Index
A B C D E F G I J K M N O P R S T U
A
- ABN, 3.3, 3.3, 6.2
-
- settings, 3.3
- test metrics, 1.3
- Adaptive Bayes Network, 1.2
-
- see also ABN
- steps in model development, 1.3
- algo_name setting, 3.3
- algorithm settings
-
- Adaptive Bayes Network, 3.3
- Decision Tree, 3.3
- k-Means, 3.3
- Naive Bayes, 3.3, 3.3
- Non-Negative Matrix Factorization, 3.3
- O-Cluster, 3.3
- One-Class SVM, 3.3
- Support Vector Machine, 3.3
- anomaly detection, 1.1, 1.2, 1.3
- apply, 1.3, 1.8, 7.11
- apply results, 4.2.2, 7.11
- ApplySettings object, 6.3.6, 7.11
- Apriori, 1.2, 1.3, 3.3
-
- steps in model development, 1.3
- asso_max_rule_length setting, 3.3
- asso_min_confidence setting, 3.3
- asso_min_support setting, 3.3
- association rules, 1.2, 1.3, 2.1.2, 3.3, 3.3, 3.3
-
- model details, 1.6
- testing, 1.3
- attribute importance, 1.2, 1.3, 3.3
-
- model details, 1.6
- testing, 1.3
- attribute names, 2.2.2
- attributes, 1.4, 2.2
B
- binning, 1.4, 6.2, 7.15.1
- BLAST
-
- NCBI, 9.1
- ODM, 9.2
- output, 9.2.4
- sample data, 9.2.6
- BLAST table functions
-
- summary of, 9.2.6.6
- BLASTN_ALIGN table function, 9.2.3, 9.2.6.6
- BLASTN_MATCH table function, 9.2.1, 9.2.6.6
- BLASTP_ALIGN table function, 9.2.6.6
- BLASTP_MATCH table function, 9.2.2, 9.2.6.6
- build results, 4.2.1
- BuildSettings object, 6.3.2, 7.6
- BuildTask object, 7.9
C
- case ID, 1.4, 2.3
-
- Java API, 2.2
- PL/SQL API, 2.2
- SQL scoring functions, 2.2
- categorical attributes, 1.4, 2.2.1
- clas_cost_table_name setting, 3.3
- clas_priors_table_name setting, 3.3
- classification, 1.2, 1.3, 3.3
-
- model details, 1.6
- scoring, 1.3
- test metrics, 6.3.5
- testing, 1.3
- ClassificationTestMetrics, 7.10
- CLASSPATH, 7.2
- clipping, 1.4, 6.2, 7.15.3
- clus_num_clusters setting, 3.3
- CLUSTER_ID, 1.8
- CLUSTER_PROBABILITY, 1.8
- CLUSTER_SET, 1.8
- clustering, 1.2, 1.3, 3.3, 3.3, 3.3, 3.3
-
- model details, 1.6
- scoring, 1.3
- testing, 1.3
- collection types, 1.4, 2.1.1, 5.3
- Connection object, 6.3, 7.3
- ConnectionFactory, 7.3.1
- cost matrix table, 3.3, 3.3.1, 4.3.2, 7.12
- CTXSYS.DRVODM, 5.1
D
- data
-
- Java API, 7.4, 7.5
- non-transactional, 2.3
- PhysicalDataSet, 6.3.1
- preparation, 1.3, 1.4, 1.4, 1.4, 2, 7.15
- storage optimization, 2.4
- transactional, 2.3
- data storage, 2.4
- data types, 2.1, 2.2.1.1
- DBMS_DATA_MINING, 4.2
- DBMS_DATA_MINING_TRANSFORM, 1.4
- DBMS_PREDICTIVE_ANALYTICS, 1.7
- DBMS_SCHEDULER, 6.3.3, 7.7
- DBMS_STATS, 7.5
- Decision Tree, 1.1, 1.2, 2.2, 3.3, 3.3, 3.3.1
-
- applying a model, 4.5
- building a model, 4.3
- details, 1.6
- settings, 3.3
- steps in model development, 1.3
- test metrics, 1.3
- testing a model, 4.4
- DM_NESTED_CATEGORICALS, 1.4, 2.1.1, 2.3
- DM_NESTED_NUMERICALS, 1.4, 2.1.1, 2.3, 5.3, 5.4.6
- DM_USER_MODELS view, 3.1, 4.2
- DMS connection, 7.3.2
- dmsh.sql, 5.2
- dmtxtfe.sql, 5.2
- DNA sequences, 9.2.1
E
- EXPLAIN, 1.7
- export, 3.2
F
- feat_num_features setting, 3.3
- feature extraction, 1.2, 1.3, 3.3, 3.3, 5.1
-
- scoring, 1.3
- testing, 1.3
- FEATURE_EXPLAIN table function, 5.1, 5.4.1, 5.4.5.1
- FEATURE_ID, 1.8
- FEATURE_PREP table function, 5.1, 5.4.1, 5.4.4.1
- FEATURE_SET, 1.8
- FEATURE_VALUE, 1.8
- function settings
-
- summary of, 3.3
G
- genetic codes, 9.2.6.4
I
- import, 3.2
- index preference, 5.1
J
- Java API, 6
-
- converting to, 8
- data, 7.5
- data transformations, 7.15
- design overview, 7.4
- interoperable with PL/SQL API, 1.1, 8.1
- mining tasks, 7.7
- sample applications, 7.1
- setting up the development environment, 7.2
- text transformation, 7.15.4
- using, 7
- JDBC, 7.3.2
- JDM standard, 6
-
- named objects, 7.4
- Oracle extensions, 6.2, 6.2
K
- k-Means, 1.2, 1.3, 2.1.2, 3.3, 3.3, 7.15.2
-
- settings, 3.3
- steps in model development, 1.3
M
- matching
-
- sequences, 9
- MDL, 3.3
-
- steps in model development, 1.3
- mean absolute error, 4.2.4.2
- Minimum Descriptor Length, 1.2, 1.3
-
- see also MDL
- mining
-
- apply, 1.3
- descriptive, 1.2
- functions, 1.2, 3.3
- models, 3.1
- new features, 1.1
- operations, 4.2
- predictive, 1.2
- scoring, 1.3
- steps, 1.3
- supervised learning, 1.2
- testing, 1.3
- text, 5.2.1, 7.1
- unsupervised learning, 1.2
- model details, 1.6, 7.9
- Model object, 6.3.4
- models
-
- accessing, 3.1.2
- building, 1.3, 1.5, 7.8
- function, 3.3
- importing and exporting, 3.2
- in Database, 3.1
- metadata, 3.1
- naming, 3.1.1
- scoring, 1.3, 7.11
- settings, 3.3, 3.3, 4.3.2, 7.6
- settings table, 1.5
- testing, 1.3, 7.10
- multi-record case, 2.3
N
- Naive Bayes, 1.2, 3.3
-
- settings, 3.3
- steps in model development, 1.3
- test metrics, 1.3
- NCBI, 9.1
- nested tables, 1.4, 2.1.1, 2.1.1, 2.3, 5.3, 5.4.6, 7.15.4
- NMF, 2.1.2, 3.3, 3.3, 5.1, 6.2, 7.15.2
-
- settings, 3.3
- steps in model development, 1.3
- Non-Negative Matrix Factorization, 1.2, 1.3
-
- see also NMF
- normalization, 1.4, 6.2, 7.15.2
- numerical attributes, 1.4, 2.2.1
O
- O-Cluster, 1.2, 3.3, 3.3, 6.2
-
- settings, 3.3
- steps in model development, 1.3
- ODM BLAST, 9.2
- One-Class SVM, 1.1, 1.2, 1.4, 2.2, 3.3, 3.3, 7.1
-
- steps in model development, 1.3
- OraBinningTransformation, 7.15.1
- Oracle Spreadsheet Add-In for Predictive Analytics, 1.7
- Oracle Text, 2.1.2, 5
- OraClippingTransformation, 7.15.3
- OraExplainTask, 6.2, 7.14
- OraNormalizeTransformation, 7.15.2
- OraPredictTask, 6.2, 7.14
- OraTextTransform, 2.1.2
- OraTextTransformation, 7.15.4
- outliers, 3.3
- output of BLAST query, 9.2.4
P
- persistentObject, 6.3
- PhysicalDataSet, 6.3.1
- PL/SQL API, 4
-
- sample applications, 4.1, 4.1, 4.2
- PMML, 1.6
- PREDICT, 1.7
- PREDICTION, 1.8, 4.4, 4.5
- PREDICTION_COST, 1.8, 4.5
- PREDICTION_DETAILS, 1.8, 4.5
- PREDICTION_PROBABILITY, 1.8
- PREDICTION_SET, 1.8, 4.5
- predictive analytics, 1.1
-
- DATE and TIMESTAMP, 2.2.1.2
- Java API, 6, 7.14
- Oracle Spreadsheet Add-In, 1.7
- PL/SQL API, 1.7
- prior probabilities, 7.13
- prior probabilities table, 3.3, 3.3.2
- protein sequences, 9.2.2
R
- records, 1.4
- regression, 1.2, 1.3, 3.3
-
- model details, 1.6
- scoring, 1.3
- test metrics, 6.3.5
- testing, 1.3
- RegressionTestMetrics, 7.10
- root mean square error, 4.2.4.1
S
- sample applications
-
- Java, 7.1
- PL/SQL, 4.1, 4.2
- term extraction for text mining, 5.2
- scoring, 1.3
-
- Java API, 7.11
- PL/SQL API, 4.2.2
- SQL functions, 1.8, 1.8, 4.4
- sequence matching, 9
- sequences
-
- DNA, 9.2.1
- protein, 9.2.2
- settings, 3.3
- settings table, 1.5, 3.3, 4.3.2, 7.6
- single-record case, 2.3
- SQL scoring functions, 2.2
- supervised learning, 1.2, 1.4
- Support Vector Machine, 1.2, 1.2
-
- see also SVM
- SVM, 1.3, 2.1.2, 3.3, 3.3, 3.3, 3.3, 7.15.2
- SVM Classification, 3.3.2
-
- steps in model development, 1.3
- test metrics, 1.3
- SVM Regression, 2.2
-
- steps in model development, 1.3, 1.3
- test metrics, 1.3, 4.2.4
- SVM_CLASSIFIER index preference, 5.1, 5.4.1, 5.4.3
T
- target column, 1.4, 2.2
- Task object, 6.3.3
- TBLAST_ALIGN table function, 9.2.6.6
- TBLAST_MATCH table function, 9.2.6.6, 9.2.6.6
- term extraction, 5.1, 5.4
- test results, 4.2.3
- testing, 1.3, 7.10
-
- classification models, 4.2.3, 7.10
- regression models, 4.2.4, 7.10
- TestMetrics object, 6.3.5
- text mining, 1.4, 2.1.2, 5
-
- sample Java applications, 7.1
- sample PL/SQL applications, 5.2.1
- text transformation, 1.4, 2.1.2, 5, 6.2
-
- Java, 5.1, 7.15.4
- Java example, 7.15.4
- PL/SQL, 5.1
- PL/SQL example, 5.5
- transientObject, 6.3
U
- unsupervised learning, 1.2, 1.4
- user views, 3.1, 4.2