times

count_chars(string input mixed Returns info about what characters
[, int mode]) are used in input string. If mode is 0,

an associative array is returned with
the byte value as key and the number
of ocurrences as value.

strnatcmp(string s1, int Returns the result of string
string s2) comparison using “natural” algorithm

strnatcasecmp(string s1, int Returns the result of a case-
string s2) insensitive string comparison using

“natural” algorithm

substr_count(string int Returns the number of times a
haystack, string needle) substring occurs in the string

str_pad(string input, string Returns input string padded on the
int pad_length left or right to specified length with
[, string pad_string pad_string
[, int pad_type]])

sscanf(string str, mixed Implements an ANSI C–compatible
string format sscanf
[, string ...])

TABLE E-16 URL FUNCTIONS

Function Returns Action

parse_url(string url) array Parses a URL and returns its
components in an associative array.
The array elements are: scheme (e.g.,
http), host (e.g., www.mydomain.
com), path (e.g., /index.php), query,
which is the entire querystring.

Continued

Appendix E: PHP Function Reference 461

3537-4 AppE.f.qc 12/15/00 15:26 Page 461

TABLE E-16 URL FUNCTIONS (Continued)

Function Returns Action

urlencode(string str) string URL-encodes string

urldecode(string str) string Decodes URL-encoded string

rawurlencode(string str) string URL-encodes string. See Chapter 6
for the difference between this and
urlencode().

rawurldecode(string str) string Decodes URL-encoded string

TABLE E-17 VARIABLE SERIALIZING FUNCTIONS

Function Returns Action

serialize(mixed variable) string Returns a string representation
of variable (which can later be
unserialized)

unserialize(string mixed Takes a string representation of
variable_representation) variable and recreates it

TABLE E-18 MISCELLANEOUS FUNCTIONS

Function Returns Action

ip2long(string ip_address) int Converts a string containing an
(IPv4) Internet Protocol dotted
address into a proper address

long2ip(int proper_address) string Converts an (IPv4) Internet network
address into a string in Internet
standard dotted format

getenv(string varname) string Gets the value of an environment
variable

putenv(string setting) void Sets the value of an environment
variable by using a format of
putenv(“ENV_VAR=$foo”);

462 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 462

Function Returns Action

flush(void) void Flushes the output buffer

sleep(int seconds) void Delays for a given number of seconds

usleep(int micro_seconds) void Delays for a given number of
microseconds

get_current_user(void) string Gets the name of the owner of the
current PHP script

get_cfg_var(string string Gets the value of a PHP
option_name) configuration option

is_resource(mixed var) bool Returns true if variable is a resource

error_log(string message, int Sends an error message to an error
int message_type log, TCP port, or file
[, string destination]
[, string extra_headers])

call_user_func(string mixed Calls a user function that is the first
function_name [, mixed
parmeter] [, mixed ...]) parameter

call_user_method(string mixed Calls a user method on a specific
method_name, object object where the first argument is
object [, mixed the method name, the second
parameter] [, mixed ...]) argument is the object, and the

subsequent arguments are the
parameters

register_shutdown_ void Registers a user-level function to be
function(string
function_name) called on request termination

highlight_file(string void Outputs a PHP source file with
file_name) syntax highlights

highlight_string(string void Syntax highlights a string
string)

ini_get(string varname) string Gets a configuration option

ini_set(string varname, string Sets a configuration option, returns
string newvalue) false on error and the string of the

old value of the configuration option
on success

Continued

Appendix E: PHP Function Reference 463

3537-4 AppE.f.qc 12/15/00 15:26 Page 463

TABLE E-18 MISCELLANEOUS FUNCTIONS (Continued)

Function Returns Action

ini_restore(string varname) string Restores the value of a configuration
option specified by varname to
its original value set in
the php.ini

connection_aborted(void) int Returns true if client disconnected

connection_timeout(void) int Returns true if script timed out

connection_status(void) int Returns the connection status
bitfield

ignore_user_abort(boolean int Sets whether you want to ignore a
value) user abort event or not

getservbyname(string int Returns port associated with service
service, string protocol) (protocol must be tcp or udp)

getservbyport(int port, string Returns service name associated with
string protocol) port (protocol must be “tcp” or “udp”)

getprotobyname(string name) int Returns protocol number associated
with name as per /etc/protocols

getprotobynumber(int proto) string Returns protocol name associated
with protocol number proto

get_loaded_extensions(void) array Returns an array containing names
of loaded extensions

extension_loaded(string bool Returns true if the named extension
extension_name) is loaded

get_extension_funcs(string array Returns an array with the names of
extension_name) functions belonging to the named

extension

TABLE E-19 ARRAY FUNCTIONS

Function Returns Action

krsort(array array_arg int Sorts an array reverse by key
[, int sort_flags])

464 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 464

Function Returns Action

ksort(array array_arg int Sorts an array by key
[, int sort_flags])

natsort(array array_arg) void Sorts an array using natural sort. The
difference between a natural sort
and a normal sort is described here:
http://www.linuxcare.com.
au/projects/natsort/

natcasesort(array void Sorts an array using case-insensitive
array_arg) natural sort

asort(array array_arg void Sorts an array and maintains index
[, int sort_flags]) association

arsort(array array_arg void Sorts an array in reverse order and
[, int sort_flags]) maintains index association

sort(array array_arg void Sorts an array
[, int sort_flags])

rsort(array array_arg void Sorts an array in reverse order
[, int sort_flags])

usort(array array_arg, void Sorts an array by values using a user-
string cmp_function) defined comparison function

uasort(array array_arg, void Sorts an array with a user-defined
string cmp_function) comparison function and maintains

index association

uksort(array array_arg, void Sorts an array by keys using a user-
string cmp_function) defined comparison function

array_walk(array input, int Applies a user function to every
string funcname member of an array
[, mixed userdata])

count(mixed var) int Counts the number of elements in a
variable (usually an array)

end(array array_arg) mixed Advances array argument’s internal
pointer to the last element and
returns it

Continued

Appendix E: PHP Function Reference 465

3537-4 AppE.f.qc 12/15/00 15:26 Page 465

TABLE E-19 ARRAY FUNCTIONS (Continued)

Function Returns Action

prev(array array_arg) mixed Moves array argument’s internal
pointer to the previous element and
returns it

next(array array_arg) mixed Moves array argument’s internal
pointer to the next element and
returns it

reset(array array_arg) mixed Sets array argument’s internal
pointer to the first element and
returns it

current(array array_arg) mixed Returns the element currently
pointed to by the internal array
pointer

key(array array_arg) mixed Returns the key of the element
currently pointed to by the internal
array pointer

min(mixed arg1 [, mixed mixed Returns the lowest value in an array
arg2 [, mixed ...]]) or a series of arguments

max(mixed arg1 [, mixed mixed Returns the highest value in an array
arg2 [, mixed ...]]) or a series of arguments

in_array(mixed needle, bool Checks if the given value exists in
array haystack the array
[, bool strict])

extract(array var_array, void Imports variables into symbol table
int extract_type from an array
[, string prefix])

compact(mixed var_names array Creates an array containing
[, mixed ...]) variables and their values

range(int low, int high) array Creates an array containing the
range of integers from low to high
(inclusive)

shuffle(array array_arg) int Randomly shuffles the contents of an
array. The random number generator
must first be seeded with srand()

466 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 466

Function Returns Action

array_push(array stack, int Pushes elements onto the end of the
mixed var [, mixed ...]) array

array_pop(array stack) mixed Pops an element off the end of the
array

array_shift(array stack) mixed Pops an element off the beginning of
the array

array_unshift(array int Pushes elements onto the beginning
stack, mixed var of the array
[, mixed ...])

array_splice(array array Removes the elements designated by
input, int offset offset and length and replaces
[, int length [, array them with supplied array
replacement]])

array_slice(array input, array Returns elements specified by
int offset [, int length]) offset and length

array_merge(array arr1, array Merges elements from passed arrays
array arr2 [, array ...]) into one array

array_merge_recursive array Recursively merges elements from
(array arr1, array arr2 passed arrays into one array.
[, array ...])

array_keys(array input array Returns just the keys from the input
[, mixed search_value]) array, optionally only for the

specified search_value

array_values(array input) array Returns just the values from the
input array

array_count_values(array array Returns the value as key and the
input) frequency of that value in input as

value

array_reverse(array input) array Returns a new array with the order
of the entries reversed

array_pad(array input, array Returns a new array padded with
int pad_size, mixed pad_value to size pad_size
pad_value)

array_flip(array input) array Returns array with key <-> value
flipped

Continued

Appendix E: PHP Function Reference 467

3537-4 AppE.f.qc 12/15/00 15:26 Page 467

TABLE E-19 ARRAY FUNCTIONS (Continued)

Function Returns Action

array_unique(array input) array Removes duplicate values from array

array_intersect(array arr1, array Returns the entries of arr1 that
array arr2 [, array ...]) have values that are present in all

the other arguments

array_diff(array arr1, array Returns the entries of arr1 that
array arr2 [, array ...]) have values that are not present in

any of the other arguments

array_multisort(array ar1 bool Sorts multiple arrays at once (works
[, SORT_ASC|SORT_DESC like the ORDER BY clause in SQL).
[, SORT_REGULAR|SORT_ Retruns TRUE on success, FALSE on
NUMERIC|SORT_STRING]] failure.
[, array ar2 [, SORT_ASC|
SORT_DESC [, SORT_REGULAR|
SORT_NUMERIC|SORT_
STRING]], ...])

array_rand(array input mixed If the second argument is blank or
[, int num_req]) set to 0, this will return a single key

form the input array. If the second
argument is greater than 0, it will
return an array, each element of
which is a random key from the input
array.

TABLE E-20 MYSQL FUNCTIONS

Function Returns Action

mysql_connect([string int Opens a connection to a MySQL
hostname[:port][:/path/to/ Server. Returns FALSE on failure
socket]] [, string
username] [, string
password])

468 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 468

Function Returns Action

mysql_pconnect([string int Opens a persistent connection to a
hostname[:port][:/path/ MySQL Server
to/socket]] [, string
username] [, string
password])

mysql_close([int link_ int Closes a MySQL connection. Does not
identifier]) effect persistent connections

mysql_select_db(string int Selects a MySQL database
database_name [, int
link_identifier])

mysql_create_db(string int Creates a MySQL database
database_name [, int
link_identifier])

mysql_drop_db(string int Drops (deletes) a MySQL database
database_name [, int
link_identifier])

mysql_query(string query int Sends an SQL query to MySQL
[, int link_identifier])

mysql_db_query(string int Sends an SQL query to MySQL
database_name, string
query [, int link_
identifier])

mysql_list_dbs([int int Lists databases available on a MySQL
link_identifier]) server

mysql_list_tables(string int Lists tables in a MySQL database
database_name [, int
link_identifier])

mysql_list_fields(string int Lists MySQL result fields
database_name, string
table_name [, int link_
identifier])

mysql_error([int link_ string Returns the text of the error message
identifier]) from the previous MySQL operation

Continued

Appendix E: PHP Function Reference 469

3537-4 AppE.f.qc 12/15/00 15:26 Page 469

TABLE E-20 MYSQL FUNCTIONS (Continued)

Function Returns Action

mysql_errno([int link_ int Returns the number of the error
identifier]) message from previous MySQL

operation

mysql_affected_rows([int int Gets number of affected rows in
link_identifier]) previous MySQL operation

mysql_insert_id([int link_ int Gets the number generated from the
identifier]) previous INSERT operation, where

there is an auto_increment column

mysql_result(int result, int Gets result data
int row [, mixed field])

mysql_num_rows(int result) int Gets number of rows in a result

mysql_num_fields(int result) int Gets number of fields in a result

mysql_fetch_row(int result) array Gets a result row as an enumerated
array

mysql_fetch_object(int object Fetches a result row as an object
result [, int result_type])

mysql_fetch_array(int array Fetches a result row as an associative
result [, int result_type]) array, a numeric array, or both.

mysql_data_seek(int result, int Moves internal result pointer. Creates
int row_number) an error if given an invalid row

mysql_fetch_lengths(int array Gets max data size of each column in
result) a result

mysql_fetch_field(int object Gets column information from a
result [, int field_offset]) result and returns as an object

mysql_field_seek(int result, int Sets result pointer to a specific
int field_offset) field offset. The next call to

mysql_fetch_field() will use this
offset

mysql_field_name(int string Gets the name of the specified field
result, int field_index) in a result

mysql_field_table(int string Gets name of the table the specified
result, int field_offset) field is in

470 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 470

Function Returns Action

mysql_field_len(int int Returns the length of the specified
result, int field_offet) field

mysql_field_type(int string Gets the type of the specified field in
result, int field_offset) a result

mysql_field_flags(int string Gets the flags associated with the
result, int field_offset) specified field in a result

mysql_free_result(int int Frees result memory
result)

TABLE E-21 ASPELL FUNCTIONS

Function Returns Action

aspell_new(string master int Loads a dictionary
[, string personal])

aspell_suggest(aspell array Returns array of suggestions
int, string word)

aspell_check(aspell bool Returns TRUE if a word is valid,
int, string word) FALSE if it is not

aspell_check_raw(aspell int Returns TRUE if word is valid
int, string word)

To use the aspell functions, you need the aspell library from http://

metalab.unc.edu/kevina/aspell/. That PHP is configured with --

with-aspell

NOTE

Appendix E: PHP Function Reference 471

3537-4 AppE.f.qc 12/15/00 15:26 Page 471

TABLE E-22 BCMATH FUNCTIONS

Function Returns Action

bcsub(string left_operand, string Returns the difference between two
string right_operand arbitrary-precision numbers
[, int scale])

bcmul(string left_operand, string Returns the multiplication of two
string right_operand arbitrary-precision numbers
[, int scale])

bcdiv(string left_operand, string Returns the quotient of two
string right_operand arbitrary-precision numbers (division)
[, int scale])

bcmod(string left_operand, string Returns the modulus of the two
string right_operand) arbitrary-precision operands

bcpow(string x, string y string Returns the value of an arbitrary-
[, int scale]) precision number raised to the power

of another

bcsqrt(string operand string Returns the square root of an
[, int scale]) arbitrary-precision number

bccomp(string left_operand, string Compares two arbitrary-precision
string right_operand [, int numbers
scale])

bcscale(int scale) string Sets default scale parameter for all
bc math functions

Use of the bcmath functions requires PHP to be complied with --enable-

bc-math.

TABLE E-23 CALENDAR FUNCTIONS

Function Returns Action

jdtounix(int jday) int Converts Julian Day to Unix
timestamp

NOTE

472 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 472

Function Returns Action

jdtogregorian(int string Converts a Julian Day count to a
juliandaycount) Gregorian calendar date

gregoriantojd(int month, int Converts a Gregorian calendar date
int day, int year) to Julian Day count

jdtojulian(int string Converts a Julian Day count to a
juliandaycount) Julian calendar date

juliantojd(int month,

int day, int year) int Converts a julian calendar date to
julian day count

jdtojewish(int string Converts a Julian Day count to a
juliandaycount) Jewish calendar date

jewishtojd(int month, int Converts a Jewish calendar date to a
int day, int year) Julian Day count

jdtofrench(int string Converts a Julian Day count to a
juliandaycount) French Republic calendar date

frenchtojd(int month, int Converts a French Republic
calendar
int day, int year) date to Julian Day count

jddayofweek(int mixed Returns name or number of day of
juliandaycount week from Julian Day count
[, int mode])

jdmonthname string Returns name of month for Julian
(int juliandaycount, Day count
int mode)

Use of the calendar functions requires PHP to complied with --enable-calendar.NOTE

Appendix E: PHP Function Reference 473

3537-4 AppE.f.qc 12/15/00 15:26 Page 473

TABLE E-24 COM FUNCTIONS

Function Returns Action

com_load(string module_name) int Loads a COM module

com_invoke(int module, mixed Invokes a COM module
string handler_name
[, mixed arg [, ...]])

com_propget(int module, mixed Gets properties from a COM module
string property_name)

com_propput(int module, bool Puts the properties for a module
string property_name,
mixed value)

These will work when PHP is installed with IIS or PWS.

TABLE E-25 CYBERCASH FUNCTIONS

Function Returns Action

cybercash_encr (string wmk, array Returns an associative array with the
string sk, string inbuff) elements errcode and, if errcode is

false, outbuff (string), outLth (long)
and macbuff (string)

cybercash_decr (string wmk, array Returns an associative array with the
string sk, string inbuff) elements errcode and, if errcode is

false, outbuff (string), outLth (long)
and macbuff (string)

cybercash_base64_encode string Encodes a string in a way that
(string inbuff) Cybercash will accept

cybercash_base64_decode string Decodes a string received from
(string inbuff) Cybercash

NOTE

474 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 474

Use of the cybercash functions requires the Cybercash libraries and that PHP

be configured --with-cybercash.You can see an example of how to use these

functions with the following class: http://www.zend.com/codex.php?id=

115&single=1.

TABLE E-26 DBASE FUNCTIONS

Function Returns Action

dblist(void) string Describes the dbm-compatible library
being used

dbmopen(string filename, int Opens a dbm database
string mode)

dbmclose(int dbm_ bool Closes a dbm database
identifier)

dbminsert(int dbm_ int Inserts a value for a key in a dbm
identifier, string key, database
string value)

dbmreplace(int dbm_ int Replaces the value for a key in a dbm
identifier, string key, database
string value)

dbmfetch(int dbm_ string Fetches a value for a key from a dbm
identifier, string key) database

dbmexists(int dbm_ int Tells if a value exists for a key in a
identifier, string key) dbm database

dbmdelete(int dbm_ int Deletes the value for a key from a
identifier, string key) dbm database

dbmfirstkey(int dbm_ string Retrieves the first key from a dbm
identifier) database

dbmnextkey(int dbm_ string Retrieves the next key from a dbm
identifier, string key) database

NOTE

Appendix E: PHP Function Reference 475

3537-4 AppE.f.qc 12/15/00 15:26 Page 475

PHP must be compiled --with-dbase in order to use these functions.

TABLE E-27 DBA FUNCTIONS

Function Returns Action

dba_popen(string path, int Opens path using the specified
string mode, string handler in mode persistently
handlername [, string ...])

dba_open(string path, int Opens path using the specified
string mode, string handler in mode
handlername [, string ...])

dba_close(int handle) void Closes database

dba_exists(string key, bool Determines whether the specified key
int handle) exists

dba_fetch(string key, int string Fetches the data associated with key
handle)

dba_firstkey(int handle) string Resets the internal key pointer and
returns the first key

dba_nextkey(int handle) string Returns the next key

dba_delete(string key, bool Deletes the entry associated with
int handle) the key

dba_insert(string key, bool Inserts value as key, returns false if
string value, int handle) key already exists

dba_replace(string key, bool Inserts value as key, replaces key if
string value, int handle) key already exists already

dba_optimize(int handle) bool Optimizes (e.g. cleans up, vacuums)
database

dba_sync(int handle) bool Synchronizes database

NOTE

476 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 476

PHP must be compiled with --enable-dba in order to use these functions.

TABLE E-28 FTP FUNCTIONS

Function Returns Action

ftp_login(int stream, int Logs into the FTP server
string username, string
password)

ftp_pwd(int stream) string Returns the present working
directory

ftp_cdup(int stream) int Changes to the parent directory

ftp_chdir(int stream, int Changes directories
string directory)

ftp_mkdir(int stream, string Creates a directory
string directory)

ftp_rmdir(int stream, int Removes a directory
string directory)

ftp_nlist(int stream, array Returns an array of filenames in the
string directory) given directory

ftp_rawlist(int stream, array Returns a detailed listing of a
string directory) directory as an array of output lines

ftp_systype(int stream) string Returns the system type identifier

ftp_fget(int stream, int Retrieves a file from the FTP server
int fp, string remote_ and writes it to an open file
file, int mode)

ftp_pasv(int stream, int Turns passive mode on or off
int pasv)

Continued

NOTE

Appendix E: PHP Function Reference 477

3537-4 AppE.f.qc 12/15/00 15:26 Page 477

TABLE E-28 FTP FUNCTIONS (Continued)

Function Returns Action

ftp_get(int stream, int Retrieves a file from the FTP server
string local_file, and writes it to a local file
string remote_file,
int mode)

ftp_fput(int stream, int Stores a file from an open file to the
string local_file, string FTP server
remote_file, int mode)

ftp_put(int stream, int Stores a file on the FTP server
string remote_file,
string local_file,
int mode)

ftp_size(int stream, int Returns the size of the file, in bytes
string path) or -1 on error

ftp_mdtm(int stream, int Returns the last modification time of
string path) the file or -1 on error

ftp_rename(int stream, int Renames the given file to a new path
string src, string dest)

ftp_delete(int stream, int Deletes a file
string path)

ftp_site(int stream, int Sends a SITE command to the server
string cmd)

ftp_quit(int stream) int Closes the FTP stream

PHP must be compiled --with-ftp in order to have access to these functions.

The gd functions can make and manipulate images on the fly and can work with
several types of image formats: jpeg, gif, png, and WBMP (used for protable
devices). Note that Unisys holds the patent to the type of compression used in gif
images. When they started enforcing the patent, libraries such as GD had to drop

NOTE

478 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 478

their support of gif images. There, if you want to use the GD functions with gif
images, you will need a version of the GD libraries older than 1.6. However, these
older libriaries do not support png files. Versions later than 1.6 do support png.

TABLE E-29 GD FUNCTIONS

Function Returns Action

imagecreate(int x_size, int Creates a new image
int y_size)

imagetypes(void) int Returns the types of images
supported in a bitfield — 1=gif,
2=jpeg, 4=png, 8=wbmp

imagecreatefromgif int Creates a new image from GIF file
(string filename) or URL

imagecreatefromjpeg int Creates a new image from JPEG file
(string filename) or URL

imagecreatefrompng int Creates a new image from PNG file
(string filename) or URL

imagecreatefromwbmp int Creates a new image from WBMP file
(string filename) or URL

imagegif(int im int Outputs GIF image to browser or file
[, string filename])

imagepng(int im int Outputs PNG image to browser or file
[, string filename])

imagejpeg(int im int Outputs JPEG image to browser
[, string filename or file
[, int quality]])

imagewbmp(int im int Outputs WBMP image to browser
[, string filename]) or file

imagedestroy(int im) int Destroys an image

imagecolorallocate(int int Allocates a color for an image, will
im, int red, int green, usually be assigned to a variable for
int blue) later use.

Continued

Appendix E: PHP Function Reference 479

3537-4 AppE.f.qc 12/15/00 15:26 Page 479

TABLE E-29 GD FUNCTIONS (Continued)

Function Returns Action

imagepalettecopy(int int Copies the palette from the src
dst, int src) image onto the dst imz the
blue) pallete to the specified color

imagecolorclosesthwb(int int Gets the index of the color with the
im, int red, int green, hue, whiteness and blackness nearest
int blue) to the given color

imagecolordeallocate(int int De-allocates a color for an image
im, int index)

imagecolorresolve(int im, int Gets the index of the specified color
int red, int green, or its closest possible alternative
int blue)

imagecolorexact(int im, int Gets the index of the specified color.
int red, int green, Returns –1 if the color does not exist
int blue)

imagecolorset(int im, int Sets the color for the specified
int col, int red, palette index
int green, int blue)

imagecolorsforindex array Gets the colors for an index, in red,
(int im, int col) green, and blue

imagegammacorrect int Applies a gamma correction to a GD
(int im, double image
inputgamma, double
outputgamma)

imagesetpixel(int im, int Sets a single pixel; the x and y
int x, int y, int col) coordinates start at the top left,

and col is the color for the pixel

imageline(int im, int x1, int Draws a line
int y1, int x2, int y2,
int col)

imagedashedline(int im, int Draws a dashed line
int x1, int y1, int x2,
int y2, int col)

imagerectangle(int im, int int Draws a rectangle
x1, int y1, int x2, int y2,
int col)

480 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 480

Function Returns Action

imagefilledrectangle int Draws a filled rectangle
(int im, int x1, int
y1, int x2, int y2,
int col)

imagearc(int im, int cx, int Draws a partial ellipse
int cy, int w, int h,
int s, int e, int col)

imagefilltoborder(int int Fills the image im, to the borders
im, int x, int y, int specified by x and y coordinates with
border, int col) the color in the fifth argument

imagefill(int im, int x, int Floods fill starting at the x and y
int y, int col) coordinates using the color specified

in the fourth argument

imagecolorstotal(int im) int Returns the number of colors in an
image’s palette

imagecolortransparent int Defines a color as transparent.
(int im [, int col]) Returns the identifier of the new

color

imageinterlace(int im int Enables or disables interlace
[, int interlace])

imagepolygon(int im, int Draws a polygon. The array will take
array point, int the following form: points[0] = x0,
num_points, int col) points[1] = y0, points[2] = x1,

points[3] = y1

imagefilledpolygon(int int Draws a filled polygon
im, array point, int
num_points, int col)

imagefontwidth(int font) int Gets font width

imagefontheight(int font) int Gets font height

imagechar(int im, int int Draws a character
font, int x, int y,
string c, int col)

Continued

Appendix E: PHP Function Reference 481

3537-4 AppE.f.qc 12/15/00 15:26 Page 481

TABLE E-29 GD FUNCTIONS (Continued)

Function Returns Action

imagecharup(int im, int Draws a character rotated 90 degrees
int font, int x, int y, counterclockwise
string c, int col)

imagestring(int im, int int Draws a string horizontally
font, int x, int y, string
str, int col)

imagestringup(int im, int int Draws a string vertically — rotated
font, int x, int y, string 90 degrees counterclockwise
str, int col)

imagecopy(int dst_im, int Copies part of an image
int src_im, int dst_x,
int dst_y, int src_x,
int src_y, int src_w,
int src_h)

imagecopymerge(int src_im, int Merges one part of an image with
int dst_im, int dst_x, another
int dst_y, int src_x,
int src_y, int src_w,
int src_h, int pct)

imagecopyresized(int int Copies and resizes part of an image
dst_im, int src_im,
int dst_x, int dst_y,
int src_x, int src_y,
int dst_w, int dst_h,
int src_w, int src_h)

imagesx(int im) int Gets image width

imagesy(int im) int Gets image height

imagettfbbox(int size, array Gives the bounding box of a text
int angle, string font_file, using TrueType fonts
string text)

imagettftext(int im, int array Writes text to the image using a
size, int angle, int x, TrueType font
int y, int col, string
font_file, string text)

imagepsloadfont int Loads a new font from specified file
(string pathname)

482 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 482

Function Returns Action

imagepsfreefont bool Frees memory used by a font
(int font_index)

imagepsextendfont bool Extends or condenses (if extend < 1)
(int font_index, a font
double extend)

imagepstext(int image, array Draws a text string over an image
string text, int font,
int size, int xcoord,
int ycoord [, int space,
int tightness, double
angle, int antialias])

imagepsloadfont(string int Loads a new font from specified file
pathname)

imagepsfreefont(int bool Frees memory used by a font
font_index)

imagepsencodefont(int bool Changes a font’s character encoding
font_index, string vector
filename)

imagepsextendfont(int bool Extends or condenses (if extend < 1)
font_index, double a font
extend)

imagepsslantfont(int bool Slants a font
font_index, double slant)

imagepstext(int image, array Rasterizes a string over an image
string text, int font,
int size, int xcoord,
int ycoord [, int space,
int tightness, double
angle, int antialias])

imagepsbbox(string text, array Returns the bounding box needed by
int font, int size a string if rasterized
[, int space, int
tightness, int angle])

imagepsbbox(string text, array Returns the bounding box needed by
int font, int size a string if rasterized
[, int space, int
tightness, int angle])

Appendix E: PHP Function Reference 483

3537-4 AppE.f.qc 12/15/00 15:26 Page 483

Use of these functions requires the GD library from http://www.

boutell.com/gd/ and for PHP to be compiled --with-gd.

TABLE E-30 IMAP FUNCTIONS

Function Returns Action

imap_open(string mailbox, int Opens an IMAP stream to a mailbox
string user, string
password [, int options])

imap_popen(string mailbox, int Opens a persistant IMAP stream to a
string user, string mailbox
password [, int options])

imap_reopen(int stream_id, int Reopens an IMAP stream to a new
string mailbox [, int mailbox
options])

imap_close(int stream_id
[, int options]) int Closes an IMAP stream

imap_append(int stream_id, int Appends a new message to a
string folder, string specified mailbox
message [, string flags])

imap_num_msg(int stream_id) int Gives the number of messages in the
current mailbox

imap_ping(int stream_id) int Checks if the IMAP stream is still
active

imap_num_recent(int int Gives the number of recent messages
stream_id) in current mailbox

imap_expunge(int stream_id) int Permanently deletes all messages
marked for deletion

imap_headers(int stream_id) array Returns headers for all messages in a
mailbox

imap_body(int stream_id, string Reads the message body
int msg_no [, int options])

NOTE

484 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 484

Function Returns Action

imap_fetchtext_full(int string Reads the full text of a message
stream_id, int msg_no
[, int options])

imap_mail_copy(int int Copies specified message to a
stream_id, int msg_no, mailbox
string mailbox
[, int options])

imap_mail_move(int int Moves specified message to a
stream_id, int msg_no, mailbox
string mailbox
[, int options])

imap_createmailbox int Creates a new mailbox
(int stream_id,
string mailbox)

imap_renamemailbox int Renames a mailbox
(int stream_id, string
old_name, string
new_name)

imap_deletemailbox int Deletes a mailbox
(int stream_id, string
mailbox)

imap_list(int stream_id, array Reads the list of mailboxes
string ref, string
pattern)

imap_getmailboxes(int array Reads the list of mailboxes and
stream_id, string ref, returns a full array of objects
string pattern) containing name, attributes, and

delimiter

imap_check(int stream_id) object Gets mailbox properties

imap_delete(int int Marks a message for deletion
stream_id, int msg_no
[, int flags])

imap_undelete(int int Removes the delete flag from a
stream_id, int msg_no) message

Continued

Appendix E: PHP Function Reference 485

3537-4 AppE.f.qc 12/15/00 15:26 Page 485

TABLE E-30 IMAP FUNCTIONS (Continued)

Function Returns Action

imap_headerinfo(int object Reads the headers of the message
stream_id, int msg_no
[, int from_length
[, int subject_length
[, string default_
host]]])

imap_rfc822_parse_headers object Parses a set of mail headers
(string headers [, string contained in a string and returns an
default_host]) object, much like
imap_headerinfo()

imap_lsub(int stream_id, array Returns a list of subscribed
string ref, string pattern) mailboxes

imap_getsubscribed(int array Returns a list of subscribed
stream_id, string ref, mailboxes, in the same format as
string pattern) imap_getmailboxes()

imap_subscribe(int int Subscribes to a mailbox
stream_id, string mailbox)

imap_unsubscribe(int int Unsubscribes from a mailbox
stream_id, string mailbox)

imap_fetchstructure(int object Reads the full structure of a message
stream_id, int msg_no
[, int options])

imap_fetchbody(int string Gets a specific body section. The
stream_id, int msg_no, different portions of the IMAP body
int section [, int are defined in the IMAP RFC
options])

imap_base64(string text) string Decodes BASE64-encoded text

imap_qprint(string text) string Converts a quoted-printable string to
an eight-bit string

imap_8bit(string text) string Converts an eight-bit string to a
quoted-printable string

imap_binary(string text) string Converts an eight-bit string to a
base64 string

486 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 486

Function Returns Action

imap_mailboxmsginfo(int object Returns info about the current
stream_id) mailbox

imap_rfc822_write_ string Returns a properly formatted e-mail
address(string mailbox, address given the mailbox, host, and
string host, string personal info
personal)

imap_rfc822_parse_ array Parses an address string
adrlist(string address_
string, string default_
host)

imap_utf8(string string) string Converts a string to UTF-8

imap_utf7_decode(string string Decodes a modified UTF-7 string
buf)

imap_utf7_encode(string string Encodes a string in modified UTF-7
buf)

imap_setflag_full(int int Sets flags on messages
stream_id, string
sequence, string flag
[, int options])

imap_clearflag_full int Clears flags on messages
(int stream_id, string
sequence, string flag
[, int options])

imap_sort(int stream_id, array Sorts an array of message headers
int criteria, int
reverse [, int options])

imap_fetchheader(int string Gets the full, unfiltered header for a
stream_id, int msg_no message
[, int options])

imap_uid(int stream_id, int Gets the unique message ID
int msg_no) associated with a standard

sequential message number

imap_msgno(int stream_id, int Gets the sequence number
int unique_msg_id) associated with a UID

Continued

Appendix E: PHP Function Reference 487

3537-4 AppE.f.qc 12/15/00 15:26 Page 487

TABLE E-30 IMAP FUNCTIONS (Continued)

Function Returns Action

imap_status(int stream_id, object Gets status info from a mailbox
string mailbox, int
options)

imap_bodystruct(int object Reads the structure of a specified
stream_id, int msg_no, body section of a specific message
int section)

imap_fetch_overview(int array Reads an overview of the
stream_id, int msg_no) information in the headers of

the given message sequence

imap_mail_compose(array string Creates a MIME message based on
envelope, array body) given envelope and body sections

imap_mail(string to, int Sends an e-mail message
string subject, string
message [, string
additional_headers
[, string cc [, string bcc
[, string rpath]]]])

imap_search(int stream_id, array Returns a list of messages matching
string criteria [, long the given criteria. The criteria are
flags]) listed on the manual page: http://

www.php.net/manual/function.
imap-search.php

imap_alerts(void) array Returns an array of all IMAP alerts
generated since the last page load or
since the last imap_alerts() call,
whichever came last; the alert stack
is cleared after imap_alerts() is
called

imap_errors(void) array Returns an array of all IMAP errors
generated since the last page load, or
since the last imap_errors() call,
whichever came last; the error stack is
cleared after imap_errors() is called

imap_last_error(void) string Returns the last error generated by
an IMAP function; the error stack is
NOT cleared after this call

488 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 488

Function Returns Action

imap_mime_header_decode array Decodes MIMEheader element in
(string str) accordance with RFC 2047 and

returns array of objects containing
charset encoding and decoded text

Use of the IMAP functions requires the IMAP libraries and PHP to be

installed --with-imap.The functions will work with a POP3 server as well.

TABLE E-31 INTERBASE FUNCTIONS

Function Returns Action

ibase_connect(string int Opens a connection to an InterBase
database [, string database and returns a connection
username] [, string identifier
password] [, string
charset] [, int buffers]
[, int dialect]
[, string role])

ibase_pconnect(string int Opens a persistent connection to an
database [, string InterBase database
username] [, string
password] [, string
charset] [, int buffers]
[, int dialect]
[, string role])

ibase_close([int int Closes an InterBase connection
link_identifier])

ibase_commit([int int Commits transaction
link_identifier,]
int trans_number)

Continued

NOTE

Appendix E: PHP Function Reference 489

3537-4 AppE.f.qc 12/15/00 15:26 Page 489

TABLE E-31 INTERBASE FUNCTIONS (Continued)

Function Returns Action

ibase_rollback([int link_ int Rolls back transaction
identifier,] int trans_
number)

ibase_query([int link_ int Executes a query
identifier,] string query
[, int bind_args])

ibase_prepare([int link_ int Prepares a query for later execution
identifier,] string query)

ibase_fetch_row(int result array Fetches a row from the results of a
[, int blob_flag]) query

ibase_fetch_object(int object Fetches an object from the results of
result [, int blob_flag]) a query

ibase_free_result(int result) int Frees the memory used by a result

ibase_execute(int query int Executes a previously prepared query
[, int bind_args
[, int ...])

ibase_free_query(int query) int Frees memory used by a query

ibase_timefmt(string int Sets the format of timestamp, date,
format) and time columns returned from

queries

ibase_num_fields(int int Gets the number of fields in result
result)

ibase_field_info(int array Gets information about a field
result, int field_number)

ibase_blob_add(int blob_id, int Adds data into created blob
string data)

PHP must be installed --with-ibase in order for these functions to work.

Please check the current documentation on PHP interbase functions,

because as of the time of this writing, this API was under a lot of flux.

NOTE

490 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 490

TABLE E-32 MHASH FUNCTIONS

Function Returns Action

mhash_count() int Gets the number of available hashes

mhash_get_block_size int Gets the block size of hash
(int hash)

mhash_get_hash_name(int string Gets the name of hash
hash)

mhash(int hash, string string Computes hash function on data,
data) using the hash in the first argument.

Use of these functions requires the mhash library from http://mhash.

sourceforge.net/. PHP must be compiled --with-mhash.

The msql database is another open-source SQL database server. It is not actively
maintained and has some limitiations that make it a poor choice when compared to
MySQL, PostGRES, or Interbase. Note that msqp and MySQL have almost identical
function sets.

TABLE E-33 MSQL FUNCTIONS

Function Returns Action

msql_connect([string int Opens a connection to an mSQL
hostname[:port]] Server
[, string username]
[, string password])

msql_pconnect([string int Opens a persistent connection to an
hostname[:port]] mSQL Server
[, string username]
[, string password])

Continued

NOTE

Appendix E: PHP Function Reference 491

3537-4 AppE.f.qc 12/15/00 15:26 Page 491

TABLE E-33 MSQL FUNCTIONS (Continued)

Function Returns Action

msql_close([int link_ int Closes an mSQL connection
identifier])

msql_select_db(string int Selects an mSQL database
database_name [, int
link_identifier])

msql_create_db(string int Creates an mSQL database
database_name [, int
link_identifier])

msql_drop_db(string int Drops (deletes) an mSQL database
database_name [, int
link_identifier])

msql_query(string query int Sends an SQL query to mSQL
[, int link_identifier])

msql_list_dbs([int link_ int Lists databases available on an mSQL
identifier]) server

msql_list_tables(string int Lists tables in an mSQL database
database_name [, int
link_identifier])

msql_list_fields(string int Lists mSQL result fields
database_name, string
table_name [, int link_
identifier])

msql_error([int link_ string Returns the text of the error message
identifier]) from previous mSQL operation

msql_result(int query, int Gets result data
int row [, mixed field])

msql_num_rows(int query) int Gets number of rows in a result

msql_num_fields(int query) int Gets number of fields in a result

msql_fetch_row(int query) array Gets a result row as an enumerated
array

msql_fetch_object(int object Fetches a result row as an object
query [, int result_type])

msql_fetch_array(int query array Fetches a result row as an associative
[, int result_type]) array

492 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 492

Function Returns Action

msql_data_seek(int query, int Moves internal result pointer
int row_number)

msql_fetch_field(int object Gets column information from a
query [, int field_ result and returns as an object
offset])

msql_field_seek(int int Sets result pointer to a specific field
query, int field_offset) offset

msql_field_name(int string Gets the name of the specified field
query, int field_index) in a result

msql_field_table(int string Gets name of the table the specified
query, int field_offset) field is in

msql_field_len(int query, int Returns the length of the specified
int field_offet) field

msql_field_type(int string Gets the type of the specified field in
query, int field_offset) a result

msql_field_flags(int string Gets the flags associated with the
query, int field_offset) specified field in a result

msql_free_result(int int Frees result memory
query)

msql_affected_rows(int int Returns number of affected rows
query)

TABLE E-34 MSSQL FUNCTIONS

Function Returns Action

mssql_connect([string int Establishes a connection to a MS-
servername [, string SQL server, returns a connection
username [, string identifier
password]]])

mssql_pconnect([string int Establishes a persistent connection
servername [, string to a MS-SQL server
username [, string
password]]])

Continued

Appendix E: PHP Function Reference 493

3537-4 AppE.f.qc 12/15/00 15:26 Page 493

TABLE E-34 MSSQL FUNCTIONS (Continued)

Function Returns Action

mssql_close([int int Closes a connection to a MS-SQL
connectionid]) server

mssql_select_db(string bool Selects a MS-SQL database
database_name [, int
conn_id])

mssql_query(string query int Performs an SQL query on a MS-SQL
[, int conn_id]) server database

mssql_free_result(string int Frees a MS-SQL result index
result_index)

mssql_get_last_message string Gets the last message from the
(void) MS-SQL server

mssql_num_rows(int mssql_ int Returns the number of rows fetched
result_index) in from the result ID specified

mssql_num_fields(int int Returns the number of fields fetched
mssql_result_index) in from the result ID specified

mssql_fetch_row(int array Returns an array of the current
result_id) row in the result set specified by

result_id

mssql_fetch_object(int object Returns an object of the current
result_id) row in the result set specified by

result_id

mssql_fetch_array(int array Returns an associative array of the
result_id) current row in the result set specified

by result_id

mssql_data_seek(int int Moves the internal row pointer of
result_id, int offset) the MS-SQL result associated with

the specified result identifier to
pointer to the specified row number

mssql_fetch_field(int object Gets information about a certain
result_id [, int offset]) field in a query result

mssql_field_length(int int Gets the length of a MS-SQL field
result_id [, int offset])

494 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 494

Function Returns Action

mssql_field_name(int string Returns the name of the field given
result_id [, int offset]) by offset in the result set given by

result_id

mssql_field_type(int string Returns the type of a field
result_id [, int offset])

mssql_field_seek(int bool Moves pointer to the specified field
result_id, int offset) offset

mssql_result(int string Returns the contents of one cell from
result_id, int row, a MS-SQL result set
mixed field)

mssql_min_error_severity(int void Sets the lower error severity
severity)

mssql_min_message_ void Sets the lower message severity
severity(int severity)

TABLE E-35 PERL COMPATIBLE REGULAR EXPRESSION FUNCTIONS

Function Returns Action

preg_match(string int Performs a Perl-style regular
pattern, string subject
[, array subpatterns]) expression match

preg_match_all(string int Performs a Perl-style global regular
pattern, string subject,
array subpatterns
[, int order]) expression match

preg_replace(string| string Performs a Perl-style regular
array regex, string|array expression replacement
replace, string|array
subject [, int limit])

preg_split(string array Splits string into an array using a
pattern, string subject perl-style regular expression as a
[, int limit [, int delimiter
flags]])

Continued

Appendix E: PHP Function Reference 495

3537-4 AppE.f.qc 12/15/00 15:26 Page 495

TABLE E-35 PERL COMPATIBLE REGULAR EXPRESSION FUNCTIONS (Continued)

Function Returns Action

preg_quote(string str, string Quotes regular expression characters
string delim_char) plus an optional character

preg_grep(string regex, array Searches array and returns entries
array input) that match regex

TABLE E-36 POSTGRES FUNCTIONS

Function Returns Action

pg_connect([string int Opens a PostgreSQL connection
connection_string] |
[string host, string port
[, string options
[, string tty,]] string
database)

pg_pconnect([string int Opens a persistent PostgreSQL
connection_string] | connection
[string host, string port
[, string options
[, string tty,]] string
database)

pg_close([int connection]) bool Closes a PostgreSQL connection

pg_dbname([int connection]) string Gets the database name

pg_errormessage([int string Gets the error message string
connection])

pg_options([int connection]) string Gets the options associated with the
connection

pg_port([int connection]) int Returns the port number associated
with the connection

pg_tty([int connection]) string Returns the tty name associated with
the connection

pg_host([int connection]) string Returns the host name associated
with the connection

496 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 496

Function Returns Action

pg_exec([int connection,] int Executes a query
string query)

pg_numrows(int result) int Returns the number of rows in the
result

pg_numfields(int result) int Returns the number of fields in the
result

pg_cmdtuples(int result) int Returns the number of affected
tuples

pg_fieldname(int result, string Returns the name of the field
int field_number)

pg_fieldsize(int result, int Returns the internal size of the field
int field_number)

pg_fieldtype(int result, string Returns the type name for the given
int field_number) field

pg_fieldnum(int result, int Returns the field number of the
string field_name) named field

pg_result(int result, mixed Returns values from a result
int row_number, mixed identifier
field_name)

pg_fetch_row(int result, array Gets a row as an enumerated array
int row)

pg_fetch_array(int array Fetches a row as an array
result, int row [, int
result_type])

pg_fetch_object(int object Fetches a row as an object
result, int row [, int
result_type])

pg_fieldprtlen(int int Returns the printed length
result, int row, mixed
field_name_or_number)

pg_fieldisnull(int int Tests if a field is NULL
result, int row, mixed
field_name_or_number)

Continued

Appendix E: PHP Function Reference 497

3537-4 AppE.f.qc 12/15/00 15:26 Page 497

TABLE E-36 POSTGRES FUNCTIONS (Continued)

Function Returns Action

pg_freeresult(int result) int Frees result memory

pg_getlastoid(int result) int Returns the last object identifier

pg_trace(string filename bool Enables tracing of a PostgreSQL
[, string mode [, resource connection
connection]])

pg_untrace([int bool Disables tracing of a PostgreSQL
connection]) connection

pg_locreate(int connection) int Creates a large object

pg_lounlink([int void Deletes a large object
connection,] int large_
obj_id)

pg_loopen([int connection,] int Opens a large object and returns fd
int objoid, string mode)

pg_loclose(int fd) void Closes a large object

pg_loread(int fd, int len) string Reads a large object

pg_lowrite(int fd, int Writes a large object
string buf)

pg_loreadall(int fd) void Reads a large object and sends
straight to browser

pg_loimport(string int Imports large object direct from
filename [, resource filesystem
connection])

pg_loexport(int objoid, bool Exports large object directly to
string filename filesystem
[, resource connection])

pg_setclientencoding int Sets client encoding
([int connection,]
string encoding)

pg_clientencoding string Gets the current client encoding
([int connection])

498 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 498

Use of these functions requires that PHP be compiled --with-postgres.

TABLE E-37 SESSION FUNCTIONS

Function Returns Action

session_set_cookie_ void Sets session cookie parameters
params(int lifetime
[, string path [, string
domain]])

session_get_cookie_ array Returns the session cookie
params(void) parameters

session_name([string string Returns the current session name; if
newname]) newname is given, the session name

is replaced with newname

session_module_name string Returns the current module name
([string newname]) used for accessing session data; if

newname is given, the module name
is replaced with newname

session_set_save_handler void Sets user-level functions
(string open, string
close, string read,
string write, string
destroy, string gc)

session_save_path([string string Returns the current save path passed
newname]) to module_name; if newname is

given, the save path is replaced with
newname

session_id([string newid]) string Returns the current session id; if
newid is given, the session id is
replaced with newid

session_register(mixed bool Adds variable names to the list of
var_names [, mixed ...]) variables stored by the session

Continued

NOTE

Appendix E: PHP Function Reference 499

3537-4 AppE.f.qc 12/15/00 15:26 Page 499

TABLE E-37 SESSION FUNCTIONS (Continued)

Function Returns Action

session_unregister bool Removes varname from the list of
(string varname) variables stored by the session

session_is_registered bool Checks if a variable is registered in
(string varname) session

session_encode(void) string Serializes the current setup and
returns the serialized representation

session_decode(string data) bool Deserializes data and reinitializes the
variables

session_start(void) bool Begins session — reinitializes freezed
variables, registers browsers, and so
forth

session_destroy(void) bool Destroys the current session and all
data associated with it

session_unset(void) void Unsets all registered variables

Session functions are described in more detail in Chapter 14.

TABLE E-38 DNS FUNCTIONS

Function Returns Action

gethostbyaddr(string string Gets the Internet host name
ip_address) corresponding to a given IP address

gethostbyname(string string Gets the IP address corresponding to
hostname) a given Internet host name

gethostbynamel(string array Returns a list of IP addresses that a
hostname) given host name resolves to

XREF

500 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 500

Function Returns Action

checkdnsrr(string host int Checks DNS records corresponding to
[, string type]) a given Internet host name or IP

address

getmxrr(string hostname, int Gets MX records corresponding to a
array mxhosts [, array given Internet host name
weight])

TABLE E-39 MATH FUNCTIONS

Function Returns Action

abs(int number) int Returns the absolute value of the
number

ceil(double number) int Returns the next highest integer
value of the number

floor(double number) int Returns the next lowest integer value
of the number

round(double number double Returns the number rounded to
[, int precision]) specified precision

sin(double number) double Returns the sine of the number in
radians

cos(double number) double Returns the cosine of the number in
radians

tan(double number) double Returns the tangent of the number in
radians

asin(double number) double Returns the arc sine of the number in
radians

acos(double number) double Return the arc cosine of the number
in radians

atan(double number) double Returns the arc tangent of the
number in radians

Continued

Appendix E: PHP Function Reference 501

3537-4 AppE.f.qc 12/15/00 15:26 Page 501

TABLE E-39 MATH FUNCTIONS (Continued)

Function Returns Action

atan2(double y, double x) double Returns the arc tangent of y/x, with
the resulting quadrant determined by
the signs of y and x

pi(void) double Returns an approximation of pi

pow(double base, double double Returns base raised to the power of
exponent) exponent

exp(double number) double Returns e raised to the power of the
number

log(double number) double Returns the natural logarithm of the
number

log10(double number) double Returns the base-10 logarithm of the
number

sqrt(double number) double Returns the square root of the number

deg2rad(double number) double Converts the number in degrees to
the radian equivalent

rad2deg(double number) double Converts the radian number to the
equivalent number in degrees

bindec(string binary_number) int Returns the decimal equivalent of
the binary number

hexdec(string int Returns the decimal equivalent of
hexadecimal_number) the hexadecimal number

octdec(string octal_number) int Returns the decimal equivalent of an
octal string

decbin(int decimal_number) string Returns a string containing a binary
representation of the number

decoct(int decimal_number) string Returns a string containing an octal
representation of the given number

dechex(int decimal_number) string Returns a string containing a
hexadecimal representation of the
given number

502 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 502

Function Returns Action

base_convert(string number, string Converts a number in a string from
int frombase, int tobase) any base <= 36 to any base <= 36.

number_format(double string Formats a number with grouped
number [, int num_decimal_ thousands
places [, string dec_
seperator, string
thousands_seperator]])

TABLE E-40 MD5

Function Returns Action

md5(string str) string Calculates the md5 hash of a string

TABLE E-41 OUTPUT BUFFERING

Function Returns Action

ob_start(void) void Turns on output buffering

ob_end_flush(void) void Flushes (sends) the output buffer and
turns off output buffering

ob_end_clean(void) void Cleans (erases) the output buffer and
turns off output buffering

ob_get_contents(void) string Returns the contents of the output
buffer

ob_implicit_flush([int void Turns implicit flush on/off and is
flag]) equivalent to calling flush() after

every output call

Appendix E: PHP Function Reference 503

3537-4 AppE.f.qc 12/15/00 15:26 Page 503

TABLE E-42 PAYFLOW PRO FUNCTIONS

Function Returns Action

pfpro_version() string Returns the version of the Payflow
Pro library

pfpro_init() void Initializes the Payflow Pro library

pfpro_cleanup() void Shuts down the Payflow Pro library

pfpro_process_raw(string string Performs a raw Payflow Pro
parmlist [, string transaction
hostaddress [, int port,
[, int timeout [, string
proxyAddress
[, int proxyPort
[, string proxyLogon
[, string
proxyPassword]]]]]]])

pfpro_process(array array Performs a Payflow Pro transaction
parmlist [, string using arrays
hostaddress [, int port,
[, int timeout [, string
proxyAddress [, int
proxyPort [, string
proxyLogon [, string
proxyPassword]]]]]]])

Use of these functions requires payflo pro libraries from verisign and PHP to

compile with --with-payflo.

TABLE E-43 CURL FUNCTIONS

Function Returns Action

curl_version (void) string Returns the CURL version string

curl_init ([string url]) int Initializes a CURL session

NOTE

504 Part V: Appendixes

3537-4 AppE.f.qc 12/15/00 15:26 Page 504

Function Returns Action

curl_setopt (int ch, bool Sets an option for a CURL transfer
string option, mixed
value)

curl_exec (int ch) bool Performs a CURL session

curl_close (int ch) void Closes a CURL session

Use of these functions requires the curl library and PHP to be compiled --

with-curl.The cURL functions are discussed in more detail in Chapter 14.

NOTE

Appendix E: PHP Function Reference 505

3537-4 AppE.f.qc 12/15/00 15:26 Page 505

3537-4 AppE.f.qc 12/15/00 15:26 Page 506

Appendix F

Regular Expressions
Overview

REGULAR EXPRESSIONS provide a means for pattern matching in strings. Patterns
may be as simple as a literal string or a literal string with a wildcard character, or
they can grow to be very complex. How complex? Check out the following exam-
ple, which is intended for e-mail validation. If you’re new to regular expressions
this may look bad, but to tell the truth, it’s not nearly nasty enough. In fact to
properly validate an e-mail, it takes about 200 lines of regular expressions. See
Appendix G for an e-mail validation function that’s quite a bit more complete.

^[_\.0-9a-z-]+@([0-9a-z][0-9a-z-]+\.)+[a-z]{2,3}$

When you’re working with PHP and MySQL there are three variants of regular
expressions you might need to use, the regular PHP functions, the Perl-compatible
regular expression functions and MySQL regular expression functions. The PHP
ereg(), eregi(), ereg_replace(), and eregi_replace() functions use the pat-
terns described here.

The Perl Compatible Regular Expressions (PCRE) are quite different in places,
and they offer some functionality that can’t be replicated with the standard ereg()
functions. After you have a good feel for regular expressions, you should probably
head over to this page to view some of the differences for yourself: http://www.
perl.com/pub/doc/manual/html/pod/perlre.html. The major PCRE functions
are preg_match(), preg_match_all(), and preg_replace().

Finally, there is another slight variant of the regular expressions used in MySQL,
which is described in Appendix I of the MySQL manual.

Literal Patterns
The simplest possible pattern match is to a series of known characters. For instance,
to match “jay” within a string, you could do this.

$str = “this is a string with my name: jay”;
if (ereg(“jay”, $str))
{

echo “pattern found”;
} 507

3537-4 AppF.f.qc 12/15/00 15:27 Page 507

else
{

echo “string not found”;
}

This will test true and print “pattern found”. However, with a simple string like this,
you wouldn’t need a regular expression. One of PHP’s string functions would work
and be a good deal faster. For example, in the preceding example, strstr($str,
“jay”) would work equally well.

Characters
In regular expressions you can make use of the following characters.

\n— Newline

\t— Tab

\r— Return

\f— Form feed

^ (Shift-6) — Start of string

$— End of string

. (dot) — Matches any non-newline character.

So if you needed to match the word “jay” at the end beginning of a string, you
could do this:

ereg(“^jay”, $str)

And if you wanted to make sure there was nothing before or after “jay” in the
string, you could do the following:

ereg(“^jay$”, $str)

Notice the meaning of the dot (.). It stands for any non-newline character. If you
wanted to print whatever four characters followed “jay” in a string, you could do
the following:

ereg(“jay(....)”, $str, $arr);
echo $arr[1];

508 Part V: Appendixes

3537-4 AppF.f.qc 12/15/00 15:27 Page 508

Note that the parentheses here represent a substring. When ereg() is processed
and there is a match, the array in the third argument will contain the entire
matched string (including substrings) in $arr[0], and each additional substring
indicated by parentheses will be assigned to an additional array element. So in the
preceding example, the four characters following “jay” will be in $arr[1].

The array created in the optional third argument of ereg() will always con-

tain 10 elements. The first element is the entire matched string. It can only

place nine matched substrings in the other array elements. If there are fewer

than 9 substrings indicated, those elements will be willed with empty strings.

Character Classes
Often you will need to see if a string contains a group of characters. For instance,
you may need to make sure that a single character or given set of characters is
alphanumeric or consists of a digit or digits. For this, you will make use of charac-
ter classes. You can make use of the built-in character classes or make your own.
The built-in character classes are surrounded by two sets of brackets. Character
classes of your own making will be surrounded by a single set of brackets.

Built-in character classes
[[:alpha:]]— Any letter, upper or lower case

[[:digit:]]— Digits (0-9)

[[:space:]]— Matches any whitespace character, including spaces, tabs,
newlines, returns, and form feeds

[[:upper:]]— Matches only uppercase letters

[[:lower:]]— Matches only lowercase letters

[[:punct:]]— Matches any punctuation mark

[[:xdigit:]]— Matches possible hexadecimal characters

For example, say you wanted to make sure a letter contained punctuation after
“Dear Sir or Madam” salutation.

ereg(“Madam[[:punct:]]”, $str);

NOTE

Appendix F: Regular Expressions Overview 509

3537-4 AppF.f.qc 12/15/00 15:27 Page 509

Note that if you use the carat symbol (^) within a character class it has the effect
of saying not. So, ereg(“Madam[^[:punct]]”, $str) would match only if Madam
is not followed by a punctuation mark.

The carat symbol can get confusing because it has two distinct meanings. At

the beginning of a regular expression it indicates the start of a string. So the

following regular expression will match only a string in which a digit is the

first character:

^[[:digit]]

But if the carat is not in the first position in the regular expression, it means

“not.” The following regular expression would match a string that does not

contain any digits.

[^[:digit:]]

And to put it all together, the following matches a string that starts with a

digit but has a second character that is not a digit.

^[[:digit:]][^[:digit:]]

Self-made character classes
Using brackets, you can construct your own character classes either by using
ranges of characters or by mixing characters of your choosing. Here are some typ-
ical ranges:

◆ a-z — Any lowercase letter

◆ A-Z — Any uppercase letter

◆ 0-9 — Any digit

Note that these are the ones you will see most frequently, but a range could con-
tain a-m or 0-4 if you wished.

These ranges must be put within brackets to become character classes. So

[a-zA-Z]

is identical to [[:alpha:]].
Self-made classes don’t have to contain a range; they can contain any characters

you wish.

[dog0-9]

NOTE

510 Part V: Appendixes

3537-4 AppF.f.qc 12/15/00 15:27 Page 510

This class will match the letters d, o, or g, or any digit.

$str=”drat”;
if(ereg(“^[dog0-9]”, $str))
{

echo “true”;
}else{

echo “false”;
}

This code will print “true”, because the first character in $str is in the class I’ve
defined. If we replaced the d in drat with a b, this code would print “false”.

If you need to include a hyphen within a class, the hyphen must be the final

character before the closing bracket of the class. For example [a-zA-Z-]

Multiple Occurrences
The real fun in regular expressions comes when you deal with multiple occurrences.
This is when the syntax starts getting a little thick. I’ll start by looking at three
commonly used special characters.

◆ * (asterisk) — Zero or more of the previous character

◆ +— One or more of the previous character

◆ ?— Zero or one of the previous character

Note that if you want to match any of these characters literally, you will need to
escape it with a backslash. So, for example, if you want to match the querystring of a
URL, say, http://www.mysqlphpapps.com/index.php?foo=mystring, you could
do the following:

\?.*$

The first two characters (\?) match the question mark character (?). Note that it
matches the literal question mark because it is escaped with a backslash. If it were
not escaped, the question mark would have the meaning given in the previous list-
ing. Then the dot matches any a non-newline character. The asterisk matches zero
or more of the pervious character. So the combination .* will match any number of
characters until a newline. You will see the .* combination frequently. The dollar

Tip

Appendix F: Regular Expressions Overview 511

3537-4 AppF.f.qc 12/15/00 15:27 Page 511

sign is the end of string character. So .*$ matches every non newline character to
the end of the string.

You would probably want to use a regular expression like the previous one if
you need to make use of the querystring in some other context

$str=”http://domain.com/index.php?foo=mystring&bar=otherstring”;
//see the use of the parenthesized substring
//this will assign the matched portion to $array[1]
if (ereg(“\?(.*)$”, $str, $array))
{

echo “The querystring is “, $array[1];

}

Now that you have the querystring in the variable $array[1], you do further pro-
cessing on it.

Before you incorporate this code into your script, note that you don’t have to.
You could use the Apache variable $QUERY_STRING or the PHP HTTP_GET_VARS
array.

Moving on, since the plus sign means one or more of the previous character,

[0-9]+

will match a single digit or multiple digits. In the following statement:

if (ereg(“jay[0-9]+”, $str))

jay1 will test true, but jayg will test false, jay2283092002909303 will test true because
it’s still “jay” followed by one or more numbers. Even, jay8393029jay will test true.

If you need to get more specific about the number of characters you need to
match, you can make use of curly braces.

◆ {3}— If there is a single digit within brackets, it indicates that you wish
to match exactly that number of the previous character. j{3} matches
only jjj.

◆ {3, 5}— If there are two digits, it indicates an upper and lower limit to
the matches of the previous character. j{3,5} will match jjj, jjjj, and
jjjjj only.

◆ {3, }— If there is a comma and there is no second integer, it will match
as many times or more of the previous character. So j{3, } will
match jjj, jjjj, or jjjjjjj, and so on.

512 Part V: Appendixes

3537-4 AppF.f.qc 12/15/00 15:27 Page 512

Specifying “Or”
If you want to specify one combination of characters or another, you need to make
use of the pipe character (|). Most often, you will use the pipe with parentheses,
which group portions of strings. If you wanted to match either jay or brad within a
string, you could use the following:

(jay|brad)

Or you might want to check that URLs had a suffix you were familiar with:

(com|org|edu)

Example Regular Expressions
This has been a pretty quick review of regular expressions. If you’re interested,
there have been entire books written on the subject. To get you more comfortable
with regular expressions, lets look at a practical example.

Say you want to write a regular expression that matches the contents of an href
attribute of an anchor tag. An example anchor looks something like this:

this is my link text

At first, you might tempted to look at this link and think all you need to do is
match everything after the href=” to the closing quotation mark. Something like this:

if (ereg(‘<a href=”(.*)”’, $anchor, $array))
{

echo $array[1];
}

However, you really can’t be sure that the href will immediately follow the <a;
there could be another attribute or perhaps a javascript event prior to the href. So
you’d need to account for that in your regular expression.

if (ereg(‘<a.*href=”(.*)”’, $anchor, $array))
{

echo $array[1];
}

Appendix F: Regular Expressions Overview 513

3537-4 AppF.f.qc 12/15/00 15:27 Page 513

We’ve seen anchor tags where a space existed prior to and following the equal
sign. So we need to account for occasions when the space exists and when it doesn’t.

if (ereg(‘<a.*href[[:space:]]?=[[:space:]]?”(.*)”’,
$anchor, $array))
{

echo $array[1];
}

Since the question mark character means “zero or one of the previous character”,
the pairing [[:space:]]? means there can be one whitespace character or none. If
you wanted to allow for more than one whitespace character, you could use
[[:space:]]+.

Finally, we need to deal with the actual contents of the href attribute. So far, we’ve
only accounted for cases where the link destination is delimited by double quotes. But
at the very least, we should account for delimiters of either double quotes or single
quotes. To do that, we’ll need to put double quotes and single quotes within a char-
acter class. Because we’ve surrounded the entire regular expression with single
quotes, we will need to escape single quotes within the regular expression with back-
slashes. The class will be [“\’].

if (ereg(‘<a.*href[[:space:]]?=[[:space:]]?[“\’](.*)[“\’]’,
$anchor, $array))

{
echo $array[1];

}

To be even more complete, the regular expression should account for cases when
no quotation mark at all is used to delimit value of the href. For example, browsers
are just fine with a tag like this: . In a case like this, it might
be a good idea to use the greater than sign to mark the end of the string. All you
would need to do is add the greater than sign to the last character class

if (ereg(‘<a.*href[[:space:]]?=[[:space:]]?[“\’]?(.*)[“\’>]’,
$anchor, $array))

{
echo $array[1];

}

However, this presents some problems that you may not have anticipated.
Imagine that this previous code is attempting to match this string: <a href = ../
my_link.php>this is my link text. When you add the greater than sign to
the character class, the regular expression will not match the first greater than
sign — it will match to the final greater than sign in the string. This is known as

514 Part V: Appendixes

3537-4 AppF.f.qc 12/15/00 15:27 Page 514

greedy matching, and using ereg() or ereg_replace() there is no way around
greedy matching.

In a circumstance when you need to match the first occasion of a character in a
string, you will need to make use of the PCRE functions. Using PCRE, the combination
.*? will match all characters until the first occasion of the character you indicated.
This series

.*?[“\’>]

will match everything until the first double quote, single quote or greater than sign.
With preg_match() the final function would look like this:

if
(preg_match(‘/<a.*href[[:space:]]?=[[:space:]]?[“\’]?(.*?)[“\’>]/i’,

$anchor, $array))
{

echo $array[1];
}

Appendix F: Regular Expressions Overview 515

3537-4 AppF.f.qc 12/15/00 15:27 Page 515

3537-4 AppF.f.qc 12/15/00 15:27 Page 516

Appendix G

Helpful User-Defined
Functions

THIS APPENDIX CONTAINS a series of PHP functions and classes that you might find
useful in creating your scripts. It will start with a run-through of the base functions
kept in the /book/functions folder.

Base Functions Set
Used in this Book
We discuss these in detail in Chapter 9, but we include them here for quick reference.

from functions/basic.php
These functions deal with authentication and text manipulation.

AUTHENTICATE()
This function sends a “401 Unauthorized” header. The default string is “Secure
Area”.

void authenticate ([string realm], [string error_message])

DB_AUTHENTICATE()
This function attempts to run 401-type authentication and verify the results
against a given database table. The default table is mysql.users. It makes calls to
authenticate() to send the 401 header.

void db_authenticate([string table [, string realm [, string error
message [, string username field name [, string password field
name]]]])

CLEANUP_TEXT()
This function removes HTML and PHP tags using the strip_tags() function and
replaces <, >, &, and “ characters with their HTML entities. If the second argument
is not empty, strip_tags will not be run and only the HTML entity replacement will
occur. The third argument can specify tags that should not be removed. 517

3537-4 AppG.f.qc 12/15/00 15:27 Page 517

string cleanup_text ([string value [, string preserve [, string
allowed_tags]]])

GET_ATTLIST()
This function uses the PHP function htmlspecialchars() to convert special HTML
characters in the first argument (&,”,’,<, and >) to their equivalent HTML entities. If
the optional second argument is empty, any HTML tags in the first argument will be
removed. The optional third argument lets you specify specific tags to be spared
from this cleansing. The format for the argument is “<tag1><tag2>”.

string get_attlist (array attributes,[array default attributes])

MAKE_PAGE_TITLE()
This function will clean up a string to make it suitable for use as the value of an
HTML <TITLE> tag, removing any HTML tags and replacing all HTML entities with
their literal character equivalents by using get_html_translation_table (HTML_
ENTITIES).

string make_page_title (string string)

MONEY()
This function will format the sole argument as a standard U.S. dollars value, round-
ing any decimal value two decimal places for cents and prepending a dollar sign to
the returned string. Commas will server as thousands separators.

string money ([mixed value])

STATES()
This function returns an associative array, the key being the two-letter abbreviation
of the states, the value being the state name.

array states(void)

from functions/db.php
These are common functions that will help work with MySQL databases.

DBCONNECT()
Creates a connection to a MySQL server and selects a database. Defaults are, from
left to right, “test”, “nobody”, “”, “localhost”. If the connection fails, an error mes-
sage prints and the script ends.

void dbconnect ([string database name [, string user name [, string
password [, string server name]]]])

518 Part V: Appendixes

3537-4 AppG.f.qc 12/15/00 15:27 Page 518

SAFE_QUERY()
This function will return a result identifier if a mysql query() runs successfully;
otherwise it will print the mysql_error() message, the error number, and the query
text of the query sent to the function.

int safe_query (string query)

SET_RESULT_VARIABLES () The sole argument of this function should be the
identifier returned as the result of a mysql_query() (or if you are using these func-
tions, safe_query()). The query should have returned only a single row. Each col-
umn returned for the row is turned into a global variable, with the column name
being the variable name and the result being the variable value.

void set_result_variables (int result identifier)
fetch_record()
int fetch_record (string table name, mixed key, mixed value)

This function will select values from the MySQL table specified by the first argu-
ment. If the optional second and third arguments are not empty, the select will get the
row from that table where the column named in the second argument has the value
given by the third argument. The second and third arguments may also be arrays, in
which case the query builds its where clause using the values of the second argument
array as the table column names and the corresponding values of the third argument
array as the required values for those table columns. If the second and third argu-
ments are not empty, the data from the first row returned (if any) are set to global
variables by the set_result_variables() function (described previously).

DB_VALUES_ARRAY() This function builds an associative array out of the values
in the MySQL table specified in the first argument. The data from the column
named in the second argument will be set to the keys of the array. If the third argu-
ment is not empty, the data from the column it names will be the values of the
array; otherwise, the values will be equal to the keys. If the third argument is not
empty, the data will be ordered by the column it names; otherwise, they will be
ordered by the key column. The optional fourth argument specifies any additional
qualification for the query against the database table; if it is empty, all rows in the
table will be retrieved.

If either the first or second argument is empty, no query is run and an empty
array is returned. The function presumes that whoever calls it knows what they’re
about, e.g., that the table exists, that all the column names are correct, etc.

array db_values_array ([string table name [, string value field [,
string label field [, string sort field [, string where clause]]]]])

Appendix G: Helpful User-Defined Functions 519

3537-4 AppG.f.qc 12/15/00 15:27 Page 519

from functions/html.php
These functions create common HTML elements, including anchors and unord-
ered lists.

FONT_TAG()
This function creates an HTML font tag. Default size is 2, default font face is sans-
serif. Any additional attributes in the third argument will be added to the tag. It is
expecting an associative array, the key of which will be the name of the attribute;
the value of the array element will be the attribute value.

string font_tag ([int size [, string typeface [, array
attributes]]])

ANCHOR_TAG()
This function creates an HTML anchor tag. The first argument is the href value, the
second is the string to be surrounded by the anchor. It is expecting an associative
array, the key of which will be the name of the attribute; the value of the array ele-
ment will be the attribute value.

string anchor_tag ([string href [, string text [, array
attributes]]])

IMAGE_TAG()
This function returns an HTML image tag (). The first argument gives the URL
of the image to be displayed. Additional attributes may be supplied as an array in
the third argument.

string image_tag ([string src [,array attributes]])

SUBTITLE()
This function returns an HTML <h3> tag. It is used for the titles of secondary areas
within pages in our examples. The reason to display these via a function, rather
than just literal <h3> tags, is to enable you to change the format of these subtitles
in one place, instead of in each script.

string subtitle(string string)

PARAGRAPH()
This function will return a string inside HTML paragraph (<p>) tags. Attributes for
the <p> tag may be supplied in the first argument. Any additional arguments will
be included inside the opening and closing <p> tags, separated by newlines.

string paragraph ([array attributes [, mixed ...]])

520 Part V: Appendixes

3537-4 AppG.f.qc 12/15/00 15:27 Page 520

UL_LIST()
This function returns an HTML unordered (bulleted) list (tags). If the argu-
ment is an array, then each value from the array will be included as a list item
() in the list. Otherwise, the argument will simply be included inside the
tags as is.

string ul_list(mixed values)

From functions/forms.php
These functions create all common form elements, as well as the opening and clos-
ing <form> tags.

START_FORM()
This function returns an HTML <form> tag. If the first argument is empty, the value
of the global Apache variable SCRIPT_NAME is used for the ‘action’ attribute of the
<form> tag. Other attributes for the form can be specified in the optional second
argument; the default method of the form is “post”. The behavior of this function on
servers other than Apache is not known. It’s likely that it will work, as SCRIPT_
NAME is part of the CGI 1.1 specification.

string start_form ([string action, [array attributes]])

END_FORM()
This function returns a closing form tag.

string end_form(void)

TEXT_FIELD()
Returns an HTML <input type=text> form element. Default size is 10.

string text_field ([string name [, string value [, int size [, int
maximum length]]]])

TEXTAREA_FIELD()
This function returns an HTML textarea field. The default size is 50 columns and 10
rows, and the default wrap mode is ‘soft’, which means no hard newline characters
will be inserted after line breaks in what the user types into the field. The alterna-
tive wrap mode is ‘hard’, which means that hard newlines will be inserted.

string textarea_field([string name [, string value [, int cols [,
int rows [, string wrap mode]]]]])

Appendix G: Helpful User-Defined Functions 521

3537-4 AppG.f.qc 12/15/00 15:27 Page 521

PASSWORD_FIELD()
This function returns an HTML password field. This is like a text field, but the value
of the field is obscured (only stars or bullets are visible for each character). The
default size of the field is 10. A starting value and maximum data length may be
supplied.

string password_field ([string name [, string value [, int size [,
int maximum length]]]])

HIDDEN_FIELD()
This function returns an HTML hidden form element. A name and value may be
supplied.

string hidden_field ([string name [, string value]])

FILE_FIELD()
This function returns an HTML file field form element.

string file_field([string name])

This function returns an HTML file field. These are used to specify files on the
user’s local hard drive, typically for uploading as part of the form. (See http://
www.zend.com/manual/features.file-upload.php for more information about
this subject.)

SUBMIT_FIELD()
This function returns an HTML submit field. The value of the field will be the string
displayed by the button displayed by the user’s browser. The default value is
“Submit”.

string submit_field ([string name [, string value]])

IMAGE_FIELD()
This function returns an HTML image field. An image field works likes a submit
field, except that the image specified by the URL given in the second argument is
displayed instead of a button.

string image_field ([string name [, string src [, string value]]])

RESET_FIELD()
This function returns an HTML reset form element.

string reset_field ([string name, [string value]])

522 Part V: Appendixes

3537-4 AppG.f.qc 12/15/00 15:27 Page 522

CHECKBOX_FIELD()
This function returns an HTML checkbox field. The optional third argument will be
included immediately after the checkbox field, and the pair is included inside an
HTML <nobr> tag — meaning that they will be displayed together on the same line.
If the value of the second or third argument matches that of the fourth argument,
the checkbox will be ‘checked’ (i.e., flipped on).

string checkbox_field ([string name [, string value [, string label
[, string match]]]])

RADIO_FIELD()
This function returns an HTML radio button field. The optional third argument will
be included immediately after the radio button, and the pair is included inside an
HTML <nobr> tag — meaning that they will be displayed together on the same line.
If the value of the second or third argument matches that of the fourth argument,
the radio button will be ‘checked’ (i.e., flipped on).

string radio_field ([string name [, string value [, string label [,
string match]]]])

SELECT_FIELD()
This function returns an HTML select field (a popup field). If the optional second
argument is an array, each key in the array will be set to the value of an option of
the select field, and the corresponding value from the array will be the displayed
string for that option. If the key or the value from the array matches the optional
third argument, that option will be designated as the default value of the select
field.

string select_field ([string name [, array items [, string default
value]]])

DB_SELECT_FIELD()
This function returns an HTML select field (popup field), based on the values in the
MySQL database table specified by the second argument, as returned by the
db_values_array() function (defined previously).

string db_select_field ([string name [, string table name [, string
value field [, string label field [, string sort field [, string
match text [, string where clause]]]]]]])

DB_RADIO_FIELD()
This function returns a list of HTML radio button fields, separated by a non-
breaking space HTML entity () and a newline, based on the values in
the MySQL database table named by the second argument, as returned by the
db_values_array() function (defined previously).

Appendix G: Helpful User-Defined Functions 523

3537-4 AppG.f.qc 12/15/00 15:27 Page 523

string db_radio_field (string name, string table name, string value
field, string label field, string sort field, [string match text],
[string where clause])

From functions/tables.php
These functions create opening and closing <table> tags, as well as <tr> and
<td> tags.

START_TABLE()
This function returns an opening HTML <table> tag, inside an opening paragraph
(<p>) tag. Attributes for the table may be supplied as an array.

string start_table([array attributes])

END_TABLE()
This function returns a closing table tag.

string end_table(void)

TABLE_ROW()
This function returns an HTML table row (<tr>) tag, enclosing a variable number of
table cell (<td>) tags. If any of the arguments to the function is an array, it will be
used as attributes for the <tr> tag. All other arguments will be used as values for
the cells of the row. If an argument begins with a <td> tag, the argument is added
to the row as is. Otherwise it is passed to the table_cell() function and the result-
ing string is added to the row.

string table_row ([array attributes], [indefinite number of string
arguments])

TABLE_CELL()
This function returns an HTML table cell (<td>) tag. The first argument will be used
as the value of the tag. Attributes for the <td> tag may be supplied as an array in
the second argument. By default, the table cell will be aligned left horizontally, and
to the top vertically.

string table_cell ([string value [, array attributes]])

524 Part V: Appendixes

3537-4 AppG.f.qc 12/15/00 15:27 Page 524

Additional Functions Not
Used in this Book
Here are a couple of functions that may make dealing with common queries a bit
easier.

insert_row()
This is a generic function to run SQL insert statements.

function insert_row($table=””, $atts=””)
{

if(empty($table) || !is_array($atts))
{

return False;
}
else
{

while (list ($col, $val) = each ($atts))
{

//if null go to the next array item
if ($val==””)
{

continue;
}
$col_str .= $col . “,”;
if (is_int($val) || is_double ($val))
{

$val_str .= $val . “,”;
}
else
{
$val_str .= “‘$val’,”;
}

}
$query = “insert into $table

($col_str)
values($val_str)”;

//trim trailing comma from both strings
$query = str_replace(“,)”, “)”, $query);

}
safe_query($query);

return mysql_affected_rows();
}

Appendix G: Helpful User-Defined Functions 525

3537-4 AppG.f.qc 12/15/00 15:27 Page 525

This function takes two attributes: the first is the table name and the second
should be an associative array, with the key being the column name and the value
being the value to be inserted. Single quotes that should surround a string are will
be included if the variable is not an integer or a double. The function returns FALSE
if the query fails to perform an action. It will not work in all circumstances, because
it doesn’t check for the column type from the database. But it could be nice for cre-
ating pages quickly.

Empty values in the array are not added to the query. For columns left out of the
query, MySQL will insert either null values or empty strings, depending on whether
or not the column allows nulls.

Note that you can create the associative array from a set of variables using the
compact() function. For example, the following will create an associative array
named $array, and then insert a row into a table named mytable. It’s assumed that
you will have already connected to the database

$category=””;
$category_id=6;
$category_name=”my category”;
$array=compact(“category”, “category_id”, “category_name”);
if (!insert_row(“mytable”, $array))
{

echo “insert failed”;
}

update_row()
The function will SQL update statements

function update_row($table=””, $atts=””, $where=””)
{

if(empty($table) || !is_array($atts))
{

return FALSE;
}
else
{

while(list ($col, $val) = each ($atts))
{

if ($val==””)
{

continue;
}
if(is_int($val) || is_double($val))
{

526 Part V: Appendixes

3537-4 AppG.f.qc 12/15/00 15:27 Page 526

$str .= “$col=$val,”;
}
elseif($val==”NULL” || $val==”null”)
{

$str .= “$col=NULL,”;
}
else
{

$str .= “$col=’$val’,”;
}

}
}
$str = substr($str, 0, -1);
$query = “update $table set $str”;
if (!empty($where))
{

$query .= “ where $where”;
}
mysql_query($query) or

die (mysql_error());
return mysql_affected_rows();

}

This function takes three arguments: $table, a string; $atts, an associative
array containing keys of column names and values of values to be inserted; and
$where, which is the condition, for example (column_id = 1).

Again, this is not robust enough to work in all circumstances.

delete_row()
This function takes two arguments: $table, the table name, and $where, the value
in the where clause. It returns false on failure or 0 if nothing was deleted.

function delete_row($table=””, $where=””)
{

if (empty($table) || empty($where))
{

return FALSE;
}
$query = “delete from $table where $where”;
mysql_query($query) or die (mysql_error());
return mysql_affected_rows();

}

Appendix G: Helpful User-Defined Functions 527

3537-4 AppG.f.qc 12/15/00 15:27 Page 527

Function select_to_table()
This function takes a query and lays it out in a simple HTML table. It assumes that
a database connection has already been made.

function select_to_table($query)
{

$result=mysql_query($query);
$number_cols = mysql_num_fields($result);
echo “query: $query”;
//layout table header
echo “<table border = 1>\n”;
echo “<tr align=center>\n”;
for ($i=0; $i<$number_cols; $i++)
{

echo “<th>” . mysql_field_name($result, $i). “</th>\n”;
}
echo “</tr>\n”;//end table header
//layout table body
while ($row = mysql_fetch_row($result))
{

echo “<tr align=left>\n”;
for ($i=0; $i<$number_cols; $i++)
{
echo “<td>”;

if (!isset($row[$i])) //test for null value
{
echo “NULL”;

}
else
{
echo $row[$i];

}
echo “</td>\n”;

} echo “</tr>\n”;
} echo “</table>”;
}

enum_to_array()
This functions returns the values defined in an enum field into an array.

function enum_to_array($table=””, $col = “”)
{

if (empty($table) || empty($col))

528 Part V: Appendixes

3537-4 AppG.f.qc 12/15/00 15:27 Page 528

{ return False; }
else
{

$query = “describe $table $col”;
$result = mysql_query($query);
list(, $col) = mysql_fetch_array($result);
echo $col;
if (substr($col, 0, 4) != “enum”)
{

return FALSE;
}
$col = str_replace (“‘“,”” ,

substr($col, 5, -1)
);
$col = explode(“,”, $col);

}
return $col;

}

You can use the enum field type in MySQL to limit possible values in a column.
This might be helpful for restricting column values to Y or N, for example. But to
get at these values in PHP, you need to run one of the MySQL queries that retrieve
column information. In the preceding example I use the describe query, and I
assume that the column of interest will be included in the query.

The query returns 6 columns. In order, they are: Field, Type, Null, Key, Default,
and Extra. The second, Type, contains the column type — something like
enum(‘yes’,’no’). In the preceding function, this value is assigned to $col. That
string can then be stripped of the extraneous parentheses and the letters enum. The
remainder is exploded into an array.

You can then use the array however you wish, perhaps in a drop-down box.

Session handling with MySQL
If you wish to use these, set your session.save_handler to user in your php.ini. This
set of functions is intended to work with a table that looks something like this:

create table sessions(
session_id char(32) not null primary key,
sess_data text,
last_update timestamp

function mysql_session_open()
{

mysql_pconnect(“localhost”, “root”, “”)
or die (mysql_error());

$db_sess = mysql_select_db(“test”)

Appendix G: Helpful User-Defined Functions 529

3537-4 AppG.f.qc 12/15/00 15:27 Page 529

or die (mysql_error());
}

//this function receives the session_id as the only argument
function mysql_session_read($id)
{

$data = “”;
$query = “select sess_data from sessions

where session_id = ‘$id’”;
$result= mysql_query($query) or die (mysql_error());
if ($row = mysql_fetch_row($result))
{

$data=session_decode($row[0]);
}
return $data;

}

//this takes the sessionid and the sesssion data
//as arguments
function mysql_session_write($id, $data)
{

$data = session_encode($data);
$query = “replace into sessions (session_id, sess_data)

values (‘$id’, ‘$data’)”;
mysql_query($query) or

die(mysql_error());
return true;

}

function mysql_session_close()
{

return true;
}

//takes only the session id for an argument
function mysql_session_destroy($id)
{

$query = “delete from sessions where session_id = ‘$id’”;
mysql_query($query) or

die (mysql_error());
return true;

}

530 Part V: Appendixes

3537-4 AppG.f.qc 12/15/00 15:27 Page 530

//this function receives the maximum lifetime setting
//from php.ini. It is by default set to 1440 seconds.
//the session.gc_probability setting in the php.ini determines
//what percentage of the time this function will run.
function mysql_session_gc($time)
{

$query = “delete from sessions where
last_update < (subdate(now(),
INTERVAL $time SECOND))”;

mysql_query($query) or
die (mysql_error())_;

}
session_set_save_handler(

“mysql_session_open”,
“mysql_session_close”,
“mysql_session_read”,
“mysql_session_write”,
“mysql_session_destroy”,
“mysql_session_gc”

);

MySQL Backup
Dan Nedoborski wrote this script, which I planned on including. However, it is a bit
lengthy for printed form. I recommend you go to his site and take a look for yourself.

http://www.ov-m.com/mysqlphpbak/

Validation
Here are a couple of the trickier items to validate properties.

E-mail validation
There are a lot of simple regular expressions to make sure a string more or less
resembles the format of a proper e-mail address, but if you want something that is
a bit more thorough, try this. It may not be entirely RFC-compliant, but it is pretty
close. It is included in the /book/functions folder.

#CheckEmail
#
#mailbox = addr-spec ; simple address
/ phrase route-addr ; name & addr-spec

Appendix G: Helpful User-Defined Functions 531

3537-4 AppG.f.qc 12/15/00 15:27 Page 531

#
#route-addr = “<” [route] addr-spec “>”
#
#route = 1#(“@” domain) “:” ; path-relative
#
#addr-spec = local-part “@” domain ; global address
#
#local-part = word *(“.” word) ; uninterpreted
; case-preserved
#
#domain = sub-domain *(“.” sub-domain)
#
#sub-domain = domain-ref / domain-literal
#
#domain-ref = atom ; symbolic reference
#
#atom = 1*<any CHAR except specials, SPACE and CTLs>
#
#specials = “(“ / “)” / “<” / “>” / “@” ; Must be in quoted-
/ “,” / “;” / “:” / “\” / <”> ; string, to use
/ “.” / “[“ / “]” ; within a word.
#
; (Octal, Decimal.)
#CHAR = <any ASCII character> ; (0-177, 0.-127.)
#ALPHA = <any ASCII alphabetic character>
; (101-132, 65.- 90.)
; (141-172, 97.-122.)
#DIGIT = <any ASCII decimal digit> ; (60- 71, 48.- 57.)
#CTL = <any ASCII control ; (0- 37, 0.- 31.)
character and DEL> ; (177, 127.)
#CR = <ASCII CR, carriage return> ; (15, 13.)
#LF = <ASCII LF, linefeed> ; (12, 10.)
#SPACE = <ASCII SP, space> ; (40, 32.)
#HTAB = <ASCII HT, horizontal-tab> ; (11, 9.)
#<”> = <ASCII quote mark> ; (42, 34.)
#CRLF = CR LF
#
#LWSP-char = SPACE / HTAB ; semantics = SPACE
#
#linear-white-space = 1*([CRLF] LWSP-char) ; semantics = SPACE
; CRLF => folding
#
#delimiters = specials / linear-white-space / comment
#
#text = <any CHAR, including bare ; => atoms, specials,

532 Part V: Appendixes

3537-4 AppG.f.qc 12/15/00 15:27 Page 532

CR & bare LF, but NOT ; comments and
including CRLF> ; quoted-strings are
; NOT recognized.
#
#quoted-string = <”> *(qtext/quoted-pair) <”>; Regular qtext or
; quoted chars.
#
#qtext = <any CHAR excepting <”>, ; => may be folded
“\” & CR, and including
linear-white-space>
#
#domain-literal = “[“ *(dtext / quoted-pair) “]”
#
#
#
#
#dtext = <any CHAR excluding “[“, ; => may be folded
“]”, “\” & CR, & including
linear-white-space>
#
#comment = “(“ *(ctext / quoted-pair / comment) “)”
#
#ctext = <any CHAR excluding “(“, ; => may be folded
“)”, “\” & CR, & including
linear-white-space>
#
#quoted-pair = “\” CHAR ; may quote any char
#
#phrase = 1*word ; Sequence of words
#
#word = atom / quoted-string
#

#mailbox = addr-spec ; simple address
/ phrase route-addr ; name & addr-spec
#route-addr = “<” [route] addr-spec “>”
#route = 1#(“@” domain) “:” ; path-relative
#addr-spec = local-part “@” domain ; global address

#validate_email(“insight\@bedrijfsnet.nl”);

function print_validate_email ($eaddr=””)
{

$result = validate_email($eaddr) ? “is valid” : “is not valid”;
print “<h4>email address (“.htmlspecialchars($eaddr).”)

Appendix G: Helpful User-Defined Functions 533

3537-4 AppG.f.qc 12/15/00 15:27 Page 533

$result</h4>\n”;
}

function validate_email ($eaddr=””)
{

if (empty($eaddr))
{

#print “[$eaddr] is not valid\n”;
return false;

}
$laddr = “”;
$laddr = $eaddr;

if the addr-spec is in a route-addr, strip away the phrase and <>s

$laddr = preg_replace(‘/^.*</’,’’, $laddr);
$laddr = preg_replace(‘/>.*$/’,’’,$laddr);
if (preg_match(‘/^\@.*:/’,$laddr)) #path-relative domain
{

list($domain,$addr_spec) = preg_split(‘/:/’,$laddr);
$domain = preg_replace(‘/^\@/’,’’,$domain);
if (!is_domain($domain)) { return false; }
$laddr = $addr_spec;

}
return(is_addr_spec($laddr));

}

function is_addr_spec ($eaddr = “”)
{

list($local_part,$domain) = preg_split(‘/\@/’,$eaddr);
if (!is_local_part($local_part) || !is_domain($domain))
{

#print “[$eaddr] is not valid\n”;
return false;

}
else
{

#print “[$eaddr] is valid\n”;
return true;

}
}

#local-part = word *(“.” word) ; uninterpreted
function is_local_part ($local_part = “”)

534 Part V: Appendixes

3537-4 AppG.f.qc 12/15/00 15:27 Page 534

{
if (empty($local_part)) { return false; }

$bit_array = preg_split(‘/\./’,$local_part);
while (list(,$bit) = each($bit_array))
{

if (!is_word($bit)) { return false; }
}
return true;

}

#word = atom / quoted-string
#quoted-string = <”> *(qtext/quoted-pair) <”>; Regular qtext or
; quoted chars.
#qtext = <any CHAR excepting <”>, ; => may be folded
“\” & CR, and including
linear-white-space>
#quoted-pair = “\” CHAR ; may quote any char
function is_word ($word = “”)
{

if (preg_match(‘/^”.*”$/i’,$word))
{

return(is_quoted_string($word));
}
return(is_atom($word));

}

function is_quoted_string ($word = “”)
{

$word = preg_replace(‘/^”/’,’’,$word); # remove leading quote
$word = preg_replace(‘/”$/’,’’,$word); # remove trailing

quote
$word = preg_replace(‘/\\+/’,’’,$word); # remove any quoted-

pairs
if (preg_match(‘/\”\\\r/’,$word)) # if “, \ or CR, it’s bad

qtext
{

return false;
}
return true;

}

#atom = 1*<any CHAR except specials, SPACE and CTLs>

Appendix G: Helpful User-Defined Functions 535

3537-4 AppG.f.qc 12/15/00 15:27 Page 535

#specials = “(“ / “)” / “<” / “>” / “@” ; Must be in quoted-
/ “,” / “;” / “:” / “\” / <”> ; string, to use
/ “.” / “[“ / “]” ; within a word.
#SPACE = <ASCII SP, space> ; (40, 32.)
#CTL = <any ASCII control ; (0- 37, 0.- 31.)
character and DEL> ; (177, 127.)
function is_atom ($atom = “”)
{

if (
(preg_match(‘/[\(\)\<\>\@\,\;\:\\\”\.\[\]]/’,$atom)) #

specials
|| (preg_match(‘/\040/’,$atom)) # SPACE
|| (preg_match(‘/[\x00-\x1F]/’,$atom)) # CTLs

)
{

return false;
}
return true;

}

#domain = sub-domain *(“.” sub-domain)
#sub-domain = domain-ref / domain-literal
#domain-ref = atom ; symbolic reference
function is_domain ($domain = “”)
{

if (empty($domain)) { return false; }

this is not strictly required, but is 99% likely sign of a bad
domain

if (!preg_match(‘/\./’,$domain)) { return false; }

$dbit_array = preg_split(‘/./’,$domain);
while (list(,$dbit) = each($dbit_array))
{

if (!is_sub_domain($dbit)) { return false; }
}
return true;

}
function is_sub_domain ($subd = “”)
{

if (preg_match(‘/^\[.*\]$/’,$subd)) #domain-literal
{

536 Part V: Appendixes

3537-4 AppG.f.qc 12/15/00 15:27 Page 536

return(is_domain_literal($subd));
}
return(is_atom($subd));

}
#domain-literal = “[“ *(dtext / quoted-pair) “]”
#dtext = <any CHAR excluding “[“, ; => may be folded
“]”, “\” & CR, & including
linear-white-space>
#quoted-pair = “\” CHAR ; may quote any char
function is_domain_literal ($dom = “”)
{

$dom = preg_replace(‘/\\+/’,’’,$dom); # remove quoted
pairs

if (preg_match(‘/[\[\]\\\r]/’,$dom)) # bad dtext characters
{

return false;
}
return true;

}

?>

You would probably want to put all of these functions in one file and then
include it when needed. It returns 1 (for true) or nothing (for false). You’d probably
want to use it like so:

if (!validate_email(“myaddress@mydomain.com”))
{

echo “this is not a valid email”;
}

Credit-card validation
Here’s the credit-card validator we used in Chapter 14. You can find it in /book/
cart/ccval.php.

/*
**
*
* CCVal - Credit Card Validation function.
*
* Copyright (c) 1999 Holotech Enterprises. All rights reserved.
* You may freely modify and use this function for
* your own purposes.You may freely distribute it, without
* modification and with this notice and entire header intact.

Appendix G: Helpful User-Defined Functions 537

3537-4 AppG.f.qc 12/15/00 15:27 Page 537

* This function accepts a credit card number and, optionally,
* a code for a credit card name. If a Name code is specified,
* the number is checked against card-specific criteria, then
* validated with the Luhn Mod 10 formula. Otherwise it is only
* checked against the formula. Valid name codes are:
*
* mcd - Master Card
* vis - Visa
* amx - American Express
* dsc - Discover
* dnc - Diners Club
* jcb - JCB
*
* A description of the criteria used in this function
* can be found at
* http://www.beachnet.com/~hstiles/cardtype.html.
* If you have any
* questions or comments, please direct them to
* ccval@holotech.net
* Alan Little
* Holotech Enterprises
* http://www.holotech.net/
* September 1999
*
**
/

function CCVal($Num, $Name = ‘n/a’)
{

// You can’t get money from an empty card
if (empty($Num)) { return FALSE; }

// Innocent until proven guilty
$GoodCard = TRUE;

//print “<h4>pre-code: GoodCard is “.($GoodCard ? “TRUE” :
“FALSE”).”</h4>\n”;

// Get rid of any non-digits
$Num = ereg_replace(“[^[:digit:]]”, “”, $Num);

// Perform card-specific checks, if applicable
switch ($Name)
{

538 Part V: Appendixes

3537-4 AppG.f.qc 12/15/00 15:27 Page 538

case “mcd” :
$GoodCard = ereg(“^5[1-5].{14}$”, $Num);
break;

case “vis” :
$GoodCard = ereg(“^4.{15}$|^4.{12}$”, $Num);
break;

case “amx” :
$GoodCard = ereg(“^3[47].{13}$”, $Num);
break;

case “dsc” :
$GoodCard = ereg(“^6011.{12}$”, $Num);
break;

case “dnc” :
$GoodCard = ereg(“^30[0-5].{11}$|^3[68].{12}$”, $Num);
break;

case “jcb” :
$GoodCard = ereg(“^3.{15}$|^2131|1800.{11}$”, $Num);
break;

}
//print “<h4>pre-luhn: GoodCard is “.($GoodCard ? “TRUE” :
“FALSE”).”</h4>\n”;

// The Luhn formula works right to left, so reverse the number.
$Num = strrev($Num);

$Total = 0;

for ($x=0; $x<strlen($Num); $x++)
{
$digit = substr($Num,$x,1);

// If it’s an odd digit, double it
if ($x/2 != floor($x/2))
{

$digit *= 2;

// If the result is two digits, add them
if (strlen($digit) == 2)
{

$digit = substr($digit,0,1)

Appendix G: Helpful User-Defined Functions 539

3537-4 AppG.f.qc 12/15/00 15:27 Page 539

+ substr($digit,1,1)
;

}
}

// Add the current digit, doubled and added if applicable, to the
Total

$Total += $digit;
}

// If it passed (or bypassed) the card-specific check and the Total
is
// evenly divisible by 10, it’s cool!
//print “<h4>post-luhn: Total = $Total</h4>\n”;

if ($GoodCard && $Total % 10 == 0) return TRUE; else return
FALSE;

}

?> recurse_directory
I wrote the following to help me take a look at all the documents installed on my
Web server. It will print every document and provide a link to these documents.

function recurse_directory($path=””)
{

global $DOCUMENT_ROOT, $HTTP_HOST
if (empty($path)) {$path = $DOCUMENT_ROOT;}
if(!is_dir($path))
{

return FALSE;
}

$dir = opendir($path);
echo “”;
while ($file = readdir($dir))
{

if ($file != “.” && $file != “..”)
{

if (is_dir($path . “/” .$file))
{

540 Part V: Appendixes

3537-4 AppG.f.qc 12/15/00 15:27 Page 540

echo “$file”;
recurse_directory($path . “/” . $file, $base_url,

$path);
}
else
{

$url = “http://$HTTP_HOST/$path/$file”;
$url = str_replace(“$DOCUMENT_ROOT”, “”, $url);
echo “ $file”;

}
}

}
echo “”;

}
recurse_directory();
?>

Appendix G: Helpful User-Defined Functions 541

3537-4 AppG.f.qc 12/15/00 15:27 Page 541

3537-4 AppG.f.qc 12/15/00 15:27 Page 542

Appendix H

PHP and MySQL Resources
THIS APPENDIX PRESENTS SOME resources that should be extremely useful in increasing
your knowledge of both PHP and MySQL.

PHP Resources
Here are some sights that are great for all things PHP.

PHP site
This site, located at http://php.net, along with its many international mirrors,
should be your home away from home. From the home page, you can search the
manual or one of the many mailing lists. Among the many helpful resources are:

◆ PHP Annotated Manual — (http://www.php.net/manual/) The online
manual is really terrific; it includes user comments, some of which clarify
the use of some of the trickier functions in PHP.

◆ Downloads — (http://www.php.net/downloads) Here you can find
not only the various distributions, but an HTML manual that you can
download and put on your local machine.

◆ Daily snapshots — (http://snaps.php.net) PHP is an active open-source
project, and features and bug fixes are constantly added to the code base.
Prior to official releases, you can get the most up-to-date code here.
Source code is updated daily. Note this is best for the true hacker with a
box devoted to development. If you have room for only one installation,
get the most recent source code. A link to the most recent source is always
on the home page of http://www.php.net/.

◆ Bug database — (http://bugs.php.net) Wondering if there is a problem
with a function? Head over to this site to search through the bug reports.
This is also a place where you can add bug reports. But be very sure that
you’ve found a bug before submitting a report.

◆ FAQ: (http://www.php.net/FAQ.php) Before you post to any mailing list
or start writing an application, read the FAQ.

543

3537-4 AppH.f.qc 12/15/00 15:27 Page 543

PHP mailing lists
One of the great things about the Web, and about open source projects in particular,
is the quality of the advice available on the mailing lists. There are many lists, cover-
ing many specific topics. The ones discussed in this section are all part of php.net
and use the lists.php.net mail domain. You can subscribe to any of these lists on
http://www.php.net/support.php, and they are all archived at http://marc.
theaimsgroup.com/. The core developers do monitor the list, and respond to ques-
tions and complaints.

If you want to keep up with the goings-on of any of the lists but would

rather not stuff up your mail box, you can also get to these mailing lists via a

newsgroup reader. Just connect to news.php.net.

◆ PHP General — This is the generic support area. Over the course of a
typical day over 100 e-mails are posted to this list. It is amazingly
helpful, even if you don’t have an interest in posting questions or
supplying answers. Your comrades have some interesting techniques
and knowledge, which they share daily.

Please practice good etiquette in posting to the mailing lists.First check one of

the searchable archives to make sure your question is something resembling

unique. And please, read the FAQ

◆ Database List — This one is a natural for most everyone reading this book.

◆ Installation List — If you are having problems getting PHP installed on
your box, this is the place to go.

Zend.com
At the core of the PHP is the Zend engine. This engine was built by Zeev Suraski
and Andi Gutmans. Their work is now the basis for a company that is offering
products that make PHP even more powerful. By the time you are reading this
book, it is likely that Zend products will include a cache, which could really
increase speed, an optimizer, which could help make badly written code run faster,
a compiler, which would make PHP unreadable (this is great if you’re planning on
distributing code that you would rather not be open source), and an Integrated
Development Environment. And who wouldn’t want that?

Tip

NOTE

544 Part V: Appendixes

3537-4 AppH.f.qc 12/15/00 15:27 Page 544

The Zend.com site includes some valuable resources:

◆ Change list (http://zend.com/zend/list_change_4.php) — Keep up on
the evolution of PHP 4 here.

◆ Code gallery (http://zend.com/codex.php) — This is one of the better
code galleries out there. Browse and see if there are functions that will
make your life easier.

◆ Applications (http://zend.com/apps.php) — What? What you have here
isn’t enough?

◆ Tutorials (http://zend.com/zend/tut/) — Zend has a growing number
of very informative tutorials that cover a variety of topics.

PHPBuilder.com
PHPbuilder is without question one of the best resources for PHP developers. Tim
Perdue, who runs PHPbuilder, has a built a great base of articles that cover topics that
include databases, cascading stylesheets, and other topics of interest to developers
who work in the Web environment.

PHPbuilder also has discussion boards, job boards, and a code library. It is really
worth checking with frequently.

PHPwizard.com
Earlier in the book, we recommended the phpmyadmin, a PHP tool for Web-based
administration of MySQL. There are several other useful tools from Tobias Ratschiller
and Till Gerken. Additionally, from their site you can find other great applications,
including a Web-based administrative interface to PostGres, a Web-based e-mail
client, and an add rotation application. There’s a bunch of other good stuff available
on their site as well.

phpmyadmin is included on the CD-ROM that accompanies this book.

PEAR
PEAR stands for the PHP Extension and Application Repository. It is a set of code
being written by some very skilled programmers who are trying to come up with a
common set of well-written extensions the rest of us can incorporate into our own
PHP applications. Stig Bakken, one of the core developers, is heading up the project.

ON THE CD

Appendix H: PHP and MySQL Resources 545

3537-4 AppH.f.qc 12/15/00 15:27 Page 545

At this point the only place to find PEAR code is the /pear directory of your PHP
installation. As of the writing of this book, there were several components in PEAR,
most of which were still undergoing quite a bit of work. There is a database
abstraction layer, an XML processing class, and some code for directory searching.
I suggest you browse the documentation in your own installation, and every now
and then look in on the latest goings-on at snaps.php.net.

PHPclasses
A Portuguese programmer named Manual Lemos is among the most prolific
PHP coders on the planet, and—God bless him—he shares his code at http://
phpclasses.upperdesign.com. In fact, PHPclasses is now a code repository for any-
one who has classes to share with the PHP world. The following are of particular note:

◆ Manual’s Form Processing Class. This class provides a uniform method for
creating and validating forms. It accounts for about every type of validation
imaginable.

◆ Metabase — This is a very complete database abstraction layer.

◆ Mail Class. This class came to our attention too late to include on the CD.
Word is, this makes the sending of e-mail with attachments quite a bit easier.

Both Manual’s Form Processing Class and Metabase are included on this

book’s CD-ROM.

PHP base library
The PHP base library has a fairly large user base — and it’s no wonder. It’s a very
nice set of tools that you can easily add to your PHP system. Many people origi-
nally used this library because it was the easiest way to use Sessions in PHP3. Now,
I would recommend using PHP’s built-in session functions. But even so, there are
authorization routines, user administration functions, and a template class that
could save you some coding time.

http://phplib.netuse.de/

Binarycloud
The folks at Binarycloud are working on creating a common code base to help with
rapid development of PHP applications. So far (as of September 2000) there isn’t a
lot of code to review. But their documentation looks really promising. I’d recom-
mend checking in on http://www.binarycloud.com to see what they’re up to.

ON THE CD

546 Part V: Appendixes

3537-4 AppH.f.qc 12/15/00 15:27 Page 546

Midgard
The Midgard project is building a content management system with PHP and
MySQL. If you need content management, this is definitely worth a look: http://
www.midgard-project.com. Or you can just work on the application we created in
Chapter 12.

Phorum
Phorum.org has an excellent discussion server written in PHP and MySQL. You may
want to compare it to the Application in Chapter 11.

Weberdev
Of the many Web development sites that have PHP articles, tutorials and code,
Weberdev.com is among the most extensive: http://www.weberdev.com/.

Webmonkey
Both Brad and Jay have worked at Webmonkey. Jay is a former producer of the site,
and Brad has written several articles. Check out its PHP-related material at http://
hotwired.lycos.com/webmonkey/programming/php/.

Heyes Computing
Richard Heyes has created some pretty cool scripts. Take a look: http://www.
heyes-computing.net/scripts/index.html.

MySQL Resources
There’s no shortage of resources here either. I’ve mentioned mainly Web-based
resources in this appendix; however, there is one hard-copy MySQL resource that I
must mention. If this book hasn’t covered enough of MySQL for your needs, get
Paul Dubois’ MySQL (New Riders, ISBN: 0-7357-0921-1). It is an excellent book.

MySQL.com
Predictably, this is probably the best place to find answers to any questions you might
have about MySQL. Some specific portions of the site are worth particular note:

◆ Downloads (http://www.mysql.com/downloads/) — This is the place to
find the latest version of MySQL in all the popular formats, including
rpms, source code, and Windows binaries.

Appendix H: PHP and MySQL Resources 547

3537-4 AppH.f.qc 12/15/00 15:27 Page 547

◆ Contributions (http://www.mysql.com/downloads/contrib.html) —
A lot of developers have put together tools that you might be able to
use when working with MySQL. Of these, the GUI clients are particularly
interesting.

◆ Documentation (http://www.mysql.com/documentation/) — The online
manual for MySQL is pretty good, and covers many things that this book
did not. Chapter 7, the language reference, should be bookmarked on
your browser.

Both PHP and MySQL have downloadable HTML manuals. I keep them on

my local machine so I don’t have to connect to the Web every time I have

a question.

Mailing lists
The MySQL mailing list is monitored by many of the core developers. If you have a
concern about the product and post it on the mailing list, someone who is working
on the product itself will surely see it. In addition, they’re really a very nice bunch
of guys. Information about subscribing to any of the mailing lists can be found
here: http://www.mysql.com/documentation/lists.html. A searchable archive
of the mailing lists can be found here: http://lists.mysql.com.

General Client-Side Resources
Here are a few of the sites we the authors find ourselves returning to frequently.

Character entity reference
About the most comprehensive list we know of is found here: http://www.
hclrss.demon.co.uk/demos/ent4_frame.html.

Netscape’s tag reference
If you are still dealing with the mess that is Netscape 4, this tag reference should be
of some assistance: http://developer.netscape.com/docs/manuals/htmlguid/
contents.htm.

Tip

548 Part V: Appendixes

3537-4 AppH.f.qc 12/15/00 15:27 Page 548

CSS reference
CSS is very cool, but still kind of a pain to work with. This chart, compiled by Eric
Meyer, is the most complete one of its kind: http://webreview.com/wr/pub/
guides/style/mastergrid.html.

Apache References
Apache will likely be your Web server, and when you are new to it, it can be tricky.

Apache.org
This is the home site for the Apache Software Foundation, which now includes
many interesting projects. In particular, there are some very cool things happening
in the XML space. Apache can be opaque when you first come to it, but when you
grow accustomed to using their documentation, you will see that it really isn’t very
difficult to work with.

Apachetoday.org
Quite a few of the Apache developers contribute text to this site. Definitely worth
a look.

Appendix H: PHP and MySQL Resources 549

3537-4 AppH.f.qc 12/15/00 15:27 Page 549

3537-4 AppH.f.qc 12/15/00 15:27 Page 550

Appendix I

MySQL Function Reference
MYSQL HAS MANY FUNCTIONS, and only a portion of these was used in the course
of the applications in this book. You should have a good idea of what MySQL func-
tions are available, as you may find they come in handy at times.

String Comparison Functions
This set of functions should not be confused with PHP’s string handling functions.
Normally, if any expression in a string comparison is case-sensitive, the comparison
is performed in a case-sensitive way.

LIKE
This function conducts a pattern match using basic SQL wildcard characters.

expr LIKE pat [ESCAPE ‘escape-char’]
RETURNS: int

With LIKE you can use the following two wildcard characters in the pattern: %,
which matches any number of characters, even zero characters; and _, which
matches exactly one character. To test for literal instances of a wildcard character,
precede the character with the escape character. If you don’t specify the ESCAPE
character, \ is assumed. This function returns 1 (true) if the pattern is found or 0
(false) if not.

mysql> select ‘jay greenspan’ like ‘jay%’;
+-----------------------------+
| ‘jay greenspan’ like ‘jay%’ |
+-----------------------------+
| 1 |
+-----------------------------+
1 row in set (0.00 sec)

551

3537-4 AppI.f.qc 12/15/00 15:27 Page 551

REGEXP
This function performs a pattern match of a string expression (expr) against a regular
expression (pat). See Appendix C for a discussion of regular expressions. But be aware
that MySQL does not support regular expressions to the extent you will find in PHP.

expr REGEXP pat

or

expr RLIKE pat
RETURNS: int

REGEXP returns 1 (true) if the pattern is found or 0 (false) if not.

mysql> select name from guestbook where name regexp ‘^j.*g’;
+---------------+
| name |
+---------------+
| Jay Greenspan |
| Jay Green |
+---------------+
2 rows in set (0.00 sec)

mysql>

STRCMP
STRCMP(expr1,expr2) (used in examples)
RETURNS: int

Returns 0 if the strings are the same, -1 if the first argument is smaller than the
second, and 1 if the second argument is smaller than the first.

mysql> select strcmp(‘foo’, ‘bar’);
+----------------------+
| strcmp(‘foo’, ‘bar’) |
+----------------------+
| 1 |
+----------------------+
1 row in set (0.11 sec)

mysql> select strcmp(‘bar’, ‘bar’);
+----------------------+

552 Part V: Appendixes

3537-4 AppI.f.qc 12/15/00 15:27 Page 552

| strcmp(‘bar’, ‘bar’) |
+----------------------+
| 0 |
+----------------------+
1 row in set (0.00 sec)

mysql> select strcmp(‘bar’, ‘foo’);
+----------------------+
| strcmp(‘bar’, ‘foo’) |
+----------------------+
| -1 |
+----------------------+
1 row in set (0.00 sec)

mysql>

Cast Operators
There is only one cast operator you will encounter in MySQL.

Binary
BINARY
RETURNS: 1

The BINARY operator casts the string following it to a binary string. This is an
easy way to force a column comparison to be case-sensitive even if the column
isn’t defined as BINARY or BLOB. BINARY was introduced in MySQL 3.23.0.

mysql> select binary(‘Foo’) = ‘foo’, binary(‘Foo’) = ‘Foo’;
+-----------------------+-----------------------+
| binary(‘Foo’) = ‘foo’ | binary(‘Foo’) = ‘Foo’ |
+-----------------------+-----------------------+
| 0 | 1 |
+-----------------------+-----------------------+
1 row in set (0.06 sec)

Control Flow Functions
There are two functions that allow for varying results depending on conditions.

Appendix I: MySQL Function Reference 553

3537-4 AppI.f.qc 12/15/00 15:27 Page 553

IFNULL
IFNULL(expr1,expr2) (used in examples)
RETURNS: type of expr1

If expr1 is not NULL, IFNULL() returns expr1; otherwise, it returns expr2. IFNULL()
returns a numeric or string value depending on the context in which it is used.

mysql> select ifnull(1/0, ‘exp 1 is null’);
+------------------------------+
| ifnull(1/0, ‘exp 1 is null’) |
+------------------------------+
| exp 1 is null |
+------------------------------+
1 row in set (0.00 sec)

mysql> select ifnull(1/1, ‘exp 1 is not null’);
+----------------------------------+
| ifnull(1/1, ‘exp 1 is not null’) |
+----------------------------------+
| 1.00 |
+----------------------------------+
1 row in set (0.00 sec)

IF
IF(expr1,expr2,expr3) (used in examples)

If expr1 is TRUE (expr1 <> 0 and expr1 <> NULL) then IF() returns expr2;
otherwise, it returns expr3. IF() returns a numeric or string value depending on
the context in which it is used. expr1 is evaluated as an integer value, which
means that if you are testing floating-point or string values, you should do so using
a comparison operation.

mysql> select if(name like ‘jay%’, ‘Yes’, ‘No’) as ‘Jay Names’
-> from guestbook;

+-----------+
| Jay Names |
+-----------+
| Yes |
| Yes |
| No |
| Yes |
| No |
| No |

554 Part V: Appendixes

3537-4 AppI.f.qc 12/15/00 15:27 Page 554

| No |
+-----------+
10 rows in set (0.00 sec)

Mathematical Functions
All mathematical functions return NULL in case of an error.

ABS
This function returns the absolute value of X.

ABS(X)
RETURNS: type of X

SIGN
This function returns the sign of the argument as -1, 0, or 1, depending on whether
X is negative, 0, or positive.

SIGN(X)
RETURNS: int
mysql> select sign(10), sign(-10), sign(0);
+----------+-----------+---------+
| sign(10) | sign(-10) | sign(0) |
+----------+-----------+---------+
| 1 | -1 | 0 |
+----------+-----------+---------+
1 row in set (0.00 sec)

MOD
Modulo is like the % operator in C). It returns the remainder of N divided by M.

MOD(N,M) or N % M
RETURNS: int
mysql> select mod(10,3), mod(10,4);
+-----------+-----------+
| mod(10,3) | mod(10,4) |
+-----------+-----------+
| 1 | 2 |
+-----------+-----------+
1 row in set (0.05 sec)

Appendix I: MySQL Function Reference 555

3537-4 AppI.f.qc 12/15/00 15:27 Page 555

FLOOR
This function returns the largest integer value not greater than X.

FLOOR(X) RETURNS: int
mysql> select floor(8.5);
+------------+
| floor(8.5) |
+------------+
| 8 |
+------------+
1 row in set (0.00 sec)

CEILING
This function returns the smallest integer value not less than X.

FUNCTION: CEILING(X)
RETURNS: int
mysql> select ceiling(8.5);
+--------------+
| ceiling(8.5) |
+--------------+
| 9 |
+--------------+
1 row in set (0.00 sec)

Round
This function returns the argument X, rounded to an integer.

Round ROUND(X [,D])

RETURNS: mixed

Returns the argument X, rounded to a number with D decimals. If D is 0, or does
not exist, the result will have no decimal point or fractional part.

mysql> select round(8.53), round(8.47), round(8.534,2);
+-------------+-------------+----------------+
| round(8.53) | round(8.47) | round(8.534,2) |
+-------------+-------------+----------------+
| 9 | 8 | 8.53 |
+-------------+-------------+----------------+
1 row in set (0.33 sec)

556 Part V: Appendixes

3537-4 AppI.f.qc 12/15/00 15:27 Page 556

TRUNCATE
TRUNCATE returns the number X, truncated to D decimals. If D is 0, the result will
have no decimal point or fractional part.

TRUNCATE(X,D)
RETURNS: decimal

Example:

mysql> select truncate(8.53,0), truncate(8.43,0), truncate(8.534,2);
+------------------+------------------+-------------------+
| truncate(8.53,0) | truncate(8.43,0) | truncate(8.534,2) |
+------------------+------------------+-------------------+
| 8 | 8 | 8.53 |
+------------------+------------------+-------------------+
1 row in set (0.05 sec)

EXP
This function returns the value of e (the base of natural logarithms) raised to the
power of X.

EXP(X)
RETURNS: float

LOG
This function returns the natural logarithm of X. If you want the log of a number X
to some arbitrary base B, use the formula LOG(X)/LOG(B).

LOG(X)
RETURNS: float

LOG10
LOG10 returns the base-10 logarithm of X.

LOG10(X)
RETURNS: float

Appendix I: MySQL Function Reference 557

3537-4 AppI.f.qc 12/15/00 15:27 Page 557

POW(X,Y) or POWER(X,Y)
This function returns the value of X raised to the power of Y.

RETURNS: float

SQRT
This returns the non-negative square root of X.

SQRT(X)
RETURNS: float

PI
This returns an approximation of Pi.

Pi()
RETURNS: float

COS
COS returns the cosine of X, where X is given in radians.

COS(X)
RETURNS: float

SIN
SIN returns the sine of X, where X is given in radians.

SIN(X)
RETURNS: float

TAN
This returns the tangent of X, where X is given in radians.

TAN(X)
RETURNS: float

ACOS
This function returns the arc cosine of X— that is, the value whose cosine is X. It
returns NULL if X is not in the range -1 to 1.

558 Part V: Appendixes

3537-4 AppI.f.qc 12/15/00 15:27 Page 558

ACOS(X)
float

ASIN
This returns the arc sine of X— that is, the value whose sine is X. Returns NULL if X
is not in the range -1 to 1.

ASIN(X)
RETURNS: float

ATAN
ATAN returns the arc tangent of X— that is, the value whose tangent is X.

ATAN(X)
RETURNS: float

ATAN2
ATAN2 returns the arc tangent of the two variables X and Y. The process is similar to
calculating the arc tangent of Y/X, except that the signs of both arguments are used
to determine the quadrant of the result.

ATAN2(X,Y)
RETURNS: float

COT
This function returns the cotangent of X.

COT(X)
RETURNS: float

RAND
This function returns a random floating-point value in the range 0 to 1.0.

RAND()

or

RAND(N)
RETURNS: float

Appendix I: MySQL Function Reference 559

3537-4 AppI.f.qc 12/15/00 15:27 Page 559

If an integer argument N is specified, it is used as the seed value. You cant use a
column with RAND() values in an ‘order by clause because order by would evaluate
the column multiple times. In MySQL 3.23, you can, however, do: select * from
table_name order by rand(). This is useful to get a random sample. Note that a
RAND() in a WHERE clause will be re-evaluated every time the WHERE is executed.

LEAST
With two or more arguments, this function returns the smallest (minimum-valued)
argument.

LEAST(X,Y,...)
RETURNS: type of X
mysql> select least(2,7,9,1);
+----------------+
| least(2,7,9,1) |
+----------------+
| 1 |
+----------------+
1 row in set (0.00 sec)

GREATEST
GREATEST returns the largest (maximum-valued) argument. In MySQL versions
prior to 3.22.5, you can use MAX() instead of GREATEST.

GREATEST(X,Y,...)
RETURNS: type of X
mysql> select greatest(2,7,9,1);
+-------------------+
| greatest(2,7,9,1) |
+-------------------+
| 9 |
+-------------------+
1 row in set (0.00 sec)

DEGREES
This returns the argument X, converted from radians to degrees.

DEGREES(X)
RETURNS: float

RADIANS
This returns the argument X, converted from degrees to radians.

560 Part V: Appendixes

3537-4 AppI.f.qc 12/15/00 15:27 Page 560

RADIANS(X)
RETURNS: float

String Functions
MySQL’s string functions return NULL if the length of the result would be greater than
the max_allowed_packet server parameter. This parameter can be set by starting
MySQL with a command like this:

safe_mysqld -O max_allowed_packet=16M

For functions that operate on string positions, the first position is numbered 1.

ASCII
Returns the ASCII code value of the leftmost character of the string str. Returns 0
if str is the empty string. Returns NULL if str is NULL.

ASCII(str)
RETURNS: int
mysql> select ascii(‘\n’);
+-------------+
| ascii(‘\n’) |
+-------------+
| 10 |
+-------------+
1 row in set (0.00 sec)

ORD
If the leftmost character of the string str is a multi-byte character, this function
returns the code of multi-byte character by returning the ASCII code value of the
character in the format of: ((first byte ASCII code)*256+(second byte ASCII
code))[*256+third byte ASCII code...]. If the leftmost character is not a
multi-byte character, ORD returns the same value as the similar ASCII() function.

ORD(str)
RETURNS: int

CONV
This function converts numbers between different number bases.

CONV(N,from_base,to_base)
RETURNS: string

Appendix I: MySQL Function Reference 561

3537-4 AppI.f.qc 12/15/00 15:27 Page 561

It returns a string representation of the number N, converted from base from_
base to base to_base. It returns NULL if any argument is NULL. The argument N is
interpreted as an integer, but may be specified as an integer or a string. The mini-
mum base is 2 and the maximum base is 36. If to_base is a negative number, N is
regarded as a signed number. Otherwise, N is treated as unsigned. CONV works with
64-bit precision.

mysql> select conv(3,10,2);
+--------------+
| conv(3,10,2) |
+--------------+
| 11 |
+--------------+

BIN
This function returns a string representation of the binary value of N, where N is a
long (BIGINT) number. It is equivalent to CONV(N,10,2). Returns NULL if N is NULL.

BIN(N)
RETURNS: string

OCT
This function returns a string representation of the octal value of N, where N is a
long (BIGINT) number. It is equivalent to CONV(N,10,8). It returns NULL if N is
NULL.

OCT(N)
RETURNS: string

HEX
This function returns a string representation of the hexadecimal value of N, where N
is a long (BIGINT) number. This is equivalent to CONV(N,10,16). Returns NULL if N
is NULL.

HEX(N)
RETURNS: string

CHAR
This function interprets the arguments as integers and returns a string consisting of
the ASCII code values of those integers. NULL values are skipped.

562 Part V: Appendixes

3537-4 AppI.f.qc 12/15/00 15:27 Page 562

CHAR(N,...)
RETURNS: string

CONCAT
This function returns the string that results from the concatenation of the arguments.
It returns NULL if any argument is NULL. CONCAT may have more than two arguments.
A numeric argument is converted to the equivalent string form.

CONCAT(str1,str2,...) (used in examples)
RETURNS: string

This function is used in the following example to prepend a wildcard character
onto the column in the where clause of a query.

select 1 from blocked_domains
where ‘$REMOTE_HOST’ like concat(‘%’,domain)
and release_dt is null

LENGTH
This function returns the length of the string str. Note that for CHAR_LENGTH(),
multi-byte characters are only counted once.

LENGTH(str)

or

CHAR_LENGTH(str)
RETURNS: int
mysql> select length(‘mysql functions’);
+---------------------------+
| length(‘mysql functions’) |
+---------------------------+
| 15 |
+---------------------------+
1 row in set (0.00 sec)

LOCATE
This function returns the position of the first occurrence of substring substr in
string str. Returns 0 if substr is not in str. The optional third argument allows
you to specify a starting position for the search.

Appendix I: MySQL Function Reference 563

3537-4 AppI.f.qc 12/15/00 15:27 Page 563

LOCATE(substr,str [,pos])

or

POSITION(substr IN str)
RETURNS: int

The optional third argument specifies an offset to start the search.

mysql> select locate(‘s’, ‘mysql funcitons’) as example1,
-> locate(‘s’, ‘mysql funcitons’,4) as example2;

+----------+----------+
| example1 | example2 |
+----------+----------+
| 3 | 15 |
+----------+----------+
1 row in set (0.00 sec)

INSTR
This function returns the position of the first occurrence of substring substr in
string str. It is the same as LOCATE(), except that the arguments are swapped and
no argument that indicates position is allowed.

INSTR(str,substr)
RETURNS: int

LPAD
This function returns the string str, left-padded with the string padstr until str is
len characters long.

LPAD(str,len,padstr)
RETURNS: string
mysql> select lpad(‘foo’, 15, ‘k’);
+----------------------+
| lpad(‘foo’, 15, ‘k’) |
+----------------------+
| kkkkkkkkkkkkfoo |
+----------------------+
1 row in set (0.00 sec)

RPAD
This function returns the string str, right-padded with the string padstr until str
is len characters long.

564 Part V: Appendixes

3537-4 AppI.f.qc 12/15/00 15:27 Page 564

RPAD(str,len,padstr)
RETURNS: string

LEFT
This function returns the leftmost len characters from the string str.

LEFT(str,len)
RETURNS: string

RIGHT
This function returns the rightmost len characters from the string str.

RIGHT(str,len)
RETURNS: string

SUBSTRING
This function returns a substring len characters long from string str, starting at
position pos, and continuining for len number of characters. The variant
form that uses FROM is ANSI SQL92 syntax.

SUBSTRING(str,pos[,len])

or

SUBSTRING(str FROM pos FOR len)

or

MID(str,pos,len) (used in examples)
RETURNS: string
mysql> select mid(‘mysqlfunctions’,6,8);
+---------------------------+
| mid(‘mysqlfunctions’,6,8) |
+---------------------------+
| function |
+---------------------------+
1 row in set (0.00 sec)

SUBSTRING_INDEX
This function returns the substring from string str after count occurrences of the
delimiter delim. If count is positive, everything to the left of the final delimiter

Appendix I: MySQL Function Reference 565

3537-4 AppI.f.qc 12/15/00 15:27 Page 565

(counting from the left) is returned. If count is negative, everything to the right of
the final delimiter (counting from the right) is returned.

SUBSTRING_INDEX(str,delim,count) (used in examples)
RETURNS: string
mysql> select substring_index(‘mysqlfunctionsmysql’, ‘fu’, 1);
+---+
| substring_index(‘mysqlfunctions’, ‘fu’, 1) |
+---+
| mysql |
+---+
1 row in set (0.00 sec)

mysql> select substring_index(‘mysqlfunctionsmysql’, ‘fu’, -1);
+--+
| substring_index(‘mysqlfunctionsmysql’, ‘fu’, -1) |
+--+
| nctionsmysql |
+--+
1 row in set (0.00 sec)

LTRIM
LTRIM(str)
RETURNS: string

RTRIM
This function returns the string str with trailing space characters removed.

RTRIM(str)
RETURNS: string

TRIM
This function returns the string str with all remstr prefixes and/or suffixes
removed. If none of the specifiers BOTH, LEADING, or TRAILING are given, BOTH is
assumed. If remstr is not specified, spaces are removed.

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str) (used in
examples)
RETURNS: string

mysql> select trim(both ‘\n’ from ‘\n mystring’);
+------------------------------------+

566 Part V: Appendixes

3537-4 AppI.f.qc 12/15/00 15:27 Page 566

| trim(both ‘\n’ from ‘\n mystring’) |
+------------------------------------+
| mystring |
+------------------------------------+
1 row in set (0.00 sec)

Note that remstr will exact match only the exact sequence of characters. So
putting ‘\t\n\ in the remstr will remove only occurrences where tabs and newlines
appear consecutively.

REPLACE
This function returns the string str with all occurrences of the string from_str
replaced by the string to_str.

REPLACE(str,from_str,to_str)
RETURNS: string

SOUNDEX
This function returns a soundex string from str.

SOUNDEX(str)
RETURNS: string

Two strings that sound “about the same” should have identical soundex strings.
A “standard” soundex string is four characters long, but the SOUNDEX() function
returns an arbitrarily long string. You can use SUBSTRING() on the result to get a
“standard” soundex string. All non-alphanumeric characters are ignored in the
given string. All international alpha characters outside the A-Z range are treated as
vowels.

SPACE
This function returns a string consisting of N space characters.

SPACE(N)
RETURNS: string

REPEAT
This function returns a string consisting of the string str repeated count times. If
count <= 0, it returns an empty string. It returns NULL if str or count are NULL.

REPEAT(str,count)
RETURNS: string

Appendix I: MySQL Function Reference 567

3537-4 AppI.f.qc 12/15/00 15:27 Page 567

REVERSE
This function returns the string str with the order of the characters reversed.

REVERSE(str)
RETURNS: string

INSERT
This function returns the string str, with the substring beginning at position pos
and len characters long replaced by the string newstr.

INSERT(str,pos,len,newstr)
RETURNS: string
mysql> select insert(‘mysqlfunctions’, 6,2,’FU’);
+------------------------------------+
| insert(‘mysqlfunctions’, 6,2,’FU’) |
+------------------------------------+
| mysqlFUnctions |
+------------------------------------+
1 row in set (0.44 sec)

ELT
This function returns str1 if N = 1, str2 if N = 2, and so on. It returns NULL if N
is less than 1 or greater than the number of arguments. ELT() is the complement of
FIELD().

ELT(N,str1,str2,str3,...)
RETURNS: string
mysql> select elt(2, ‘foo’, ‘bar’, ‘foobar’);
+--------------------------------+
| elt(2, ‘foo’, ‘bar’, ‘foobar’) |
+--------------------------------+
| bar |
+--------------------------------+
1 row in set (0.00 sec)

FIELD
This function returns the index of str in the str1, str2, str3, ... list. It returns 0
if str is not found. FIELD() is the complement of ELT().

FIELD(str,str1,str2,str3,...)
RETURNS: int
mysql> select field(‘foobar’, ‘foo’, ‘bar’, ‘foobar’);

568 Part V: Appendixes

3537-4 AppI.f.qc 12/15/00 15:27 Page 568

+---+
| field(‘foobar’, ‘foo’, ‘bar’, ‘foobar’) |
+---+
| 3 |
+---+
1 row in set (0.01 sec)

LCASE
This function returns the string str with all characters changed to lowercase
according to the current character set mapping (the default is ISO-8859-1 Latin1).

LCASE(str) or LOWER(str) (used in examples)
RETURNS: string

UCASE
This function returns the string str with all characters changed to uppercase
according to the current character set mapping (the default is ISO-8859-1 Latin1).

UCASE(str) or UPPER(str)
RETURNS: string

LOAD_FILE
This function reads the file and returns the file contents as a string. The file must be
on the server, and you must specify the full pathname to the file. The file must be
readable by all and smaller than max_allowed_packet. If the file doesn’t exist or
can’t be read, the function returns NULL.

LOAD_FILE(file_name)
RETURNS: string

Date and Time Functions
MySQL offers many functions for calculating dates. Of all of the MySQL functions
available, these are the ones you will probably use most frequently.

The DATE_FORMAT function will allow you to format dates to take the form of
MySQL timestamps. In addition, there are several functions that will easily allow
you to get specific date information from a column. For example, to find the day of
the week of all of the entires in a timestamp column, you could use the following.

mysql> select dayname(created) from guestbook;
+------------------+

Appendix I: MySQL Function Reference 569

3537-4 AppI.f.qc 12/15/00 15:27 Page 569

| dayname(created) |
+------------------+
| Sunday |
| Sunday |
| Wednesday |
| Sunday |
| Sunday |
| Wednesday |
| Wednesday |
| Wednesday |

DAYOFWEEK
This function returns the weekday index for date (1 = Sunday, 2 = Monday, ... 7 =
Saturday). These index values correspond to the ODBC standard.

DAYOFWEEK(date) (used in examples)
RETURNS: int
mysql> select dayofweek(‘2001-01-01’);
+-------------------------+
| dayofweek(‘2001-01-01’) |
+-------------------------+
| 2 |
+-------------------------+
1 row in set (0.33 sec)

WEEKDAY
This function returns the weekday index for date (0 = Monday, 1 = Tuesday, ... 6 =
Sunday).

WEEKDAY(date) (used in examples)
RETURNS: int

DAYOFMONTH
This function returns the day of the month for date, in the range 1 to 31.

DAYOFMONTH(date)
RETURNS: int

DAYOFYEAR
This function returns the day of the year for date, in the range 1 to 366.

570 Part V: Appendixes

3537-4 AppI.f.qc 12/15/00 15:27 Page 570

DAYOFYEAR(date)
RETURNS: int
mysql> select dayofmonth(‘02-01-2000’);
+--------------------------+
| dayofmonth(‘02-01-2000’) |
+--------------------------+
| 20 |
+--------------------------+
1 row in set (0.00 sec)

MONTH
This function returns the month for date, in the range 1 to 12.

MONTH(date)
RETURNS: int

DAYNAME
This function returns the full name of the weekday for date.

DAYNAME(date)
RETURNS: string
mysql> select dayname(‘10/01/2000’);
+-----------------------+
| dayname(‘10/01/2000’) |
+-----------------------+
| Wednesday |
+-----------------------+
1 row in set (0.00 sec)

MONTHNAME
This function returns the full name of the month for date.

MONTHNAME(date)
RETURNS: string

QUARTER
This function returns the quarter of the year for date, in the range 1 to 4.

QUARTER(date)
RETURNS: int

Appendix I: MySQL Function Reference 571

3537-4 AppI.f.qc 12/15/00 15:27 Page 571

To find all of the people who signed your guestbook in the second quarter of the
year, you could use this:

select name from guestbook where quarter(created) = 2;

WEEK
With a single argument, this function returns the week for date, in the range 0 to 53.

WEEK(date [, first])
RETURNS: int

The optional second argument allows you to specify whether the week starts on
Sunday or Monday. The week starts on Sunday if the second argument is 0 and on
Monday if the second argument is 1.

YEAR
This function returns the year for date, in the range 1000 to 9999.

YEAR(date) (used in examples)
RETURNS: int

YEARWEEK
This function returns year and week for a date, in the format YYYYWW. The second
argument works exactly like the second argument in WEEK().

YEARWEEK(date [,first])
RETURNS: int

HOUR
This function returns the hour for time, in the range 0 to 23.

HOUR(time)
RETURNS: int

MINUTE
This function returns the minute for time, in the range 0 to 59.

MINUTE(time)
RETURNS: int

572 Part V: Appendixes

3537-4 AppI.f.qc 12/15/00 15:27 Page 572

SECOND
This function returns the second for time, in the range 0 to 59.

SECOND(time)
RETURNS: int

PERIOD_ADD
This function adds N months to period P (in the format YYMM or YYYYMM) and
returns a value in the format YYYYMM.

PERIOD_ADD(P,N)
RETURNS: int

Note that the period argument P is not a date value.

mysql> select period_add(‘200006’,7);
+------------------------+
| period_add(‘200006’,7) |
+------------------------+
| 200101 |
+------------------------+
1 row in set (0.00 sec)

PERIOD_DIFF
This function returns the number of months between periods P1 and P2. P1 and P2
should be in the format YYMM or YYYYMM.

PERIOD_DIFF(P1,P2)
RETURNS: int

Note that the period arguments P1 and P2 are not date values.

mysql> select period_diff(‘200106’,’200001’);
+--------------------------------+
| period_diff(‘200106’,’200001’) |
+--------------------------------+
| 17 |
+--------------------------------+
1 row in set (0.00 sec)

Appendix I: MySQL Function Reference 573

3537-4 AppI.f.qc 12/15/00 15:27 Page 573

DATE_ADD
These functions perform date arithmetic. They are new for MySQL 3.22.

DATE_ADD(date,INTERVAL expr type)

or

DATE_SUB(date,INTERVAL expr type)

or

ADDDATE(date,INTERVAL expr type)

or

SUBDATE(date,INTERVAL) (used in examples)
RETURNS: date

ADDDATE() and SUBDATE() are identical to DATE_ADD() and DATE_SUB(). In
MySQL 3.23, you can use + and - instead of DATE_ADD() and DATE_SUB(). (See
example.) date is a DATETIME or DATE value specifying the starting date. expr is an
expression specifying the interval value to be added or substracted from the starting
date. expr is a string; it may start with a - for negative intervals. type is a keyword
indicating how the expression should be interpreted.

Table I-1 shows how the type and expr arguments are related.

TABLE I-1 DATE_ADD () OPERATORS

type Meaning Expected expr format value

SECOND Seconds SECONDS

MINUTE Minutes MINUTES

MINUTE_SECOND Minutes and seconds “MINUTES:SECONDS”

HOUR Hours HOURS

HOUR_SECOND Hours, minutes, seconds “HOURS:MINUTES:SECONDS”

HOUR_MINUTE Hours and minutes “HOURS:MINUTES”

DAY Days DAYS

DAY_SECOND Days, hours, minutes, seconds “DAYSHOURS:MINUTES:
SECONDS”

574 Part V: Appendixes

3537-4 AppI.f.qc 12/15/00 15:27 Page 574

type Meaning Expected expr format value

DAY_MINUTE Days, hours, minutes “DAYS HOURS:MINUTES”

DAY_HOUR Days and hours “DAYS HOURS”

MONTH Months MONTHS

YEAR Years YEARS

YEAR_MONTH Years and months “YEARS-MONTHS”

MySQL allows any punctuation delimiter in the expr format. The ones shown in
the table are the suggested delimiters. If the date argument is a DATE value and
your calculations involve only YEAR, MONTH, and DAY parts (that is, no time parts),
the result is a DATE value. Otherwise, the result is a DATETIME value.

mysql> select ‘2001-01-01 13:00:00’ + interval 10 m

+--+

| ‘2001-01-01 13:00:00’ + interval 10 minute |

+--+

| 2001-01-01 13:10:00 |

+--+

1 row in set (0.39 sec)

mysql> select ‘2000-01-01 00:00:00’ - interval 1 second;

+---+

| ‘2000-01-01 00:00:00’ - interval 1 second |

+---+

| 1999-12-31 23:59:59 |

+---+

1 row in set (0.00 sec)

mysql> select date_add(‘2000-01-01 00:00:00’, interval ‘1:1:1’ hour_second);

+---+

| date_add(‘2000-01-01 00:00:00’, interval ‘1:1:1’ hour_second) |

+---+

| 2000-01-01 01:01:01 |

+---+

1 row in set (0.00 sec)

mysql> select date_sub(‘2000-01-01 00:00:00’, interval ‘1’ month);

+---+

| date_sub(‘2000-01-01 00:00:00’, interval ‘1’ month) |

+---+

Appendix I: MySQL Function Reference 575

3537-4 AppI.f.qc 12/15/00 15:27 Page 575

| 1999-12-01 00:00:00 |

+---+

1 row in set (0.00 sec)

If you specify an interval value that is too short (does not include all the interval
parts that would be expected from the type keyword), MySQL assumes you have left
out the leftmost parts of the interval value. For example, if you specify a type of
DAY_SECOND, the value of expr is expected to have days, hours, minutes, and seconds
parts. If you specify a value like 1:10, MySQL assumes that the days and hours parts
are missing and that the value represents minutes and seconds.

TO_DAYS
Given a date date, this function returns a daynumber (the number of days since
year 0).

TO_DAYS(date) (used in examples)
RETURNS: int

TO_DAYS() is not intended for use with values that precede the advent of the
Gregorian calendar (1582). Note that this is not the same as the PHP mktime() func-
tion, which gets the date as of January 1, 1970. See the MySQL UNIX_TIMESTAMP
function if you need that information.

FROM_DAYS
Given a daynumber N, this function returns a DATE value.

FROM_DAYS(N) (used in examples)
RETURNS: date

FROM_DAYS() is not intended for use with values that precede the advent of the
Gregorian calendar (1582).

DATE_FORMAT
This function formats the date value according to the format string.

DATE_FORMAT(date,format) (used in examples)
RETURNS: string

The specifiers in Table I-2 may be used in the format string.

576 Part V: Appendixes

3537-4 AppI.f.qc 12/15/00 15:27 Page 576

TABLE I-2 DATE_FORMAT SPECIFIERS

Specifier Meaning

%M Month name (Januarythrough December)

%W Weekday name (Sundaythrough Saturday)

%D Day of the month with English suffix (1st, 2nd, 3rd, etc.)

%Y Year, numeric, four digits

%y Year, numeric, two digits

%a Abbreviated weekday name (Sun..Sat)

%d Day of the month, numeric (00..31)

%e Day of the month, numeric (0..31)

%m Month, numeric (01..12)

%c Month, numeric (1..12)

%b Abbreviated month name (Jan..Dec)

%j Day of year (001..366)

%H Hour (00..23)

%k Hour (0..23)

%h Hour (01..12)

%I Hour (01..12)

%l Hour (1..12)

%i Minutes, numeric (00..59)

%r Time, 12-hour (hh:mm:ss [AP]M)

%T Time, 24-hour (hh:mm:ss)

%S Seconds (00..59)

%s Seconds (00..59)

%p AM or PM

%w Day of the week (0=Sunday..6=Saturday)

%U Week (0..53), where Sunday is the first day of the week

%u Week (0..53), where Monday is the first day of the week

Continued

Appendix I: MySQL Function Reference 577

3537-4 AppI.f.qc 12/15/00 15:27 Page 577

TABLE I-2 DATE_FORMAT SPECIFIERS (Continued)

Specifier Meaning

%V Week (1..53), where Sunday is the first day of the week; used with %X

%v Week (1..53), where Monday is the first day of the week; used with %x

%X Year for the week, where Sunday is the first day of the week, numeric,
four digits, used with %V

%x Year for the week, where Monday is the first day of the week, numeric,
four digits, used with %v

%% A literal %

All other characters are just copied to the result without interpretation.

mysql> select date_format(‘2001-01-01’, ‘%W %M %d, %Y’);
+---+
| date_format(‘2001-01-01’, ‘%W %M %d, %Y’) |
+---+
| Monday January 01, 2001 |
+---+
1 row in set (0.00 sec)

mysql> select date_format(‘2001-01-01 15:30:20’,
->’%W %M %d, %Y %I:%i:%S %p’);

+--+
| date_format(‘2001-01-01 15:30:20’, ‘%W %M %d, %Y %I:%i:%S %p’) |
+--+
| Monday January 01, 2001 03:30:20 PM |
+--+
1 row in set (0.00 sec)

As of MySQL 3.23, the % character is required before format specifier characters.
In earlier versions of MySQL, % was optional.

TIME_FORMAT
This function is used like the DATE_FORMAT() function above, but the format string
may contain only those format specifiers that handle hours, minutes, and seconds.
If specifiers other than hours, minutes, and seconds are included, the function will
return a NULL value.

578 Part V: Appendixes

3537-4 AppI.f.qc 12/15/00 15:27 Page 578

TIME_FORMAT(time,format) (used in examples)
RETURNS: string

CURDATE
This function returns today’s date as a value in YYYY-MM-DD or YYYYMMDD for-
mat, depending on whether the function is used in a string or numeric context.

CURDATE() or CURRENT_DATE (used in examples)
RETURNS: mixed

CURTIME
This function returns the current time as a value in HH:MM:SS or HHMMSS format,
depending on whether the function is used in a string or numeric context.

CURTIME() or CURRENT_TIME
RETURNS: mixed

NOW
This function returns the current date and time as a value in YYYY-MM-DD
HH:MM:SS or YYYYMMDDHHMMSS format, depending on whether the function is
used in a string or numeric context.

NOW()

or

SYSDATE()

or

CURRENT_TIMESTAMP (used in examples)
RETURNS: string

UNIX_TIMESTAMP
If this function is called with no argument, it returns a Unix timestamp (seconds
since 1970-01-01 00:00:00 GMT). If UNIX_TIMESTAMP() is called with a date argu-
ment, it returns the value of the argument as seconds since 1970-01-01 00:00:00
GMT. date may be a DATE string, a DATETIME string, a TIMESTAMP, or a number
in the format YYMMDD or YYYYMMDD in local time.

UNIX_TIMESTAMP([date])
RETURNS: int

Appendix I: MySQL Function Reference 579

3537-4 AppI.f.qc 12/15/00 15:27 Page 579

FROM_UNIXTIME
This function returns a representation of the unix_timestamp argument as a value
in YYYY-MM-DD HH:MM:SS or YYYYMMDDHHMMSS format, depending on
whether the function is used in a string or numeric context.

FROM_UNIXTIME(unix_timestamp) (used in examples)
RETURNS: string

From_Unixtime
This function returns a string representation of the Unix timestamp, formatted
according to the format string. format may contain the same specifiers as those
listed in the entry for the DATE_FORMAT() function.

FROM_UNIXTIME(unix_timestamp,format) (used in examples)
RETURNS: string

SEC_TO_TIME
SEC_TO_TIME(seconds)
RETURNS: string

Returns the seconds argument, converted to hours, minutes and seconds, as a
value in HH:MM:SS or HHMMSS format, depending on whether the function is
used in a string or numeric context.

TIME_TO_SEC
TIME_TO_SEC(time) (used in examples)
RETURNS: int

This function returns the time argument, converted to seconds.

Miscellaneous Functions
Here are a few other functions that don’t fit under any of the previous categories.

Database
This function returns the current database name. If there is no current database,
DATABASE() returns the empty string.

DATABASE()
RETURNS: string

580 Part V: Appendixes

3537-4 AppI.f.qc 12/15/00 15:27 Page 580

User
This function returns the current MySQL username. In MySQL 3.22.11 or later, this
includes the client hostname as well as the username.

USER()
or
SYSTEM_USER()
or
SESSION_USER() (used in examples)
RETURNS: string

VERSION
This function returns a string indicating the MySQL server version.

VERSION()
RETURNS: string

PASSWORD
This function calculates a password string from the plaintext password str.

PASSWORD(str) (used in examples)
RETURNS: string

This is the function that encrypts MySQL passwords for storage in the Password
column of the user grant table. PASSWORD() encryption is one-way. PASSWORD()
does not perform password encryption in the same way that Unix passwords are
encrypted. You should not assume that if your Unix password and your MySQL
password are the same, PASSWORD() will result in the same encrypted value as is
stored in the Unix password file. See ENCRYPT().

ENCRYPT
This function encrypts str using the Unix crypt() system call.

ENCRYPT(str[,salt])
RETURNS: string

The salt argument should be a string with two characters. (As of MySQL
3.22.16, salt may be longer than two characters.) If crypt() is not available on
your system, ENCRYPT() always returns NULL. ENCRYPT() ignores all but the first
eight characters of str on most systems.

Appendix I: MySQL Function Reference 581

3537-4 AppI.f.qc 12/15/00 15:27 Page 581

ENCODE
This function encrypts str using pass_str as the password.

ENCODE(str,pass_str)
RETURNS: binary string

To decrypt the result, use DECODE(). The result is a binary string. If you want to
save it in a column, use a BLOB column type.

DECODE
This function decrypts the encrypted string crypt_str using pass_str as the pass-
word. crypt_str should be a string returned from ENCODE().

DECODE(crypt_str,pass_str)
RETURNS: string

MD5
This function calculates an MD5 checksum for the string. The value is returned as
a32-character alpha-numeric string. This is the same as the md5() functions used
by PHP.

MD5(string)
RETURNS: string

LAST_INSERT_ID
This function returns the last automatically generated value that was inserted into
an AUTO_INCREMENT column.

LAST_INSERT_ID()
RETURNS: int

GET_LOCK
This function tries to obtain a lock with a name given by the string str, with a
timeout of timeout seconds. Returns 1 if the lock was obtained successfully, 0 if
the attempt timed out, or NULL if an error occurred (such as running out of memory
or the thread being killed with mysqladmin kill). A lock is released RELEASE_
LOCK() is executed, a new GET_LOCK()a new GET_LOCK() is executed, or the thread
terminates.

GET_LOCK(str,timeout)
RETURNS: int

582 Part V: Appendixes

3537-4 AppI.f.qc 12/15/00 15:27 Page 582

RELEASE_LOCK
This function releases the lock named by the string str that was obtained with
GET_LOCK(). It returns 1 if the lock was released, 0 if the lock wasn’t locked by this
thread (in which case the lock is not released) and NULL if the named lock didn’t
exist.

RELEASE_LOCK(str)
RETURNS: int

Functions for Use with GROUP
BY Clauses
Most of the functions that are used with the GROUP BY clase were covered in
Chapter 3. There are two additional functions which we did not cover there.

STD/STDDEV
This function returns the standard deviation of expr. It is an extension of ANSI
SQL. The STDDEV() form of this function is provided for Oracle compatibility.

STD(expr)

or

STDDEV(expr)
RETURNS: float

BIT_OR
This function returns the bitwise OR of all bits in expr. The calculation is performed
with 64-bit (BIGINT) precision.

BIT_OR(expr)
RETURNS: int

BIT_AND
This function returns the bitwise AND of all bits in expr. The calculation is performed
with 64-bit (BIGINT) precision.

BIT_AND(expr)
RETURNS: int

Appendix I: MySQL Function Reference 583

3537-4 AppI.f.qc 12/15/00 15:27 Page 583

3537-4 AppI.f.qc 12/15/00 15:27 Page 584

Appendix J

What’s on the CD-ROM
TO GET THE APPLICATIONS Sections III and IV working you first need to install
Apache, PHP, and MySQL. You can find these applications on this book’s CD-ROM
in the /apache, /php, and /mysql directories. Each has subdirectories for Windows
and Unix. Use whichever is appropriate. Then follow the instructions in Appendix
B to install these applications.

Once Apache, PHP, and MySQL are installed, you will need to copy the PHP
scripts that load the databases and run the applications. Copy the entire /book
directory from the CD, with all of its subfolders, to the htdocs/ directory of your
Apache installation.

The files that install the databases are kept in the book/install/ directory. If
Apache is running on your system, all you will need to do to install the databases
is open the correct URL in your browser: http://yourdomain/book/install/
index.php. (If Apache is on your local machine, the acutal URL will likely be
http://localhost/book/install/index.php).

Follow the instructions to install the databases you wish to use. Note that for the
install script, you will need to enter a valid hostname, username, and password in
the mysql_connect() function on the fourth line of the install/index.php file. You
can then access all of the applications by moving to http://yourdomain/book/
index.html/

You should then open the book/functions/db.php file. In the first function,
change the $user, $password, and $server arguments to reflect strings that are
valid for your MySQL installation.

Also on the CD, you will find the following:

◆ A PDF version of this book.

◆ Adobe Acrobat Reader 4.0.

◆ PHPmyadmin — This excellent utility gives MySQL a graphical user inter-
face via a Web browser using PHP scripts.

◆ Manual Lemos’ Form Creation and Validation Class — This is a very com-
plete set of scripts for creating forms and validating form input.

◆ Manual Lemos’ Database Abstraction Layer — This can be helpful if you
need to access more than one database from your PHP scripts.

585

3537-4 AppJ.f.qc 12/15/00 15:27 Page 585

◆ PHP Base Library — A set of scripts useful for user authentication and
other common processes.

◆ Scripts from Appendix G.

◆ PBMPlus — This utility for manipulating images is used in Chapter 10.
It will only work on Unix systems.

All files with .php extensions can simply be copied to the Web server directory
and will execute when the page is accessed.

Files with .tar.gz extensions are intended for Unix systems and must be uncom-
pressed before you will be able to use them. Use the following commands:

gunzip filename.tar.gz
tar xf filename.tar

All files with .zip extensions must be uncompressed using a Windows zip utility
such as WinZip (available at http://www.winzip.com).

Once you’ve uncompressed the packages, see the README or INSTALL files for
installation instructions.

586 Part V: Appendixes

3537-4 AppJ.f.qc 12/15/00 15:27 Page 586

IDG Books Worldwide, Inc.
End-User License Agreement
READ THIS. You should carefully read these terms and conditions before opening
the software packet(s) included with this book (“Book”). This is a license agreement
(“Agreement”) between you and IDG Books Worldwide, Inc. (“IDGB”). By opening
the accompanying software packet(s), you acknowledge that you have read and
accept the following terms and conditions. If you do not agree and do not want to
be bound by such terms and conditions, promptly return the Book and the unopened
software packet(s) to the place you obtained them for a full refund.

1. License Grant. IDGB grants to you (either an individual or entity) a
nonexclusive license to use one copy of the enclosed software program(s)
(collectively, the “Software”) solely for your own personal or business pur-
poses on a single computer (whether a standard computer or a worksta-
tion component of a multiuser network). The Software is in use on a
computer when it is loaded into temporary memory (RAM) or installed
into permanent memory (hard disk, CD-ROM, or other storage device).
IDGB reserves all rights not expressly granted herein.

2. Ownership. IDGB is the owner of all right, title, and interest, including
copyright, in and to the compilation of the Software recorded on the
disk(s) or CD-ROM (“Software Media”). Copyright to the individual pro-
grams recorded on the Software Media is owned by the author or other
authorized copyright owner of each program. Ownership of the Software
and all proprietary rights relating thereto remain with IDGB and its
licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival
purposes, or (ii) transfer the Software to a single hard disk, provided
that you keep the original for backup or archival purposes. You may
not (i) rent or lease the Software, (ii) copy or reproduce the Software
through a LAN or other network system or through any computer sub-
scriber system or bulletin-board system, or (iii) modify, adapt, or create
derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software.
You may transfer the Software and user documentation on a perma-
nent basis, provided that the transferee agrees to accept the terms and
conditions of this Agreement and you retain no copies. If the Software
is an update or has been updated, any transfer must include the most
recent update and all prior versions.

3537-4 L1.f.qc 12/15/00 15:29 Page 598

4. Restrictions on Use of Individual Programs. You must follow the individ-
ual requirements and restrictions detailed for each individual program in
Appendix J of this Book. These limitations are also contained in the indi-
vidual license agreements recorded on the Software Media. These limita-
tions may include a requirement that after using the program for a specified
period of time, the user must pay a registration fee or discontinue use. By
opening the Software packet(s), you will be agreeing to abide by the licenses
and restrictions for these individual programs that are detailed in Appendix
J and on the Software Media. None of the material on this Software Media
or listed in this Book may ever be redistributed, in original or modified
form, for commercial purposes.

5. Limited Warranty.

(a) IDGB warrants that the Software and Software Media are free from
defects in materials and workmanship under normal use for a period of
sixty (60) days from the date of purchase of this Book. If IDGB receives
notification within the warranty period of defects in materials or work-
manship, IDGB will replace the defective Software Media.

(b) IDGB AND THE AUTHORS OF THE BOOK DISCLAIM ALL OTHER
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITA-
TION IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE,
THE PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/OR
THE TECHNIQUES DESCRIBED IN THIS BOOK. IDGB DOES NOT WAR-
RANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE
SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have
other rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) IDGB’s entire liability and your exclusive remedy for defects in materi-
als and workmanship shall be limited to replacement of the Software
Media, which may be returned to IDGB with a copy of your receipt at
the following address: Software Media Fulfillment Department, Attn.:
MySQL/PHP Database Applications, IDG Books Worldwide, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, or call 1-800-762-2974.
Please allow three to four weeks for delivery. This Limited Warranty is
void if failure of the Software Media has resulted from accident, abuse,
or misapplication. Any replacement Software Media will be warranted
for the remainder of the original warranty period or thirty (30) days,
whichever is longer.

3537-4 L1.f.qc 12/15/00 15:29 Page 599

(b) In no event shall IDGB or the authors be liable for any damages what-
soever (including without limitation damages for loss of business prof-
its, business interruption, loss of business information, or any other
pecuniary loss) arising from the use of or inability to use the Book or
the Software, even if IDGB has been advised of the possibility of such
damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of
liability for consequential or incidental damages, the above limitation
or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the
Software by the U.S. Government is subject to restrictions stated in para-
graph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause of DFARS 252.227-7013, and in subparagraphs (a) through (d) of
the Commercial Computer — Restricted Rights clause at FAR 52.227-19,
and in similar clauses in the NASA FAR supplement, when applicable.

8. General. This Agreement constitutes the entire understanding of the par-
ties and revokes and supersedes all prior agreements, oral or written,
between them and may not be modified or amended except in a writing
signed by both parties hereto that specifically refers to this Agreement.
This Agreement shall take precedence over any other documents that may
be in conflict herewith. If any one or more provisions contained in this
Agreement are held by any court or tribunal to be invalid, illegal, or oth-
erwise unenforceable, each and every other provision shall remain in full
force and effect.

3537-4 L1.f.qc 12/15/00 15:29 Page 600

GNU GENERAL PUBLIC LICENSE
Everyone is permitted to copy and distribute verbatim copies of this license docu-
ment, but changing it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee
your freedom to share and change free software — to make sure the software is free
for all its users. This General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to using it.
(Some other Free Software Foundation software is covered by the GNU Library
General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate to
certain responsibilities for you if you distribute copies of the software, or if you
modify it.

For example, if you distribute copies of such a program, whether gratis or for a
fee, you must give the recipients all the rights that you have. You must make sure
that they, too, receive or can get the source code. And you must show them these
terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify
the software.

Also, for each author’s protection and ours, we want to make certain that every-
one understands that there is no warranty for this free software. If the software is
modified by someone else and passed on, we want its recipients to know that what
they have is not the original, so that any problems introduced by others will not
reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish
to avoid the danger that redistributors of a free program will individually obtain
patent licenses, in effect making the program proprietary. To prevent this, we have
made it clear that any patent must be licensed for everyone’s free use or not licensed
at all.

The precise terms and conditions for copying, distribution and modification
follow.

3537-4 L2.f.qc 12/15/00 15:29 Page 601

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION,
AND MODIFICATION

0. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed under
the terms of this General Public License. The “Program”, below, refers to
any such program or work, and a “work based on the Program” means
either the Program or any derivative work under copyright law: that is to
say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each
licensee is addressed as “you”.

Activities other than copying, distribution and modification are not cov-
ered by this License; they are outside its scope. The act of running the
Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent
of having been made by running the Program). Whether that is true
depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole
or in part contains or is derived from the Program or any part thereof,
to be licensed as a whole at no charge to all third parties under the
terms of this License.

3537-4 L2.f.qc 12/15/00 15:29 Page 602

c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in
the most ordinary way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redis-
tribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is interac-
tive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be rea-
sonably considered independent and separate works in themselves, then
this License, and its terms, do not apply to those sections when you dis-
tribute them as separate works. But when you distribute the same sections
as part of a whole which is a work based on the Program, the distribution
of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of a
storage or distribution medium does not bring the other work under the
scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1
and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software
interchange; or,

3537-4 L2.f.qc 12/15/00 15:29 Page 603

c) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only for
noncommercial distribution and only if you received the program in
object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source code
means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and
installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed (in
either source or binary form) with the major components (compiler, ker-
nel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to
copy from a designated place, then offering equivalent access to copy the
source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with
the object code.

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automati-
cally terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your accep-
tance of this License to do so, and all its terms and conditions for copy-
ing, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the original
licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipi-
ents’ exercise of the rights granted herein. You are not responsible for
enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions are
imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the

3537-4 L2.f.qc 12/15/00 15:29 Page 604

conditions of this License. If you cannot distribute so as to satisfy simul-
taneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at
all. For example, if a patent license would not permit royalty-free redistri-
bution of the Program by all those who receive copies directly or indi-
rectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consis-
tent application of that system; it is up to the author/donor to decide if
he or she is willing to distribute software through any other system and
a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright
holder who places the Program under this License may add an explicit
geographical distribution limitation excluding those countries, so that dis-
tribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body
of this License.

9. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Soft-
ware Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for

3537-4 L2.f.qc 12/15/00 15:29 Page 605

permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of pre-
serving the free status of all derivatives of our free software and of pro-
moting the sharing and reuse of software generally.

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS

NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING
THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMIT-
TED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INAC-
CURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAIL-
URE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

3537-4 L2.f.qc 12/15/00 15:29 Page 606

