Index
A B C D E F G I K L M N O P R S T U W X
A
- ABN See adaptive bayes network
- active learning, 3.1.1.4.1
- adaptive bayes network, 3.1.1.3
-
- data preparation, 3.1.2
- model types, 3.1.1.3.1
- naive bayes build, 3.1.1.3.1
- outliers, 3.1.2.1
- rules, 3.1.1.3.2
- single feature build, 3.1.1.3.1, 3.1.1.3.2
- AI See attribute importance
- algorithm, apriori, 4.2.3
- algorithms
-
- adaptive bayes network, 3.1.1.3.1
- clustering, 4.1.1
- decision tree, 3.1.1.1
- feature extraction, 4.3.1
- k-means, 4.1.1.1
- naive bayes, 3.1.1.2
- non-negative matrix factorization, 4.3.1
- O-Cluster, 4.1.1.2
- O-cluster, 4.1.1.2
- regression, 3.2.1
- anomaly detection
-
- algorithm, 3.4.1
- applying models, 3.1
- apriori algorithm, 4.2.3
- association models, 4.2
-
- algorithm, 4.2.3
- confidence, 4.2
- data, 2.2.4
- data preparation, 4.2.1
- rare events, 4.2.2.1
- sparse data, 4.2.1
- support, 4.2
- text mining, 6.2.4
- association rules, 4.2
-
- support and confidence, 4.2
- attribute importance, 3.3
-
- algorithm, 3.3.2.1
- minimum descriptor length, 3.3.2.1
- attributes, 2.1
-
- categorical, 2.1
- data type, 2.1
- numerical, 2.1, 2.1
- text, 2.1
- unstructured, 2.1
B
- Bayes' Theorem, 3.1.1.2
- benefits
-
- in database data mining, 1.2
- bin boundaries, 2.3.2.1
-
- computing, 2.3.2.1
- binning, 2.3.2
-
- bin boundaries, 2.3.2.1
- equi-width, 2.3.2.1
- for O-cluster, 4.1.1.2.2
- most frequent items, 2.3.2.1
- bioinformatics, 8
- BLAST, 8
-
- example, 8.3
- query example, 8.3
- query results, 8.3
- variants in ODM, 8.3
- BLASTN, 8.3
- BLASTP, 8.3
- BLASTX, 8.3
- boosted model, 3.1.1.3.1
C
- cases, 2.1
- categorical attributes, 2.1
- centroid, 4.1
- classification
-
- costs, 3.1.3
- data preparation, 3.1.2
- outliers, 3.1.2.1
- text mining, 6.2.1
- use, 3.1
- classification models, 3.1
-
- building, 3.1
- testing, 3.1, 3.1
- clipping, 2.3.1, 2.3.1
- cluster centroid, 4.1
- clustering, 4.1, 4.1.1.1
-
- algorithms, 4.1.1
- k-means, 4.1.1.1
- O-cluster, 4.1.1.2
- orthogonal partitioning, 4.1.1.2
- text mining, 6.2.2
- column data types, 2.2.2
- columns
-
- nested, 2.2.2.1
-
- data types, 2.2.2.1
- confidence
-
- of association rule, 4.2
- confusion matrix, 3.5.1
-
- figure, 3.5.1
- cost matrix, 3.1.3
- costs, 3.1.3
-
- of incorrect decision, 3.1
- CRISP_DM
-
- ODM support for, 5.1
- CRISP-DM, 5.1
D
- data
-
- evaluation, 3.1
- for ODM, 2
- format, 2.2.1
- model building, 3.1
- preparation, 2.3
- prepared, 2.3
- requirements, 2.2
- sparse, 2.2.4, 4.2.1
- table format, 2.2.1
- test, 3.1
- training, 3.1
- unstructured, 2.1
- data mining, 1.1
-
- in database, 1.2
-
- benefits, 1.2, 1.2
- methodology, 5.1
- ODM, 1.3
- Oracle, 1.3
- steps, 5.1
- unsupervised, 4
- data mining automation, 5.2.2
- data mining, supervised, 3
- data preparation, 2.3
-
- association models, 4.2.1
- binning, 2.3.2
- classification, 3.1.2
- clustering, 4.1
- discretization, 2.3.2
- k-means, 4.1.1.1.1
- normalization, 2.3.3
- support vector machine, 3.1.1.4.4
- data requirements, 2.2
- data table format, 2.2.1
- data types
-
- columns, 2.2.2
- DBMS_DATA_MINING
-
- confusion matrix, 3.5.1
- lift, 3.5.2
- DBMS_PREDICTIVE_ANALYTICS package, 5.2.2
- decision tree, 3.1.1.1
-
- algorithm, 3.1.1.1
- PMML, 3.1.1.1.2
- rules, 3.1.1.1.1
- XML, 3.1.1.1.2
- discretization, 2.3.2
-
- See binning
- distance-based clustering models, 4.1.1.1
E
- equi-width binning, 2.3.2.1
- export
-
- models, 5.2.5
F
- feature, 4.3
- feature extraction, 4.3
-
- Oracle Text, 6.2.3
- text, 6.2.3, 6.2.3
- text mining, 4.3.1.1
- fixed collection types, 2.2.2.1
G
- grid-based clustering models, 4.1.1.2
I
- import
-
- models, 5.2.5
K
- k-means, 4.1.1.1
-
- cluster information, 4.1.1.1
- compared with O-cluster, 4.1.1.4
- data preparation, 4.1.1.1.1
- hierarchical build, 4.1.1.1
- scoring, 4.1.1.1.3
- unbalanced approach, 4.1.1.1
- k-means algorithm, 4.1.1.1
- k-means and O-cluster comparison (table), 4.1.1.4
L
- lift, 3.5.2
-
- statistics, 3.5.2
M
- market basket analysis, 4.2
- MDL See minimum descriptor length
- minimum descriptor length, 3.3.2.1
- missing values, 2.2.3
-
- handling, 2.2.3.2
- mixture model, 4.1.1.1.3
- model deployment, 5.2.5
- models
-
- apply, 3.1
- association, 4.2
- building, 3.1
- classification, 3.1
- clustering, 4.1
- deployment, 5.2.5
- export, 5.2.5, 7.4
- import, 5.2.5, 7.4
- moving, 7.4
- supervised, 3
- training, 3.1
- unsupervised, 4
- most frequent items, 2.3.2.1
N
- naive bayes
-
- data preparation, 3.1.2
- outliers, 3.1.2.1
- naive bayes algorithm, 3.1.1.2
- NB See naive bayes
- nested columns, 2.2.2.1
- network feature, 3.1.1.3.1
- NMF See non-negative matrix factorization
- non-negative matrix factorization, 4.3.1
-
- data preparation, 4.3.1.2
- paper, 4.3.1
- text, 6.2.3
- text mining, 4.3.1.1
- normalization, 2.3.3
- null
-
- values support vector machine, 3.1.2.2
- null vales
-
- adaptive bayes network, 3.1.2.2
- null values, 2.2.3.1
-
- classification, 3.1.2.2
- decision tree, 3.1.2.2
- naive bayes, 3.1.2.2
- numerical data type, 2.1
O
- O-cluster
-
- apply, 4.1.1.2.4
- attribute types, 4.1.1.2.3
- binning, 4.1.1.2.2
- compared with k-means, 4.1.1.4
- data preparation, 4.1.1.2.2
- scoring, 4.1.1.2.4
- O-cluster algorithm, 4.1.1.2
- ODM, 1.3
-
- attributes, 2.1
- graphical interfaces, 5.2.4
- programming interfaces, 5.2.1
- scoring engine, 7
- ODM interfaces, 5.2
- one-class
-
- text mining, 6.2.6
- one-class support vector machine, 3.4.1
-
- how to specify, 3.4.1.1
- one-class SVM, 3.4.1
- Oracle data miner, 5.2.4
- Oracle data mining, 1.3
-
- data, 2
- Oracle Text, 6
- orthogonal partitioning clustering, 4.1.1.2
- outlier treatment, 2.3.1
- outliers, 2.2.5
-
- treatment, 2.3.1
P
- PMML
-
- decision tree, 3.1.1.1.2
- predictive analytics
-
- add-in, 5.2.4
- preparation
-
- data, 4.1
- prepared data, 2.3
- priors, 3.1.4
R
- rare events
-
- association models, 4.2.2.1
- receiver operating characteristics, 3.5.3
-
- figure, 3.5.3
- statistics, 3.5.3
- regression, 3.2
-
- text mining, 6.2.5
- ROC See receiver operating characteristics
- rules
-
- adaptive bayes network, 3.1.1.3.2
- association model, 4.2
- decision tree, 3.1.1.1.1
S
- scoring, 3.1, 4.1.1.1.3
-
- in applications, 7.3
- O-cluster, 4.1.1.2.4
- scoring data, 3.1
- scoring engine, 7
-
- application deployment, 7.5
- features, 7.1
- installation, 7.2
- use, 7.5
- sequence alignment, 8
-
- ODM capabilities, 8.3
- sequence search, 8
-
- ODM capabilities, 8.3
- settings
-
- support vector machine, 3.1.1.4.4
- single feature build, 3.1.1.3.1
- sparse data, 2.2.4, 4.2.1
-
- association models, 4.2.1
- supervised data mining, 3
- support
-
- of association rule, 4.2
- support vector machine
-
- active learning, 3.1.1.4.1
- algorithm, 3.1.1.4
- classification, 3.1.1.4
-
- text, 6.2.1
- data preparation, 3.1.1.4.4, 3.1.2
- one class, 6.2.6
- one-class, 3.4.1
- outliers, 3.1.2.1
- regression, 3.2.1
-
- text, 6.2.5
- settings, 3.1.1.4.4
- text mining, 6.2.6
- weights, 3.1.3
- SVM See support vector machine
T
- TBLASTN, 8.3
- TBLASTX, 8.3
- testing models, 3.1
- text features, 6.1
- text mining, 4.3.1.1, 6
-
- association models, 6.2.4
- classification, 6.2.1
- clustering, 6.2.2
- feature extraction, 4.3.1.1, 6.2.3
- non-negative matrix factorization, 4.3.1.1
- ODM support, 6
- Oracle support, 6.3
- regression, 6.2.5
- support (table), 6.3
- support vector machine, 6.2.1
- tree rules, 3.1.1.1.1
- trimming, 2.3.1, 2.3.1
U
- unstructured attributes, 2.1
- unstructured data, 2.1
-
- text, 6
- unsupervised data mining, 4
- unsupervised models, 4
W
- weights, 3.1.3
- winsorizing, 2.3.1
X
- XML
-
- decision tree, 3.1.1.1.2