ORACLE

Oracle® Database
SQL Reference

10g Release 2 (10.2)
B14200-02

December 2005

Oracle Database SQL Reference, 10g Release 2 (10.2)
B14200-02

Copyright © 1996, 2005 Oracle. All rights reserved.
Primary Author: Diana Lorentz

Contributor: Special thanks to Lex de Haan, who has for over ten years been a great source of information
and inspiration in the management of this book.

Contributors: Sundeep Abraham, Drew Adams, Patrick Amor, Geeta Arora, Lance Ashdown, Hermann
Baer, Vladimir Barriere, Subhransu Basu, Mark Bauer, Tammy Bednar, Eric Belden, Tolga Bozkaya, Bill
Bridge, Allen Brumm, Mark Callaghan, Thomas Chang, Timothy Chien, Dinesh Das, Jay Davison, Steve
Fogel, Amit Ganesh, John Haydu, Min-Hank Ho, Lilian Hobbs, Chandrasekharan Iyer, Ken Jacobs, Bob
Jenkins, Ramkumar Krishnan, Muralidhar Krishnaprasad, Joydip Kundu, Paul Lane, Simon Law, Bill Lee,
Geoff Lee, Jeff Levinger, Nina Lewis, Brian Lin, Peter Linsley, Zhen Liu, Bryn Llewellyn, Rich Long,
Qianrong Ma, Anand Manikutty, Paul Manning, Robert McGuirk, Jim Melton, Mughees Minhas, Michael
Moller, Daniel Morgan, Ari Mozes, Niloy Mukherjee, Chuck Murray, Sujatha Muthulingam, Ananth
Raghavan, Kathy Rich, Antonio Romero, John Russell, Vivian Schupmann, Cathy Shea, Vikram Shukla,
Bipul Sinha, Mike Stewart, Sankar Subramanian, Srividya Tata, Kathy Taylor, Barry Trute, Randy Urbano,
Rama Vissapragada, Douglas Voss, Daniel Wong, Jianping Yang, Adiel Yoaz, Qin Yu, Tsae-Feng Yu, Fred
Zemke, Weiran Zhang

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PUOIACE ... et s et st e e XXi
J gk rs) gl (<o MU AN B Ts hT<) a Lol <P RR ORI XXi
Documentation AcCesSIDIlitycccciiiiiiiiiiiiiiii e XXi
Related DOCUITIEIESooveieeiieiieceeeeeteeeee ettt ettt et e et e et eeteeesa e e st e eaeeeaesesssentesssseenseessesneeenneeas XXii
CONMVEIILIONS .oeiiivieeieeeeeieeeeeeeet et eeet e e e e e etae e e e e esaaa e e e eeeaaeeeeseesstaseesesastasesessasaesseessnsaseeesensaseesseennnreeeeas XXii

What's New in the SQL RefEreNCe? ... e xxiii
Oracle Database 10g Release 2 New Features in the SQL Reference...........ccccccoeueivinnccinnccnae. XXiii
Oracle Database 10g Release 1 New Features in the SQL Reference............cccccccecuiiiiiiiiiiiiiiccnnnns XXV

1 Introduction to Oracle SQL

History of SQL ..o 1-1
SOL SEANAATASooioiiiiiiieee ettt ettt et e e e e be e e ta e b e e a e e be e ebaeebe e beeebeeraeearearaeeareenres 1-1

HOW SQL WOTKS ettt sttt ettt et s va e b e e e e b e ebaesbaessenseessenseessesseesnesseeneas 1-2

Common Language for All Relational Databasescccocoeueieiiiciieiniininiicceeece e 1-3
Recent ENNANCEMENLES..........c.ooveiieieiieieieceeeeetete ettt et s e s sseesaessaessessseseessenseensenseenes 1-3
Lexical COnVENTIONS.cccooviiiiiieieciice ettt ettt sttt et e et e e e et e e e e besreessessaesaesraesteessesseessessanssenseenes 1-3
TOOIS SUPPOIL ... s 1-4

2 Basic Elements of Oracle SQL

DatatyPesooovoiii e 2-1
Oracle Built-in Datatypes..........cccoiiiiiiiiiii 2-6
CHAR DatatyPe ..ououeuiiieieicictiiet ettt 2-8
NCHAR DatatyPecccoiviiiiiiiiiiiciciii s s 2-9
NVARCHARZ Datatypeccooiueieiiiiiieiei i 2-9
VARCHAR2 DatatyPecccueieiiieieieiccie e e 2-9
VARCHAR Datatypecoceviiiiiiiiiiiiiiicccc s 2-10
NUMBER Datatypeccccoceiiieieiiiiiiiiicieiiiti s 2-10
Floating-Point NUMDETSc.cooiuiiiiiiiii s 2-11
BINARY_FLOAT ..ottt 2-12
BINARY_DOUBLE ...t e 2-12
NUMETiC Precedence ... 2-13
DATE DatatyPeccccoouiiiiiiiiiiiiicic s 2-16
Using Julian Dayscooiirieiiiciei s 2-16
TIMESTAMP Datatypeccoiiiueieiiiieieecie et 2-17

TIMESTAMP WITH TIME ZONE Datatypecccccccovviiiiniiiiiiieieiceeeeeeeeeeeenes 2-17

TIMESTAMP WITH LOCAL TIME ZONE Datatypeccccccoovvviiiiivniiiiiiiienen, 2-18
INTERVAL YEAR TO MONTH Datatypecccccoevvvviviiiiiiiiiiniiecceecnennan 2-18
INTERVAL DAY TO SECOND Datatypeccccoeovviviiminiiiiniiiiniiiiesnccneenes 2-19
Datetime /INnterval ATITRINETIC ...ooivviiiiiieeeee ettt save e s naeeeans 2-19
Support for Daylight Saving TIimesccccccociiiiiiiiiiieeccceeee s 2-21
Datetime and Interval EXamples ... 2-22
RAW and LONG RAW Datatypescccceuoieeieiiiirieieiiceieecc s 2-23
BFILE Datatypecccceiiiiiiiiiiiiiiiiicicc s 2-26
BLOB Datatypeocuoioiiiii s 2-26
CLOB DatatyPeccccueiviiiiiiniiiiniriice st 2-27
NCLOB Datatypec.cocoiviviiiiiiiiiiiiicc s 2-27
Restricted ROWIASooiiiiiiiiiiiiic s 2-27
Extended ROWIASccccoviiiiiiiiiiiiiiiiiiiiic s 2-28
Compatibility and MIGTation ..o 2-28
UROWID Datatypecoovieieiiiiicieii s 2-28
ANSI, DB2, and SQL /DS Datatypescccocoeeueiiiirieieieeceieeci i 2-29
USer-DefiNed TYPEScuvuiuiuiiiiiiiiicccccceee ettt eeees 2-30
ODJECE TYPES .ottt 2-30
REF DatatyPescococueiiieiiiieiiiei s 2-31
VAITAYS .ottt 2-31
INeSted TabLESc.covviviiiiiiiiiicc s 2-31
Oracle-SUpplied TYPES ..ottt 2-32
ANY TYPES o 2-32
ANYTYPE ..o 2-32
ANYDATA .o 2-32
ANYDATASET ...t 2-32
XML TYPES .oviiiiieieiiett bbb bbb 2-33
XIMLTYPE .ottt bbb 2-33
URI DatatyPescoiiiiiiiiiiiiiciiii s 2-33
URIFactOry PacKagecoooueueiiiiiiiicici s 2-34
SPAtIAl TYPES ... s 2-34
SDO_GEOMETRY ..ottt 2-35
SDO_TOPO_GEOMETRYccooiiiiiiiiiiniiiiiiisscsss s 2-35
SDO_GEORASTERcootiiriiicieirinicie ettt 2-35
MEAIA TYPES .ottt 2-35
ORDAUGIO oo 2-36
ORDIIMAEE ...ttt sttt 2-36
ORDIMAEESIZNAtULEccoovviiiiiiiiiiic e 2-36
ORDVIAEO ..ocvviiiiiiciciciceee s 2-36
ORDIDIOC ...ttt sttt 2-36
SI_SHIIMAGE ...evmiiiimiieieieieiciceeie ettt ees 2-36
o) I @0) 1o) SRR 2-36
SI_AVETageCOlOTc.oviiiiiiiiiiiicc s 2-36
SI_COIOTHISTOZIAM ...ttt nenes 2-36
o) I o131 o) o F- U (@e) L) uH RO 2-36
ST TEXEULE oottt ettt e e et e e e et e e e e ssateeeessssnaaeeessssnsaseesessssssaeessssnnseeesssnnnres 2-36

o) I St N N) 5 1 RN 2-37

EXpression Filter TYPe......cociie s 2-37
EXPIESSIONcuiiiiiiiiicicc s 2-37
Datatype Comparison Rules ... 2-37
INUIMNETIC VAIUES ...oouviiiiiiciieeiectece ettt ettt ettt et et e raesaeesa e beesbesbeesb e saesbesseessesseessesssensesnan 2-37
DAte VALUES ...vecviiiieeieieietetette ettt sttt ettt et est et e st eseesesseesessessessassessessessessassassasansesessensas 2-37
Character VAIUESccveeieiieeieie ettt ettt ettt te et teestesre e st e ssaesaesseessasssessesssensesssessesseessensens 2-37
ODJECt VALUES ..o 2-40
Varrays and Nested Tablescccooiiiiiiiiiiiiicccceeeee e eeeeeseees 2-40
Data CONVEISION ...ecvveuiieeieiietieieetesteetesteetesteeteseessesseessasseessesseessesseessesssessesssessesssessesssessesseessesses 2-40
Implicit and Explicit Data CONVEIrSioNccccooiiiiiieiiiiieiiicieecc e 2-40
Implicit Data CONVETISIONccocuiiiiiiiiiiiiiic e 2-41
Implicit Data Conversion Examples............cccccooviiiiiiiiiniiis 2-43
Explicit Data CONVEISIONcoiiiiiiiiicieieiicie et 2-43

5 =] Y SRR 2-44
TEXE LILETALS ..veveeieetieieeeete ettt ettt e e et et e e et et e e sbesbeesbesseessesseessaseessasseessesseessesseessenseas 2-45
INUIMETIC LITETALS ..viuvieiiiiieiieiecie ettt ettt et sve e s te e besbeesb e bse b e sseessesseessesreensensnas 2-46
INteer LItrals ...c.cuiuiuiuiiiiiciicieiciccccee et 2-46
NUMBER and Floating-Point Literalsc.cccocooieiiiiiiiiiiicc 2-47
Datetime LIteralscceccieeiieiieiicieeieetee ettt ettt et s re e st eae s be e b e be et e sreesseebeesaesreenaenreas 2-49
INEEIVAL LITEIALS....cuiititiieieieieietete ettt et ettt ettt eesees e sbesb e s esbessessessessaseessnsansensensenss 2-51
INTERVAL YEAR TO MONTHcoooiitietiiiieteteieietiett ettt sre v se s sessessessevesresvesvens 2-52
INTERVAL DAY TO SECONDoooiieiieieieieieteeeetetetet ettt e e saese s st st sesns 2-53

FOImat IMOAEISoocoeiiiiiiieieeiiee ettt e st et e st e ae s st e s e eneensesnsensasssenseeneenseensensennes 2-54
Number FOrmat MOAELSccveiieieiiiieie ettt sttt e s e esaesseessesaesnnes 2-55
Number Format EIEMENESccocieiiiiieiiiieicciteesteteeteete ettt s sae e ae s be e ense e ens 2-56
Datetime FOrmat MOEISccccuvirieiiiiriirieiesieieiet ettt ettt sttt s e sse s esaesaesesseesessas 2-58
Datetime Format EIEMENTSc.cceeiiviieiiieicieetetete ettt re e ene 2-59
Uppercase Letters in Date Format Elementscccccoooiiiiiiiiiccc 2-59
Punctuation and Character Literals in Datetime Format Modelsccccecvevurnrnnen. 2-59

Datetime Format Elements and Globalization SUppOrtcccceeveiiieiiiiiiiiicinen, 2-62

ISO Standard Date Format EIEMENtSc.ccoeveiiieieiiieiicieeeceeeeee e 2-62

The RR Datetime Format EIEMENtccecuvviriiiniirieieieieceeeeeereee e eseeeesnens 2-63

RR Datetime Format EXamples...........ccccooviiiiiiiiiiiniiiiccs 2-63

Datetime Format Element SUIXeSccccocevuieiiiiiciiiiicieceeeeeecteee et 2-64

Format MOdel MOGIfIErSc.ccveieieieieieieisieses ettt ettt sttt st ss e s ss e e e esaesaesessessessas 2-64
Format Model EXamples..........ccoviiiiiiiiiiiiiiiiiec s 2-65
String-to-Date Conversion RULES ... 2-67
XML FOrmat MOAELccvoieiiiiieiiriiiieiie ettt ettt e e st st be s s s e s e s e st esaesaesessessasensessensan 2-67
INULLS .ottt ettt e et e et e b e et e e s b et e e s s e e seess et aesseeseensesseesseaseesseessesseassenseessenseeseenseestensennes 2-68
Nulls in SQL FUNCHONSvicvieiiiiiieiieeieieeteete ettt ettt ere et st te e beeteessesbesssenseesseseersensessnas 2-69
Nulls with Comparison CONAItioNSccccceeieiiiiiiiiiiiicceeeceeee s 2-69
INUILS i1 CONAILIONS ..ovvieiiiiieeieieeteeeetereete st et e teeteeteesesseessesseessesseessesseessasssessasseessesseessesseessessees 2-69
COMUMEBIES ...oiiiiiiiieeiieceeee ettt et et e et e et e etbe e teessbeebeessbeesseaseesssaassseesseassaassseessaeassannsaesssesnseenseean 2-70
Comments Within SQL StateIMentsc.ccceccveerieiiiirieieetiereere ettt et e ereeae e ersennens 2-70
Comments on Schema ObJects ... s 2-71
USING HINES .o 2-71

vi

Alphabetical Listing of HINtsccccooiiiiiiii 2-75

ALL_ROWS HINE oottt ettt ettt s sae v sae 2-75
APPEND HINE .ottt 2-75
CACHE HINE ottt ettt ettt ne 2-76
CLUSTER HINE oottt sae ettt et et s 2-76
CURSOR_SHARING_EXACT HiNE .oveiriiirieirieiicneeneereneeneeeeeenee e 2-76
DRIVING_SITE HINt .oveiriiieiiieicieeneeeeeereeesteeeeeeere sttt ese s sae e snene 2-77
DYNAMIC_SAMPLING HINE ..ccoiiiiiiiriiniiiiiiiiicieieteneeeesesestetereeeeee et 2-77
FACT HINE oottt ettt e 2-78
FIRST_ROWS HINt ..ottt 2-78
FULL HINE ottt ettt st sttt ettt sne b sae 2-78
HASH HINE oottt ettt 2-79
INDEX HINE .eoiiiiiiiiieee ettt sttt s 2-79
INDEX_ASC HINE covoiiiiieieieieeeeneesteeet ettt sttt ettt s snesvesae 2-80
INDEX_COMBINE HINt ..ottt sneesne e neeenene 2-80
INDEX_DESC HINE .cveuiriiieieieieinicecteesteeseeesteesteeseei sttt snesesne e sse e e s e nesesneseene 2-80
INDEX_FES HINt ...ooviiiiiiiiciccceceet ettt sttt et snesaesae 2-81
INDEX_JOIN HINE .ooeiiiiiicieieeeeneeeeeeeeeeee et 2-81
INDEX_SS HINE coeevirieiiciicinctncencre ettt ettt et se e e ne 2-81
INDEX_SS_ASC HINE .overiiiiiiieicieieeeteteeeteteietetetee ettt ettt ene b sae 2-82
INDEX_SS_DESC HINt ..ooveirieiniiinieirieieieeeteeneee e s 2-82
LEADING HINE coeotiiiiiieeeereeeeeeeese ettt sttt se e 2-83
MERGE HINE vttt sre ettt et sae s 2-83
MODEL_MIN_ANALYSIS HINt .coveiiiiieiiiieieeeceeeeereeereeereeeee e 2-83
NOAPPEND HINE oottt et s seene 2-84
NOCACHE HINt oottt sttt ettt s snesaesae 2-84
NO_EXPAND HINt oottt 2-84
INO_FACT HINE coeeiieiieecerenc ettt ettt sttt ne 2-85
NO_INDEX HINt .ottt s e sae s sne et et e enesuesae s 2-85
NO_INDEX_FES HINE ..ottt 2-85
NO_INDEX_SS HINE ..ottt se e sesseseeseseeneneene 2-86
NO_MERGE HINt vttt et ettt sne b e 2-86
NO_PARALLEL HINE .ottt 2-86
NOPARALLEL HINE .ottt sttt se st see e seene 2-87
NO_PARALLEL_INDEX HINt ...coeeviiiriniiieieiciceieieteeecsienese et seeseeeeee et e e saees 2-87
NOPARALLEL_INDEX Hint.....ccoeoinieiiniiireineneneeeeeeeeeeeenee e 2-87
NO_PUSH_PRED HINt ..covcciviiiniiinieineiniccncenceecenieeereseseseeieseeieee s sae e seene 2-87
NO_PUSH_SUBQ HINt oottt s sae s e et eseeneenees 2-87
NO_PX_JOIN_FILTER HINE ..ceoviiiiiiiiieiieeeeeceeeeeeeeereeeee e 2-88
NO_REWRITE HINE oottt seene 2-88
NOREWRITE HiINE ..ottt sae sttt ettt enesvesaens 2-88
NO_QUERY_TRANSFORMATION HiNt ..c.coceoevieirieiriiinieeneeneireeereeeteeeeee e 2-88
NO_STAR_TRANSFORMATION Hintcccccocveruriniriienineeenirernceeeseeeneeeseeeseeeneeneneene 2-88
INO_UNNEST HINt eoviiirieneiiieiceeteeeteteest ettt ettt se et ettt enesaesaee 2-88
NO_USE_HASH HINt oo 2-89
NO_USE_MERGE HINt ..coveciriiiriiiniiircecneeeececeeeseeeseee et 2-89
INO_USE_NL HINE oottt sttt sttt sttt et sat et s sae st esaesae 2-89

NO_XML_QUERY_REWRITE HiNt.....ccceieetrieiriiiniiirieniencneeeneeeneeeeeie s 2-89

ORDERED HINLE .ottt 2-90
PARALLEL HINt oo 2-90
PARALLEL_INDEX HiNtcoooiiiiiiiiiiiiiiiiiiiircscsnsnnans 2-91
PQ_DISTRIBUTE HiNtcccoviiiiiiiiiiiicieiciiiicc i 2-91
PUSH_PRED HINL .cooviiiiiiiiiiiiiince s 2-92
PUSH_SUBQ HIN ...oviiiiiiiiiiiiiiiiiinss s sssssssssnes 2-93
PX_JOIN_FILTER HiNt ...cooiiiiiiiiiiiiiiiiiciiic s 2-93
QB_NAME HINt ..coiiiiiiiiiicis s 2-93
REWRITE HINE ..o 2-94
RULE HINE cooiiiiiii s 2-94
STAR_TRANSFORMATION Hintcccocovviiiiiiniiiiiiiccccecsnnes 2-94
UNNEST HiNt oo 2-95
USE_CONCAT HiNt w.oviiiiiiiiiiiciiicic s 2-95
USE_HASH HiNt .o 2-96
USE_MERGE HINt ..oooviiiiiiiiiiiiiiiic e 2-96
USE_NL HINE ©oviiiiiiii s 2-96
USE_NL_WITH_INDEX HinNt ...coooovviiiiiiiiiiiiincs s 2-97
Database ODJECtsccccoviiiiiiiiiiiiiiiiicc s 2-97
Schema ODJECtSoiuiiici e 2-97
INONSChEMA ODJECESoviiiiiiciciicicicecee e 2-98
Schema Object Names and Qualifiers ... 2-98
Schema Object Naming RULes ... 2-98
Schema Object Naming EXamplescccccoceiiiiiiniiiiiccrceeeceeeeeeeee s 2-101
Schema Object Naming Guidelinescccocoeeiiiiiiiiiiiiiiiiis 2-102
Syntax for Schema Objects and Parts in SQL Statements..............cccccccoviiiiniiiinnicnis 2-102
How Oracle Database Resolves Schema Object Referencescccccocevevevevevennnncnrcnencanes 2-103
Referring to Objects in Other Schemas ... 2-104
Referring to Objects in Remote Databases ..o 2-104
Creating Database LinNKSccccccciiiiiiiiiiiiiicrreneereesreee s 2-104
Database Link NAmeScccccoviriiiiiniiiiiiiiicc s 2-104
Username and PasswWordcoociirieiieininieiinnieecieeeeeeseeeeeseeee e 2-105
Database CONNECt SEHNG.......ccvviiriririiiriirrrrrre e 2-105
Referring to Database Links ... 2-105
Referring to Partitioned Tables and Indexesccccccevvviiiiinnniiiiniiniccnae 2-106
Referring to Object Type Attributes and Methods..........ccccoceeieirniiininniircccreae 2-107
Pseudocolumns
Hierarchical Query PSeudocolUmNSccccocoiiiiiiiiiiiniiiii e 3-1
CONNECT_BY_ISCYCLE PS@UAOCOIUINIT ...oeoiveiiiiiieeeeieeeeeeeeeeeee et snaee e 3-1
CONNECT_BY_ISLEAF PseudOCOIUMI ...coooveuiuiiriieiiiririeieiiinieeieiceeeeeseeee e 3-2
LEVEL PSEUAOCOIUINI «....oviiiiiiiiiciicitciec et 3-2
Sequence PsetudocolUmNs ... s 3-3
Where to Use SeqUeNCe ValUESccooiiiiiiiiiiiiiicnciccceie e 3-3
How to Use Sequence VAlUESc.cccccciciiiiiiiiiiiiicceieeeecreeeee e 3-4
Version Query Pseudocolumns ..o 3-5
COLUMN _VALUE PS@UAOCOIUINII ...ttt ettt eeeetee et e eeae e e eaaesseaseeesnaeessneeesnneeas 3-6

vii

OBJECT_ID PSeudOCOIUMIooiiiiiiiiiiiiiiieeieseeeee ettt st ettt ebe e sbe e 3-7

OBJECT_VALUE PS@UAOCOIUIMIN ..ottt ettt sttt ettt s e ebe e 3-7
ORA_ROWSCN PSEUAOCOIUININ ...coooeieiiiiieeiiieeeeeeeteee ettt eeette e e eeseateeesesssaasseesssssssseeesssssssseesesas 3-8
ROWID PSEUAOCOIUIMIooeiiiiiieiicieeteete st ete et ete st e st e s te et e e seesseesaessessaessesseessasssessesssassenssensesssensennes 3-8
ROWNUM PSEUAOCOIUMIcovoiiiiiiiiiiiiciecteeie ettt ettt e et e et e st e saeesaesseesaesteessessaessessaessenseenns 3-9
XMLDATA PSEUAOCOIUMIoovviiiiiieiieiecieieetteieete e et et e eeestesseessesseessesseesseessesasssensasssensesssensennes 3-10

4 Operators

ADOUt SQL OPEIAtOTSc.ccueiiiiieiiieiteietetete ettt ettt st st ae st sae e re e sre e enennes 4-1
Unary and Binary OPerators ...t 4-2
Operator Precedence ... 4-2

ATIthmetic OPEratorsocccoviiiriiiiiiiricice ettt sttt sa et enenee 4-3

Concatenation OPerator ..o 4-3

Hierarchical Query Operators............cccoovviiiiiiiiiiiiiiiiiii s 4-5
PRIOR .ot 4-5
CONNECT_BY_ROOT ..ottt 4-5

Set OPEIALOISvviiiiii s 4-5

MULtiSEt OPEIALOTSc.oceeviiiiiiieiiieiiecetee ettt st st a et a et sa et ae e sae e enenne 4-5
MULTISET EXCEPT ..ot 4-6
MULTISET INTERSECT ..ot 4-7
MULTISET UNION ..ot 4-8

User-Defined OPerators ... 4-9

5 Functions

SOL FUNCHOMS ...ttt ettt ettt sttt ettt et et b bt s bt e bt e b e b st et e b et et et et et ebeebesbesaens 5-1
Single-ROW FUNCHONS ..o 5-3
AN B N0/ 1< & Colll 21§ Vol s (o 1= USRI 5-3
Character Functions Returning Character Valuesc.cccoooviiiiiiiiniiiiciiiins 5-3
NLS Character FUNCHONSccoviviieieiieiicieeeeste ettt ettt eve et sraessesrs e bessaesaeessessesssenes 5-4
Character Functions Returning Number Valuescccccceceiiiivniiinnicirrrcnenn, 5-4
Datetime FUNCHONSooviiiiiiiiieieciectete ettt ettt e s it e s be e sabesbeesbaesnseensaenns 5-4
General Comparison FUNCHONSccccociiiiiiiiiiiiiiiiccccc s 5-5
CoNVErsion FUNCHONSc.oeieiiriiiiieieie ettt a e ss e sse e s e ssaenseeseensenseenes 5-5
Large Object FUNCHONScouiiiiiiiiiiiiiicicc 5-6
COolleCtion FUNCHIONScoviiiiiciiieciectecteete ettt ettt re et eaaeereeraeebeesaesseersensaeseenns 5-6
Hierarchical FUNCHONocooviieieieiciececceee ettt e e st ss b ess e essesaeseasens 5-6
Data Mining FUNCHONScoioiiiiiiiic e 5-6
XML FUNCHONS ..eotviiiieeiieeieecteeie ettt sttt eeete e teesae e veesaaeebe e saesbaeesaesssaesssaesseesssesssessenans 5-7
Encoding and Decoding FUNCHONScccccciuiiiiiiiiiiiiiccceccecceeeeeeeeeeeeeneeenes 5-7
NULL-Related FUNCHONSccviiiiiiiieiiceeie st steeiesteeeesteesee s e eeesseessesseessesseessasssessessesssenseenes 5-7
Environment and Identifier FUNCHONSccooviiviiiiiiieieieeeeceeeeeeeeie ettt 5-8
Aggregate FUNCHONScccocoiiiiiiiiiiiiii e 5-8
Analytic FUNCHONSc.cooviiiiiiiiiiici s 5-9
Object Reference FUNCHONScciiiiiiiiiiiiiiiiiicc s 5-14
IMOAE] FUNCLIONS ...oviviieieieeieiieteitetetese sttt ettt ettt e e aestestesbesbe b e b essestesaesseseesassensesensenses 5-15
Alphabetical Listing of SQL FUNCHONSc.ooeiiieiiiciiicc s 5-15
ABS ettt be e teeta et e bt et e eat e be bt ebe et ebeert e baerbeteerseteentereeatereenes 5-15

viii

ADD_MONTHS ..ottt ettt ettt e s st b sa et ettt ettt sb b besaenen 5-16
APPENDCHILDXMLoocoiiiiiiiiiict sttt s 5-17
ASCIISTR oottt e s s b ettt et et s s bbb saeaen 5-18
ASCII .ottt sttt ettt st et be b st b s bttt et et a et et a b b saenen 5-18
ASIN bbb 5-19
ATAN ettt ettt st s bbb s 5-19
ATANZ oottt sttt ettt et e sa ettt et et ettt e a b saenen 5-20
AVG Lo 5-20
BEILENADME ..ottt ettt e sae b 5-21
BIN_TO_NUM ..ottt sttt ettt ettt st s st sa e ss ettt et eae st suesaeebebesens 5-22
BITAND ..o e bbbt a e sa b 5-23
CARDINALITY oottt s sttt et sae b b aens 5-24
A ST ettt bttt ettt s b e e s a bttt et et ea e bt ehesae b b nens 5-24
CEIL ...t s st 5-27
CHARTOROWID ..ottt e s s sttt e sae b 5-27
CHR ettt st b ettt ettt s a e b s a e s a et st ettt et ea e bt bt sae et b nens 5-28
CLUSTER _ID ..ottt sttt s sa s 5-29
CLUSTER _PROBABILITY ..oooiiiiiiiiiititeeteteteeteese sttt ettt sae e 5-30
CLUSTER _SET ...ttt sttt ettt ettt st st st sttt et ebe bt euesaesa e bessens 5-32
COALESCE ... s sttt b e 5-34
COLLECT ..ottt s s s bbbttt et ebe b e b saesb e besnens 5-35
COMPOSE ...ttt ettt st b b sa e s ettt et eae e bt suesaesaebensens 5-36
CONCAT . s sttt ea e a e sb e sa b nens 5-36
CONVERT ...ttt bbbttt et a b b sae b benens 5-37
CORR ..ttt ettt ettt s a e b e s a et ettt et ea bt e bt sae et benens 5-38
CORR T e et sa e a e 5-39

CORRLS ettt ettt ettt b ettt a ettt b e n e b e ene 5-40

CORR_K ettt ettt s et a e bttt ese et et sae bbb saenen 5-41
COS e e a e 5-41
COSH ...ttt s bbb bttt e a et besa s b 5-42
COUNIT ...ttt ettt sttt ettt ettt a e s bbb s b st et et et et et e st ebeebesbesae et ensensens 5-42
COVAR _PORP ...t sttt s sa b 5-44
COVAR _SAMEP ...ttt e sttt et bbb aens 5-45
CUME_DIST ..ottt sttt ettt ettt st b e e st et ettt et et ebeebesbesae st ebensens 5-46
CURRENT_DATEoooiiiiiiic et sttt s 5-47
CURRENT_TIMESTAMPoooiiiiiiiiiititcetetete ettt sttt ettt sae b 5-48
Vet ettt et b bttt ettt ettt bbb et et ettt et e at bt b e e bt sa et e b bens 5-49
DBTIMEZONE ...ttt 5-50
DECODE ..ot s s 5-51
DECOMPOSE ..ottt sttt ettt ettt et b st st e sa et et eat et entebee bt saess e b benaennen 5-52
DELETEXML ..o st 5-53
DENSE_RANK .ot s sttt ettt et 5-54
DEPTH ...ttt ettt ettt st et b e bt st et a et et et e st eut bt s bbb b e naen 5-55
DEREF ..o 5-56
DIUMP ... ettt ettt s s b e sa bbbt a e 5-57
EMPTY_BLOB, EMPTY_CLOB ...ttt sttt ettt ettt sa e aen 5-58

EX P et e e e et e ee—e e e ete e e eteeeeeataeetbaeeatteeeataaeateeeabaeeeataeeeataeeeenreeeaares 5-59
EXTRACT (dAt@tmE) ..coooveieieeieieieieieeeie ettt ettt ettt sestassas e s e sessesbessessesseseesaesesseesessassensens 5-60
EXTRACGCT (XIML) oottt ettt et ete et et eete e s taeesteeeaaeebeeesaeeassessesassensaessseeseesaseenssenssean 5-62
EXTRAQGTVALUE ...ttt e et e et e e et e e eetae e e aae e e eateeeeabaeeetaeeetaeeeessesenareas 5-63
FEATURE_ID ...ttt ettt e e et e e s ta e e et e e e abaeesasaee e tbeeessseeessseaasssaseanssaessssaeessasannes 5-63
FEATURE_SET ...ttt e et e e tte e et e e e abe e e sabaa e e baeeessaesessaeassseseassseeesseeesrasannes 5-65
FEATURE_VALUE ...ttt e et e et e e et e e e e bt e e eeate e eeateeeeteseesaeeeessseensreeennes 5-67
FIR ST .ottt ettt e ettt e ettt e e s be e e e taeesasbeaeseteeassseeassaaaasssaeassseeenssaeansseseasssaessseeassasannes 5-68
FIRST_VALUE ...ttt ettt et e e et e e et e e e s abaa e e baaeetbes s asaeaeasesesssseeesseeessasannes 5-70
FLOOR .ottt ettt e e et e e eeta e e eaae e e tbeeeeabeeeessaeeataseeesseeeasseeaanteseeseseenssseeasrasannes 5-71
FROMUL_TZ ...ttt et e ettt e et e e e tae e saaea e ebee e ssaeeassaaeasssaesssseeesssasasssasaasssaesssseeassanannes 5-71
GREATEST ...t etee e et e e et e e et e e et e e e e baeeeabaeeeasseeessaeessasaassaeeassseesnsseeessasansses 5-72
GROUPL_ID ...t e e e ettt e e et e e et e e e eaae e etaeeetaeeeesaaaeessaseanbaeeesaeeesssesessesennseas 5-72
GROUPING ...ttt etee e tee e et e e eta e e st e e e sbeeesssaeeessaeaassseesssaeesseaaassseeasssesansseesssseesnssees 5-73
GROUPINGL_ID ..ottt ettt e e e et e e et e e e s taeesabaeeeassessesaaaesssaeasssaeesssseesssesessesennsees 5-74
HEXTORAW ettt e et e et e e ettt e e e e tte e eeateeeesaaeeataseeesseseasteeaeateseesesesnssaeeassesennes 5-75
INITICARP ..ottt e et e e ettt e e e bt e s bt e e s seeeasaaeeessaeeassseesnssaaasseaaassseesssseeansseensseennnsees 5-76
INSERTCHILDXIML ...ttt e vt eeae e e e ta e e eatae e e aaeeesabaeeessaeeessaeesasseeessesenses 5-76
INSERTXMLBEFOREc.oooi ettt et e ettt e e ae e e et e e e ebae e etaeeetaeeeenresenaneas 5-78
INSTR oottt e et e et e e ettt e e etae e e e e e e sseeeassaeeassaeaassseesnssaeesseaaassseeasssaeansseeesseeanssees 5-79
ITERATION_NUMBERooiiiiiiieecee ettt e et s e e e s ta e e e tve e saaeeesabaaessbaeesasseasasseeenssesenases 5-80
LA G e e e e et e e e —e e ee—eeeeteeeeeateeetaaeetteeeataaeataaeataeeetaeeeatteeeanreeeaares 5-81
| 7 N 2 USSP 5-82
LAST DAY ettt e e et e e et e e et e e e abe e esaaaeaeabaeaassseessbaeessaaaassaeeassaeesnsaeeessaeennres 5-83
LAST _VALUE ...ttt e e et e e et e e e ta e e eta e e e aaaeeeabeseenbaeeeasaeeetaeeessesennneas 5-83
| 0 2 N D SRR 5-85
LE A ST oot e e e e st e e et e e e e tbe e et e e e abeeeabaeeeatbeaeatbeeeabaeeatbaaeanbaeearabeeetaeeenreeearas 5-86
LENGTH ..ottt e et e et e e et e e e eaee e eataeeetaeeeaaaeeessaseensaeeessaeeesaseeessesenases 5-86
I USSP 5-87
LN N VL et e e e e st e e e et e e e e tae e s tbeeeabeseesaaeeessaeaassseeessaeeasssaeassaeeassseeassseeassesansses 5-88
LOCALTIMESTAMPDP ... ettt e et e e e e aae e eeaaeeereeeesae e eaneeeeaseeeenreeeenneas 5-89
| 0 L USSP 5-90
LOWER ...ttt e ettt e e st e e et e e e e atae e s tb e e e ebasessaaeeaasaeaassseeessaaesssaeassaeeassseesssseeassesennses 5-90
LPAD ...ttt e e et a e e e e e ——— e e e e ea——aaeeeaa—aaaeeaaabaaaaeeaatraaaeeeanrrtaeeeeanraaees 5-91
I 20 11 USSP 5-91
MALKE_RETF ...t ettt e et e e et e e et e e e abeeesabaea e taaeessseesssasasssaseassseesssaeesrasannes 5-92
IMLA X ettt et e et e e —e e ee—teee—eeee—teeaaataeeataeeeeaeeeaaeeeeareteentaeeeatneeeareeeanns 5-93
IMMEEDIAN .ottt et e ettt e ettt e et e eeetaeesssaeeessseeessaeeassaaaassaeeasssaeassseeaasseeeansaaesnsseaesreeannes 5-94
IMIIN oottt et e e et e e ettt e e e tbe e e sbeeeaabaee e bbaeestbeeaasbaeeaabaaaaataaeertaee e tbaeaanraeeataeeassaeetraeanes 5-96
IMIOD et e e e et e et e et e et e eeae e e eeateeeataaeeeaeeeeateeeareaeearaeeeatneeenrreeenans 5-97
MONTHS_BETWEEN ...ttt ette e e re e e ste e e saee e s taeessseesssseeassaaeassseessseeessesannns 5-98
IN AN VL ettt e e e e et e e et e e e ebae e sbbeeestbeseessaeassssaaastsseasssesassasassseseassseesssaeassasanses 5-98
INCHR oottt ettt e e et e e eeaae e et e e eetteeeeseeeeaeeeeetaeeeesseseesseeseseseeseeeensseeensreeennns 5-99
NEWL_TIIMME ...ttt et e e st e e et e e s eae e ettt eeessaeeessaeeesssaaesssaeesssaaesssaeeassseessnsaeersseenns 5-100
INEXT DAY oottt e et e ettt e e st e e e tbe e e tae e e tbeeaesbaseassaaeessaeansseseassasasssseeansseeesssaeesseaans 5-101

NLS_CHARSET_DECL_LENociiiiiitiiiiienenteteieteteteteit et sae sttt st eneese et eseesessessesaens 5-101

NLS_CHARSET _ID ..ottt sttt s 5-102

NLS_CHARSET_NAME ..ottt ettt ettt sve et s e b e s taebesbeessaessassesssesseersensennnas 5-102
INLS_INITCARP ...ttt ettt et ettt st e s se et e sseesse s s e ensesseensesseenseassensesseessesnsensennees 5-103
INLS_LOWER ...ttt ettt ettt ettt e e et et e s st e sseestesseessesssessasseessasseessesssassesseensesssessenses 5-104
INLSSORT ...ttt ettt et ettt e e s vt et e et s e tesae e beesaesseesbesbaessesssessesssassasssensaessassesssensesssassensns 5-104
INLS_UPPER ...ttt ettt ettt e e st et et e e e st e sesntesseeseesseessesseensessaensenseensesssansesssensesssensennes 5-106
INTILE ..ottt ettt et ettt e s e et et e b e be e st e et e esseeseessesseessesseesseessessanssenseessansanseensesssassenseas 5-106
INULLIF ...ttt ettt ettt et et e e et e st e ese e beeaaesbeesbesbeesbesssessesssessasssensaessassesssessesssensennnas 5-107
NUMTODSINTERVAL ...ttt ettt ste st te st e se s e essesseessesseensesssessesssessesssesennes 5-108
NUMTOYMINTERVAL ...ttt ettt ste st steesae s e s aesbaessessaessessaessasssessesssessenssenses 5-109
NV L ettt ettt et et e et et e e te et e et s e beeae e beeaaeebe e st e ebeesbe bt et e ereesbe bt et e eseenbeereebeereenteenes 5-110
INVL2 ettt ettt e sttt e et e e e et et e e st e s e ene e st e st esseestesseensesseensesseensenseenseeneensenneensesneensenneas 5-111
ORA_HASH ...ttt ettt ettt e ste st et e st e st e e sa e s e e s s e baes s e seessasseessessaessesseessesseessesseessanseans 5-112
PATH ...ttt ettt et e st e e te et e e e e beesaesbeesbesbeess e teessasseessesbeensesseessesseenbesreensernans 5-112
PERCENT_RANK ..ottt ettt et ettt et st e st e st e ae s e saesses s eensesseensessesnsesseensessesnsesseesenseens 5-113
PERCENTILE_CONToootiieteeteieetetee ettt etestestessaessasssessasss e sasssessaessessasssessssssessesssesseessensenns 5-114
PERCENTILE_DISCocooiiiieieeteeeeee ettt e ve e e be e st et e asesveesaessaessesseessesssensesssessasnens 5-116
POWIER ...ttt ettt et et ettt et e st e s s e e st e st aessenseestenseensesseenseseensessesssesseensesneensenseans 5-118
POWERMULTISET ..ottt ettt ve et et ae e sst e e e s e ssaesaessaessesseessesseessesseessansenns 5-118
POWERMULTISET_BY_CARDINALITY ...ooootiiiiiioieeeteeeeeee ettt aesve e eeaesvaenne s 5-119
PREDICTION ...ttt et et et este st e testessesss e s asssesseessenseensenseensesseensesseensesseensesseesenseens 5-120
PREDICTION_COST ..ottt e ste et stestestessees e sesbasss e saessessasssesseessesseessessesssesseessessenns 5-122
PREDICTION_DETALILSoooieeieeeeeeeste ettt ettt et ve et te et et sesve e e e baesaesssessessaessesssessasnens 5-123
PREDICTION_PROBABILITY ...oooiioieiieieriteteieete et etetee e steesteseeeesseeseessaessesseessessesnsessssnsenseens 5-124
PREDICTION_SETcooiiiteeteteeteteetetee sttt e tesaesse s e e beesse e sss e sesssesseessessaessesseessessesssesseessessenns 5-126
PRESENTININY ..ottt ettt ettt ettt te e e e s ae s e et e b e baess e beessasseessessaensesssessesssensesssessensnans 5-128
PRESENTYV ...ttt ettt ettt et et e st et e st e s s e s st e s e e s sensaessenseensenseensessaensesseensesseensesssensensenns 5-129
PREVIOUS ...ttt ettt e et sa e sttt e e aesbessaes s e e s sebaessassaessesseessesseessesseessesssensesssessanseans 5-130
RANK ettt ettt et e et esbe et e e beebe e beesbassaesbeessasbessenbeessanseesaenteereeaseereenbesreenbenreens 5-131
RATIO_TO_REPORT ..ottt sttt eteeteste st e e e seest et ensesssensessaensesseensessesnsesseensenseens 5-133
RAWTOHEXooiiiiiieeeteeeteeett ettt ettt e st e sttt e s aessessa e s e e s sesbeessasseessasseessessaessesseessesseessesseensenseans 5-133
RAWTONHEX ..ottt ettt ettt e e e ve e e et e e b e s beetb e beeabasseeasesseeasesssensesssensesssensenseens 5-134
REF ..ottt ettt e ettt et et ettt et e s e e nt e s e e st e Rt e st et e enteaseen e et e e teeseeteeseenseeneesanneens 5-134
REFTOHEX ...ttt ettt e e sae st stesaessessa e s e e s sesbaessassaessesssessessaessesseessesseessesseessenseans 5-135
REGEXP_INSTRoootiiiiiiiecteeeett ettt ettt et e ve et eva e tesbaesb e beeabasseessesseensesssessesssensesssesenseens 5-136
REGEXP_REPLACE ...ttt ettt et e teste st e e e tessasst et aensesseensessaensesssessessesnsesseensenseens 5-138
REGEXP_SUBSTRootiiiitirieeetet ettt ettt stestesve s e e e se e sss e saessesseessesseessesseessesssessesseessenseens 5-140
REGR_ (Linear Regression) FUNCHONSc.ccooeiiiiiiiiiniiiiccreecceeeeeeeeeeeeenes 5-142
REMAINDER ..ottt ettt ste et et ste s te et essa e e eseensesseensesseensesnsessesnsesesnsensesssenseensens 5-147
REPLACGCE ...ttt ettt et et e st e st et e s aesbe e st es s e e s sessaessassaessasseessesseessesseessesseessesssessanseans 5-148
ROUND (UML) ..ottt ettt et et et et e e b e beeas e beebesseesseeseensesssesesssensesssesenseens 5-148
ROUND (AtE) ..oveenieeeieieiieieeiteieeteteetee et ettt testesse s e e e e sesseessesseensesseensesseensesseessesseensesseesenneens 5-149
ROW_NUDMBER ..ottt e ste st teeteste s s e s e s sesbeess e seessassaessesseessesseessesseessesseessenseans 5-150
ROWIDTOCHAR ..ottt ettt et e e ve e s et e e aesbeess e beesbasseessessaensesssesesssensesssesanseens 5-151
ROWIDTONG CHAR ...ttt ette st et e sttt estesstessesstes s eessesseessesseensesssensesseensesssessessesnsesseessenseens 5-151
2 o2 N B TP UTRSPSRRPR 5-152
RTRIM ..ottt ettt ettt ettt e et e e eeteete e beesaeebeessesbaessebeess e seessasssessesseensesssensesssensesssensenseens 5-153

xi

Xii

SCN_TO_TIMESTAMPY ...ttt sttt et 5-153

SESSIONTIMEZONE ...t e ettt e et e e ettt e e te e eeate e e eaaeeeetaeeeeaseseeaseeeeresennns 5-154
SET oottt ettt et ettt ettt ettt e et e b e b e s b es b esbes s e R b eRt e Rt e s bRttt eR et e b e sesbenbestententesteneeseeranrees 5-155
SIGN oottt ettt et et et e teereete et e et e e beeb e st s b e st e s b erbett e Rt et bt b be e b et e bebe b e s besbertertersersereeteerees 5-155
SN ottt et e ettt et et eteeteeteeteete et et et et et eab e st e st essetsetsetseteeteeteetebeeteetenbentesensereens 5-156
SINH oottt ettt et et e te et e e b e e be s b e s s es b e st e s s e s b es s e st e st et e Rees et e b e be b enbestententesteneeseerenrees 5-156
SOUNDEX ..ottt ettt ettt ettt e e teeteeteetesbe b esbessessassessessessessesseseesessessassessessessessassessaseasessenns 5-157
SORT ..ot ettt ettt et ettt ete et eteeteeteete et et e st et et etsetseabetsetsetsetseteebeeteete b ensentensenseaserseteereees 5-158
STATS_BINOMIAL_TEST ..ottt ettt ettt sassesse s sessessessessessesaessessaseasessansenes 5-159
STATS_CROSSTAB ...ttt ettt ettt et sbesa e e s ssebeebeebesbesbe b e b essessessessessessaressenns 5-160
STATS _F_TEST ...ttt ettt et ettt ettt es e e teetsetseteeteetesteetesbessensensessensesseteereens 5-161
STATS_KS_TEST ...ttt ettt ettt sttt et s et e st et e saesa et e eseesessessesbesbesseseeseessaseaseasensenes 5-162
STATS_IMODEE ...ttt ettt ettt ettt et s s tbess e s s essessebsebeesesbesbe b esbessessessessessessasessenns 5-162
STATS_IMW_TEST ..ottt ettt at b ettt eeteeteebeste et et essensensessenserseteeseens 5-164
STATS_ONE_WAY_ANOVA ...ttt ettt ettt ettt s sa st e s et sessesbesbessestessesseseaseasensenns 5-165
STATS _T_TEST_* ..ottt ettt s r bbb s s tbessesaessessebeebeebesbesbe b esbessesseseessessaseasessenns 5-166

STATS_T_TEST _ONE ..ottt ettt ettt ettt eetsetseteeteevesesse s ensersereens 5-167

STATS_T_TEST_PAIREDocotoiiieiieiitiieieteieeietettettetesteste e e se s e saesaesaesassessessessessessessassans 5-167

STATS_T_TEST_INDEP and STATS_T_TEST_INDEPUc.ccceceviriiriniiiereeeeeeeneereereeneene 5-168
STATS_WSR_TEST ...ttt ettt ettt ettt ts et et eeteste et et ess e st ensessenserseteeseens 5-169
STDDEYV ...ttt ettt et ettt et e e st e e s e s be st essessessassassassastasaassaseeseasesessessessessestessessassaseasensenes 5-170
STDDEV_POP ...ttt ettt ettt te st b bt assassess e st essesaessesessesbesbasbesbessessessassessassasessens 5-171
STDDEV_SAMP ...ttt ettt ettt ettt eb b teetsetsetseteebestestebessensessessensesseteereens 5-172
SUBSTR ..ottt ettt et e e te et e et e st e st essessessessessessastasaesaaseeseesesessessesbessentessessaseaseasensenes 5-173
SUM oottt et et et et et st e st e te et e et e e be s b e s b esbea b e s b et b ett e Rt e s s et s beeb et e bebe b e b esbestertessereereereerens 5-174
SYS_CONNECT_BY_PATHcoooiiiiieietieteeeee ettt ettt ettt s ettt et eas s aserseteeve e 5-176
SYS_CONTEXT ..ottt et et et et e et e te st et ess e b essessessesaesaesaasesseesesessessessessessassesseseaseasensenns 5-176
SYS_DBURIGENcooiitiitiiiiiieietettettet ettt et s v ettt ssessess e s essesaesseseesesbessessessessessessessesseseesessenns 5-181
SYS_EXTRACT_UTC ..ottt ettt ettt a et tseteeteebesteete b e st et ensessensessereeseens 5-182
SYS_GUID ..ottt ettt et te et e et e s te st e b esbessessessessessesaasaaseeseesesessessensessestaneessaseaseasensenes 5-182
SYS_TYPEID ...ttt ettt ettt ettt te ettt et besbesbesbesbesbessesseseesesaeetesbesbessessessessassasessenns 5-183
SYS_ XIMLAGG ..ottt et ettt ettt ese et e aeeteeteete et et et et ettt eaeeteere e 5-184
SYS_XIMLGEN ..ottt ettt et et e e st et es e s e s s esae st e st esaesasseeseesessessassessessessessessessaseasensenns 5-185
SYSDATE ...ttt ettt ettt et et e e be st e b esbesbessassessessessesseseebeesebesbe b esbessessessessessersesesrens 5-185
SYSTIMESTAMDP ... et e e e et eeete e e eae e ee e e eesaeeeeaseeeetaeeeeaseseesseeenrereenns 5-186
TAN oottt ettt ettt ettt tt et e et e et et e b e s e s es b e s b e st e st e st enteR e e st e Rt aRe et e R e ebees et e bestessestestenteseesensenrens 5-186
TANH ..ottt ettt ettt et st e et e b et et e s b e st e st e st eteeteebeere et e ebeeb e b e besbessesseraereeteereereereas 5-187
TIMESTAMP_TO _SCIN ..o et e et e et e e e e e e eaeeeeeteeeeeraeeeetseeeesseeeenaeeeneeean 5-187
TO_BINARY_DOUBLEcooiiieieteietietietestest ettt ettt sessestessessessessessessessessessassesessessensens 5-188
TO_BINARY_FLOAT ..ottt ettt ettt e b st esesteebesteetesbasbessessessessassassassassessesessessens 5-189
TO_CHAR (CRATACEET) ..ottt e ettt e s et e e st e e st e e s st e esaaseessnaeesensaessneeeas 5-190
TO_CHAR (dAt@tIme)oeoiiveiieiiiiieeeeeee ettt ettt et et eeete e et e e teseaeseteeeseeentessseesnreenseeans 5-191
TO_CHAR (IUIMDET) ...ttt e et e et esenae e e eaeeeesaeessneessenaaessnneeean 5-193
TO_CLOB ...ttt ettt ettt et et e et et et et et e st eteesseaeeteeseeseessesease st ensessersenseseerseneereas 5-194
TO_DATE ..ottt ettt ettt e bbb e b e s b esbessesseseaseesesseaseasesseesessessessassassassassasansensensens 5-195
TO_DSINTERVALooiiiiiieietettettettett ettt ettt et et sb e b et eseeteeseeseetesbesbessassessassassassessassessesessessens 5-196
TO_LOB ..ottt ettt et et e et et et et e eteeseeaeeteereeteeteete et et et ens et et ereerseneereas 5-196

TO_MULTI_BYTE ...ttt st s 5-197

TO_NCHAR (CRATACTET) ...eeeiieeeeeeeeeeeeeeeeeeee ettt et e et e e e st e e s e ae e e ssaaeessastessnseeesnsseessneeeas 5-198
TO_NCHAR (AAtetime)ccoeeoviiiiiiiiiieeieceeeeeeeee ettt ettt e e e esteeeae e et e eeaeeeteeeresesteesseesnseenseeans 5-198
TO_NCHAR (IUUINDE@I) ..ottt e e e et e e e s s tteeseaaeeeeaeessnsaeesaaesesnaeessnreeean 5-199
TO_NCLOB ...ttt ettt ettt e et e s be e tesbeesbesbeesbesssessesseesseessessesseensesssessensnas 5-199
TO_NUMBER ...ttt ettt ettt s e e st e tesseesse s st essessaensesseenseassensesssensesneensennes 5-200
TO_SINGLE_BYTE ...ttt ettt st ae et e steebe s e e b e s beesbesseessesseessesseessesssessenseas 5-201
TO_TIMESTAMP ...ttt ettt s te b e sbeebe s beesbesbeesbesseanseeseastesseesesssensenneas 5-201
TO_TIMESTAMP_TZ ...ttt ettt s et esreete s e essesseessesseenseeseensesssensesssensennees 5-202
TO_YMINTERVAL ...ttt ettt e ve st e b e s re e s e e saesaesrae s eesaessesssessaessansaessansanssensenses 5-203
TRANSLATE ...ttt ettt ettt e et e et e s beesaesbeesbesbeesbesbeesbesseessaessassesseessesrsessenseas 5-203
TRANSLATE ... USINGooiiiiioieieceee ettt et et e e st este et e sestesseensesseessesseessesssensesnsensesnsenses 5-204
TREAT ...ttt ettt st et e et e e et e et e et s e teesa e seessesseesaesseessesseessasseessanseesseessassenseensesssessenneas 5-206
TRIM oottt ettt et et ettt e be e te et e e ts e beess e beeasesseesbesbeesbesssesbesssessenseenseessansesseensesreenteennas 5-207
TRUNC (NUMDET) ..ottt ettt sttt et et e st eseesessessessassessessessessessessessassesensensensens 5-208
TRUNC (AAE) ...cveevievieiieiiieieiei ettt ettt e e st et este st esb e b e s esseseesseseeseeseesassesessassassassessessessassasseseas 5-208
TZ_OFFSET ...ttt ettt ettt et be et e s teesaesbeesbesseesbessaesbesseensesssassesseessesrsessenseas 5-209
UID ettt ettt et ettt e st et e st e e e st e st e e st e s seenees st anseaseentesseenseaseenseeseensenseenseeneenteeneenseeneennenneen 5-210
UNISTR ..ottt ettt et e e st e b e e st e be e st e s e esaesseessesseessesseessassaessanseensaassassesseessenssensenses 5-210
UPDATEXIML ...ttt ettt et ve et et ete s aeesbeebaesbesssasbaessenteesseseesseseessesseesseseaneas 5-211
UPPER ...ttt ettt ettt et e e e e st st e st e e s s e e st e e st esseeseensesseessesstensesssenseenseseensensennsensesneensenneas 5-212
USER ..ottt ettt ettt e st e et e e et e e b e e st e se e st e seesseeseesaeeseesbe st enbeeseesbeeseenteeseenteeseeseereenaenneas 5-212
USERENY .ottt ettt ettt et te st et e e st e s beestesbeesbessaesbessaessanseensaessansesssesseessenseaseas 5-213
VALUE ...ttt te sttt e et e e s et e e st e st e st e sseeseesseensesseensesseenseaseenseassansesneensesneensennees 5-214
VAR _POP ...ttt ettt ettt et et e e s st e bt e saesaeesbesseessesseessasseessanseasseessansesseessesssensenneas 5-214
VAR_SAMEP ..ottt ettt ettt e b e s te et e s beesbe s be e b e e baesbeere et e ereanbeereebeereenteeneas 5-216
VARIANCQCE ...ttt ettt et et et e e et e st st e s st estesseensesseensesseensesseensenssensesnsensesnsensennees 5-216
VISIZE ...ttt ettt e sttt e et e e et e b et b et e e st e bt e st e bt st e ebeerbe Rt e b e ete e be st et e eseenteereeseereensenneas 5-218
WIDTH_BUCKEToooiiiiiiteee ettt ettt e et saesteeaesteebesteesbesbaessasseessaessassesseessesssessesses 5-218
D01 1 7 N TSRS 5-220
XIMLCDATA ..ottt et te et e et et et e teese e st e saesseestesseessesseessesssessenseessaassansesseessesssessenseas 5-221
XIMLCOLATTVAL. ...ttt ettt ettt et te et e e beetesbaebesteesbeebeesbesseenseessanteesseseerseseeneas 5-222
XMLCOMMENT ..ottt ettt et et e e et e st s tesseestesseessesseensessaensesseenseessensesssensesnsensennes 5-223
XIMLCONCAT ...ttt te ettt e e et et e et e te e st e seesaesseesbesseessesseessasssessanseassaassansesseessesssersenses 5-223
XMLELEMENT ...ttt ettt ettt ettt ettt et eteetesbaesbesteenbeesaesbesseenseessansessseseersenseensas 5-224
XIMLEFOREST ...ttt ettt ettt ettt st e s st e stesseensesseensesseensesseensesssensesssensesnsensennees 5-226
XIMLPARSE ...ttt ettt et et et e et et e e saesseesaesseessesseesseeseessenseesseessenseeseenseereensenneas 5-227
XIMILPI ..ottt ettt et et e et e b e e te et e ebeeabeeaeebeersesbeeasesbeesbebeesseteens e beeseenseereeseeneas 5-228
XIMLQUERY ...ttt ettt st e e et e e st et e st e teene e st estesseessesseensesseensesseensesseenseassansesssensesnsensennes 5-228
XIMLROOT ...ttt ettt e et et et ete e st e s e essesseessesseessesssessesssassanssensaessansenseensesssensennes 5-230
XMLSEQUENCEoouiiiieiieiiettete ettt ettt et ettt e et e teetesbeeaesbseabeesaesbesseenseessansesseeseerseseeneas 5-230
XMLSERIALIZE ...ttt ettt ettt et e e ettt s st e saeestesseesse s st ensesseensenseenseensansesssensesnsensennees 5-232
XIMLTABLE ...ttt ettt et et e st e s aeesaesseessesseessessaesseessassaessassenseessenssersenseas 5-232
XMLTRANSFORM ..ottt ettt ettt e te et teeaeeteetesbeesbessaesbessaessesssenseessensesssesseerseseeneas 5-234
ROUND and TRUNC Date FUNCHONScccceeiiriieieieeieieeieeeeee ettt e s snens 5-235
User-Defined FUNCHONSccooeiiiiiiiecicieieieetet ettt sttt esae st saeste e s e ssaessesseessesseessesssesss 5-236

PrerequiSites. ...t 5-237

xiii

Xiv

ANV 0 T B0 TeTel Lo <3 o Lol SRR 5-237

Naming CONVENtIONSccccoeuiiiiiiiiiiiici s 5-238
Expressions
About SQL EXPIeSSionscccccccviiiiiiiiiiiiiiiiiiiii s 6-1
Simple EXPIeSSIONScoccooiiiiiiiiiiiiciceeeere ettt 6-3
Compound EXPressions ... 6-4
CASE EXPIESSIONSc.oviininiiiitiniiitetct ettt a et a st a s 6-5
CURSOR EXPIESSIONS.....oceruiniiiniiiieiinieeneeeseeertees et sttt ese st st e e s e s e ae e saene 6-6
Datetime EXPIeSSIONS ..o 6-8
Function EXPreSsions ...t 6-9
INterVal EXPIESSIONScooviriiiiiiiiiiiiiiiriccreeenteerte ettt ettt s et 6-10
Object Access EXPIeSSIONSccooiiiiimiiiiiiiiiciictci sttt 6-10
Scalar Subquery EXPressions ... 6-11
MOdE] EXPIESSIONSc.oeineiiieiiieirieiieeeteeetee ettt a et s e s e n e nens 6-11
Type Constructor EXPressions ... 6-13
Variable EXPIeSSIONScccccoviiiiiiiiiiiiiiiiiiiiiic s 6-15
EXPIESSION LISES ...ooviiiiiiiiiieiiiiiiccrc ettt s s 6-15
Conditions
ADOUL SOL CONAITIONS.......cociiiiiiciiciiceie ettt ettt e e aeeteesaeebeesteesbaesssesseessaeesseesssessseesenans 7-1
Condition Precedence...........cccoviiiiiiiiiiiiii s 7-3
Comparison Conditions ... 7-4
Simple Comparison CONAILIONScccceuiiuiuiiiiiiiiieieceeeeee e 7-5
Group Comparison CONdItionscciiiiiiiiiiiii s 7-6
Floating-Point CONditionscccccoiiiiiiiiiiiii s 7-7
Logical CONAItionsccoovviiiiiiiiiiiiiii 7-7
Model CONAItIONScooiiiiiiiiii e 7-9
IS ANY CONAILION .oviiiiiiiiiciiicii e 7-9
IS PRESENT CONAIIONuiviiiiiiiiiiiiiciiicicieiciccieieieeee ettt seeees 7-10
Multiset CONAItIONS ..o 7-11
IS A SET CONAITION ..cviuiiiiiiiiiriciciirtetctt ettt 7-11
IS EMPTY CONAITION ..ottt 7-11
MEMBER CONAILION ..oviviviiiiiiiiiiiiciiicc s 7-12
SUBMULTISET CONAItION ...ovviiiiiiiiiiiiiiiiiiiiiiiicicicicce e 7-13
Pattern-matching Conditions ... 7-14
LIKE CONAILION ..ottt 7-14
REGEXP_LIKE CONAItIONc.cocuiuiiiiiiiiiiiiiiiiiiiiiciieeiesese s 7-17
Range Conditions ... 7-18
NUll CondItiONS ... s 7-19
XML CONAILIONS ..ottt et et 7-19
EQUALS_PATH CONAIION .ttiitviiiiiiiieieeeieeieeie ettt ettt eaeesveeeveestaesveessaessseenbeessseenseenens 7-19
UNDER_PATH CONItION ...ovovviiiiiiiiiiiiiiiiicicicicee s 7-20
Compound CONAItIONS ..o 7-21
EXISTS CONItiONocooviviiiiiiiiiiiii s 7-21
IN CONdition ..o s 7-21
IS OF type CONAItIONoooiiiiiiiiiiiie e 7-23

10

Common SQL DDL Clauses

ALLIOCATE_EXTCIE_CLATSE ...ttt e e e e e sttt e s eaae e e et e e s saeeesssaeeesaaeeesnaeeean 8-2
COMSEIAINME .ottt ettt ettt a et e st st et a et et sae e saeneenenees 8-4
AeALIOCATE_UNUSCA_CLAUSE ... et e et e e s eat e s et e s st e s e e e e eesaeeseaaeas 8-26
Sile_SPeCIfiCALIONccoovviiiiiiiiiiiiiii s 8-28
[OQGING CIAUSE ...ttt 8-36
PATALLEL_CLAUSE ..ot 8-39
physical_attribDutes_CIAUSE ...t 8-42
SEZE_CLAMSO .ot e e et eee e e seat e e e s et eeeeateesateesaaeessneesasseeesaseeessnneesanseeessseesnns 8-45
SEOTAZE_CLAUSE ... 8-46
SQL Queries and Subqueries
About Queries and SUDQUETIES ..o 9-1
Creating Simple QUETIEs ... 9-2
Hierarchical QUETIESceocciiiiiiieiiciiecie ettt ettt et estteeebeesbeebeestseesseesseesabeassaessse e saessseesaessseenseeaes 9-2
Hierarchical Query EXamplescooooiiiiiiiiici 9-5
The UNION [ALL], INTERSECT, MINUS Operators...........cccccoeurininricuiininiciciiciinencscseeeeceenes 9-7
Sorting Query Results ... 9-9
JOMNS ettt 9-10
JOIN CONAITIONS ..ottt ettt ettt ettt et b bt s bt e s be s b et e be st et et e e eseeaeseenseee 9-10
EQUIJOINS .oviiiiiiiiicc s 9-10
SEIE JOINS vttt ettt et b et b e sttt e be bttt a st b e bbb st aan 9-11
Cartesian PrOAUCEScocoeirieirieincine ettt ettt 9-11
ININET JOINS eiiieniieietieieee ettt ettt ettt ettt e s et e s e s st e sesas e s eenseseessensaensenseansenseensesneensenneen 9-11
OULET JOITIS ittt ettt ettt a e bbbt e b s bt s bt et et et e st ea b et sbeeb e besbesbenean 9-11
ANHJOINS vttt s 9-13
SEMIJOINS ..ttt s 9-13
USING SUDQUETIEScocoiiiiiiiiii s 9-13
Unnesting of Nested Subqueries ... 9-14
Selecting from the DUAL Table ... 9-15
Distributed QUETIESocveeiiiieieeecieceee ettt et e st esae s e esaessa e beessessasssesseeseensesssensenses 9-15
SQL Statements: ALTER CLUSTER to ALTER JAVA
Types of SQL Statementscccccooviiiiiiiiiiiiiiiicc s 10-1
Data Definition Language (DDL) Statementscccccoevvvviviininininiiinincnncceees 10-1
Data Manipulation Language (DML) Statementsccccccoeveverirrnnnnnrnncrrreeeeeeeeenes 10-2
Transaction Control StAateMENtScccveevriirieineineeecee ettt 10-3
SesSioN CONLTOL STALEIMENTScoveuiviiiriiirieirieee ettt ettt 10-3
System Control STAtEMENLc.ccceuiuiiiiiiiiiiceec e 10-3
Embedded SQL StatemeENtSccccociecieriiecieeieeiieeete et eteste sttt ete e ssesseesesseessesseesaesseessenseas 10-3
How the SQL Statement Chapters are Organizedccccoovviviiiinnininiinc 10-3
ALTER CLUSTER ..ottt ettt ese e tss s st sesse st sae st essenes et s nenesesesaenene 10-5
ALTER DATABASE ...ttt ettt ettt ettt sttt ettt b et a e 10-9
ALTER DIMENSIONooiiiiiiiiiirtentetnte ettt ettt sttt et et sttt sttt et st 10-45
ALTER DISKGROURPoooriiiiiririieiiininieitttneeeictrte ettt sessesestsessesesesesessesesesesesseseseasssesenesenes 10-48
ALTER FUNCTIONcoiiiiiiiinieieiienteieteittnteie ettt et sttt st s et st seb et stebebesesessebesenesaesesesenes 10-61

XV

11

12

13

14

XVi

ALTER INDEX ..ottt s s sttt e saea 10-64
ALTER INDEXTYPEcooiiiiiiieieieetetttetetetete ettt ettt st st st sa et ene s saea 10-82
ALTER JAVA Lot sttt 10-84

SQL Statements: ALTER MATERIALIZED VIEW to ALTER SYSTEM

ALTER MATERIALIZED VIEWccoooiiiitiiiiitiiiieieieietete e eesestestessessessessessestesaessessessassssassessensas 11-2
ALTER MATERIALIZED VIEW LOGccoooiiiiiiiiiieieteteteeteet ettt svesvess s essess s ese e vsevesrens 11-15
ALTER OPERATOR ...ttt ettt e et e e e ta e e e et e e teeeeaaeeetaseeesteeeeasaeeeareeann 11-21
ALTER OUTLINEcoiiiiiieeetetetete ettt sttt ettt ettt esessessessessassassessessessessessassassassesensensens 11-24
ALTER PACKAGE ..ottt ettt ettt et est et teeteebeetesbasbasbesbesbessessessessassessesessessens 11-26
ALTER PROCEDUBREoooiee e ettt ettt eeaae e e et e e te e e e aaaeetaeeeetteeeeasaeeeareeann 11-29
ALTER PROFILEc.oooiiiiieieietetetettet ettt e ettt e st esaesessessessessassessessessassassessassesensensensens 11-32
ALTER RESOURCE COST ..ottt etetetest et estesesseeteetesvestessessessessessessassasssssessssessessens 11-35
ALTER ROLE ...t ettt e e e e et e et e e e eaaae e etaeeeetteeeeasaeeessaeeeaseseesaaeereeann 11-38
ALTER ROLLBACK SEGMENTocoioiiiitiitiiiieieieieteteseeteeesse e ssessessessessessessessessessessssassessens 11-40
ALTER SEQUENCEcoooiiiiiiiettetteitetteteet ettt et et est st e st eseeteeseeseesesbesbessassassessassassessessessesessessens 11-43
ALTER SESSION ..ottt ettt ettt et e ettt b et easeteetsesseteebeeteeseesessessessessessessessesserserens 11-45
Initialization Parameters and ALTER SESSION.........ccccceeiiieinininineresesieeeeeeeseeeeesesseens 11-50
Session Parameters and ALTER SESSIONcccceoieieriieienieeeenteetesie e sresveseesesseessesssesseens 11-53
ALTER SYSTEM ..ottt ettt ettt ettt et et easetsetseteetaeteeta et aesessessessessessessessessessesens 11-60
Initialization Parameters and ALTER SYSTEM........cccoovviivieieieieieieeeeseeeee et seeaeenns 11-72
System Parameters and ALTER SYSTEM.........ccccoooiiiiiiiiiiic s 11-83
Shared Server Parameterscococeeviiiieiiieieieceeeeee sttt ste s e besreese e eseeseasaeennas 11-83

SQL Statements: ALTER TABLE to ALTER TABLESPACE

ALTER TABLE ..ottt s sttt ettt ea e b b a s 12-2
ALTER TABLESPACE ..ottt 12-79

SQL Statements: ALTER TRIGGER to COMMIT

ALTER TRIGGERc.coiiiiiiiiiii ettt 13-2
ALTER TYPE oottt s s s sttt et be b 13-5
ALTER USER ...ttt ettt sttt sttt ettt et sttt et sttt s b e s et et et eneeneenesaeas 13-18
ALTER VIEW Lottt s 13-25
ANALYZE ...ttt e e sttt e saea 13-27
ASSOCIATE STATISTICS ...ttt ettt sttt sa e e ese et ese et be s saeas 13-38
AUDIT oot st n e 13-42
CALL oot e s a e bttt 13-53
COMMENT ...ttt ettt ettt et ettt b e s bbb b et et et e e et et et eseene b nae 13-57
COMMIT ..ttt en e 13-59

SQL Statements: CREATE CLUSTER to CREATE JAVA

CREATE CLUSTER ...cooiiiiiiite ettt s ea e s 14-2
CREATE CONTEXT ..ottt ettt sttt et s s sa s sae 14-9
CREATE CONTROLFILEcooooiiiiiitiiiieenieene ettt ettt se st st sttt ettt et ene b e 14-12
CREATE DATABASE ...ttt e 14-18
CREATE DATABASE LINK ..ottt e 14-31

15

16

17

CREATE DIMENSION ..ottt s sa ettt 14-36

CREATE DIRECTORY ..ottt ettt et saesa e sttt sae b ne 14-42
CREATE DISKGROUPcoooiiiiiiiiitc ettt 14-44
CREATE FUNCTION ..ottt s sttt 14-48
CREATE INDEXoiiiiriiiiieiecietetetet ettt ettt ettt et s s st sttt ettt sae b ne 14-58
CREATE INDEXTYPE ...ttt 14-81
CREATE JAVA ..ottt s s sttt et b e 14-84
SQL Statements: CREATE LIBRARY to CREATE SPFILE
CREATE LIBRARY ..ottt sttt eb e 15-2
CREATE MATERIALIZED VIEW ..ottt sae s saesse s e se et eneenessesaens 15-4
CREATE MATERIALIZED VIEW LOGcccocciiiiiiiiiiiiiiiiiieneeeeteeenee e 15-25
CREATE OPERATORocoiiiiiiiiiiceetetee ettt sttt s 15-32
CREATE OUTLINEcooiiiiiiitteeete ettt ettt s st sttt et et sa e b 15-35
CREATE PACKAGE ...ttt 15-39
CREATE PACKAGE BODY ..ottt 15-43
CREATE PFILE ..ottt ettt ettt et s sttt ettt et sae b ne 15-47
CREATE PROCEDURE ..ottt 15-49
CREATE PROFILEooiiiiiiiii ettt s sttt 15-54
CREATE RESTORE POINToocoiiiiiiiiiiniietetetetetetetet et sae s e saesae s ettt saeene e 15-60
CREATE ROLEooiiiiiiec et st 15-63
CREATE ROLLBACK SEGMENTcoiiiiiiiiiiiiiieictetetctetete ettt 15-66
CREATE SCHEMA ..ottt ettt ettt s bbb b 15-69
CREATE SEQUENCE ..ottt 15-71
CREATE SPFILEoooiiiiiiiieee ettt s s st 15-75
SQL Statements: CREATE SYNONYM to CREATE TRIGGER
CREATE SYNONYM ..ottt sttt sae b 16-2
CREATE TABLE ...ttt ettt ettt st s s ettt et eae bt suesae b b nens 16-6
CREATE TABLESPACE ...ttt 16-61
CREATE TRIGGERccoooiiiiiiiiiiiicit ettt st sttt 16-75
SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT
CREATE TYPE ...ttt ettt ettt s sae b aen 17-3
CREATE TYPE BODY ...ttt ettt ettt st sa st sttt et et sb e en e 17-21
CREATE USER ...ttt sttt 17-26
CREATE VIEW .ottt s s s sttt 17-32
DELETE ..ottt sttt sttt ettt et et b e sb e et b ettt et ene st eae bt besbe e 17-43
DISASSOCIATE STATISTICSooiiiiiiic e 17-51
DROP CLUSTERooiiiiiiiiiiiirese ettt ettt et sa e sttt s sae s 17-53
DROP CONTEXT ..ottt sttt et ettt et besae et st sae sttt e e eneesee st eaesseebessesaens 17-55
DROP DATABASE ...ttt 17-56
DROP DATABASE LINKooiiiiiiiiiiiesetetetetetetet ettt sttt s 17-57
DROP DIMENSION ...ttt sttt sttt ettt e bt sae st sbe st s estessesteneeneesesnesseesessesaens 17-58
DROP DIRECTORY ..ottt sttt 17-59
DROP DISKGROUPooiiiiiiiiiieeseteeet ettt sttt s 17-60

xvii

18

DROP FUNCTION ..ottt s sa ettt 17-62

DROP INDEX ..ottt ettt sttt sttt sttt ettt et sae sttt saesaesaessesneneeneenesnessens 17-64
DROP INDEXTYPE ..ottt e 17-66
DROP JAVA oottt s s sttt e 17-67
DROP LIBRARY ..ottt sttt sttt ettt et ettt sre s sae st sa s e ese et eneeneenesnesaens 17-68
DROP MATERIALIZED VIEWcooiiiiiiiiiiiiiieietetetet s st 17-69
DROP MATERIALIZED VIEW LOGccooiiiiiiiiiiiciinctctre ettt 17-71
DROP OPERATOR ...ttt ettt st st sa e sa et sae et et ene e s saeas 17-73
DROP OUTLINE ..ot e 17-74
DROP PACKAGE ...ttt s sttt 17-75
DROP PROCEDURE ..ottt ettt st st sa et saea 17-77
DROP PROFILE ..ottt e 17-78
DROP RESTORE POINToooiiiiiiiiitceetetetetet sttt 17-79
DROP ROLE ...ttt sttt ettt et st st sa e s st sa e st enteueenesnesaeas 17-80
DROP ROLLBACK SEGMENTccoociiiiiiiiicicccce e 17-81

SQL Statements: DROP SEQUENCE to ROLLBACK

19

xviii

DROP SEQUENCEcooiiiiiiii ettt s sttt et e 18-2
DROP SYNONYM .ottt ettt sttt s e s st et sa ettt et eueebe b besaesnen 18-3
DROP TABLE ...ttt sa e s 18-5
DROP TABLESPACE ...ttt st st ettt et 18-9
DROP TRIGGER ...ttt ettt st st sa et sa ettt saeas 18-12
DROP TYPE ...ttt e 18-13
DROP TYPE BODY ..ottt sttt 18-15
DROP USER ..ottt ettt et st st s a e s st s e ese et enteueenesnesaeas 18-16
DROP VIEW .ottt 18-18
EXPLAIN PLAN ..ottt s sttt et ebe s 18-20
FLASHBACK DATABASE ...ttt ettt st st sa et eneeseenessesaea 18-23
FLASHBACK TABLE ...ttt 18-26
GRANT ..ttt bbb bbb ettt et e ae b b 18-32
INSERT ..ottt ettt ettt sttt sttt ettt b bt s bbb e bt et et et et et et eneenesnenee 18-51
LOCK TABLE ...t 18-68
MERGE ...ttt s sttt e 18-71
INOAUDIT ..ottt ettt sttt ettt ettt et e b et st bt be s b s e et e b et eneeneemeeneebeebesnesaeas 18-76
PURGE ...ttt e 18-80
RENADME ..ottt s st bttt eb e 18-82
REVIOKE ...ttt ettt sttt sttt ettt ettt st b e b bttt ettt ebeeneebenae 18-84
ROLLBACK ...t st 18-92

SQL Statements: SAVEPOINT to UPDATE

SAVEPOINT ..ot sa e s 19-2
SELECT ...ttt sttt s s bttt ettt s b e b sae 19-4
SET CONSTRAINTIST oottt ettt sttt st et 19-48
SET ROLE ..o 19-50
SET TRANSACTION ..ottt sttt ettt e 19-52
TRUNGCATE ...ttt ettt ettt ettt et et st bbb st et e bt eseeseemeemeeseebesnesaeas 19-55

UPDATE ...ttt ettt e s b e s bbb ettt s e b sae s 19-59

A How to Read Syntax Diagrams

Graphic Syntax Diagrams..............ccooiiiiiiiiii e A-1
Required Keywords and Parameterscccoooorrieiiiiiiiiicccc e A-2
Optional Keywords and Parameters ...t A-3
SYNEAX LOOPS ...ttt A-3
Multipart DIagrams ..o s A-4
Database ODJECtSccoviiiiiiiiiiiiiiiiicc s A-4

B Oracle and Standard SQL

ANSI Standards ... s B-1
ISO Standards ..o s B-2
Oracle Compliance To Core SQL:2003.............ccccooimiiiiiiiiiiiiiiii e B-3
Oracle Support for Optional Features of SQL/Foundation:2003............c..cccoecenrevenecenennccncnnes B-8
Oracle Compliance with SQL/CLI:2003ccccoooiiiiiiiiiiiiiiice s B-15
Oracle Compliance with SQL/PSM:2003cccocooouimiiiiiiiiiiiiiiieieieieeeeeeseseesese s B-15
Oracle Compliance with SQL/MED:2003ccoceoiniiimiiriinieinieeeereeereeesee e seee e snenens B-15
Oracle Compliance with SQL/XML:2005............cccccoiiiiiiiiniiiiii s B-16
Oracle Compliance with FIPS 127-2cccccooiiiiiiiiiiiiiiiic e B-22
Oracle Extensions to Standard SQLccoooiiiiiiiii et r e eaeeeaee s B-24
Character Set SUPPOIL.......ccoeviiiriiirieiicrc ettt ettt et e bttt saenen B-24

C Oracle Regular Expression Support

Multilingual Regular Expression Syntax ... C-1
Regular Expression Operator Multilingual Enhancements..............cccccccoeiiniiiiiiiiiinn, C-2
Perl-influenced Extensions in Oracle Regular Expressions ... C-3

D Oracle Database Reserved Words

E Examples

Using Extensible INAeXingcccccoviiiiniiiiiiiii s E-1
Using XML in SQL Statementscccccooveiiiiiiiiiiiiiiii s E-8
Index

Xix

XX

Preface

This reference contains a complete description of the Structured Query Language
(SQL) used to manage information in an Oracle Database. Oracle SQL is a superset of
the American National Standards Institute (ANSI) and the International Standards
Organization (ISO) SQL:1999 standard.

This Preface contains these topics:
» Intended Audience

= Documentation Accessibility
= Related Documents

s Conventions

Intended Audience
The Oracle Database SQL Reference is intended for all users of Oracle SQL.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

XXi

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents

For more information, see these Oracle resources:

» Oracle Database PL/SQL User's Guide and Reference for information on PL/SQL, the
procedural language extension to Oracle SQL

» Pro*C/C++ Programmer’s Guide, Oracle SQL*Module for Ada Programmer’s Guide, and
the Pro*COBOL Programmer’s Guide for detailed descriptions of Oracle embedded
SQL

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XXii

What's New in the SQL Reference?

This section describes new features of Oracle Database 10g and provides pointers to
additional information.

For information on features that were new in earlier versions of Oracle Database,
please refer to the documentation for the earlier release.

Oracle Database 10g Release 2 New Features in the SQL Reference

The following top-level SQL statements are new or enhanced in this release:
= ALTER DATABASE on page 10-9 has been enhanced as follows:

- New syntax in the standby_database_clauses lets you bring a logical
standby database to the same state as the primary database.

- Additional new syntax in the standby._database_clauses lets you
convert a primary database outside the Data Guard environment into a
physical standby database.

- New syntax in the managed_standby_recovery clause lets you create a
logical standby database from the physical standby database.

- New syntax in the database_file_clauses lets you rename tempfiles as
well as datafiles and redo log files.

s ALTER DISKGROUP on page 10-48 has new syntax that lets you specify when in
the course of a diskgroup rebalance operation control should be returned to the
user.

s ALTER SYSTEM on page 11-60 has new syntax that lets you load information from
the server wallet into memory for database access, and to generate a new
transparent database encryption master key:

= ALTER TABLESPACE on page 12-79 contains new syntax that lets you drop an
empty datafile or tempfile from the data dictionary and remove it from the
operating system.

= ALTER USER on page 13-18 contains new syntax that lets you expose a user to
proxy use by enterprise users.

s COMMIT on page 13-59 contains a new WRITE clause that lets you specify the
priority with which the redo information generated by the commit operation is
written to the redo log.

= CREATE DATABASE LINK on page 14-31 has new syntax that helps Data Pump
provide an encoded password for the database link during import of data.

xXiii

XXiv

s CREATE DIMENSION on page 14-36 and ALTER DIMENSION on page 10-45
contain new syntax that lets you preserve the hierarchical chain of parent-child
relationship by an alternative path that skips over a specified level if it is null.

s CREATE RESTORE POINT on page 15-60 is a new SQL statement that lets you
create a restore point, to which you can flash back a table or the database.

s CREATE TABLE on page 16-6 documents the new limit on number of partitions
and subpartitions as 1024K - 1.

s CREATE TABLE on page 16-6 and ALTER TABLE on page 12-2 contains new
syntax that lets you encrypt column data.

s CREATE USER on page 17-26 and ALTER USER on page 13-18 contain new syntax
for determining how global and external users are identified.

= DROP RESTORE POINT on page 17-79 is a new SQL statement that lets you drop
a restore point.

= FLASHBACK DATABASE on page 18-23 has new syntax that lets you flash back
the database to a restore point.

s FLASHBACK TABLE on page 18-26 has new syntax that lets you flash back a table
to a restore point.

The following clauses are modified in this release:

s All of the DML statements (INSERT, UPDATE, DELETE, MERGE) now have an error
logging clause. See for example INSERT on page 18-51.

= "Model Expressions" on page 6-11 have been enhanced to allow analytic functions
and FOR loops.

The following built-in data mining functions are new in this release:
s CLUSTER_ID on page 5-29

s CLUSTER_PROBABILITY on page 5-30

s CLUSTER_SET on page 5-32

s FEATURE_ID on page 5-63

s FEATURE_SET on page 5-65

s FEATURE_VALUE on page 5-67

= PREDICTION on page 5-120

= PREDICTION_COST on page 5-122

= PREDICTION_DETAILS on page 5-123

= PREDICTION_PROBABILITY on page 5-124

s PREDICTION_SET on page 5-126

The following built-in XML functions are new in this release:
= APPENDCHILDXML

= DELETEXML

s INSERTCHILDXML

s INSERTXMLBEFORE

= XMLCDATA

= XMLCOMMENT

= XMLPI

= XMLROOT
= XMLPARSE
= XMLPI

= XMLQUERY

= XMLSERIALIZE

= XMLTABLE

The following datatypes are new in this release:

s "SDO_TOPO_GEOMETRY" on page 2-35

The following pseudocolumns are new in this release:
s COLUMN_VALUE Pseudocolumn on page 3-6
The following miscellaneous changes have been made:

s Appendix C, "Oracle Regular Expression Support" on page C-1 lists the
Perl-influenced operators that are now supported in Oracle regular expression
functions and conditions.

= Two new hints are provided to handle parallel join bitmap filtering: "PX_JOIN_
FILTER Hint" on page 2-93 and "NO_PX_JOIN_FILTER Hint" on page 2-88.

s The new CHANGE NOTIFICATION system privilege is documented in GRANT on
page 18-32.

Oracle Database 10g Release 1 New Features in the SQL Reference

The following datatypes are new in this release:

s The binary floating-point datatypes BINARY_FLOAT on page 2-12 and BINARY_
DOUBLE on page 2-12

s The spatial datatype SDO_GEORASTER on page 2-35

s The interMedia datatype SI_Stilllmage on page 2-36 and six related Still Image
object types

The following top-level SQL statements are new or enhanced in this release:

= A number of new top-level SQL statements have been added to support
Automatic Storage Management:

- CREATE DISKGROUP on page 14-44
- ALTER DISKGROUP on page 10-48
- DROP DISKGROUP on page 17-60

In addition, the following statements have added syntax in support of Automatic
Storage Management:

- file_specification subclauses, datafile tempfile_specand redo_log_
file_ spec, let you specify Automatic Storage Management files in the form
of ASM_filename on page 8-30, as well as file system files

- CREATE CONTROLFILE on page 14-12 lets you specify Automatic Storage
Management files as well as file system files

XXV

XXVi

- CREATE TABLESPACE on page 16-61 lets you create a tablespace within an
Automatic Storage Management disk group using the "DATAFILE |
TEMPFILE Clause" on page 16-65

CREATE DATABASE on page 14-18 has new syntax that lets you create a default
permanent tablespace for the database.

ALTER DATABASE on page 10-9 has new syntax that lets you:

- Specify multiple temporary tablespaces (a tablespace group) as the database
default temporary tablespaces

— Assign or reassign a tablespace as the database default permanent tablespace
(using the DEFAULT TABLESPACE clause)

— Reset the target recovery incarnation for the database from the current
incarnation to the prior incarnation

— Begin backup of all the datafiles in the database
- Enable block change tracking for incremental backups of the database

- Update both global and local partitioned indexes as part of table partition
maintenance operations

- Revert the entire database, or some tablespaces of the database, to an earlier
version

- Control the relationship between primary databases and logical and physical
standby databases

— Assign or reassign a tablespace as the default permanent tablespace for the
database

- Add alogfile or enable a redo log thread by specifying an instance name
rather than a thread number

ALTER MATERIALIZED VIEW LOG on page 11-15:

- Has anew FORCE clause that lets you specify the addition of attributes that
the materialized view log already has without causing Oracle to return an
error

— Lets you instruct Oracle Database to record a sequence value in the
materialized view log

ALTER SYSTEM on page 11-60 has new syntax that lets you flush the buffer cache
of the system global area (SGA).

ALTER TABLE on page 12-2 has new syntax that lets you manually compact the
table segment, adjust the high water mark, and free the recuperated space.

ALTER TYPE on page 13-5 has new syntax that lets you modify varrays and
nested tables of scalar types.

ALTER TABLESPACE on page 12-79 has new syntax that lets you:
— Rename the tablespace

- Guarantee that unexpired undo data will be preserved, even at the expense of
ongoing transactions that require undo segment space

CREATE DATABASE on page 14-18 has new syntax that lets you:

- Specity datafiles for the new SYSAUX system tablespace

- Specity a bigfile tablespace as the default for the database and override the
default for undo and default temporary tablespaces as well. A bigfile
tablespace contains a single datafile that can be up to 4GB in size.

— Create a default permanent tablespace for the database.

CREATE DIMENSION on page 14-36 and ALTER DIMENSION on page 10-45
have new syntax that lets you assign a name to a dimension attribute that is
different from the level name.

CREATE INDEX on page 14-58 and ALTER INDEX on page 10-64 have new
syntax that lets you create and maintain global hash-partitioned indexes.

CREATE INDEXTYPE on page 14-81 and ALTER INDEXTYPE on page 10-82 have
new syntax that supports array inserts using the ODClIndexInsert method.

CREATE MATERIALIZED VIEW on page 15-4 and ALTER MATERIALIZED
VIEW on page 11-2 have new syntax that enhances refresh operations.

CREATE OPERATOR on page 15-32 and ALTER OPERATOR on page 11-21 have
new syntax that lets you pass column information to the functional
implementation of the operator.

CREATE TABLESPACE on page 16-61 has new syntax that lets you create a bigfile
tablespace. Such a tablespace contains a single datafile that can contain up to 2%
or 4G blocks, resulting in a datafile of up to 128 terabytes (IB). CREATE
DATABASE on page 14-18 has related syntax that lets you specify a bigfile
tablespace as the default, undo, and default temporary tablespace for the database.

CREATE TABLESPACE on page 16-61 and ALTER TABLESPACE on page 12-79
have new syntax that lets you assign or reassign a temporary tablespace to a
tablespace group.

CREATE USER on page 17-26 and ALTER USER on page 13-18 have new syntax
that lets you specify multiple temporary tablespaces (a tablespace group) to a
user.

DROP TABLE on page 18-5 has a new PURGE clause that lets you drop the table
without moving it to the recycle bin.

FLASHBACK DATABASE on page 18-23 is a new statement that lets you revert
the entire database to an earlier version.

FLASHBACK TABLE on page 18-26 is a new statement that lets you revert one or
more tables to an earlier system change number (SCN) or timestamp or retrieve a
table that was dropped.

MERGE on page 18-71 has new syntax that lets you:
- Specity either the update operation or the insert operation, or both
— Delete rows from the target table during the update operation

PURGE on page 18-80 is a new SQL statement that lets you permanently remove
previously dropped objects from the recycle bin and release the space that was
associated with them.

SELECT on page 19-4 has new syntax that lets you:

— Issue a versions query, which returns all incarnations of the rows returned by
the query within a specified SCN or time range.

— Perform a query on a partitioned outer join. The new syntax supports data
densification, the process of querying sparse data along a particular

XXVii

XXViii

dimension of data and returning rows that otherwise would have been
omitted from the data returned by the query.

— View the results of a query as a multidimensional array and perform
associated calculations.

The following clauses are modified in this release:

In the physical_attributes_clause on page 8-42, the MAXTRANS parameter has been
deprecated.

The name of the data_segment_compression clause has been changed to
table_compression for semantic clarity. The functionality has not changed.
This clause appears in a number of SQL statements. For example, see CREATE
TABLE table_compression on page 16-26.

The following built-in functions are new in this release:

A new aggregate function COLLECT on page 5-35.

A new category of collection functions lets you manipulate nested tables and
varrays. The collection functions are:

— CARDINALITY on page 5-24

- POWERMULTISET on page 5-118

- POWERMULTISET_BY_CARDINALITY on page 5-119
- SET on page 5-155

A new category of model functions are for use in specialized calculations and are
valid only in the model_clause of a query. The model functions are:

- CVonpage 5-49

- PRESENTNNYV on page 5-128

- PRESENTV on page 5-129

- PREVIOUS on page 5-130

Functions to manipulate binary floating-point numbers:
- TO_BINARY_DOUBLE on page 5-188

- TO_BINARY_FLOAT on page 5-189

- NANVL on page 5-98

- REMAINDER on page 5-147

ORA_HASH on page 5-112

The regular expression functions REGEXP_INSTR on page 5-136, REGEXP_
REPLACE on page 5-138, and REGEXP_SUBSTR on page 5-140. The Oracle
Database implementation of regular expression support is discussed in
Appendix C, "Oracle Regular Expression Support".

A new set of aggregate functions to support statistical analysis of data:
- Correlation functions CORR_* on page 5-39

- MEDIAN on page 5-94

- STATS_BINOMIAL_TEST

- STATS_CROSSTAB

- STATS_F_TEST

— STATS_KS_TEST

- STATS_MODE

- STATS_MW_TEST

- STATS_ONE_WAY_ANOVA

— T-test functions STATS_T_TEST_*
— STATS_WSR_TEST

The following SQL operators are new or enhanced in this release:

Equality and inequality operators (= and <>) can be used to compare nested tables
and varrays.

The hierarchical operator: CONNECT_BY_ROOT on page 4-5

The multiset operators: MULTISET EXCEPT on page 4-6, MULTISET INTERSECT
on page 4-7, and MULTISET UNION on page 4-8

The following pseudocolumns are new in this release:

The hierarchical pseudo columns: CONNECT_BY_ISLEAF Pseudocolumn on
page 3-2 and CONNECT_BY_ISCYCLE Pseudocolumn on page 3-1

The "Version Query Pseudocolumns" on page 3-5 let you extract information about
the rows returned by a version query.

The pseudocolumn ORA_ROWSCN Pseudocolumn on page 3-8 lets you obtain
the system change number of the most recent operation on a table.

The following conditions are new in this release:

The [NOT] IN conditions, formerly referred to as "membership condition”, are now
documented as "IN conditions" to distinguish them from the new MEMBER
conditions (see IN Condition on page 7-21)

The "Floating-Point Conditions" (IS [NOT] NAN and IS [NOT] INFINITE) on
page 7-7

IS A SET Condition on page 7-11

IS ANY Condition on page 7-9

IS EMPTY Condition on page 7-11

IS PRESENT Condition on page 7-10
MEMBER Condition on page 7-12
REGEXP_LIKE Condition on page 7-17
SUBMULTISET Condition on page 7-13

The following miscellaneous features are added:

New locale-independent format elements have been added to the tables in
"Format Models" on page 2-54.

Oracle Database now performs implicit conversion between CLOB and NCLOB
data.

You can now specify a LOB column in the UPDATE OF clause when creating an
update DML trigger.

XXiX

XXX

1

Introduction to Oracle SQL

Structured Query Language (SQL) is the set of statements with which all programs
and users access data in an Oracle database. Application programs and Oracle tools
often allow users access to the database without using SQL directly, but these
applications in turn must use SQL when executing the user's request. This chapter
provides background information on SQL as used by most database systems.

This chapter contains these topics:
= History of SQL

s SQL Standards

= Recent Enhancements

= Lexical Conventions

= Tools Support

History of SQL

Dr. E. F. Codd published the paper, "A Relational Model of Data for Large Shared Data
Banks", in June 1970 in the Association of Computer Machinery (ACM) journal,
Communications of the ACM. Codd's model is now accepted as the definitive model for
relational database management systems (RDBMS). The language, Structured English
Query Language (SEQUEL) was developed by IBM Corporation, Inc., to use Codd's
model. SEQUEL later became SQL (still pronounced "sequel”). In 1979, Relational
Software, Inc. (now Oracle) introduced the first commercially available
implementation of SQL. Today, SQL is accepted as the standard RDBMS language.

SQL Standards

Oracle strives to comply with industry-accepted standards and participates actively in
SQL standards committees. Industry-accepted committees are the American National
Standards Institute (ANSI) and the International Organization for Standardization
(ISO), which is affiliated with the International Electrotechnical Commission (IEC).
Both ANSI and the ISO/IEC have accepted SQL as the standard language for
relational databases. When a new SQL standard is simultaneously published by these
organizations, the names of the standards conform to conventions used by the
organization, but the standards are technically identical.

The latest SQL standard was adopted in July 2003 and is often called SQL:2003. The
formal names of this standard are:

= ANSI/ISO/IEC 9075:2003, "Database Language SQL", Parts 1
("SQL/Framework"), 2 ("SQL/Foundation"), 3 ("SQL/CLI"), 4 ("SQL/PSM"), 9

Introduction to Oracle SQL 1-1

SQL Standards

("SQL/MED"), 10 ("SQL/OLB"), 11 ("SQL/Schemata"), 13 ("SQL/JRT") and 14
("SQL/XML")

= ISO/IEC 9075:2003, "Database Language SQL", Parts 1 ("SQL/Framework"), 2
("SQL/Foundation"), 3 ("SQL/CLI"), 4 ("SQL/PSM"), 9 ("SQL/MED"), 10
("SQL/OLB"), 11 ("SQL/Schemata"), 13 ("SQL/JRT") and 14 ("SQL/XML")

See Also: Appendix B, "Oracle and Standard SQL" for a detailed
description of Oracle Database conformance to the SQL:2003
standards

At this writing, the next edition of Part 14, SQL /XML (ISO/IEC 9075-14) is in the
process of final approval as an International Standard, with adoption expected in the
final quarter of 2005.

How SQL Works

The strengths of SQL provide benefits for all types of users, including application
programmers, database administrators, managers, and end users. Technically
speaking, SQL is a data sublanguage. The purpose of SQL is to provide an interface to
a relational database such as Oracle Database, and all SQL statements are instructions
to the database. In this SQL differs from general-purpose programming languages like
C and BASIC. Among the features of SQL are the following:

» It processes sets of data as groups rather than as individual units.
= It provides automatic navigation to the data.

= It uses statements that are complex and powerful individually, and that therefore
stand alone. Flow-control statements were not part of SQL originally, but they are
found in the recently accepted optional part of SQL, ISO/IEC 9075-5: 1996.
Flow-control statements are commonly known as "persistent stored modules"
(PSM), and the PL/SQL extension to Oracle SQL is similar to PSM.

SQL lets you work with data at the logical level. You need to be concerned with the
implementation details only when you want to manipulate the data. For example, to
retrieve a set of rows from a table, you define a condition used to filter the rows. All
rows satisfying the condition are retrieved in a single step and can be passed as a unit
to the user, to another SQL statement, or to an application. You need not deal with the
rows one by one, nor do you have to worry about how they are physically stored or
retrieved. All SQL statements use the optimizer, a part of Oracle Database that
determines the most efficient means of accessing the specified data. Oracle also
provides techniques that you can use to make the optimizer perform its job better.

SQL provides statements for a variety of tasks, including:
= Querying data

= Inserting, updating, and deleting rows in a table

s Creating, replacing, altering, and dropping objects

s Controlling access to the database and its objects

= Guaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language.

1-2 Oracle Database SQL Reference

Lexical Conventions

Common Language for All Relational Databases

All major relational database management systems support SQL, so you can transfer
all skills you have gained with SQL from one database to another. In addition, all
programs written in SQL are portable. They can often be moved from one database to
another with very little modification.

Recent Enhancements

The Oracle Database SQL engine is the underpinning of all Oracle Database
applications. Oracle SQL continually evolves to meet the growing demands of
database applications and to support emerging computing architectures, APIs, and
network protocols.

In addition to traditional structured data, SQL is capable of storing, retrieving, and
processing more complex data:

» Object types, collection types, and REF types provide support for complex
structured data. A number of standard-compliant multiset operators are now
supported for the nested table collection type.

= Large objects (LOBs) provide support for both character and binary unstructured
data. A single LOB can reach a size of 8 to 128 terabytes, depending on database
block size.

s The XMLType datatype provides support for semistructured XML data.
Native support of standards-based capabilities includes the following features:

= Native regular expression support lets you perform pattern searches on and
manipulate loosely formatted, free-form text within the database.

= Native floating-point datatypes based on the IEEE754 standard improve the
floating-point processing common in XML and Java standards and reduce the
storage space required for numeric data.

s Built-in SQL aggregate and analytic functions facilitate access to and manipulation
of data in data warehouses and data marts.

Ongoing enhancements in Oracle SQL will continue to provide comprehensive
support for the development of versatile, scalable, high-performance database
applications.

Lexical Conventions

The following lexical conventions for issuing SQL statements apply specifically to the
Oracle Database implementation of SQL, but are generally acceptable in other SQL
implementations.

When you issue a SQL statement, you can include one or more tabs, carriage returns,
spaces, or comments anywhere a space occurs within the definition of the statement.
Thus, Oracle Database evaluates the following two statements in the same manner:

SELECT last_name,salary*12,MONTHS_BETWEEN (hire_date, SYSDATE)
FROM employees
WHERE department_id = 30
ORDER BY last_name;

SELECT last_name,

salary * 12,
MONTHS_BETWEEN (hire_date, SYSDATE)

Introduction to Oracle SQL 1-3

Tools Support

FROM employees
ORDER BY last_name;

Case is insignificant in reserved words, keywords, identifiers and parameters.
However, case is significant in text literals and quoted names. Please refer to "Text
Literals" on page 2-45 for a syntax description of text literals.

Tools Support

Oracle provides a number of utilities to facilitate your SQL development process:

SQL*Plus is an interactive and batch query tool that is installed with every Oracle
Database server or client installation. It has a command-line user interface and a
web-based user interface called iSQL*Plus.

Oracle JDeveloper is a multiple-platform integrated development environment
supporting the complete lifecycle of development for Java, Web services, and SQL.
It provides a graphical interface for executing and tuning SQL statements and a
visual schema diagrammer (database modeler). It also supports editing,
compiling, and debugging PL/SQL applications.

Oracle HTML DB is a hosted environment for developing and deploying
database-related Web applications. SQL Workshop is a component of Oracle
HTML DB that lets you view and manage database objects from a Web browser.
SQL Workshop offers quick access to a SQL command processor and a SQL script
repository.

See Also: SQL*Plus User’s Guide and Reference and Oracle HTML DB
User’s Guide for more information on these products

The Oracle Call Interface and Oracle precompilers let you embed standard SQL
statements within a procedure programming language.

The Oracle Call Interface (OCI) lets you embed SQL statements in C programs.

The Oracle precompilers, Pro*C/C++ and Pro*COBOL, interpret embedded SQL
statements and translate them into statements that can be understood by C/C++
and COBOL compilers, respectively.

See Also: Oracle C++ Call Interface Programmer’s Guide, Pro*COBOL
Programmer’s Guide, and Oracle Call Interface Programmer’s Guide for
additional information on the embedded SQL statements allowed in
each product

Most (but not all) Oracle tools also support all features of Oracle SQL. This reference
describes the complete functionality of SQL. If the Oracle tool that you are using does
not support this complete functionality, then you can find a discussion of the
restrictions in the manual describing the tool, such as SQL*Plus User’s Guide and
Reference.

1-4 Oracle Database SQL Reference

2

Datatypes

Basic Elements of Oracle SQL

This chapter contains reference information on the basic elements of Oracle SQL.
These elements are the simplest building blocks of SQL statements. Therefore, before
using the statements described in Chapter 10 through Chapter 19, you should
familiarize yourself with the concepts covered in this chapter.

This chapter contains these sections:

s Datatypes

= Literals

= Format Models

= Nulls

s Comments

= Database Objects

= Schema Object Names and Qualifiers

= Syntax for Schema Objects and Parts in SQL Statements

Each value manipulated by Oracle Database has a datatype. The datatype of a value
associates a fixed set of properties with the value. These properties cause Oracle to
treat values of one datatype differently from values of another. For example, you can
add values of NUMBER datatype, but not values of RAW datatype.

When you create a table or cluster, you must specify a datatype for each of its columns.
When you create a procedure or stored function, you must specify a datatype for each
of its arguments. These datatypes define the domain of values that each column can
contain or each argument can have. For example, DATE columns cannot accept the
value February 29 (except for a leap year) or the values 2 or 'SHOE'. Each value
subsequently placed in a column assumes the datatype of the column. For example, if
you insert ' 01-JAN-98"' into a DATE column, then Oracle treats the ' 01-JAN-98"
character string as a DATE value after verifying that it translates to a valid date.

Oracle Database provides a number of built-in datatypes as well as several categories
for user-defined types that can be used as datatypes. The syntax of Oracle datatypes
appears in the diagrams that follow. The text of this section is divided into the
following sections:

s Oracle Built-in Datatypes
= ANSI, DB2, and SQL/DS Datatypes

Basic Elements of Oracle SQL 2-1

Datatypes

s User-Defined Types

s Oracle-Supplied Types

s Datatype Comparison Rules
= Data Conversion

A datatype is either scalar or nonscalar. A scalar type contains an atomic value,
whereas a nonscalar (sometimes called a "collection") contains a set of values. A large
object (LOB) is a special form of scalar datatype representing a large scalar value of
binary or character data. LOBs are subject to some restrictions that do not affect other
scalar types because of their size. Those restrictions are documented in the context of
the relevant SQL syntax.

The Oracle precompilers recognize other datatypes in embedded SQL programs. These
datatypes are called external datatypes and are associated with host variables. Do not
confuse built-in datatypes and user-defined types with external datatypes. For
information on external datatypes, including how Oracle converts between them and
built-in datatypes or user-defined types, see Pro*COBOL Programmer’s Guide, and
Pro*C/C++ Programmer’s Guide.

datatypes::=

Oracle_built_in_datatypes

ANSI_supported_datatypes

user_defined_types

i

Oracle_supplied_types

Oracle_built_in_datatypes::=

character_datatypes

number_datatypes
—(Iong_and_raw_datatypes)—

datetime_datatypes

large_object_datatypes

I

ll

rowid_datatypes

For descriptions of the Oracle built-in datatypes, please refer to "Oracle Built-in
Datatypes" on page 2-6.

2-2 Oracle Database SQL Reference

Datatypes

character_datatypes::=

BYTE

| BYTE |
=)

size %
f| CHAR

)
CHAR

- 0@ Ly
-

NCHAR

number_datatypes::=

NUMBER

BINARY_FLOAT

BINARY_DOUBLE
long_and_raw_datatypes::=
o)
o] —
0:60

datetime_datatypes::=

f| DATE
LOCAL

ﬁ@e(fractional_seconds_precision}% WITH H TIME ZONE
—| TIMESTAMP
® 0
H INTERVAL || YEAR | 4 TO |->| MONTH
o o fe®—><fractional_seconds_precisionm
INTERVAL [+ DAY T0 H SECOND

large_object_datatypes::=

Basic Elements of Oracle SQL 2-3

Datatypes

rowid_datatypes::=

ROWID
-
UROWID

The ANSI-supported datatypes appear in the figure that follows. "ANSI, DB2, and
SQL/DS Datatypes" on page 2-29 discusses the mapping of ANSI-supported datatypes
to Oracle built-in datatypes.

ANSI_supported_datatypes::=

-VARYlNG

,| CHARACTER ﬁ-_\
CHAR
o D@
NCHAR

©

scale
—{ DECIMAL

DE

— INT

D@D

-| DOUBLE |->| PRECISION }

\| REAL
Oracle_supplied_types::=

XML_types
spatial_types

media_types

il

LA

m
L
o
b=
=

expression_filter_type

For a description of the expression filter._type, please refer to "Expression
Filter Type" on page 2-37. Other Oracle-supplied types follow:

2-4 Oracle Database SQL Reference

Datatypes

any_types::=

SYS.AnyData

SYS.AnyType

SYS.AnyDataSet

L

e

For descriptions of the Any types, please refer to "Any Types" on page 2-32.

XML_types::=
=l
For descriptions of the XML types, please refer to "XML Types" on page 2-33.

spatial_types::=

SDO_Geometry

SDO_Topo_Geometry

SDO_GeoRaster

For descriptions of the spatial types, please refer to "Spatial Types" on page 2-34.
media_types::=
ORDAudio
ORDImage
ORDVideo

ORDDoc

OrdImageSignature

il

cﬁ
=
3
QO
«Q
(o}
o
K=x
@D
O
3
-
<
el
[0}
N

still_image_object_types::=

SI_Stilllmage
SI_AverageColor
SI_PositionalColor
—>—{ SI_ColorHistogram H—
Sl_Texture

S|_FeatureList

A

SI_Color

For descriptions of the media types, please refer to "Media Types" on page 2-35.

Basic Elements of Oracle SQL 2-5

Datatypes

Oracle Built-in Datatypes

The table that follows summarizes Oracle built-in datatypes. Please refer to the syntax
in the preceding sections for the syntactic elements. The codes listed for the datatypes
are used internally by Oracle Database. The datatype code of a column or object
attribute is returned by the DUMP function.

Table 2—-1

Built-in Datatype Summary

Code

Datatype

Description

1

VARCHAR2(size [BYTE | CHAR])

Variable-length character string having maximum length size
bytes or characters. Maximum s ze is 4000 bytes or characters,
and minimum is 1 byte or 1 character. You must specify size for
VARCHAR2.

BYTE indicates that the column will have byte length semantics;
CHAR indicates that the column will have character semantics.

NVARCHAR2(size)

Variable-length Unicode character string having maximum
length size characters. The number of bytes can be up to two
times size for AL16UTF16 encoding and three times size for
UTF8 encoding. Maximum s1ize is determined by the national
character set definition, with an upper limit of 4000 bytes. You
must specify size for NVARCHAR2.

NUMBER[(precision|, scalel])

Number having precision p and scale s. The precision p can
range from 1 to 38. The scale s can range from -84 to 127.

LONG

Character data of variable length up to 2 gigabytes, or 2311
bytes. Provided for backward compatibility.

12

DATE

Valid date range from January 1, 4712 BC to December 31, 9999
AD. The default format is determined explicitly by the NLS_
DATE_FORMAT parameter or implicitly by the NLS_TERRITORY
parameter. The size is fixed at 7 bytes. This datatype contains the
datetime fields YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND.
It does not have fractional seconds or a time zone.

21

BINARY_FLOAT

32-bit floating point number. This datatype requires 5 bytes,
including the length byte.

22

BINARY_DOUBLE

64-bit floating point number. This datatype requires 9 bytes,
including the length byte.

180

TIMESTAMP [(fractional_
seconds)]

Year, month, and day values of date, as well as hour, minute,
and second values of time, where fractional_seconds_
precisionis the number of digits in the fractional part of the
SECOND datetime field. Accepted values of fractional
seconds_precisionare 0to 9. The default is 6. The default
format is determined explicitly by the NLS_DATE_FORMAT
parameter or implicitly by the NLS_TERRITORY parameter. The
sizes varies from 7 to 11 bytes, depending on the precision. This
datatype contains the datetime fields YEAR, MONTH, DAY, HOUR,
MINUTE, and SECOND. It contains fractional seconds but does
not have a time zone.

181

TIMESTAMP [(fractional_
seconds)] WITH TIME ZONE

All values of TIMESTAMP as well as time zone displacement
value, where fractional_seconds_precisionis the
number of digits in the fractional part of the SECOND datetime
field. Accepted values are 0 to 9. The default is 6. The default
format is determined explicitly by the NL.S_DATE_FORMAT
parameter or implicitly by the NLS_TERRITORY parameter. The
size is fixed at 13 bytes. This datatype contains the datetime
fields YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, TIMEZONE_
HOUR, and TIMEZONE_MINUTE. It has fractional seconds and an
explicit time zone.

2-6 Oracle Database SQL Reference

Datatypes

Table 2-1 (Cont.) Built-in Datatype Summary

Code

Datatype

Description

231

TIMESTAMP [(fractional_
seconds)] WITH LOCAL TIME ZONE

All values of TIMESTAMP WITH TIME ZONE, with the following
exceptions:

= Data is normalized to the database time zone when it is
stored in the database.

s When the data is retrieved, users see the data in the session
time zone.

The default format is determined explicitly by the NLS_DATE_
FORMAT parameter or implicitly by the NLS_TERRITORY
parameter. The sizes varies from 7 to 11 bytes, depending on the
precision.

182

INTERVAL YEAR [(vear_
precision)] TO MONTH

Stores a period of time in years and months, where year_
precisionis the number of digits in the YEAR datetime field.
Accepted values are 0 to 9. The default is 2. The size is fixed at 5
bytes.

183

INTERVAL DAY [(day_precision)]
TO SECOND [(fractional_
seconds)]

Stores a period of time in days, hours, minutes, and seconds,
where

s day_precisionisthe maximum number of digits in the
DAY datetime field. Accepted values are 0 to 9. The default
is 2.

m fractional_seconds_precision is the number of
digits in the fractional part of the SECOND field. Accepted
values are 0 to 9. The default is 6.

The size is fixed at 11 bytes.

23

RAW(size)

Raw binary data of length size bytes. Maximum si ze is 2000
bytes. You must specify size for a RAW value.

24

LONG RAW

Raw binary data of variable length up to 2 gigabytes.

69

ROWID

Base 64 string representing the unique address of a row in its
table. This datatype is primarily for values returned by the
ROWID pseudocolumn.

208

UROWID [(size)]

Base 64 string representing the logical address of a row of an
index-organized table. The optional size is the size of a column
of type UROWID. The maximum size and default is 4000 bytes.

96

CHAR [(size [BYTE | CHAR])]

Fixed-length character data of length size bytes. Maximum
sizeis 2000 bytes or characters. Default and minimum sizeis
1 byte.

BYTE and CHAR have the same semantics as for VARCHAR?2.

96

NCHAR[(size)]

Fixed-length character data of length size characters. The
number of bytes can be up to two times size for AL16UTF16
encoding and three times size for UTF8 encoding. Maximum
sizeis determined by the national character set definition, with
an upper limit of 2000 bytes. Default and minimum sizeis 1
character.

112

CLOB

A character large object containing single-byte or multibyte
characters. Both fixed-width and variable-width character sets
are supported, both using the database character set. Maximum
size is (4 gigabytes - 1) * (database block size).

Basic Elements of Oracle SQL 2-7

Datatypes

Table 2-1 (Cont.) Built-in Datatype Summary

Code Datatype Description

112 NCLOB A character large object containing Unicode characters. Both
fixed-width and variable-width character sets are supported,
both using the database national character set. Maximum size is
(4 gigabytes - 1) * (database block size). Stores national character

set data.

113 BLOB A binary large object. Maximum size is (4 gigabytes - 1) *
(database block size).

114 BFILE Contains a locator to a large binary file stored outside the

database. Enables byte stream I/0O access to external LOBs
residing on the database server. Maximum size is 4 gigabytes.

The sections that follow describe the Oracle datatypes as they are stored in Oracle
Database. For information on specifying these datatypes as literals, please refer to
"Literals" on page 2-44.

Character Datatypes
Character datatypes store character (alphanumeric) data, which are words and
free-form text, in the database character set or national character set. They are less
restrictive than other datatypes and consequently have fewer properties. For example,
character columns can store all alphanumeric values, but NUMBER columns can store
only numeric values.

Character data is stored in strings with byte values corresponding to one of the
character sets, such as 7-bit ASCII or EBCDIC, specified when the database was
created. Oracle Database supports both single-byte and multibyte character sets.

These datatypes are used for character data:
s CHAR Datatype

s NCHAR Datatype

s NVARCHAR?2 Datatype

s VARCHAR?2 Datatype

For information on specifying character datatypes as literals, please refer to "Text
Literals" on page 2-45.

CHAR Datatype

The CHAR datatype specifies a fixed-length character string. Oracle ensures that all
values stored in a CHAR column have the length specified by size. If you insert a
value that is shorter than the column length, then Oracle blank-pads the value to
column length. If you try to insert a value that is too long for the column, then Oracle
returns an error.

The default length for a CHAR column is 1 byte and the maximum allowed is 2000
bytes. A 1-byte string can be inserted into a CHAR (10) column, but the string is
blank-padded to 10 bytes before it is stored.

When you create a table with a CHAR column, by default you supply the column
length in bytes. The BYTE qualifier is the same as the default. If you use the CHAR
qualifier, for example CHAR(10 CHAR), then you supply the column length in
characters. A character is technically a code point of the database character set. Its size
can range from 1 byte to 4 bytes, depending on the database character set. The BYTE
and CHAR qualifiers override the semantics specified by the NLS_LENGTH_

2-8 Oracle Database SQL Reference

Datatypes

SEMANTICS parameter, which has a default of byte semantics. For performance
reasons, Oracle recommends that you use the NL.S_LENGTH_SEMANTICS parameter to
set length semantics and that you use the BYTE and CHAR qualifiers only when
necessary to override the parameter.

To ensure proper data conversion between databases with different character sets, you
must ensure that CHAR data consists of well-formed strings. See Oracle Database
Globalization Support Guide for more information on character set support.

See Also: "Datatype Comparison Rules" on page 2-37 for
information on comparison semantics

NCHAR Datatype

The NCHAR datatype is a Unicode-only datatype. When you create a table with an
NCHAR column, you define the column length in characters. You define the national
character set when you create your database.

The maximum length of a column is determined by the national character set
definition. Width specifications of character datatype NCHAR refer to the number of
characters. The maximum column size allowed is 2000 bytes.

If you insert a value that is shorter than the column length, then Oracle blank-pads the
value to column length. You cannot insert a CHAR value into an NCHAR column, nor
can you insert an NCHAR value into a CHAR column.

The following example compares the translated_description column of the
pm.product_descriptions table with a national character set string:

SELECT translated_description FROM product_descriptions
WHERE translated_name = N'LCD Monitor 11/PM';

Please refer to Oracle Database Globalization Support Guide for information on Unicode
datatype support.

NVARCHAR2 Datatype

The NVARCHAR2 datatype is a Unicode-only datatype. When you create a table with an
NVARCHAR2 column, you supply the maximum number of characters it can hold.
Oracle subsequently stores each value in the column exactly as you specify it,
provided the value does not exceed the maximum length of the column.

The maximum length of the column is determined by the national character set
definition. Width specifications of character datatype NVARCHAR?2 refer to the number
of characters. The maximum column size allowed is 4000 bytes. Please refer to Oracle
Database Globalization Support Guide for information on Unicode datatype support.

VARCHAR2 Datatype

The VARCHAR2 datatype specifies a variable-length character string. When you create
a VARCHAR?2 column, you supply the maximum number of bytes or characters of data
that it can hold. Oracle subsequently stores each value in the column exactly as you
specify it, provided the value does not exceed the column's maximum length of the
column. If you try to insert a value that exceeds the specified length, then Oracle
returns an error.

You must specify a maximum length for a VARCHAR2 column. This maximum must be
at least 1 byte, although the actual string stored is permitted to be a zero-length string
(" ")- You can use the CHAR qualifier, for example VARCHAR2(10 CHAR), to give the
maximum length in characters instead of bytes. A character is technically a code point
of the database character set. CHAR and BYTE qualifiers override the setting of the

Basic Elements of Oracle SQL 2-9

Datatypes

NLS_LENGTH_SEMANTICS parameter, which has a default of bytes. For performance
reasons, Oracle recommends that you use the NL.S_LENGTH_SEMANTICS parameter to
set length semantics and that you use the BYTE and CHAR qualifiers only when
necessary to override the parameter. The maximum length of VARCHAR2 data is 4000
bytes. Oracle compares VARCHAR2 values using nonpadded comparison semantics.

To ensure proper data conversion between databases with different character sets, you
must ensure that VARCHAR?2 data consists of well-formed strings. See Oracle Database
Globalization Support Guide for more information on character set support.

See Also: "Datatype Comparison Rules" on page 2-37 for
information on comparison semantics

VARCHAR Datatype

Do not use the VARCHAR datatype. Use the VARCHAR?2 datatype instead. Although the
VARCHAR datatype is currently synonymous with VARCHAR2, the VARCHAR datatype is
scheduled to be redefined as a separate datatype used for variable-length character
strings compared with different comparison semantics.

Numeric Datatypes

The Oracle Database numeric datatypes store positive and negative fixed and
floating-point numbers, zero, infinity, and values that are the undefined result of an
operation (that is, is "not a number" or NAN). For information on specifying numeric
datatypes as literals, please refer to "Numeric Literals" on page 2-46.

NUMBER Datatype

The NUMBER datatype stores zero as well as positive and negative fixed numbers with
absolute values from 1.0 x 10" to (but not including) 1.0 x 10'%. If you specify an
arithmetic expression whose value has an absolute value greater than or equal to 1.0 x
10'%, then Oracle returns an error. Each NUMBER value requires from 1 to 22 bytes.

Specify a fixed-point number using the following form:

NUMBER (p, s)

where:

= pis the precision, or the total number of significant decimal digits, where the most
significant digit is the left-most nonzero digit, and the least significant digit is the
right-most known digit. Oracle guarantees the portability of numbers with
precision of up to 20 base-100 digits, which is equivalent to 39 or 40 decimal digits
depending on the position of the decimal point.

= sisthe scale, or the number of digits from the decimal point to the least
significant digit. The scale can range from -84 to 127.

— Positive scale is the number of significant digits to the right of the decimal
point to and including the least significant digit.

- Negative scale is the number of significant digits to the left of the decimal
point, to but not including the least significant digit. For negative scale the
least significant digit is on the left side of the decimal point, because the actual
data is rounded to the specified number of places to the left of the decimal
point. For example, a specification of (10,-2) means to round to hundreds.

Scale can be greater than precision, most commonly when e notation is used. When
scale is greater than precision, the precision specifies the maximum number of
significant digits to the right of the decimal point. For example, a column defined as

2-10 Oracle Database SQL Reference

Datatypes

NUMBER (4, 5) requires a zero for the first digit after the decimal point and rounds all
values past the fifth digit after the decimal point.

It is good practice to specify the scale and precision of a fixed-point number column
for extra integrity checking on input. Specifying scale and precision does not force all
values to a fixed length. If a value exceeds the precision, then Oracle returns an error. If
a value exceeds the scale, then Oracle rounds it.

Specify an integer using the following form:

NUMBER (p)

This represents a fixed-point number with precision p and scale 0 and is equivalent to
NUMBER (p, 0) .

Specify a floating-point number using the following form:

NUMBER

The absence of precision and scale designators specifies the maximum range and
precision for an Oracle number.

See Also: "Floating-Point Numbers" on page 2-11
Table 2-2 show how Oracle stores data using different precisions and scales.

Table 2-2 Storage of Scale and Precision

Actual Data Specified As Stored As

123.89 NUMBER 123.89

123.89 NUMBER (3) 124

123.89 NUMBER (6, 2) 123.89

123.89 NUMBER (6,1) 123.9

123.89 NUMBER (3) exceeds precision
123.89 NUMBER (4, 2) exceeds precision
123.89 NUMBER (6, -2) 100

.01234 NUMBER (4, 5) .01234

.00012 NUMBER (4, 5) .00012

.000127 NUMBER (4, 5) .00013

.0000012 NUMBER (2, 7) .0000012
.00000123 NUMBER (2, 7) .0000012

1.2e-4 NUMBER (2, 5) 0.00012

1.2e-5 NUMBER (2, 5) 0.00001

Floating-Point Numbers

Floating-point numbers can have a decimal point anywhere from the first to the last
digit or can have no decimal point at all. An exponent may optionally be used
following the number to increase the range (for example, 1.777 e2%). A scale value is
not applicable to floating-point numbers, because the number of digits that can appear
after the decimal point is not restricted.

Binary floating-point numbers differ from NUMBER in the way the values are stored
internally by Oracle Database. Values are stored using decimal precision for NUMBER.

Basic Elements of Oracle SQL 2-11

Datatypes

All literals that are within the range and precision supported by NUMBER are stored
exactly as NUMBER. Literals are stored exactly because literals are expressed using
decimal precision (the digits 0 through 9). Binary floating-point numbers are stored
using binary precision (the digits 0 and 1). Such a storage scheme cannot represent all
values using decimal precision exactly. Frequently, the error that occurs when
converting a value from decimal to binary precision is undone when the value is
converted back from binary to decimal precision. The literal 0.1 is such an example.

Oracle Database provides two numeric datatypes exclusively for floating-point
numbers:

BINARY_FLOAT BINARY_FLOAT is a 32-bit, single-precision floating-point number
datatype. Each BINARY_FLOAT value requires 5 bytes, including a length byte.

BINARY_DOUBLE BINARY_ DOUBLE is a 64-bit, double-precision floating-point number
datatype. Each BINARY_DOUBLE value requires 9 bytes, including a length byte.

In a NUMBER column, floating point numbers have decimal precision. In a BINARY_
FLOAT or BINARY_DOUBLE column, floating-point numbers have binary precision.
The binary floating-point numbers support the special values infinity and NaN (not a
number).

You can specify floating-point numbers within the limits listed in Table 2-3 on
page 2-12. The format for specifying floating-point numbers is defined in "Numeric
Literals" on page 2-46.

Table 2-3 Floating Point Number Limits

Value Binary-Float Binary-Double
Maximum positive finite value 3.40282E+38F 1.79769313486231E+308
Minimum positive finite value = 1.17549E-38F 2.22507485850720E-308

Oracle Database also supports the ANSI datatype FLOAT. You can specify this
datatype using one of these syntactic forms:

FLOAT
FLOAT (n)

The number n indicates the number of bits of precision that the value can store. The
value for n can range from 1 to 126. To convert from binary to decimal precision,
multiply n by 0.30103. To convert from decimal to binary precision, multiply the
decimal precision by 3.32193. The maximum of 126 digits of binary precision is
roughly equivalent to 38 digits of decimal precision.

IEEE754 Conformance The Oracle implementation of floating-point datatypes
conforms substantially with the Institute of Electrical and Electronics Engineers (IEEE)
Standard for Binary Floating-Point Arithmetic, IEEE Standard 754-1985 (IEEE754). The
new datatypes conform to IEEE754 in the following areas:

s The SQL function SQRT implements square root. See SQRT on page 5-158.

s The SQL function REMAINDER implements remainder. See REMAINDER on
page 5-147.

= Arithmetic operators conform. See "Arithmetic Operators” on page 4-3.

s Comparison operators conform, except for comparisons with NaN. Oracle orders
NaN greatest with respect to all other values, and evaluates NaN equal to NaN. See
"Floating-Point Conditions" on page 7-7.

2-12 Oracle Database SQL Reference

Datatypes

LONG Datatype

= Conversion operators conform. See "Conversion Functions" on page 5-5.
s The default rounding mode is supported.
s The default exception handling mode is supported.

s The special values INF, -INF, and NaN are supported. See "Floating-Point
Conditions" on page 7-7.

= Rounding of BINARY_FLOAT and BINARY_DOUBLE values to integer-valued
BINARY_FLOAT and BINARY_DOUBLE values is provided by the SQL functions
ROUND, TRUNC, CEIL, and FLOOR.

= Rounding of BINARY_ FLOAT/BINARY_DOUBLE to decimal and decimal to
BINARY_FLOAT/BINARY_DOUBLE is provided by the SQL functions TO_CHAR,
TO_NUMBER, TO_NCHAR, TO_BINARY_FLOAT, TO_BINARY_DOUBLE, and CAST.

The new datatypes do not conform to IEEE754 in the following areas:
s -0is coerced to +0.
s Comparison with NaN is not supported.

s All NaN values are coerced to either BINARY_ FLOAT_NAN or BINARY_ DOUBLE_
NAN.

= Non-default rounding modes are not supported.

= Non-default exception handling mode are not supported.

Numeric Precedence

Numeric precedence determines, for operations that support numeric datatypes, the
datatype Oracle uses if the arguments to the operation have different datatypes.
BINARY_DOUBLE has the highest numeric precedence, followed by BINARY_FLOAT,
and finally by NUMBER. Therefore, in any operation on multiple numeric values:

= If any of the operands is BINARY_DOUBLE, then Oracle attempts to convert all the
operands implicitly to BINARY_DOUBLE before performing the operation.

= If none of the operands is BINARY_DOUBLE but any of the operands is BINARY__
FLOAT, then Oracle attempts to convert all the operands implicitly to BINARY_
FLOAT before performing the operation.

» Otherwise, Oracle attempts to convert all the operands to NUMBER before
performing the operation.

If any implicit conversion is needed and fails, then the operation fails. Table 2-10,
" Implicit Type Conversion Matrix" on page 2-41 for more information on implicit
conversion.

In the context of other datatypes, numeric datatypes have lower precedence than the
datetime/interval datatypes and higher precedence than character and all other
datatypes.

LONG columns store variable-length character strings containing up to 2 gigabytes -1,
or 2%1-1 bytes. LONG columns have many of the characteristics of VARCHAR2 columns.
You can use LONG columns to store long text strings. The length of LONG values may
be limited by the memory available on your computer. LONG literals are formed as
described for "Text Literals" on page 2-45.

Do not create tables with LONG columns. Use LOB columns (CLOB, NCLOB, BL.OB)
instead. LONG columns are supported only for backward compatibility.

Basic Elements of Oracle SQL 2-13

Datatypes

Oracle also recommends that you convert existing LONG columns to LOB columns.
LOB columns are subject to far fewer restrictions than LONG columns. Further, LOB
functionality is enhanced in every release, whereas LONG functionality has been static
for several releases. See the modify col_properties clause of ALTER TABLE on
page 12-2 and TO_LOB on page 5-196 for more information on converting LONG
columns to LOB.

You can reference LONG columns in SQL statements in these places:
m SELECT lists

= SET clauses of UPDATE statements

= VALUES clauses of INSERT statements

The use of LONG values is subject to these restrictions:

= A table can contain only one LONG column.

= You cannot create an object type with a LONG attribute.

= LONG columns cannot appear in WHERE clauses or in integrity constraints (except
that they can appear in NULL and NOT NULL constraints).

m LONG columns cannot be indexed.
= LONG data cannot be specified in regular expressions.
m A stored function cannot return a LONG value.

= You can declare a variable or argument of a PL/SQL program unit using the LONG
datatype. However, you cannot then call the program unit from SQL.

= Within a single SQL statement, all LONG columns, updated tables, and locked
tables must be located on the same database.

s LONG and LONG RAW columns cannot be used in distributed SQL statements and
cannot be replicated.

= If a table has both LONG and LOB columns, then you cannot bind more than 4000
bytes of data to both the LONG and LOB columns in the same SQL statement.
However, you can bind more than 4000 bytes of data to either the LONG or the LOB
column.

In addition, LONG columns cannot appear in these parts of SQL statements:

s GROUP BY clauses, ORDER BY clauses, or CONNECT BY clauses or with the
DISTINCT operator in SELECT statements

s The UNIQUE operator of a SELECT statement

s The column list of a CREATE CLUSTER statement

s The CLUSTER clause of a CREATE MATERIALIZED VIEW statement
s SQL built-in functions, expressions, or conditions

= SELECT lists of queries containing GROUP BY clauses

= SELECT lists of subqueries or queries combined by the UNION, INTERSECT, or
MINUS set operators

»s SELECT lists of CREATE TABLE ... AS SELECT statements
s ALTER TABLE ... MOVE statements
ms SELECT lists in subqueries in INSERT statements

Triggers can use the LONG datatype in the following manner:

2-14 Oracle Database SQL Reference

Datatypes

A SQL statement within a trigger can insert data into a LONG column.

If data from a LONG column can be converted to a constrained datatype (such as
CHAR and VARCHAR?), then a LONG column can be referenced in a SQL statement
within a trigger.

Variables in triggers cannot be declared using the LONG datatype.

:NEW and :0LD cannot be used with LONG columns.

You can use Oracle Call Interface functions to retrieve a portion of a LONG value from
the database.

See Also: Oracle Call Interface Programmer’s Guide

Datetime and Interval Datatypes

The datetime datatypes are DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and
TIMESTAMP WITH LOCAL TIME ZONE. Values of datetime datatypes are sometimes
called datetimes. The interval datatypes are INTERVAL YEAR TO MONTH and
INTERVAL DAY TO SECOND. Values of interval datatypes are sometimes called
intervals. For information on expressing datetime and interval values as literals,
please refer to "Datetime Literals" on page 2-49 and "Interval Literals" on page 2-51.

Both datetimes and intervals are made up of fields. The values of these fields
determine the value of the datatype. Table 2—4 lists the datetime fields and their
possible values for datetimes and intervals.

To avoid unexpected results in your DML operations on datetime data, you can verify
the database and session time zones by querying the built-in SQL functions
DBTIMEZONE and SESSIONTIMEZONE. If the time zones have not been set manually,
Oracle Database uses the operating system time zone by default. If the operating
system time zone is not a valid Oracle time zone, then Oracle uses UTC as the default
value.

Table 2-4 Datetime Fields and Values

Datetime Field Valid Values for Datetime Valid Values for INTERVAL
YEAR -4712 to 9999 (excluding year 0) Any positive or negative
integer

MONTH 01 to 12 0to 11

DAY 01 to 31 (limited by the values of MONTH and YEAR, Any positive or negative
according to the rules of the current NLS calendar integer
parameter)

HOUR 00 to 23 0to 23

MINUTE 00 to 59 0 to 59

SECOND 00 to 59.9(n), where 9(n) is the precision of time 0 to 59.9(n), where 9(n) is the
fractional seconds. The 9(n) portion is not applicable precision of interval
for DATE. fractional seconds

TIMEZONE_HOUR

-12 to 14 (This range accommodates daylight saving Not applicable
time changes.) Not applicable for DATE or
TIMESTAMP.

Basic Elements of Oracle SQL 2-15

Datatypes

Table 2-4 (Cont.) Datetime Fields and Values
Datetime Field Valid Values for Datetime Valid Values for INTERVAL

TIMEZONE_MINUTE 00 to 59. Not applicable for DATE or TIMESTAMP. Not applicable

(See note at end of table)

TIMEZONE_REGION Query the TZNAME column of the VSTIMEZONE_ Not applicable
NAMES data dictionary view. Not applicable for
DATE or TIMESTAMP. For a complete listing of all
timezone regions, refer to Oracle Database
Globalization Support Guide.

TIMEZONE_ABBR Query the TZABBREV column of the VSTIMEZONE_ Not applicable
NAMES data dictionary view. Not applicable for
DATE or TIMESTAMP.

Note: TIMEZONE_HOUR and TIMEZONE_MINUTE are specified together and
interpreted as an entity in the format + | - hh:mm, with values ranging from -12:59 to
+14:00. Please refer to Oracle Data Provider for NET Developer’s Guide for information
on specifying time zone values for that APL

DATE Datatype

The DATE datatype stores date and time information. Although date and time
information can be represented in both character and number datatypes, the DATE
datatype has special associated properties. For each DATE value, Oracle stores the
following information: century, year, month, date, hour, minute, and second.

You can specify a DATE value as a literal, or you can convert a character or numeric
value to a date value with the TO_DATE function. For examples of expressing DATE
values in both these ways, please refer to "Datetime Literals" on page 2-49.

Using Julian Days A Julian day number is the number of days since January 1, 4712 BC.
Julian days allow continuous dating from a common reference. You can use the date
format model "J" with date functions TO_DATE and TO_CHAR to convert between
Oracle DATE values and their Julian equivalents.

Note: Oracle Database uses the astronomical system of calculating
Julian days, in which the year 4713 BC is specified as -4712. The
historical system of calculating Julian days, in contrast, specifies 4713
BC as -4713. If you are comparing Oracle Julian days with values
calculated using the historical system, then take care to allow for the
365-day difference in BC dates. For more information, see
http://aa.usno.navy.mil/fag/docs/millennium.html.

The default date values are determined as follows:

» The year is the current year, as returned by SYSDATE.

= The month is the current month, as returned by SYSDATE.
» The dayis 01 (the first day of the month).

s The hour, minute, and second are all 0.

These default values are used in a query that requests date values where the date itself
is not specified, as in the following example, which is issued in the month of May:

SELECT TO_DATE('2005’, 'YYYY’) FROM DUAL;

2-16 Oracle Database SQL Reference

Datatypes

TO_DATE ('

01-MAY-05

Example This statement returns the Julian equivalent of January 1, 1997:

SELECT TO_CHAR(TO_DATE('01-01-1997', 'MM-DD-YYYY'),'J")
FROM DUAL;

TO_CHAR

2450450

See Also: "Selecting from the DUAL Table" for a description of the
DUAL table

TIMESTAMP Datatype

The TIMESTAMP datatype is an extension of the DATE datatype. It stores the year,
month, and day of the DATE datatype, plus hour, minute, and second values. This
datatype is useful for storing precise time values. Specify the TIMESTAMP datatype as
follows:

TIMESTAMP [(fractional_seconds_precision)]

where fractional_ seconds_precision optionally specifies the number of digits
Oracle stores in the fractional part of the SECOND datetime field. When you create a
column of this datatype, the value can be a number in the range 0 to 9. The default is 6.

See Also: TO_TIMESTAMP on page 5-201 for information on
converting character data to TIMESTAMP data

TIMESTAMP WITH TIME ZONE Datatype

TIMESTAMP WITH TIME ZONE is a variant of TIMESTAMP that includes a time zone
offset in its value. The time zone offset is the difference (in hours and minutes)
between local time and UTC (Coordinated Universal Time—formerly Greenwich
Mean Time). This datatype is useful for collecting and evaluating date information
across geographic regions.

Specify the TIMESTAMP WITH TIME ZONE datatype as follows:
TIMESTAMP [(fractional_seconds_precision)] WITH TIME ZONE
where fractional_ seconds_precision optionally specifies the number of digits

Oracle stores in the fractional part of the SECOND datetime field. When you create a
column of this datatype, the value can be a number in the range 0 to 9. The default is 6.

Oracle time zone data is derived from the public domain information available at
ftp://elsie.nci.nih.gov/pub/. Oracle time zone data may not reflect the most
recent data available at this site.

Basic Elements of Oracle SQL 2-17

Datatypes

See Also:

» Oracle Database Globalization Support Guide for more information
on Oracle time zone data

= "Support for Daylight Saving Times" on page 2-21 and Table 2-15,
" Datetime Format Elements" on page 2-59 for information on
daylight saving support

s TO_TIMESTAMP_TZ on page 5-202 for information on converting
character data to TIMESTAMP WITH TIME ZONE data

= ALTER SESSION on page 11-45 for information on the ERROR_
ON_OVERLAP_TIME session parameter

TIMESTAMP WITH LOCAL TIME ZONE Datatype

TIMESTAMP WITH LOCAL TIME ZONE is another variant of TIMESTAMP that includes a
time zone offset in its value. It differs from TIMESTAMP WITH TIME ZONE in that data
stored in the database is normalized to the database time zone, and the time zone
offset is not stored as part of the column data. When a user retrieves the data, Oracle
returns it in the user's local session time zone. The time zone offset is the difference (in
hours and minutes) between local time and UTC (Coordinated Universal
Time—formerly Greenwich Mean Time). This datatype is useful for displaying date
information in the time zone of the client system in a two-tier application.

Specify the TIMESTAMP WITH LOCAL TIME ZONE datatype as follows:
TIMESTAMP [(fractional_seconds_precision)] WITH LOCAL TIME ZONE
where fractional_ seconds_precision optionally specifies the number of digits

Oracle stores in the fractional part of the SECOND datetime field. When you create a
column of this datatype, the value can be a number in the range 0 to 9. The default is 6.

Oracle time zone data is derived from the public domain information available at
ftp://elsie.nci.nih.gov/pub/. Oracle time zone data may not reflect the most
recent data available at this site.

See Also:

» Oracle Database Globalization Support Guide for more information
on Oracle time zone data

» Oracle Database Application Developer's Guide - Fundamentals for
examples of using this datatype and CAST on page 5-24 for
information on converting character data to TIMESTAMP WITH
LOCAL TIME ZONE

INTERVAL YEAR TO MONTH Datatype

INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH
datetime fields. This datatype is useful for representing the difference between two
datetime values when only the year and month values are significant.

Specify INTERVAL YEAR TO MONTH as follows:

INTERVAL YEAR [(year_precision)] TO MONTH

where year. precisionis the number of digits in the YEAR datetime field. The
default value of year precisionis?2.

You have a great deal of flexibility when specifying interval values as literals. Please
refer to "Interval Literals" on page 2-51 for detailed information on specify interval

2-18 Oracle Database SQL Reference

Datatypes

values as literals. Also see "Datetime and Interval Examples" on page 2-22 for an
example using intervals.

INTERVAL DAY TO SECOND Datatype

INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes,
and seconds. This datatype is useful for representing the precise difference between
two datetime values.

Specify this datatype as follows:

INTERVAL DAY [(day_precision)]
TO SECOND [(fractional_seconds_precision)]

where

s day_precisionis the number of digits in the DAY datetime field. Accepted
values are 0 to 9. The default is 2.

» fractional_ seconds_precisionisthe number of digits in the fractional part
of the SECOND datetime field. Accepted values are 0 to 9. The default is 6.

You have a great deal of flexibility when specifying interval values as literals. Please
refer to "Interval Literals" on page 2-51 for detailed information on specify interval
values as literals. Also see "Datetime and Interval Examples" on page 2-22 for an
example using intervals.

Datetime/Interval Arithmetic

You can perform a number of arithmetic operations on date (DATE), timestamp
(TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME
ZONE) and interval (INTERVAL DAY TO SECOND and INTERVAL YEAR TO MONTH) data.
Oracle calculates the results based on the following rules:

= You can use NUMBER constants in arithmetic operations on date and timestamp
values, but not interval values. Oracle internally converts timestamp values to
date values and interprets NUMBER constants in arithmetic datetime and interval
expressions as numbers of days. For example, SYSDATE + 1 is tomorrow. SYSDATE
- 7 is one week ago. SYSDATE + (10/1440) is ten minutes from now. Subtracting the
hire_date column of the sample table employees from SYSDATE returns the
number of days since each employee was hired. You cannot multiply or divide
date or timestamp values.

» Oracle implicitly converts BINARY_FLOAT and BINARY_DOUBLE operands to
NUMBER.

» Each DATE value contains a time component, and the result of many date
operations include a fraction. This fraction means a portion of one day. For
example, 1.5 days is 36 hours. These fractions are also returned by Oracle built-in
functions for common operations on DATE data. For example, the MONTHS_
BETWEEN function returns the number of months between two dates. The
fractional portion of the result represents that portion of a 31-day month.

= If one operand is a DATE value or a numeric value (neither of which contains time
zone or fractional seconds components), then:

- Oracle implicitly converts the other operand to DATE data. (The exception is
multiplication of a numeric value times an interval, which returns an interval.)

— If the other operand has a time zone value, then Oracle uses the session time
zone in the returned value.

Basic Elements of Oracle SQL 2-19

Datatypes

— If the other operand has a fractional seconds value, then the fractional seconds
value is lost.

= When you pass a timestamp, interval, or numeric value to a built-in function that
was designed only for the DATE datatype, Oracle implicitly converts the non-DATE
value to a DATE value. Please refer to "Datetime Functions" on page 5-4 for
information on which functions cause implicit conversion to DATE.

s When interval calculations return a datetime value, the result must be an actual
datetime value or the database returns an error. For example, the next two
statements return errors:

SELECT TO_DATE('31-AUG-2004"', 'DD-MON-YYYY') + TO_YMINTERVAL('O-1') FROM DUAL;
SELECT TO_DATE('29-FEB-2004"', 'DD-MON-YYYY') + TO_YMINTERVAL('1-0') FROM DUAL;

The first fails because adding one month to a 31-day month would result in
September 31, which is not a valid date. The second fails because adding one year
to a date that exists only every four years is not valid. However, the next statement
succeeds, because adding four years to a February 29 date is valid:

SELECT TO_DATE('29-FEB-2004', 'DD-MON-YYYY') + TO_YMINTERVAL('4-0') FROM DUAL;

TO_DATE ('

29-FEB-08

s Oracle performs all timestamp arithmetic in UTC time. For TIMESTAMP WITH
LOCAL TIME ZONE, Oracle converts the datetime value from the database time
zone to UTC and converts back to the database time zone after performing the
arithmetic. For TIMESTAMP WITH TIME ZONE, the datetime value is always in
UTC, so no conversion is necessary.

Table 2-5 is a matrix of datetime arithmetic operations. Dashes represent operations
that are not supported.

Table 2-5 Matrix of Datetime Arithmetic

Operand & Operator DATE TIMESTAMP INTERVAL Numeric
DATE — — — —

+ - - DATE DATE

- DATE DATE DATE DATE

/ — — — —
TIMESTAMP — — — —

+ - - TIMESTAMP -

- INTERVAL INTERVAL TIMESTAMP TIMESTAMP
/ _ —_ _ _
INTERVAL — — — —

+ DATE TIMESTAMP INTERVAL -

- - - INTERVAL -

* - — — INTERVAL

2-20 Oracle Database SQL Reference

Datatypes

Table 2-5 (Cont.) Matrix of Datetime Arithmetic

Operand & Operator DATE TIMESTAMP INTERVAL Numeric

/ — - — INTERVAL
Numeric — — — —

+ DATE DATE - NA

- - - - NA

* — — INTERVAL NA

/ — - — NA

Examples You can add an interval value expression to a start time. Consider the
sample table oe . orders with a column order_date. The following statement adds
30 days to the value of the order_date column:

SELECT order_id, order_date + INTERVAL '30' DAY FROM orders;

Support for Daylight Saving Times

Oracle Database automatically determines, for any given time zone region, whether
daylight saving is in effect and returns local time values accordingly. The datetime
value is sufficient for Oracle to determine whether daylight saving time is in effect for
a given region in all cases except boundary cases. A boundary case occurs during the
period when daylight saving goes into or comes out of effect. For example, in the
US-Pacific region, when daylight saving goes into effect, the time changes from 2:00
a.m. to 3:00 a.m. The one hour interval between 2 and 3 a.m. does not exist. When
daylight saving goes out of effect, the time changes from 2:00 a.m. back to 1:00 a.m.,
and the one-hour interval between 1 and 2 a.m. is repeated.

To resolve these boundary cases, Oracle uses the TZR and TZD format elements, as
described in Table 2-15. TZR represents the time zone region in datetime input strings.
Examples are 'Australia/North', 'UTC', and 'Singapore'. TZD represents an
abbreviated form of the time zone region with daylight saving information. Examples
are 'PST' for US/Pacific standard time and 'PDT' for US/Pacific daylight time. To see a
listing of valid values for the TZR and TZD format elements, query the TZNAME and
TZABBREV columns of the VSTIMEZONE_NAMES dynamic performance view.

Timezone region names are needed by the daylight saving feature. The region names
are stored in two time zone files. The default time zone file is the complete (larger) file
containing all time zones. The other time zone file is a small file containing only the
most common time zones to maximize performance. If your time zone is in the small
file, and you want to maximize performance, then you must provide a path to the
small file by way of the ORA_TZFILE environment variable. Please refer to Oracle
Database Administrator’s Guide for more information about setting the ORA_TZFILE
environment variable. For a complete listing of the timezone region names in both
files, please refer to Oracle Database Globalization Support Guide.

Oracle time zone data is derived from the public domain information available at
ftp://elsie.nci.nih.gov/pub/. Oracle time zone data may not reflect the most
recent data available at this site.

Basic Elements of Oracle SQL 2-21

Datatypes

See Also:

s "Datetime Format Models" on page 2-58 for information on the
format elements and the session parameter ERROR_ON_
OVERLAP_TIME on page 11-53.

» Oracle Database Globalization Support Guide for more information
on Oracle time zone data

s Oracle Database Reference for information on the dynamic
performance views

Datetime and Interval Examples
The following example shows how to declare some datetime and interval datatypes.

CREATE TABLE time_table (

start_time TIMESTAMP,
duration_1 INTERVAL DAY (6) TO SECOND (5),
duration_2 INTERVAL YEAR TO MONTH) ;

The start_time column is of type TIMESTAMP. The implicit fractional seconds
precision of TIMESTAMP is 6.

The duration_1 column is of type INTERVAL DAY TO SECOND. The maximum
number of digits in field DAY is 6 and the maximum number of digits in the fractional
second is 5. The maximum number of digits in all other datetime fields is 2.

The duration_2 column is of type INTERVAL YEAR TO MONTH. The maximum
number of digits of the value in each field (YEAR and MONTH) is 2.

Interval datatypes do not have format models. Therefore, to adjust their presentation,
you must combine character functions such as EXTRACT and concatenate the
components. For example, the following examples query the hr . employees and
oe.orders tables, respectively, and change interval output from the form "yy-mm" to
"yy years mm months" and from "dd-hh" to "dddd days hh hours":

SELECT last_name, EXTRACT(YEAR FROM (SYSDATE - hire_date) YEAR TO MONTH)

|| * years '
‘| EXTRACT (MONTH FROM (SYSDATE - hire_date) YEAR TO MONTH)
|| * months' "Interval"

FROM employees ;

LAST NAME Interval

King 17 years 11 months
Kochhar 15 years 8 months
De Haan 12 years 4 months
Hunold 15 years 4 months
Ernst 14 years 0 months
Austin 7 years 11 months
Pataballa 7 years 3 months
Lorentz 6 years 3 months
Greenberg 10 years 9 months

SELECT order_id,
EXTRACT (DAY FROM (SYSDATE - order_date) DAY TO SECOND)
|| ' days '
| | EXTRACT (HOUR FROM (SYSDATE - order_date) DAY TO SECOND)
|| ' hours' "Interval"
FROM orders;

2-22 Oracle Database SQL Reference

Datatypes

ORDER_ID Interval

RAW and LONG RAW Datatypes

The RAW and LONG RAW datatypes store data that is not to be interpreted (that is, not
explicitly converted when moving data between different systems) by Oracle
Database. These datatypes are intended for binary data or byte strings. For example,
you can use LONG RAW to store graphics, sound, documents, or arrays of binary data,
for which the interpretation is dependent on the use.

Oracle strongly recommends that you convert LONG RAW columns to binary LOB
(BLOB) columns. LOB columns are subject to far fewer restrictions than LONG columns.
See TO_LOB on page 5-196 for more information.

RAW is a variable-length datatype like VARCHAR2, except that Oracle Net (which
connects user sessions to the instance) and the Import and Export utilities do not
perform character conversion when transmitting RAW or LONG RAW data. In contrast,
Oracle Net and Import/Export automatically convert CHAR, VARCHAR2, and LONG
data from the database character set to the user session character set (which you can
set with the NLS_LANGUAGE parameter of the ALTER SESSION statement), if the two
character sets are different.

When Oracle automatically converts RAW or LONG RAW data to and from CHAR data, the
binary data is represented in hexadecimal form, with one hexadecimal character
representing every four bits of RAW data. For example, one byte of RAW data with bits
11001011 is displayed and entered as CB.

Large Object (LOB) Datatypes
The built-in LOB datatypes BLOB, CLOB, and NCLOB (stored internally) and BFILE
(stored externally) can store large and unstructured data such as text, image, video,
and spatial data. The size of BLOB, CLOB, and NCLOB data can be up to (4 gigabytes -1)
* (the value of the CHUNK parameter of LOB storage). If the tablespaces in your
database are of standard block size, and if you have used the default value of the
CHUNK parameter of LOB storage when creating a LOB column, then this is equivalent
to (4 gigabytes - 1) * (database block size). BFILE data can be up to 23>-1 bytes,
although your operating system may impose restrictions on this maximum.

When creating a table, you can optionally specify different tablespace and storage
characteristics for LOB columns or LOB object attributes from those specified for the
table.

LOB columns contain LOB locators that can refer to in-line (in the database) or
out-of-line (outside the database) LOB values. Selecting a LOB from a table actually
returns the LOB locator and not the entire LOB value. The DBMS_LOB package and
Oracle Call Interface (OCI) operations on LOBs are performed through these locators.

Basic Elements of Oracle SQL 2-23

Datatypes

LOBs are similar to LONG and LONG RAW types, but differ in the following ways:

LOBs can be attributes of an object type (user-defined datatype).

The LOB locator is stored in the table column, either with or without the actual
LOB value. BLOB, NCLOB, and CLOB values can be stored in separate tablespaces.
BFILE data is stored in an external file on the server.

When you access a LOB column, the locator is returned.

A LOB can be up to (4 gigabytes - 1)*(database block size) in size. BFILE data can
be up to 2%2-1 bytes, although your operating system may impose restrictions on
this maximum.

Preceding corrected; thomas.chang, 8/26/04.
LOBs permit efficient, random, piece-wise access to and manipulation of data.
You can define more than one LOB column in a table.

With the exception of NCLOB, you can define one or more LOB attributes in an
object.

You can declare LOB bind variables.
You can select LOB columns and LOB attributes.

You can insert a new row or update an existing row that contains one or more LOB
columns or an object with one or more LOB attributes. In update operations, you
can set the internal LOB value to NULL, empty, or replace the entire LOB with data.
You can set the BFILE to NULL or make it point to a different file.

You can update a LOB row-column intersection or a LOB attribute with another
LOB row-column intersection or LOB attribute.

You can delete a row containing a LOB column or LOB attribute and thereby also
delete the LOB value. For BFILEs, the actual operating system file is not deleted.

You can access and populate rows of an in-line LOB column (a LOB column stored in
the database) or a LOB attribute (an attribute of an object type column stored in the
database) simply by issuing an INSERT or UPDATE statement.

Restrictions on LOB Columns LOB columns are subject to the following restrictions:

You cannot specify a LOB as a primary key column.

Oracle Database has limited support for remote LOBs. Remote LOBs are
supported in three ways..

1. Create table as select or insert as select.

CREATE TABLE t AS SELECT * FROM tablel@remote_site;

INSERT INTO t SELECT * FROM tablel@remote_site;

UPDATE t SET lobcol = (SELECT lobcol FROM tablel@remote_site);

INSERT INTO tablel@remote_site SELECT * FROM local_table;

UPDATE tablel@remote_site SET lobcol = (SELECT lobcol FROM local_table);
DELETE FROM tablel@remote_site <WHERE clause involving non_lob_columns>

In statements structured like the preceding examples, only standalone LOB
columns are allowed in the select list.

2. Functions on remote LOBs returning scalars. SQL and PL/SQL functions
having a LOB parameter and returning a scalar datatype are supported. Other
SQL functions and DBMS_LOB APIs are not supported for use with remote LOB
columns. For example, the following statement is supported:

2-24 Oracle Database SQL Reference

Datatypes

CREATE TABLE tab AS SELECT DBMS_LOB.GETLENGTH@dDbs2 (clob_col) len FROM tab@dbs2;
CREATE TABLE tab AS SELECT LENGTH(clob_col) len FROM tab@dbs2;

However, the following statement is not supported because DBMS_LOB. SUBSTR
returns a LOB:

CREATE TABLE tab AS SELECT DBMS_LOB.SUBSTR(clob_col) from tab@dbs2;

3. Data Interface for remote LOBs. You can insert a character or binary buffer into
a remote CLOB or BLOB, and select a remote CLOB or BLOB into a character or
binary buffer. For example (in PL/SQL):

SELECT clobcoll, typel.blobattr INTO varchar_bufl, raw_buf2 FROM
tablel@remote_site;

INSERT INTO tablel@remotesite (clobcoll, typel.blobattr) VALUES varchar_bufl,
raw_buf2;

INSERT INTO tablel@remotesite (lobcol) VALUES (’'test’);

UPDATE tablel SET lobcol = ’'xxxX’;

These are the only supported syntax involving LOBs in remote tables. No other
usage is supported.
Clusters cannot contain LOBs, either as key or non-key columns.

The following data structures are supported only as temporary instances. You
cannot store these instances in database tables:

— VARRAY of any LOB type

- VARRAY of any type containing a LOB type, such as an object type with a LOB
attribute

- ANYDATA of any LOB type
- ANYDATA of any type containing a LOB

You cannot specify LOB columns in the ORDER BY clause of a query, or in the
GROUP BY clause of a query or in an aggregate function.

You cannot specify a LOB column in a SELECT... DISTINCT or SELECT... UNIQUE
statement or in a join. However, you can specify a LOB attribute of an object type
column in a SELECT... DISTINCT statement or in a query that uses the UNION or
MINUS set operator if the column's object type has a MAP or ORDER function
defined on it.

You cannot specify LOB columns in ANALYZE... COMPUTE or ANALYZE...
ESTIMATE statements.

The first (INITIAL) extent of a LOB segment must contain at least three database
blocks.

When creating an UPDATE DML trigger, you cannot specify a LOB column in the
UPDATE OF clause.

You cannot specify a LOB column as part of an index key. However, you can
specify a LOB column in the indextype specification of a domain index. In
addition, Oracle Text lets you define an index on a CLOB column.

In an INSERT... AS SELECT operation, you can bind up to 4000 bytes of data to
LOB columns and attributes.

If a table has both LONG and LOB columns, you cannot bind more than 4000 bytes
of data to both the LONG and LOB columns in the same SQL statement. However,
you can bind more than 4000 bytes of data to either the LONG or the LOB column.

Basic Elements of Oracle SQL 2-25

Datatypes

Note: For a table on which you have defined a DML trigger, if you
use OCI functions or DBMS_LOB routines to change the value of a LOB
column or the LOB attribute of an object type column, then the
database does not fire the DML trigger.

See Also:

» Oracle Database PL/SQL Packages and Types Reference and Oracle Call
Interface Programmer’s Guide for more information about these
interfaces and LOBs

s themodify col_ properties clause of ALTER TABLE on
page 12-2 and TO_LOB on page 5-196 for more information on
converting LONG columns to LOB columns

BFILE Datatype

The BFILE datatype enables access to binary file LOBs that are stored in file systems
outside Oracle Database. A BFILE column or attribute stores a BFILE locator, which
serves as a pointer to a binary file on the server file system. The locator maintains the
directory name and the filename.

You can change the filename and path of a BFILE without affecting the base table by
using the BFILENAME function. Please refer to BFILENAME on page 5-21 for more
information on this built-in SQL function.

Correction in last sentence below; thomas.chang, 8/26/04.

Binary file LOBs do not participate in transactions and are not recoverable. Rather, the
underlying operating system provides file integrity and durability. BFILE data can be
up to 2°2-1 bytes, although your operating system may impose restrictions on this
maximum.

The database administrator must ensure that the external file exists and that Oracle
processes have operating system read permissions on the file.

The BFILE datatype enables read-only support of large binary files. You cannot
modify or replicate such a file. Oracle provides APIs to access file data. The primary
interfaces that you use to access file data are the DBMS_LOB package and the Oracle
Call Interface (OCI).

See Also: Oracle Database Application Developer’s Guide - Large Objects
and Oracle Call Interface Programmer’s Guide for more information
about LOBs and CREATE DIRECTORY on page 14-42

BLOB Datatype

The BLOB datatype stores unstructured binary large objects. BLOB objects can be
thought of as bitstreams with no character set semantics. BLOB objects can store binary
data up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage). If the
tablespaces in your database are of standard block size, and if you have used the
default value of the CHUNK parameter of LOB storage when creating a LOB column,
then this is equivalent to (4 gigabytes - 1) * (database block size).

BLOB objects have full transactional support. Changes made through SQL, the DBMS_
LOB package, or the Oracle Call Interface (OCI) participate fully in the transaction.
BLOB value manipulations can be committed and rolled back. However, you cannot
save a BLOB locator in a PL/SQL or OCI variable in one transaction and then use it in
another transaction or session.

2-26 Oracle Database SQL Reference

Datatypes

CLOB Datatype

The CLOB datatype stores single-byte and multibyte character data. Both fixed-width
and variable-width character sets are supported, and both use the database character
set. CLOB objects can store up to (4 gigabytes -1) * (the value of the CHUNK parameter of
LOB storage) of character data. If the tablespaces in your database are of standard
block size, and if you have used the default value of the CHUNK parameter of LOB
storage when creating a LOB column, then this is equivalent to (4 gigabytes - 1) *
(database block size).

CLOB objects have full transactional support. Changes made through SQL, the DBMS_
LOB package, or the Oracle Call Interface (OCI) participate fully in the transaction.
CLOB value manipulations can be committed and rolled back. However, you cannot
save a CLOB locator in a PL/SQL or OCI variable in one transaction and then use it in
another transaction or session.

NCLOB Datatype

The NCLOB datatype stores Unicode data. Both fixed-width and variable-width
character sets are supported, and both use the national character set. NCLOB objects
can store up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage) of
character text data. If the tablespaces in your database are of standard block size, and if
you have used the default value of the CHUNK parameter of LOB storage when creating
a LOB column, then this is equivalent to (4 gigabytes - 1) * (database block size)(4
gigabytes-1) * (database block size).

NCLOB objects have full transactional support. Changes made through SQL, the DBMS_
LOB package, or the OCI participate fully in the transaction. NCLOB value
manipulations can be committed and rolled back. However, you cannot save an NCLOB
locator in a PL/SQL or OCI variable in one transaction and then use it in another
transaction or session.

See Also: Oracle Database Globalization Support Guide for information
on Unicode datatype support

ROWID Datatype
Each row in the database has an address. You can examine a row address by querying
the pseudocolumn ROWID. Values of this pseudocolumn are strings representing the
address of each row. These strings have the datatype ROWID. You can also create tables
and clusters that contain actual columns having the ROWID datatype. Oracle Database
does not guarantee that the values of such columns are valid rowids. Please refer to
Chapter 3, "Pseudocolumns” for more information on the ROWID pseudocolumn.

Restricted Rowids

Beginning with Oracle8, Oracle SQL incorporated an extended format for rowids to
efficiently support partitioned tables and indexes and tablespace-relative data block
addresses (DBAs) without ambiguity.

Character values representing rowids in Oracle?7 and earlier releases are called
restricted rowids. Their format is as follows:

block.row.file

where:

» blockis ahexadecimal string identifying the data block of the datafile containing
the row. The length of this string depends on your operating system.

Basic Elements of Oracle SQL 2-27

Datatypes

= rowis a four-digit hexadecimal string identifying the row in the data block. The
first row of the block has a digit of 0.

» fileisahexadecimal string identifying the database file containing the row. The
first datafile has the number 1. The length of this string depends on your operating
system.

Extended Rowids

The extended ROWID datatype stored in a user column includes the data in the
restricted rowid plus a data object number. The data object number is an
identification number assigned to every database segment. You can retrieve the data
object number from the data dictionary views USER_OBJECTS, DBA_OBJECTS, and
ALL_OBJECTS. Objects that share the same segment (clustered tables in the same
cluster, for example) have the same object number.

Extended rowids are stored as base 64 values that can contain the characters A-Z, a-z,
0-9, and the plus sign (+) and forward slash (/). Extended rowids are not available
directly. You can use a supplied package, DBMS_ROWID, to interpret extended rowid
contents. The package functions extract and provide information that would be
available directly from a restricted rowid as well as information specific to extended
rowids.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information on the functions available with the DBMS_ROWID package
and how to use them

Compatibility and Migration
The restricted form of a rowid is still supported in this release for backward
compatibility, but all tables return rowids in the extended format.

See Also: Oracle Database Upgrade Guide for information regarding
compatibility and migration issues

UROWID Datatype

Each row in a database has an address. However, the rows of some tables have
addresses that are not physical or permanent or were not generated by Oracle
Database. For example, the row addresses of index-organized tables are stored in
index leaves, which can move. Rowids of foreign tables (such as DB2 tables accessed
through a gateway) are not standard Oracle rowids.

Oracle uses universal rowids (urowids) to store the addresses of index-organized and
foreign tables. Index-organized tables have logical urowids and foreign tables have
foreign urowids. Both types of urowid are stored in the ROWID pseudocolumn (as are
the physical rowids of heap-organized tables).

Oracle creates logical rowids based on the primary key of the table. The logical rowids
do not change as long as the primary key does not change. The ROWID pseudocolumn
of an index-organized table has a datatype of UROWID. You can access this
pseudocolumn as you would the ROWID pseudocolumn of a heap-organized table (that
is, using a SELECT ... ROWID statement). If you want to store the rowids of an
index-organized table, then you can define a column of type UROWID for the table and
retrieve the value of the ROWID pseudocolumn into that column.

2-28 Oracle Database SQL Reference

Datatypes

Note: Heap-organized tables have physical rowids. Oracle does not
recommend that you specify a column of datatype UROWID for a
heap-organized table.

See Also: Oracle Database Concepts for more information on universal
rowids and "ROWID Datatype" on page 2-27 for a discussion of the
address of database rows

ANSI, DB2, and SQL/DS Datatypes

SQL statements that create tables and clusters can also use ANSI datatypes and
datatypes from the IBM products SQL/DS and DB2. Oracle recognizes the ANSI or
IBM datatype name that differs from the Oracle Database datatype name, records it as
the name of the datatype of the column, and then stores the column data in an Oracle
datatype based on the conversions shown in the tables that follow.

Table 2-6 ANSI Datatypes Converted to Oracle Datatypes

ANSI SQL Datatype

Oracle Datatype

CHARACTER (n) CHAR (n)

CHAR (n)

CHARACTER VARYING (n) VARCHAR (n)
CHAR VARYING (n)

NATIONAL CHARACTER (n) NCHAR (n)
NATIONAL CHAR (n)

NCHAR (n)

NATIONAL CHARACTER VARYING (n) NVARCHAR2 (n)

NATIONAL

CHAR VARYING (n)

NCHAR VARYING (n)

NUMERIC (p, s)

NUMBER (p, s)

DECIMAL (p,s) (a)

INTEGER NUMBER (38)
INT

SMALLINT

FLOAT (b) NUMBER

DOUBLE PRECISION (c)

REAL (d)
Notes:
a. The NUMERIC and DECIMAL datatypes can specify only fixed-point numbers.
For those datatypes, s defaults to 0.
b. The FLOAT datatype is a floating-point number with a binary precision b. The
default precision for this datatypes is 126 binary, or 38 decimal.
c. The DOUBLE PRECISION datatype is a floating-point number with binary
precision 126.
d. The REAL datatype is a floating-point number with a binary precision of 63, or

18 decimal.

Basic Elements of Oracle SQL 2-29

Datatypes

Table 2-7 SQL/DS and DB2 Datatypes Converted to Oracle Datatypes

SQL/DS or DB2 Datatype Oracle Datatype
CHARACTER (n) CHAR (n)
VARCHAR (n) VARCHAR (n)
LONG VARCHAR (n) LONG
DECIMAL (p, s) (a) NUMBER (p, s)
INTEGER NUMBER (38)
SMALLINT

FLOAT (b) NUMBER

Notes:

a. The DECIMAL datatype can specify only fixed-point numbers. For this
datatype, s defaults to O..

b. The FLOAT datatype is a floating-point number with a binary precision b. The
default precision for this datatype is 126 binary or 38 decimal.

Do not define columns with the following SQL/DS and DB2 datatypes, because they
have no corresponding Oracle datatype:

s GRAPHIC

= LONG VARGRAPHIC
s VARGRAPHIC

s TIME

Note that data of type TIME can also be expressed as Oracle datetime data.

See Also: Datatypes in Oracle Database SQL Reference

User-Defined Types

User-defined datatypes use Oracle built-in datatypes and other user-defined datatypes
as the building blocks of object types that model the structure and behavior of data in
applications. The sections that follow describe the various categories of user-defined

types.

See Also:

» Oracle Database Concepts for information about Oracle built-in
datatypes

s CREATE TYPE on page 17-3 and the CREATE TYPE BODY on
page 17-21 for information about creating user-defined types

» Oracle Database Application Developer's Guide - Fundamentals for
information about using user-defined types

Object Types

Object types are abstractions of the real-world entities, such as purchase orders, that
application programs deal with. An object type is a schema object with three kinds of
components:

= A name, which identifies the object type uniquely within that schema.

2-30 Oracle Database SQL Reference

Datatypes

= Attributes, which are built-in types or other user-defined types. Attributes model
the structure of the real-world entity.

= Methods, which are functions or procedures written in PL /SQL and stored in the
database, or written in a language like C or Java and stored externally. Methods
implement operations the application can perform on the real-world entity.

REF Datatypes

An object identifier (represented by the keyword 0ID) uniquely identifies an object
and enables you to reference the object from other objects or from relational tables. A
datatype category called REF represents such references. A REF datatype is a container
for an object identifier. REF values are pointers to objects.

When a REF value points to a nonexistent object, the REF is said to be "dangling". A
dangling REF is different from a null REF. To determine whether a REF is dangling or
not, use the condition IS [NOT] DANGLING. For example, given object view oc_
orders in the sample schema oe, the column customer_ref is of type REF to type
customer_typ, which has an attribute cust_email:

SELECT o.customer_ref.cust_email
FROM oc_orders o
WHERE o.customer_ref IS NOT DANGLING;

Varrays

An array is an ordered set of data elements. All elements of a given array are of the
same datatype. Each element has an index, which is a number corresponding to the
position of the element in the array.

The number of elements in an array is the size of the array. Oracle arrays are of
variable size, which is why they are called varrays. You must specify a maximum size
when you declare the varray.

When you declare a varray, it does not allocate space. It defines a type, which you can
use as:

s The datatype of a column of a relational table
= An object type attribute
= A PL/SQL variable, parameter, or function return type

Oracle normally stores an array object either in line (that is, as part of the row data) or
out of line (in a LOB), depending on its size. However, if you specify separate storage
characteristics for a varray, then Oracle stores it out of line, regardless of its size. Please
refer to the varray_col_properties of CREATE TABLE on page 16-34 for more
information about varray storage.

Nested Tables

A nested table type models an unordered set of elements. The elements may be
built-in types or user-defined types. You can view a nested table as a single-column
table or, if the nested table is an object type, as a multicolumn table, with a column for
each attribute of the object type.

A nested table definition does not allocate space. It defines a type, which you can use
to declare:

= The datatype of a column of a relational table

= An object type attribute

Basic Elements of Oracle SQL 2-31

Datatypes

= A PL/SQL variable, parameter, or function return type

When a nested table appears as the type of a column in a relational table or as an
attribute of the underlying object type of an object table, Oracle stores all of the nested
table data in a single table, which it associates with the enclosing relational or object
table.

Oracle-Supplied Types

Any Types

Oracle provides SQL-based interfaces for defining new types when the built-in or
ANSI-supported types are not sufficient. The behavior for these types can be
implemented in C/C++, Java, or PL/ SQL. Oracle Database automatically provides the
low-level infrastructure services needed for input-output, heterogeneous client-side
access for new datatypes, and optimizations for data transfers between the application
and the database.

These interfaces can be used to build user-defined (or object) types and are also used
by Oracle to create some commonly useful datatypes. Several such datatypes are
supplied with the server, and they serve both broad horizontal application areas (for
example, the Any types) and specific vertical ones (for example, the spatial types).

The Oracle-supplied types, along with cross-references to the documentation of their
implementation and use, are described in the following sections:

= Any Types

= XML Types

= Spatial Types

s Media Types

The Any types provide highly flexible modeling of procedure parameters and table
columns where the actual type is not known. These datatypes let you dynamically
encapsulate and access type descriptions, data instances, and sets of data instances of
any other SQL type. These types have OCI and PL/SQL interfaces for construction
and access.

ANYTYPE
This type can contain a type description of any named SQL type or unnamed transient
type.

ANYDATA

This type contains an instance of a given type, with data, plus a description of the
type. ANYDATA can be used as a table column datatype and lets you store
heterogeneous values in a single column. The values can be of SQL built-in types as
well as user-defined types.

ANYDATASET

This type contains a description of a given type plus a set of data instances of that
type. ANYDATASET can be used as a procedure parameter datatype where such
flexibility is needed. The values of the data instances can be of SQL built-in types as
well as user-defined types.

2-32 Oracle Database SQL Reference

Datatypes

XML Types

See Also: Oracle Database PL/SQL Packages and Types Reference for
information on the ANYTYPE, ANYDATA, and ANYDATASET types

Extensible Markup Language (XML) is a standard format developed by the World
Wide Web Consortium (W3C) for representing structured and unstructured data on
the World Wide Web. Universal resource identifiers (URIs) identify resources such as
Web pages anywhere on the Web. Oracle provides types to handle XML and URI data,
as well as a class of URIs called DBURIRef types to access data stored within the
database itself. It also provides a new set of types to store and access both external and
internal URIs from within the database.

XMLType

This Oracle-supplied type can be used to store and query XML data in the database.
XMLType has member functions you can use to access, extract, and query the XML
data using XPath expressions. XPath is another standard developed by the W3C
committee to traverse XML documents. Oracle XMLType functions support many W3C
XPath expressions. Oracle also provides a set of SQL functions and PL/SQL packages
to create XML Type values from existing relational or object-relational data.

XMLType is a system-defined type, so you can use it as an argument of a function or as
the datatype of a table or view column. You can also create tables and views of
XMLType. When you create an XMLType column in a table, you can choose to store the
XML data in a CLOB column or object relationally.

You can also register the schema (using the DBMS_XMLSCHEMA package) and create a
table or column conforming to the registered schema. In this case Oracle stores the
XML data in underlying object-relational columns by default, but you can specify
storage in a CLOB column even for schema-based data.

Queries and DML on XMLType columns operate the same regardless of the storage
mechanism.

See Also: Oracle XML DB Developer’s Guide for information about
using XMLType columns

URI Datatypes

Oracle supplies a family of URI types—URIType, DBURIType, XDBURIType, and
HTTPURIType—which are related by an inheritance hierarchy. URIType is an object
type and the others are subtypes of URIType. Since URIType is the supertype, you
can create columns of this type and store DBURIType or HTTPURIType type instances
in this column.

HTTPURIType You can use HTTPURIType to store URLs to external Web pages or to
files. Oracle accesses these files using HTTP (Hypertext Transfer Protocol).

XDBURIType You can use XDBURIType to expose documents in the XML database
hierarchy as URIs that can be embedded in any URIType column in a table. The
XDBURIType consists of a URL, which comprises the hierarchical name of the XML
document to which it refers and an optional fragment representing the XPath syntax.
The fragment is separated from the URL part by a pound sign (#). The following lines
are examples of XDBURIType:

/home/oe/docl.xml
/home/oe/docl.xml#/orders/order_item

Basic Elements of Oracle SQL 2-33

Datatypes

Spatial Types

DBURIType DBURIType can be used to store DBURIRef values, which reference data
inside the database. Storing DBURIRef values lets you reference data stored inside or
outside the database and access the data consistently.

DBURIRef values use an XPath-like representation to reference data inside the
database. If you imagine the database as an XML tree, then you would see the tables,
rows, and columns as elements in the XML document. For example, the sample
human resources user hr would see the following XML tree:

<HR>
<EMPLOYEES>
<ROW>
<EMPLOYEE_ID>205</EMPLOYEE_ID>
<LAST NAME>Higgins</LAST NAME>
<SALARY>12000</SALARY>
. <!-- other columns -->
</ROW>
. <!-- other rows -->
</EMPLOYEES>
<!-- other tables..-->
</HR>
<!-- other user schemas on which you have some privilege on..-->

The DBURIRef is an XPath expression over this virtual XML document. So to reference
the SALARY value in the EMPLOYEES table for the employee with employee number
205, we can write a DBURIRef as,

/HR/EMPLOYEES/ROW[EMPLOYEE_ID=205]/SALARY

Using this model, you can reference data stored in CLOB columns or other columns
and expose them as URLs to the external world.

URIFactory Package

Oracle also provides the URIFactory package, which can create and return instances
of the various subtypes of the URITypes. The package analyzes the URL string,
identifies the type of URL (HTTP, DBURI, and so on), and creates an instance of the
subtype. To create a DBURI instance, the URL must start with the prefix /oradb. For
example, URIFactory.getURI (' /oradb/HR/EMPLOYEES') would create a
DBURIType instance and URIFactory.getUri (' /sys/schema') would create an
XDBURIType instance.

See Also:

» Oracle Database Application Developer's Guide - Object-Relational
Features for general information on object types and type
inheritance

» Oracle XML Developer’s Kit Programmer’s Guide for more
information about these supplied types and their implementation

» Oracle Streams Advanced Queuing User’s Guide and Reference for
information about using XMLType with Oracle Advanced
Queuing

Oracle Spatial is designed to make spatial data management easier and more natural
to users of location-enabled applications, geographic information system (GIS)
applications, and geoimaging applications. After the spatial data is stored in an Oracle

2-34 Oracle Database SQL Reference

Datatypes

Media Types

database, you can easily manipulate, retrieve, and relate it to all the other data stored
in the database. The following datatypes are not available unless you have installed
Oracle Spatial.

SDO_GEOMETRY

The geometric description of a spatial object is stored in a single row, in a single
column of object type SDO_GEOMETRY in a user-defined table. Any table that has a
column of type SDO_GEOMETRY must have another column, or set of columns, that
defines a unique primary key for that table. Tables of this sort are sometimes called
geometry tables.

The SDO_GEOMETRY object type has the following definition:

CREATE TYPE SDO_GEOMETRY AS OBJECT (

sgo_gtype NUMBER,
sdo_srid NUMBER,
sdo_point SDO_POINT_TYPE,

sdo_elem_info SDO_ELEM_INFO_ARRAY,
sdo_ordinates SDO_ORDINATE_ARRAY) ;

SDO_TOPO_GEOMETRY

This type describes a topology geometry, which is stored in a single row, in a single
column of object type SDO_TOPO_GEOMETRY in a user-defined table.

The SDO_TOPO_GEOMETRY object type has the following definition:

CREATE TYPE SDO_TOPO_GEOMETRY AS OBJECT (

tg_type NUMBER,
tg_id NUMBER,
tg_layer_id NUMBER,
topology_id NUMBER) ;

SDO_GEORASTER

In the GeoRaster object-relational model, a raster grid or image object is stored in a
single row, in a single column of object type SDO_GEORASTER in a user-defined table.
Tables of this sort are called GeoRaster tables.

The SDO_GEORASTER object type has the following definition:

CREATE TYPE SDO_GEORASTER AS OBJECT (
rasterType NUMBER,
spatialExtent SDO_GEOMETRY,
rasterDataTable VARCHAR2 (32),
rasterID NUMBER,
metadata XMLType) ;

See Also: Oracle Spatial User’s Guide and Reference, Oracle Spatial
Topology and Network Data Models, and Oracle Spatial GeoRaster for
information on the full implementation of the spatial datatypes and
guidelines for using them

Oracle interMedia uses object types, similar to Java or C++ classes, to describe
multimedia data. An instance of these object types consists of attributes, including
metadata and the media data, and methods. The interMedia datatypes are created in
the ORDSYS schema. Public synonyms exist for all the datatypes, so you can access
them without specifying the schema name.

Basic Elements of Oracle SQL 2-35

Datatypes

See Also: Oracle interMedia Reference for information on the
implementation of these types and guidelines for using them

ORDAudio
The ORDAUDIO object type supports the storage and management of audio data.

ORDImage
The ORDIMAGE object type supports the storage and management of image data.

ORDImageSignature

The ORDImageSignature object type supports a compact representation of the color,
texture, and shape information of image data.

ORDVideo
The ORDVIDEO object type supports the storage and management of video data.

ORDDoc

The ORDDOC object type supports storage and management of any type of media data,
including audio, image and video data. Use this type when you want all media to be
stored in a single column.

The following datatypes provide compliance with the ISO-IEC 13249-5 Still Image
standard, commonly referred to as SQL /MM Stilllmage.

SI_Stilllmage

The SI_StillImage object type represents digital images with inherent image
characteristics such as height, width, and format.

Sl _Color

The SI_Color object type encapsulates color values.

SI_AverageColor

The SI_AverageColor object type represents a feature that characterizes an image
by its average color.

SI_ColorHistogram

The SI_ColorHistogram object type represents a feature that characterizes an image
by the relative frequencies of the colors exhibited by samples of the raw image.

SI_PositionalColor

Given an image divided into n by m rectangles, the SI_PositionalColor object
type represents the feature that characterizes an image by the n by m most significant
colors of the rectang]les.

SI_Texture

The SI_Texture object type represents a feature that characterizes an image by the
size of repeating items (coarseness), brightness variations (contrast), and predominant
direction (directionality).

2-36 Oracle Database SQL Reference

Datatype Comparison Rules

S|_FeatureList

The SI_FeatureList object type is a list containing up to four of the image features
represented by the preceding object types (SI_AverageColor, SI_
ColorHistogram, SI_PositionalColor, and SI_Texture), where each feature is
associated with a feature weight.

Expression Filter Type

The Oracle Expression Filter allows application developers to manage and evaluate
conditional expressions that describe users' interests in data. The Expression Filter
includes the following datatype:

Expression

Expression Filter uses a virtual datatype called Expression to manage and evaluate
conditional expressions as data in database tables. The Expression Filter creates a
column of Expression datatype from a VARCHAR2 column by assigning an attribute
set to the column. This assignment enables a data constraint that ensures the validity
of expressions stored in the column.

You can define conditions using the EVALUATE operator on an Expression datatype
to evaluate the expressions stored in a column for some data. If you are using
Enterprise Edition, then you can also define an Expression Filter index on a column of
Expression datatype to process queries using the EVALUATE operator.

See Also: Oracle Database Application Developer’s Guide - Rules
Manager and Expression Filter for more information on the Expression
Filter

Datatype Comparison Rules

This section describes how Oracle Database compares values of each datatype.

Numeric Values

Date Values

A larger value is considered greater than a smaller one. All negative numbers are less
than zero and all positive numbers. Thus, -1 is less than 100; -100 is less than -1.

The floating-point value NaN (not a number) is greater than any other numeric value
and is equal to itself.

See Also: "Numeric Precedence" on page 2-13 and "Floating-Point
Numbers" on page 2-11 for more information on comparison
semantics

A later date is considered greater than an earlier one. For example, the date equivalent
of 29-MAR-1997' is less than that of '05-JAN-1998" and '05-JAN-1998 1:35pm ' is greater
than '05-JAN-1998 10:09am'.

Character Values

Character values are compared on the basis of two measures:
= Binary or linguistic sorting

» Blank-padded or nonpadded comparison semantics

Basic Elements of Oracle SQL 2-37

Datatype Comparison Rules

The following subsections describe the two measures.

Binary and Linguistic Sorting

In binary sorting, which is the default, Oracle compares character strings according to
the concatenated value of the numeric codes of the characters in the database character
set. One character is greater than another if it has a greater numeric value than the
other in the character set. Oracle considers blanks to be less than any character, which
is true in most character sets.

Linguistic sorting is useful if the binary sequence of numeric codes does not match the
linguistic sequence of the characters you are comparing. Linguistic sorting is used if
the NL.S_COMP parameter is set to LINGUISTIC. In linguistic sorting, all SQL sorting
and comparison are based on the linguistic rule specified by NLS_SORT.

See Also: Oracle Database Globalization Support Guide for more
information about linguistic sorting

Blank-Padded and Nonpadded Comparison Semantics

With blank-padded semantics, if the two values have different lengths, then Oracle
first adds blanks to the end of the shorter one so their lengths are equal. Oracle then
compares the values character by character up to the first character that differs. The
value with the greater character in the first differing position is considered greater. If
two values have no differing characters, then they are considered equal. This rule
means that two values are equal if they differ only in the number of trailing blanks.
Oracle uses blank-padded comparison semantics only when both values in the
comparison are either expressions of datatype CHAR, NCHAR, text literals, or values
returned by the USER function.

With nonpadded semantics, Oracle compares two values character by character up to
the first character that differs. The value with the greater character in that position is
considered greater. If two values of different length are identical up to the end of the
shorter one, then the longer value is considered greater. If two values of equal length
have no differing characters, then the values are considered equal. Oracle uses
nonpadded comparison semantics whenever one or both values in the comparison
have the datatype VARCHAR2 or NVARCHAR2.

The results of comparing two character values using different comparison semantics
may vary. The table that follows shows the results of comparing five pairs of character
values using each comparison semantic. Usually, the results of blank-padded and
nonpadded comparisons are the same. The last comparison in the table illustrates the
differences between the blank-padded and nonpadded comparison semantics.

Blank-Padded Nonpadded
'ac' > 'ab' 'ac' > 'ab'
'ab' > 'a 'ab' > 'a !
'ab' > 'a 'ab' > 'a‘'
'ab' = 'ab’ 'ab' = 'ab’
'a ''= r'a’' 'a > r'a'

These are some common character sets:
» 7-bit ASCII (American Standard Code for Information Interchange)
= EBCDIC Code (Extended Binary Coded Decimal Interchange Code)

2-38 Oracle Database SQL Reference

Datatype Comparison Rules

s ISO 8859/1 (International Standards Organization)
s JEUC Japan Extended UNIX

Portions of the ASCII and EBCDIC character sets appear in Table 2-8 and Table 2-9.
Uppercase and lowercase letters are not equivalent. The numeric values for the
characters of a character set may not match the linguistic sequence for a particular
language.

Table 2-8 ASCII Character Set

Symbol Decimal value Symbol Decimal value

blank 32 ; 59

! 33 < 60

" 34 = 61

35 > 62

$ 36 ? 63

% 37 @ 64

& 38 A-Z 65-90

! 39 [91

(40 \ 92

) 41] 93

* 42 ~ 94

+ 43 _ 95

, 44 ' 96

- 45 a-z 97-122
46 { 123

/ 47 | 124

0-9 48-57 } 125
58 ~ 126

Table 2-9 EBCDIC Character Set

Symbol Decimal value Symbol Decimal value

blank 64 % 108
¢ 74 _ 109

75 > 110
< 76 ? 111
(77 : 122
+ 78 # 123
| 79 e 124
& 80 ' 125
! 90 = 126
S 91 " 127

Basic Elements of Oracle SQL 2-39

Datatype Comparison Rules

Table 2-9 (Cont.) EBCDIC Character Set

Symbol Decimal value Symbol Decimal value
* 92 a-i 129-137
) 93 j-r 145-153
; 94 s-z 162-169
v 95 A-I 193-201
- 96 J-R 209-217
/ 97 S-Z 226-233

Object Values

Object values are compared using one of two comparison functions: MAP and ORDER.
Both functions compare object type instances, but they are quite different from one
another. These functions must be specified as part of any object type that will be
compared with other object types.

See Also: CREATE TYPE on page 17-3 for a description of MAP and
ORDER methods and the values they return

Varrays and Nested Tables

Comparison of nested tables is described in "Comparison Conditions" on page 7-4.

Datatype Precedence Oracle uses datatype precedence to determine implicit
datatype conversion, which is discussed in the section that follows. Oracle datatypes
take the following precedence:

= Datetime and interval datatypes
s BINARY_DOUBLE

s BINARY_FLOAT

= NUMBER

» Character datatypes

= All other built-in datatypes

Data Conversion

Generally an expression cannot contain values of different datatypes. For example, an
expression cannot multiply 5 by 10 and then add TAMES'. However, Oracle supports
both implicit and explicit conversion of values from one datatype to another.

Implicit and Explicit Data Conversion
Oracle recommends that you specify explicit conversions, rather than rely on implicit
or automatic conversions, for these reasons:

= SQL statements are easier to understand when you use explicit datatype
conversion functions.

= Implicit datatype conversion can have a negative impact on performance,
especially if the datatype of a column value is converted to that of a constant
rather than the other way around.

2-40 Oracle Database SQL Reference

Datatype Comparison Rules

= Implicit conversion depends on the context in which it occurs and may not work
the same way in every case. For example, implicit conversion from a datetime
value to a VARCHAR2 value may return an unexpected year depending on the
value of the NLS_DATE_FORMAT parameter.

= Algorithms for implicit conversion are subject to change across software releases
and among Oracle products. Behavior of explicit conversions is more predictable.

Implicit Data Conversion

Oracle Database automatically converts a value from one datatype to another when
such a conversion makes sense. Implicit conversion to character datatypes follows
these rules:

Table 2-10 is a matrix of Oracle implicit conversions. The table shows all possible
conversions, without regard to the direction of the conversion or the context in which
it is made. The rules governing these details follow the table.

Table 2-10 Implicit Type Conversion Matrix

4
2)
[\] o 2
o o« | o
o g E = i N Q
< T
I £ O Fz B & &) 0
$ & £ £ wpwi 2 < < 2 = £ 8 8 9
T < [3) > g 5 & = = = o < o] par| | [3)
[3) S 4 F4 o o Z F4 o [} ar] o i o o P4
CHAR - X X X X X X X X X X X X X
VARCHAR2 X - X X X X X X X X X X - X
NCHAR X X - X X X X X X X X X X - X
NVARCHAR2 X X - X X X X X X X X X - X
DATE X X X X - - - - - - - - - - -
DATETIME/ X X X X - - - - - X - - - - -
INTERVAL
NUMBER X X X - - - X X - - - - - -
BINARY_ X X X X - - X - X - - - - - -
FLOAT
BINARY_ X X X X - - X X - - - - - - -
DOUBLE
LONG X X X X - X - - - - X - X - X
RAW X X X X - - - - - X - - - X -
ROWID - X X X - - - - - - - - - - -
CLOB X X X X - - - - - X - - - - X
BLOB - - - - - - - - - - X - - - -
NCLOB X X X X - - - - - X - - X - -

The following rules govern the direction in which Oracle Database makes implicit
datatype conversions:

s During INSERT and UPDATE operations, Oracle converts the value to the datatype
of the affected column.

s During SELECT FROM operations, Oracle converts the data from the column to the
type of the target variable.

= When manipulating numeric values, Oracle usually adjusts precision and scale to
allow for maximum capacity. In such cases, the numeric datatype resulting from

Basic Elements of Oracle SQL 2-41

Datatype Comparison Rules

such operations can differ from the numeric datatype found in the underlying
tables.

s When comparing a character value with a numeric value, Oracle converts the
character data to a numeric value.

= Conversions between character values or NUMBER values and floating-point
number values can be inexact, because the character types and NUMBER use
decimal precision to represent the numeric value, and the floating-point numbers
use binary precision.

= When converting a CLOB value into a character datatype such as VARCHAR2, or
converting BLOB to RAW data, if the data to be converted is larger than the target
datatype, then the database returns an error.

s Conversions from BINARY_ FLOAT to BINARY DOUBLE are exact.

s Conversions from BINARY_ DOUBLE to BINARY_FLOAT are inexact if the BINARY
DOUBLE value uses more bits of precision that supported by the BINARY_FLOAT.

s When comparing a character value with a DATE value, Oracle converts the
character data to DATE.

= When you use a SQL function or operator with an argument of a datatype other
than the one it accepts, Oracle converts the argument to the accepted datatype.

= When making assignments, Oracle converts the value on the right side of the
equal sign (=) to the datatype of the target of the assignment on the left side.

s During concatenation operations, Oracle converts from noncharacter datatypes to
CHAR or NCHAR.

s During arithmetic operations on and comparisons between character and
noncharacter datatypes, Oracle converts from any character datatype to a numeric,
date, or rowid, as appropriate. In arithmetic operations between CHAR/VARCHAR2
and NCHAR/NVARCHAR?2, Oracle converts to a NUMBER.

s Comparisons between CHAR and VARCHAR2 and between NCHAR and NVARCHAR?2
types may entail different character sets. The default direction of conversion in
such cases is from the database character set to the national character set.

Table 2-11 shows the direction of implicit conversions between different character

types.

= Most SQL character functions are enabled to accept CLOBs as parameters, and
Oracle performs implicit conversions between CLOB and character types.
Therefore, functions that are not yet enabled for CLOBs can accept CLOBs through
implicit conversion. In such cases, Oracle converts the CLOBs to CHAR or
VARCHAR2 before the function is invoked. If the CLOB is larger than 4000 bytes,
then Oracle converts only the first 4000 bytes to CHAR.

Table 2-11 Conversion Direction of Different Character Types

to CHAR to VARCHAR2 to NCHAR to NVARCHAR2
from CHAR - VARCHAR2 NCHAR NVARCHAR2
from VARCHAR2 VARCHAR2 - NVARCHAR2 NVARCHAR2
from NCHAR NCHAR NCHAR -- NVARCHAR2
from NVARCHAR2 NVARCHAR2 NVARCHAR2 NVARCHAR2 -

User-defined types such as collections cannot be implicitly converted, but must be
explicitly converted using CAST ... MULTISET

2-42 Oracle Database SQL Reference

Datatype Comparison Rules

Implicit Data Conversion Examples

Text Literal Example The text literal '10" has datatype CHAR. Oracle implicitly
converts it to the NUMBER datatype if it appears in a numeric expression as in the
following statement:

SELECT salary + '10'
FROM employees;

Character and Number Values Example When a condition compares a character
value and a NUMBER value, Oracle implicitly converts the character value to a NUMBER
value, rather than converting the NUMBER value to a character value. In the following
statement, Oracle implicitly converts 200" to 200:

SELECT last_name
FROM employees
WHERE employee_id = '200';

Date Example In the following statement, Oracle implicitly converts '03-MAR-97' to
a DATE value using the default date format 'DD-MON-YY":

SELECT last_name
FROM employees
WHERE hire_date = '03-MAR-97';

Rowid Example In the following statement, Oracle implicitly converts the text literal
'AAAGH6AADAAAAFGAAN' to a rowid value. (Rowids are unique within a database, so
to use this example you must know an actual rowid in your database.)

SELECT last_name
FROM employees
WHERE ROWID = 'AAAGH6AADAAAAFGAAN';

Explicit Data Conversion

You can explicitly specify datatype conversions using SQL conversion functions.
Table 2-12 shows SQL functions that explicitly convert a value from one datatype to
another.

You cannot specify LONG and LONG RAW values in cases in which Oracle can perform
implicit datatype conversion. For example, LONG and LONG RAW values cannot appear
in expressions with functions or operators. Please refer to "LONG Datatype" on

page 2-13 for information on the limitations on LONG and LONG RAW datatypes.

Basic Elements of Oracle SQL 2-43

Literals

Table 2-12 Explicit Type Conversions

4
- =
s < Q
o o 2
pur} | o
- o - %) [TH [a]
o 2 o [; 2 | |
. < w £ =) - . > >
£ < - I m = _ S 3 o c c
< T O = 2w = R o = g
T O < = ® 2 < 0 o ¢ o m Z =
o E (I_, g z (=3 o c J (ZD o 9 [o
eSS =2z 2 S £ 2 S 28 5 S m 2 S
from CHAR, TO_CHAR TO_ TO_DATE HEXTORAW CHARTO= -- TO_CLOB TO_ TO_
VARCHAR2, (char.) NUMBER TO_TIMESTAMP ROWID TO_NCLOB BINARY_ BINARY_
NCHAR, TO NCHAR FLOAT DOUBLE
NVARCHAR2 (char.) TO_
: TIMESTAMP_TZ
TO_
YMINTERVAL
TO_
DSINTERVAL
from NUMBER TO_CHAR -- TO_DATE - - -- - TO_ TO_
S
TO_NCHAR INTERVAL
(number) NUMTODS -
INTERVAL
from Datetime/ TO_CHAR - - -- -— - -- -— -
Interval (date)
TO_NCHAR
(datetime)
from RAW RAWTOHEX - -- - - -- TO_BLOB -- -
RAWTONHEX
from ROWID ROWIDTOCHAR -- - -- -- -- -- -- --
from LONG / -- -- - -- -- -- TO_LOB -- --
LONG RAW
from CLOB, TO_CHAR - - -- - - TO_CLOB -- -
NCLOB, BLOB TO_NCHAR TO_NCLOB
from CLOB, TO_CHAR - - -— -— - TO_CLOB -- -
NCLOB, BLOB TO_NCHAR TO_NCLOB
from BINARY_ TO_CHAR TO_ - -- -- -- -- TO_ TO_
FLOAT (char.) NUMBER BINARY__ BINARY_
TO_NCHAR FLOAT DOUBLE
(char.)
from BINARY_ TO_CHAR TO_ - -- -- - -- TO_ TO_
DOUBLE (char.) NUMBER BINARY__ BINARY_
TO_ NCHAR FLOAT DOUBLE
(char.)
See Also: "Conversion Functions" on page 5-5 for details on all of
the explicit conversion functions

The terms literal and constant value are synonymous and refer to a fixed data value.
For example, TACK', 'BLUE ISLAND', and 101" are all character literals; 5001 is a
numeric literal. Character literals are enclosed in single quotation marks so that Oracle
can distinguish them from schema object names.

This section contains these topics:

2-44 Oracle Database SQL Reference

Literals

Text Literals

» Text Literals

s Numeric Literals
» Datetime Literals
s Interval Literals

Many SQL statements and functions require you to specify character and numeric
literal values. You can also specify literals as part of expressions and conditions. You
can specify character literals with the 'text' notation, national character literals with
the N' text ' notation, and numeric literals with the integer, or number notation,
depending on the context of the literal. The syntactic forms of these notations appear
in the sections that follow.

To specify a datetime or interval datatype as a literal, you must take into account any
optional precisions included in the datatypes. Examples of specifying datetime and
interval datatypes as literals are provided in the relevant sections of "Datatypes" on
page 2-1.

Use the text literal notation to specify values whenever 'string' or appears in the
syntax of expressions, conditions, SQL functions, and SQL statements in other parts of
this reference. This reference uses the terms text literal, character literal, and string
interchangeably. Text, character, and string literals are always surrounded by single
quotation marks. If the syntax uses the term char, you can specify either a text literal
or another expression that resolves to character data — for example, the last_name
column of the hr . employees table. When char appears in the syntax, the single
quotation marks are not used.

The syntax of text literals is as follows:

text.:=

roh 0@

O (e
o

quote_delimiter

where N or n specifies the literal using the national character set (NCHAR or
NVARCHAR2 data). By default, text entered using this notation is translated into the
national character set by way of the database character set when used by the server. To
avoid potential loss of data during the text literal conversion to the database character
set, set the environment variable ORA_NCHAR_LITERAL_REPLACE to TRUE. Doing so
transparently replaces the n’ internally and preserves the text literal for SQL
processing.

See Also: Oracle Database Globalization Support Guide for more
information about N-quoted literals
In the top branch of the syntax:

= ¢ isany member of the user's character set. A single quotation mark (') within the
literal must be preceded by an escape character. To represent one single quotation
mark within a literal, enter two single quotation marks.

= ''are two single quotation marks that begin and end text literals.

Basic Elements of Oracle SQL 2-45

Literals

In the bottom branch of the syntax:

= Qor gindicates that the alternative quoting mechanism will be used. This
mechanism allows a wide range of delimiters for the text string.

s The outermost ' ' are two single quotation marks that precede and follow,
respectively, the opening and closing quote_delimiter.

= cis any member of the user's character set. You can include quotation marks (") in
the text literal made up of c characters. You can also include the quote_
delimiter, as long as it is not immediately followed by a single quotation mark.

s guote_delimiter is any single- or multibyte character except space, tab, and
return. The quote_delimiter can be a single quotation mark. However, if the
quote_delimiter appears in the text literal itself, ensure that it is not
immediately followed by a single quotation mark.

If the opening quote_delimiterisoneof [, {, <, or (, then the closing quote_
delimiter must be the corresponding 1, }, >, or). In all other cases, the opening
and closing quote_delimiter must be the same character.

Text literals have properties of both the CHAR and VARCHAR2 datatypes:

= Within expressions and conditions, Oracle treats text literals as though they have
the datatype CHAR by comparing them using blank-padded comparison semantics.

= A text literal can have a maximum length of 4000 bytes.
Here are some valid text literals:

'Hello'

'ORACLE.dbs'
'Jackie''s raincoat'
'09-MAR-98"

N'nchar literal'

Here are some valid text literals using the alternative quoting mechanism:

g'!name LIKE '$%DBMS_%%'!'

g'<'So, "' she said, 'It's finished.'>"'

q' {SELECT * FROM employees WHERE last_name = 'Smith';}"'
ng'i Y1234 i

g'"name like '['"'

See Also: "Blank-Padded Comparison Semantics" on
page -HIDDEN

Numeric Literals

Use numeric literal notation to specify fixed and floating-point numbers.

Integer Literals

You must use the integer notation to specify an integer whenever integer appears in
expressions, conditions, SQL functions, and SQL statements described in other parts of
this reference.

The syntax of integer is as follows:

2-46 Oracle Database SQL Reference

Literals

integer::=

where digitisoneof0,1,2,3,4,5,6,7,8,9.
An integer can store a maximum of 38 digits of precision.
Here are some valid integers:

7
+255

NUMBER and Floating-Point Literals

You must use the number or floating-point notation to specify values whenever
number or n appears in expressions, conditions, SQL functions, and SQL statements in
other parts of this reference.

The syntax of number is as follows:

number::=

(G O[]
o X

2N B

where

=+ or-indicates a positive or negative value. If you omit the sign, then a positive
value is the default.

m digitisoneof0,1,2,3,4,5 6,7, 80r9.

= eor Eindicates that the number is specified in scientific notation. The digits after
the E specify the exponent. The exponent can range from -130 to 125.

= for Findicates that the number is a 32-bit binary floating point number (of type
BINARY_FLOAT).

s dor Dindicates that the number is a 64-bit binary floating point number (of type
BINARY_DOUBLE)

If you omit f or F and d or D, then the number is of type NUMBER.

The suffixes f (F) and d (D) are supported only in floating-point number literals,
not in character strings that are to be converted to NUMBER. That is, if Oracle is
expecting a NUMBER and it encounters the string ' 9 ', then it converts the string to
the number 9. However, if Oracle encounters the string ' 9f ', then conversion fails
and an error is returned.

Basic Elements of Oracle SQL 2-47

Literals

A number of type NUMBER can store a maximum of 38 digits of precision. If the literal
requires more precision than provided by NUMBER, BINARY_FLOAT, or BINARY__
DOUBLE, then Oracle truncates the value. If the range of the literal exceeds the range
supported by NUMBER, BINARY_FLOAT, or BINARY_DOUBLE, then Oracle raises an
error.

If you have established a decimal character other than a period (.) with the
initialization parameter NL.S_NUMERIC_CHARACTERS, then you must specify numeric
literals with ' text ' notation. In these cases, Oracle automatically converts the text

literal to a numeric value.

Note:

You cannot use this notation for floating-point number literals.

For example, if the NLS_NUMERIC_CHARACTERS parameter specifies a decimal
character of comma, specify the number 5.123 as follows:

'5,123"

See Also: ALTER SESSION on page 11-45 and Oracle Database

Reference

Here are some valid NUMBER literals:

25
+6.34
0.5
25e-03
-1

Here are some valid floating-point number literals:

25f
+6.34F
0.5d
-1D

You can also use the following supplied floating-point literals in situations where a
value cannot be expressed as a numeric literal:

Literal

Meaning

Example

binary_ float_nan

binary_ float_
infinity

binary_double_nan

binary_double_
infinity

A value of type
BINARY_FLOAT for
which the condition
IS NAN is true

Single-precision
positive infinity

A value of type
BINARY_DOUBLE for
which the condition
IS NAN is true

Double-precision
positive infinity

SELECT COUNT (*)

FROM employees

WHERE TO_BINARY FLOAT (commission_pct)
!= BINARY_FLOAT_NAN;

SELECT COUNT (*)
FROM employees
WHERE salary < BINARY_ FLOAT INFINITY;

SELECT COUNT (*)

FROM employees

WHERE TO_BINARY_ FLOAT (commission_pct)
!= BINARY_FLOAT_NAN;

SELECT COUNT (*)
FROM employees
WHERE salary < BINARY_FLOAT INFINITY;

2-48 Oracle Database SQL Reference

Literals

Datetime Literals

Oracle Database supports four datetime datatypes: DATE, TIMESTAMP, TIMESTAMP
WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE.

Date Literals You can specify a DATE value as a string literal, or you can convert a
character or numeric value to a date value with the TO_DATE function. DATE literals
are the only case in which Oracle Database accepts a TO_DATE expression in place of a
string literal.

To specify a DATE value as a literal, you must use the Gregorian calendar. You can
specify an ANSI literal, as shown in this example:

DATE '1998-12-25"

The ANSI date literal contains no time portion, and must be specified in exactly this
format ('YYYY-MM-DD'). Alternatively you can specify an Oracle date value, as in the
following example:

TO_DATE ('98-DEC-25 17:30"', 'YY-MON-DD HH24:MI')

The default date format for an Oracle DATE value is specified by the initialization
parameter NL.S_DATE_FORMAT. This example date format includes a two-digit
number for the day of the month, an abbreviation of the month name, the last two
digits of the year, and a 24-hour time designation.

Oracle automatically converts character values that are in the default date format into
date values when they are used in date expressions.

If you specify a date value without a time component, then the default time is
midnight (00:00:00 or 12:00:00 for 24-hour and 12-hour clock time, respectively). If you
specify a date value without a date, then the default date is the first day of the current
month.

Oracle DATE columns always contain both the date and time fields. Therefore, if you
query a DATE column, then you must either specify the time field in your query or
ensure that the time fields in the DATE column are set to midnight. Otherwise, Oracle
may not return the query results you expect. You can use the TRUNC (date) function to
set the time field to midnight, or you can include a greater-than or less-than condition
in the query instead of an equality or inequality condition.

Here are some examples that assume a table my_table with a number column row_
num and a DATE column datecol:

INSERT INTO my_table VALUES (1, SYSDATE);
INSERT INTO my_table VALUES (2, TRUNC (SYSDATE)) ;

SELECT * FROM my_table;

ROW_NUM DATECOL

1 03-0CT-02
2 03-0CT-02

SELECT * FROM my_table
WHERE datecol = TO_DATE('03-0CT-02', 'DD-MON-YY');

ROW_NUM DATECOL

2 03-0CT-02

Basic Elements of Oracle SQL 2-49

Literals

SELECT * FROM my_table
WHERE datecol > TO_DATE('02-0CT-02', 'DD-MON-YY');

ROW_NUM DATECOL

1 03-0CT-02
2 03-0CT-02

If you know that the time fields of your DATE column are set to midnight, then you
can query your DATE column as shown in the immediately preceding example, or by
using the DATE literal:

SELECT * FROM my_table WHERE datecol = DATE '2002-10-03';

However, if the DATE column contains values other than midnight, then you must
filter out the time fields in the query to get the correct result. For example:

SELECT * FROM my_table WHERE TRUNC (datecol) = DATE '2002-10-03';

Oracle applies the TRUNC function to each row in the query, so performance is better if
you ensure the midnight value of the time fields in your data. To ensure that the time

fields are set to midnight, use one of the following methods during inserts and
updates:

s Use the TO_DATE function to mask out the time fields:
INSERT INTO my_table VALUES
(3, TO_DATE('3-0CT-2002"', 'DD-MON-YYYY'));
s Use the DATE literal:

INSERT INTO my_table VALUES (4, '03-0CT-02');

s Use the TRUNC function:

INSERT INTO my_table VALUES (5, TRUNC(SYSDATE));

The date function SYSDATE returns the current system date and time. The function
CURRENT_DATE returns the current session date. For information on SYSDATE, the
TO_* datetime functions, and the default date format, see "Datetime Functions" on
page 5-4.

TIMESTAMP Literals The TIMESTAMP datatype stores year, month, day, hour,
minute, and second, and fractional second values. When you specify TIMESTAMP as a
literal, the fractional_ seconds_precision value can be any number of digits up
to 9, as follows:

TIMESTAMP ‘1997-01-31 09:26:50.124"

TIMESTAMP WITH TIME ZONE Literals The TIMESTAMP WITH TIME ZONE
datatype is a variant of TIMESTAMP that includes a time zone offset. When you specify
TIMESTAMP WITH TIME ZONE as a literal, the fractional_ seconds_ precision
value can be any number of digits up to 9. For example:

TIMESTAMP '1997-01-31 09:26:56.66 +02:00'
Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent

the same instant in UTC, regardless of the TIME ZONE offsets stored in the data. For
example,

TIMESTAMP '1999-04-15 8:00:00 -8:00"'

2-50 Oracle Database SQL Reference

Literals

is the same as

TIMESTAMP '1999-04-15 11:00:00 -5:00"

That is, 8:00 a.m. Pacific Standard Time is the same as 11:00 a.m. Eastern Standard
Time.

You can replace the UTC offset with the TZR (time zone region) format element. For
example, the following example has the same value as the preceding example:

TIMESTAMP '1999-04-15 8:00:00 US/Pacific'

To eliminate the ambiguity of boundary cases when the daylight saving time switches,
use both the TZR and a corresponding TZD format element. The following example
ensures that the preceding example will return a daylight saving time value:

TIMESTAMP '1999-10-29 01:30:00 US/Pacific PDT'

You can also express the time zone offset using a datetime expression:

SELECT TIMESTAMP '1999-10-29 01:30:00’ AT TIME ZONE 'US/Pacific’ FROM DUAL;

See Also: "Datetime Expressions" on page 6-8 for more information

If you do not add the TZD format element, and the datetime value is ambiguous, then
Oracle returns an error if you have the ERROR_ON_OVERLAP_TIME session parameter
set to TRUE. If that parameter is set to FALSE, then Oracle interprets the ambiguous
datetime as standard time in the specified region.

TIMESTAMP WITH LOCAL TIME ZONE Literals The TIMESTAMP WITH LOCAL
TIME ZONE datatype differs from TIMESTAMP WITH TIME ZONE in that data stored
in the database is normalized to the database time zone. The time zone offset is not
stored as part of the column data. There is no literal for TIMESTAMP WITH LOCAL
TIME ZONE. Rather, you represent values of this datatype using any of the other valid
datetime literals. The table that follows shows some of the formats you can use to
insert a value into a TIMESTAMP WITH LOCAL TIME ZONE column, along with the
corresponding value returned by a query.

Value Specified in INSERT Statement Value Returned by Query

"19-FEB-2004" 19-FEB-2004.00.00.000000 AM
SYSTIMESTAMP 19-FEB-04 02.54.36.497659 PM
TO_TIMESTAMP (’'19-FEB-2004’, ’'DD-MON-YYYY’)); 19-FEB-04 12.00.00.000000 AM
SYSDATE 19-FEB-04 02.55.29.000000 PM
TO_DATE (’19-FEB-2004’, ’'DD-MON-YYYY’)); 19-FEB-04 12.00.00.000000 AM
TIMESTAMP'2004-02-19 8:00:00 US/Pacific’); 19-FEB-04 08.00.00.000000 AM

Notice that if the value specified does not include a time component (either explicitly
or implicitly, then the value returned defaults to midnight.

Interval Literals

An interval literal specifies a period of time. You can specify these differences in terms
of years and months, or in terms of days, hours, minutes, and seconds. Oracle
Database supports two types of interval literals, YEAR TO MONTH and DAY TO SECOND.

Basic Elements of Oracle SQL 2-51

Literals

Each type contains a leading field and may contain a trailing field. The leading field
defines the basic unit of date or time being measured. The trailing field defines the
smallest increment of the basic unit being considered. For example, a YEAR TO MONTH
interval considers an interval of years to the nearest month. A DAY TO MINUTE interval
considers an interval of days to the nearest minute.

If you have date data in numeric form, then you can use the NUMTOYMINTERVAL or
NUMTODSINTERVAL conversion function to convert the numeric data into interval
values.

Interval literals are used primarily with analytic functions.

See Also: "Analytic Functions" on page 5-9, NUMTODSINTERVAL
on page 5-108, NUMTOYMINTERVAL on page 5-109, and Oracle
Database Data Warehousing Guide

INTERVAL YEAR TO MONTH

Specify YEAR TO MONTH interval literals using the following syntax:

interval_year to_month::=

O

—{ INTERVAL |->@{integer)

OlCEDIO

where

» 'integer [-integer] ' specifiesinteger values for the leading and optional
trailing field of the literal. If the leading field is YEAR and the trailing field is
MONTH, then the range of integer values for the month field is 0 to 11.

s precisionisthe maximum number of digits in the leading field. The valid range

of the leading field precision is 0 to 9 and its default value is 2.

Restriction on the Leading Field If you specify a trailing field, it must be less
significant than the leading field. For example, INTERVAL '0-1' MONTH TO YEAR is not
valid.

The following INTERVAL YEAR TO MONTH literal indicates an interval of 123 years, 2
months:

INTERVAL '123-2' YEAR(3) TO MONTH

Examples of the other forms of the literal follow, including some abbreviated versions:

Form of Interval Literal Interpretation

INTERVAL '123-2' YEAR(3) TO MONTH Aninterval of 123 years, 2 months. You must
specify the leading field precision if it is
greater than the default of 2 digits.

INTERVAL '123' YEAR(3) An interval of 123 years 0 months.

INTERVAL '300' MONTH(3) An interval of 300 months.

2-52 Oracle Database SQL Reference

Literals

Form of Interval Literal Interpretation

INTERVAL '4' YEAR hdapsﬁ)INTERVAL '4-0' YEAR TO MONTH
and indicates 4 years.

INTERVAL '50' MONTH NbpStOINTERVAL '4-2"' YEAR TO MONTH
and indicates 50 months or 4 years 2 months.

INTERVAL '123' YEAR Returns an error, because the default precision
is 2, and '123' has 3 digits.

You can add or subtract one INTERVAL YEAR TO MONTH literal to or from another to
yield another INTERVAL YEAR TO MONTH literal. For example:

INTERVAL '5-3' YEAR TO MONTH + INTERVAL'20' MONTH =
INTERVAL '6-11' YEAR TO MONTH

INTERVAL DAY TO SECOND
Specify DAY TO SECOND interval literals using the following syntax:

interval_day_to_second::=
)

Ie@e(fractional,seconds,precisionh
A }5(leading_precision) %

SECOND

MINUTE

ﬁ@e(fractional_seconds_precisionm

SECOND

where

» integer specifies the number of days. If this value contains more digits than the
number specified by the leading precision, then Oracle returns an error.

» time_expr specifies a time in the format HH[:MI[:SS[.n]]1] orMI[:SS[.n]]
or SS[.n], where n specifies the fractional part of a second. If n contains more
digits than the number specified by fractional_seconds_precision,thenn
is rounded to the number of digits specified by the fractional seconds_
precision value. You can specify time_expr following an integer and a space
only if the leading field is DAY.

Basic Elements of Oracle SQL 2-53

Format Models

s Jeading precisionisthe number of digits in the leading field. Accepted
values are 0 to 9. The default is 2.

m fractional_ seconds_precisionisthe number of digits in the fractional part
of the SECOND datetime field. Accepted values are 1 to 9. The default is 6.

Restriction on the Leading Field: If you specify a trailing field, it must be less
significant than the leading field. For example, INTERVAL MINUTE TO DAY is not valid.
As a result of this restriction, if SECOND is the leading field, the interval literal cannot
have any trailing field.

The valid range of values for the trailing field are as follows:
= HOUR:0to 23

= MINUTE: O to 59

= SECOND: 0 to 59.999999999

Examples of the various forms of INTERVAL DAY TO SECOND literals follow, including
some abbreviated versions:

Form of Interval Literal Interpretation

INTERVAL '4 5:12:10.222"' DAY TO 4 days, 5 hours, 12 minutes, 10 seconds, and
SECOND (3) 222 thousandths of a second.

INTERVAL '4 5:12' DAY TO MINUTE 4 days, 5 hours and 12 minutes.

INTERVAL '400 5' DAY (3) TO HOUR 400 days 5 hours.

INTERVAL '400' DAY (3) 400 days.

INTERVAL '11:12:10.2222222"' HOUR 11 hours, 12 minutes, and 10.2222222 seconds.
TO SECOND(7)

INTERVAL '11:20' HOUR TO MINUTE 11 hours and 20 minutes.

INTERVAL '10' HOUR 10 hours.

INTERVAL '10:22' MINUTE TO SECOND 10 minutes 22 seconds.

INTERVAL '10' MINUTE 10 minutes.

INTERVAL '4' DAY 4 days.

INTERVAL '25' HOUR 25 hours.

INTERVAL '40' MINUTE 40 minutes.

INTERVAL '120' HOUR(3) 120 hours.

INTERVAL '30.12345' SECOND(2,4) 30.1235 seconds. The fractional second '12345'

is rounded to '1235' because the precision is 4.

You can add or subtract one DAY TO SECOND interval literal from another DAY TO
SECOND literal. For example.

INTERVAL'20' DAY - INTERVAL'240' HOUR = INTERVAL'10-0' DAY TO SECOND

Format Models

A format model is a character literal that describes the format of datetime or numeric
data stored in a character string. A format model does not change the internal
representation of the value in the database. When you convert a character string into a
date or number, a format model determines how Oracle Database interprets the string.

2-54 Oracle Database SQL Reference

Format Models

In SQL statements, you can use a format model as an argument of the TO_CHAR and
TO_DATE functions to specify:

s The format for Oracle to use to return a value from the database

s The format for a value you have specified for Oracle to store in the database
For example:

s The datetime format model for the string '17:45:29"is 'HH24 :MI: SS".

s The datetime format model for the string '11-Nov-1999'is 'DD-Mon-YYYY"
s The number format model for the string '$2,304.25"is 's9,999.99".

For lists of number and datetime format model elements, see Table 2-17, " Matching
Character Data and Format Models with the FX Format Model Modifier" on page 2-66
and Table 2-19, " Attributes of the XMLFormat Object" on page 2-68.

The values of some formats are determined by the value of initialization parameters.
For such formats, you can specify the characters returned by these format elements
implicitly using the initialization parameter NLS_TERRITORY. You can change the
default date format for your session with the ALTER SESSION statement.

See Also:

= ALTER SESSION on page 11-45 for information on changing the
values of these parameters and Format Model Examples on
page 2-65 for examples of using format models

s TO_CHAR (datetime) on page 5-191, TO_CHAR (number) on
page 5-193, and TO_DATE on page 5-195

» Oracle Database Reference and Oracle Database Globalization Support
Guide for information on these parameters
This remainder of this section describes how to use:
s Number Format Models
» Datetime Format Models

s Format Model Modifiers

Number Format Models

You can use number format models in the following functions:

s In the TO_CHAR function to translate a value of NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE datatype to VARCHAR2 datatype

s In the TO_NUMBER function to translate a value of CHAR or VARCHAR2 datatype to
NUMBER datatype

s Inthe TO_BINARY FLOAT and TO_BINARY_ DOUBLE functions to translate CHAR
and VARCHAR?2 expressions to BINARY_ FLOAT or BINARY DOUBLE values

All number format models cause the number to be rounded to the specified number of
significant digits. If a value has more significant digits to the left of the decimal place
than are specified in the format, then pound signs (#) replace the value. This event
typically occurs when you are using TO_CHAR with a restrictive number format string,
causing a rounding operation.

= If a positive NUMBER value is extremely large and cannot be represented in the
specified format, then the infinity sign (~) replaces the value. Likewise, if a

Basic Elements of Oracle SQL 2-55

Format Models

negative NUMBER value is extremely small and cannot be represented by the
specified format, then the negative infinity sign replaces the value (-~).

s IfaBINARY_ FLOAT or BINARY DOUBLE value is converted to CHAR or NCHAR,
and the input is either infinity or NaN (not a number), then Oracle always returns
the pound signs to replace the value.

Number Format Elements

A number format model is composed of one or more number format elements. The
tables that follow list the elements of a number format model and provide some
examples.

Negative return values automatically contain a leading negative sign and positive
values automatically contain a leading space unless the format model contains the MT,
S, or PR format element.

Table 2-13 Number Format Elements

Element Example Description

, (comma) 9,999 Returns a comma in the specified position. You can specify multiple commas in a
number format model.

Restrictions:
= A comma element cannot begin a number format model.

= A comma cannot appear to the right of a decimal character or period in a
number format model.

. (period) 99.99 Returns a decimal point, which is a period (.) in the specified position.
Restriction: You can specify only one period in a number format model.
$ $9999 Returns value with a leading dollar sign.
0 0999 Returns leading zeros.
9990 Returns trailing zeros.
9 9999 Returns value with the specified number of digits with a leading space if positive

or with a leading minus if negative.

Leading zeros are blank, except for a zero value, which returns a zero for the
integer part of the fixed-point number.

B B9999 Returns blanks for the integer part of a fixed-point number when the integer part
is zero (regardless of zeros in the format model).

C C999 Returns in the specified position the ISO currency symbol (the current value of the
NLS_ISO_CURRENCY parameter).

D 99D99 Returns in the specified position the decimal character, which is the current value
of the NLS_NUMERIC_CHARACTER parameter. The default is a period (.).

Restriction: You can specify only one decimal character in a number format model.

EEEE 9.9EEEE Returns a value using in scientific notation.

G 9G999 Returns in the specified position the group separator (the current value of the
NLS_NUMERIC_CHARACTER parameter). You can specify multiple group
separators in a number format model.

Restriction: A group separator cannot appear to the right of a decimal character or
period in a number format model.

L L999 Returns in the specified position the local currency symbol (the current value of
the NLS_CURRENCY parameter).

2-56 Oracle Database SQL Reference

Format Models

Table 2-13 (Cont.) Number Format Elements

Element

Example

Description

MI

9999MI

Returns negative value with a trailing minus sign (-).
Returns positive value with a trailing blank.

Restriction: The MI format element can appear only in the last position of a
number format model.

PR

9999PR

Returns negative value in <angle brackets>.
Returns positive value with a leading and trailing blank.

Restriction: The PR format element can appear only in the last position of a
number format model.

RN

m

RN

rn

Returns a value as Roman numerals in uppercase.
Returns a value as Roman numerals in lowercase.

Value can be an integer between 1 and 3999.

59999

99998

Returns negative value with a leading minus sign (-).
Returns positive value with a leading plus sign (+).
Returns negative value with a trailing minus sign (-).
Returns positive value with a trailing plus sign (+).

Restriction: The S format element can appear only in the first or last position of a
number format model.

™

™

The text minimum number format model returns (in decimal output) the smallest
number of characters possible. This element is case insensitive.

The default is TM9, which returns the number in fixed notation unless the output
exceeds 64 characters. If the output exceeds 64 characters, then Oracle Database
automatically returns the number in scientific notation.

Restrictions:
= You cannot precede this element with any other element.

= You can follow this element only with one 9 or one E (or e), but not with any
combination of these. The following statement returns an error:

L] SELECT TO_CHAR (1234, 'TM9e’) FROM DUAL;

U9999

Returns in the specified position the Euro (or other) dual currency symbol (the
current value of the NLS_DUAL_CURRENCY parameter).

999Vv99

Returns a value multiplied by 10" (and if necessary, round it up), where n is the
number of 9’s after the V.

XXXX

XXXX

Returns the hexadecimal value of the specified number of digits. If the specified
number is not an integer, then Oracle Database rounds it to an integer.

Restrictions:

= This element accepts only positive values or 0. Negative values return an
error.

= You can precede this element only with 0 (which returns leading zeroes) or
FM. Any other elements return an error. If you specify neither 0 nor FM with
X, then the return always has 1 leading blank.

Table 2-14 shows the results of the following query for different values of number and

"fmt '

SELECT TO_CHAR (number, 'fmt')
FROM DUAL;

Basic Elements of Oracle SQL 2-57

Format Models

Table 2-14 Results of Number Conversions

number ‘fmt' Result
-1234567890 99999999995 '1234567890-"
0 99.99 ! .00
+0.1 99.99 ! .10
-0.2 99.99 v =-.20"
0 90.99 ' 0.00"
+0.1 90.99 ' 0.10"
-0.2 90.99 ' -0.20"
0 9999 ! 0"
1 9999 ! 1
0 B9999 ! !
1 B9999 ! 1
0 B90.99 !
+123.456 999.999 ' 123.456"
-123.456 999.999 '-123.456"
+123.456 FM999.009 '123.456"
+123.456 9.9EEEE ' 1.2E+02"
+1E+123 9.9EEEE ' 1.0E+123"
+123.456 FM9 .9EEEE '1.2E+02"
+123.45 FM999.009 '123.45"
+123.0 FM999.009 '123.00"
+123 .45 L999.99 ! $123.45"
+123.45 FML999.99 '$123.45"
+1234567890 99999999995 '1234567890+"

Datetime Format Models

You can use datetime format models in the following functions:

s In the TO_* datetime functions to translate a character value that is in a format
other than the default format into a datetime value. (The TO_* datetime functions
are TO_CHAR, TO_DATE, TO_TIMESTAMP, TO_TIMESTAMP_ TZ, TO_YMINTERVAL,
and TO_DSINTERVAL.)

s In the TO_CHAR function to translate a datetime value that is in a format other than
the default format into a string (for example, to print the date from an application)

The total length of a datetime format model cannot exceed 22 characters.

The default datetime formats are specified either explicitly with the initialization
parameter NL.S_DATE_FORMAT or implicitly with the initialization parameter NLS_
TERRITORY. You can change the default datetime formats for your session with the
ALTER SESSION statement.

See Also: ALTER SESSION on page 11-45 and Oracle Database
Globalization Support Guide for information on the NLS parameters

2-58 Oracle Database SQL Reference

Format Models

Datetime Format Elements

A datetime format model is composed of one or more datetime format elements as
listed in Table 2-19, " Attributes of the XMLFormat Object" on page 2-68.

= For input format models, format items cannot appear twice, and format items that
represent similar information cannot be combined. For example, you cannot use
'SYYYY' and 'BC' in the same format string.

= Some of the datetime format elements cannot be used in the TO_* datetime
functions, as noted in Table 2-19.

= The following datetime format elements can be used in timestamp and interval
format models, but not in the original DATE format model: FF, TZD, TZH, TZM,
and TZR.

= Many datetime format elements are blank padded to a specific length. Please refer

to the format model modifier FM on page 2-64 for more information.

Uppercase Letters in Date Format Elements Capitalization in a spelled-out word,
abbreviation, or Roman numeral follows capitalization in the corresponding format
element. For example, the date format model 'DAY" produces capitalized words like
'MONDAY"; 'Day' produces 'Monday'; and 'day' produces 'monday’.

Punctuation and Character Literals in Datetime Format Models You can include these
characters in a date format model:

= Punctuation such as hyphens, slashes, commas, periods, and colons

» Character literals, enclosed in double quotation marks

These characters appear in the return value in the same location as they appear in the
format model.

Table 2-15 Datetime Format Elements

Specify in TO_*

datetime
Element functions? Description
- Yes Punctuation and quoted text is reproduced in the result.
/
"text"
AD Yes AD indicator with or without periods.
A.D.
AM Yes Meridian indicator with or without periods.
A.M.
BC Yes BC indicator with or without periods.
B.C.
cc No Century.
scc

s If the last 2 digits of a 4-digit year are between 01 and 99 (inclusive), then the
century is one greater than the first 2 digits of that year.

s If the last 2 digits of a 4-digit year are 00, then the century is the same as the
first 2 digits of that year.

For example, 2002 returns 21; 2000 returns 20.

Basic Elements of Oracle SQL 2-59

Format Models

Table 2-15 (Cont.) Datetime Format Elements

Specify in TO_*
datetime
Element functions?

Description

D Yes

Day of week (1-7).

DAY Yes

Name of day, padded with blanks to display width of the widest name of day in
the date language used for this element.

DD Yes

Day of month (1-31).

DDD Yes

Day of year (1-366).

DL Yes

Returns a value in the long date format, which is an extension of Oracle
Database’s DATE format (the current value of the NL.S_DATE_FORMAT
parameter). Makes the appearance of the date components (day name, month
number, and so forth) depend on the NLS_TERRITORY and NLS_LANGUAGE
parameters. For example, in the AMERICAN_AMERICA locale, this is equivalent to
specifying the format ’ fmDay, Month dd, yyyy’. In the GERMAN_GERMANY
locale, it is equivalent to specifying the format 'fmDay, dd. Month yyyy’.

Restriction: You can specify this format only with the TS element, separated by
white space.

DS Yes

Returns a value in the short date format. Makes the appearance of the date
components (day name, month number, and so forth) depend on the NLS_
TERRITORY and NLS_LANGUAGE parameters. For example, in the AMERICAN_
AMERICA locale, this is equivalent to specifying the format 'MM/DD/RRRR’. In the
ENGLISH_UNITED_KINGDOM locale, it is equivalent to specifying the format
'DD/MM/RRRR’.

Restriction: You can specify this format only with the TS element, separated by
white space.

DY Yes

Abbreviated name of day.

Abbreviated era name (Japanese Imperial, ROC Official, and Thai Buddha
calendars).

EE No

Full era name (Japanese Imperial, ROC Official, and Thai Buddha calendars).

FF [1..9] Yes

Fractional seconds; no radix character is printed (use the X format element to add
the radix character). Use the numbers 1 to 9 after FF to specify the number of
digits in the fractional second portion of the datetime value returned. If you do
not specify a digit, then Oracle Database uses the precision specified for the
datetime datatype or the datatype’s default precision.

Examples: 'HH:MI:SS.FF’
SELECT TO_CHAR (SYSTIMESTAMP, ’'SS.FF3’) from dual;

FM Yes

Returns a value with no leading or trailing blanks.

See Also: Additional discussion on this format model modifier in the Oracle
Database SQL Reference

FX Yes

Requires exact matching between the character data and the format model.

See Also: Additional discussion on this format model modifier in the Oracle
Database SQL Reference

HH Yes

Hour of day (1-12).

HH12 No

Hour of day (1-12).

HH24 Yes

Hour of day (0-23).

Iw No

Week of year (1-52 or 1-53) based on the ISO standard.

IYY No
Iy

Last 3, 2, or 1 digit(s) of ISO year.

2-60 Oracle Database SQL Reference

Format Models

Table 2-15 (Cont.) Datetime Format Elements

Specify in TO_*

datetime

Element functions? Description

IYYy No 4-digit year based on the ISO standard.

J Yes Julian day; the number of days since January 1, 4712 BC. Number specified with]
must be integers.

MI Yes Minute (0-59).

MM Yes Month (01-12; January = 01).

MON Yes Abbreviated name of month.

MONTH Yes Name of month, padded with blanks to display width of the widest name of
month in the date language used for this element.

PM No Meridian indicator with or without periods.

P.M.

Q No Quarter of year (1, 2, 3, 4; January - March = 1).

RM Yes Roman numeral month (I-XII; January =1I).

RR Yes Lets you store 20th century dates in the 21st century using only two digits.

See Also: Additional discussion on RR datetime format element in the Oracle
Database SQL Reference

RRRR Yes Round year. Accepts either 4-digit or 2-digit input. If 2-digit, provides the same
return as RR. If you do not want this functionality, then enter the 4-digit year.

SS Yes Second (0-59).

SSSSS Yes Seconds past midnight (0-86399).

TS Yes Returns a value in the short time format. Makes the appearance of the time
components (hour, minutes, and so forth) depend on the NLS_TERRITORY and
NLS_LANGUAGE initialization parameters.

Restriction: You can specify this format only with the DL or DS element,
separated by white space.

TZD Yes Daylight savings information. The TZD value is an abbreviated time zone string
with daylight savings information. It must correspond with the region specified
in TZR.

Example: PST (for US/Pacific standard time); PDT (for US/Pacific daylight time).

TZH Yes Time zone hour. (See TZM format element.)

Example: "HH:MI:SS.FFTZH:TZM’.

TZM Yes Time zone minute. (See TZH format element.)
Example: "HH:MI:SS.FFTZH:TZM'.

TZR Yes Time zone region information. The value must be one of the time zone regions
supported in the database.
Example: US/Pacific

Ll No Week of year (1-53) where week 1 starts on the first day of the year and continues
to the seventh day of the year.

W No Week of month (1-5) where week 1 starts on the first day of the month and ends
on the seventh.

X Yes Local radix character.

Example: 'HH:MI: SSXFF’.

Y,YYY Yes Year with comma in this position.

Basic Elements of Oracle SQL 2-61

Format Models

Table 2-15 (Cont.) Datetime Format Elements

Specify in TO_*

datetime
Element functions? Description
YEAR No Year, spelled out; S prefixes BC dates with a minus sign (-).
SYEAR
YYYy Yes 4-digit year; S prefixes BC dates with a minus sign.
SYYYY
YYY Yes Last 3, 2, or 1 digit(s) of year.
YY
Y

Oracle returns an error if an alphanumeric character is found in the date string where a
punctuation character is found in the format string. For example, the following format
string returns an error:

TO_CHAR (TO_DATE('0297','MM/YY'), 'MM/YY')

Datetime Format Elements and Globalization Support

The functionality of some datetime format elements depends on the country and
language in which you are using Oracle Database. For example, these datetime format
elements return spelled values:

= MONTH
= MON

» DAY

= DY

s BCorADorB.C.or AD.
s AMorPM or AM or PM.

The language in which these values are returned is specified either explicitly with the
initialization parameter NL.S_DATE_LANGUAGE or implicitly with the initialization
parameter NLS_LANGUAGE. The values returned by the YEAR and SYEAR datetime
format elements are always in English.

The datetime format element D returns the number of the day of the week (1-7). The
day of the week that is numbered 1 is specified implicitly by the initialization
parameter NL.S_ TERRITORY.

See Also: Oracle Database Reference and Oracle Database Globalization
Support Guide for information on globalization support initialization
parameters

ISO Standard Date Format Elements

Oracle calculates the values returned by the datetime format elements IYYY, IYY, IY, I,
and IW according to the ISO standard. For information on the differences between
these values and those returned by the datetime format elements YYYY, YYY, YY, Y,
and WW, see the discussion of globalization support in Oracle Database Globalization
Support Guide.

2-62 Oracle Database SQL Reference

Format Models

The RR Datetime Format Element

The RR datetime format element is similar to the YY datetime format element, but it
provides additional flexibility for storing date values in other centuries. The RR
datetime format element lets you store 20th century dates in the 21st century by
specifying only the last two digits of the year.

If you use the TO_DATE function with the YY datetime format element, then the year
returned always has the same first 2 digits as the current year. If you use the RR
datetime format element instead, then the century of the return value varies according
to the specified two-digit year and the last two digits of the current year.

That is:
» If the specified two-digit year is 00 to 49, then

— If the last two digits of the current year are 00 to 49, then the returned year has
the same first two digits as the current year.

— If the last two digits of the current year are 50 to 99, then the first 2 digits of
the returned year are 1 greater than the first 2 digits of the current year.

» If the specified two-digit year is 50 to 99, then

— If the last two digits of the current year are 00 to 49, then the first 2 digits of
the returned year are 1 less than the first 2 digits of the current year.

— If the last two digits of the current year are 50 to 99, then the returned year has
the same first two digits as the current year.

The following examples demonstrate the behavior of the RR datetime format element.

RR Datetime Format Examples

Assume these queries are issued between 1950 and 1999:

SELECT TO_CHAR (TO_DATE ('27-0CT-98', 'DD-MON-RR') ,'YYYY') "Year"
FROM DUAL;

Year

1998

SELECT TO_CHAR(TO_DATE('27-0CT-17', 'DD-MON-RR') ,'YYYY') "Year"
FROM DUAL;

Year

2017

Now assume these queries are issued between 2000 and 2049:

SELECT TO_CHAR(TO_DATE('27-0CT-98', 'DD-MON-RR') ,'YYYY') "Year"
FROM DUAL;

Year

1998

SELECT TO_CHAR(TO_DATE('27-0CT-17', 'DD-MON-RR') ,'YYYY') "Year"
FROM DUAL;

Year

Basic Elements of Oracle SQL 2-63

Format Models

2017

Note that the queries return the same values regardless of whether they are issued
before or after the year 2000. The RR datetime format element lets you write SQL
statements that will return the same values from years whose first two digits are
different.

Datetime Format Element Suffixes
Table 2-16 lists suffixes that can be added to datetime format elements:

Table 2-16 Date Format Element Suffixes

Suffix Meaning Example Element Example Value
TH Ordinal Number DDTH ATH

SP Spelled Number DDSP FOUR

SPTH or THSP Spelled, ordinal number DDSPTH FOURTH

Notes on date format element suffixes:

= When you add one of these suffixes to a datetime format element, the return value
is always in English.

= Datetime suffixes are valid only to format output. You cannot use them to insert a
date into the database.

Format Model Modifiers

The FM and FX modifiers, used in format models in the TO_CHAR function, control
blank padding and exact format checking.

A modifier can appear in a format model more than once. In such a case, each
subsequent occurrence toggles the effects of the modifier. Its effects are enabled for the
portion of the model following its first occurrence, and then disabled for the portion
following its second, and then reenabled for the portion following its third, and so on.

FM Fill mode. Oracle uses blank characters to fill format elements to a constant
width equal to the largest element for the relevant format model in the current session
language. For example, when NLS_ LANGUAGE is AMERICAN, the largest element for
MONTH is SEPTEMBER, so all values of the MONTH format element are padded to 9
display characters. This modifier suppresses blank padding in the return value of the
TO_CHAR function:

» Ina datetime format element of a TO_CHAR function, this modifier suppresses
blanks in subsequent character elements (such as MONTH) and suppresses leading
zeroes for subsequent number elements (such as MI) in a date format model.
Without FM, the result of a character element is always right padded with blanks to
a fixed length, and leading zeroes are always returned for a number element. With
FM, which suppresses blank padding, the length of the return value may vary.

= In anumber format element of a TO_CHAR function, this modifier suppresses
blanks added to the left of the number, so that the result is left-justified in the
output buffer. Without F, the result is always right-justified in the buffer,
resulting in blank-padding to the left of the number.

FX Format exact. This modifier specifies exact matching for the character argument
and datetime format model of a TO_DATE function:

2-64 Oracle Database SQL Reference

Format Models

s Punctuation and quoted text in the character argument must exactly match (except
for case) the corresponding parts of the format model.

s The character argument cannot have extra blanks. Without FX, Oracle ignores
extra blanks.

= Numeric data in the character argument must have the same number of digits as
the corresponding element in the format model. Without FX, numbers in the
character argument can omit leading zeroes.

When FX is enabled, you can disable this check for leading zeroes by using the FM
modifier as well.

If any portion of the character argument violates any of these conditions, then Oracle
returns an error message.

Format Model Examples
The following statement uses a date format model to return a character expression:

SELECT TO_CHAR (SYSDATE, 'fmDDTH')||' of '||TO_CHAR
(SYSDATE, 'fmMonth')||', '||TO_CHAR(SYSDATE, 'YYYY') "Ides"
FROM DUAL;

Ides

3RD of April, 1998

The preceding statement also uses the FM modifier. If FM is omitted, then the month is
blank-padded to nine characters:

SELECT TO_CHAR(SYSDATE, 'DDTH')||' of '||
TO_CHAR (SYSDATE, 'Month')||', '|]
TO_CHAR (SYSDATE, 'YYYY') "Ides"

FROM DUAL;

03RD of April , 1998
The following statement places a single quotation mark in the return value by using a
date format model that includes two consecutive single quotation marks:

SELECT TO_CHAR (SYSDATE, 'fmDay')||'''s Special' "Menu"
FROM DUAL;

Tuesday's Special
Two consecutive single quotation marks can be used for the same purpose within a
character literal in a format model.

Table 2-17 shows whether the following statement meets the matching conditions for
different values of char and 'fmt' using FX (the table named table has a column
date_column of datatype DATE):

UPDATE table
SET date_column = TO_DATE(char, 'fmt');

Basic Elements of Oracle SQL 2-65

Format Models

Table 2-17 Matching Character Data and Format Models with the FX Format Model

Modifier
char ‘fmt’ Match or Error?

'15/ JAN /1998 'DD-MON-YYYY' Match
' 15! JAN % /1998 'DD-MON-YYYY' Error
"15/JAN/1998" ' FXDD-MON-YYYY' Error
"15-JAN-1998" ' FXDD-MON-YYYY' Match
"1-JAN-1998" ' FXDD-MON-YYYY' Error
"01-JAN-1998" ' FXDD-MON-YYYY' Match
"1-JAN-1998" ' FXFMDD-MON-YYYY' Match

Format of Return Values: Examples You can use a format model to specify the
format for Oracle to use to return values from the database to you.

The following statement selects the salaries of the employees in Department 80 and
uses the TO_CHAR function to convert these salaries into character values with the
format specified by the number format model '$99,990.99'

SELECT last_name employee, TO_CHAR (salary, '$99,990.99')
FROM employees
WHERE department_id = 80;

Because of this format model, Oracle returns salaries with leading dollar signs,
commas every three digits, and two decimal places.

The following statement selects the date on which each employee from Department 20
was hired and uses the TO_CHAR function to convert these dates to character strings
with the format specified by the date format model 'fmMonth DD, YYYY"

SELECT last_name employee,
TO_CHAR (hire_date, 'fmMonth DD, YYYY') hiredate
FROM employees
WHERE department_id = 20;

With this format model, Oracle returns the hire dates without blank padding (as
specified by £m), two digits for the day, and the century included in the year.

See Also: "Format Model Modifiers" on page 2-64 for a description
of the fm format element

Supplying the Correct Format Model: Examples When you insert or update a
column value, the datatype of the value that you specify must correspond to the
column datatype of the column. You can use format models to specify the format of a
value that you are converting from one datatype to another datatype required for a
column.

For example, a value that you insert into a DATE column must be a value of the DATE
datatype or a character string in the default date format (Oracle implicitly converts
character strings in the default date format to the DATE datatype). If the value is in
another format, then you must use the TO_DATE function to convert the value to the
DATE datatype. You must also use a format model to specify the format of the
character string.

2-66 Oracle Database SQL Reference

Format Models

The following statement updates Hunold' s hire date using the TO_DATE function

with the format mask 'YYYY MM DD' to convert the character string 1998 05 20' to a
DATE value:

UPDATE employees
SET hire_date = TO_DATE('1998 05 20','YYYY MM DD')
WHERE last_name = 'Hunold';

String-to-Date Conversion Rules

The following additional formatting rules apply when converting string values to date
values (unless you have used the FX or FXFM modifiers in the format model to control
exact format checking):

= You can omit punctuation included in the format string from the date string if all
the digits of the numerical format elements, including leading zeros, are specified.

In other words, specify 02 and not 2 for two-digit format elements such as MM,
DD, and YY.

= You can omit time fields found at the end of a format string from the date string.

= If a match fails between a datetime format element and the corresponding

characters in the date string, then Oracle attempts alternative format elements, as
shown in Table 2-18.

Table 2-18 Oracle Format Matching

Original Format Element Additional Format Elements to Try in Place of the Original

‘MM’ 'MON' and 'MONTH'
' MON 'MONTH'
'MONTH' 'MON'
'YY! 'YYYY'!'
'RR' 'RRRR'
XML Format Model

The SYS_XMLGEN function returns an instance of type XMLType containing an XML

document. Oracle provides the XMLFormat object, which lets you format the output of
the SYS_XMLGEN function.

Table 2-19 lists and describes the attributes of the XMLFormat object. The function that
implements this type follows the table.

See Also:

s SYS_XMLGEN on page 5-185 for information on the SYS_XMLGEN
function

» Oracle XML Developer’s Kit Programmer’s Guide for more

information on the implementation of the XMLFormat object and
its use

Basic Elements of Oracle SQL 2-67

Nulls

Table 2-19 Attributes of the XMLFormat Object

Attribute Datatype Purpose

enclTag VARCHAR2 (100) The name of the enclosing tag for the result of the SYS_XMLGEN
function. If the input to the function is a column name, the default is
the column name. Otherwise the default is ROW. When schemaType is
set to USE_GIVEN_SCHEMA, this attribute also gives the name of the
XMLSchema element.

schemaType VARCHAR2 (100) The type of schema generation for the output document. Valid values
are 'NO_SCHEMA' and 'USE_GIVEN_SCHEMA' The default is 'NO_
SCHEMA'.

schemaName VARCHAR2 (4000) The name of the target schema Oracle uses if the value of the

schemaType is 'USE_GIVEN_SCHEMA' If you specify schemaName,
then Oracle uses the enclosing tag as the element name.

targetNameSpace VARCHAR2(4000) The target namespace if the schema is specified (that is, schemaType
is GEN_SCHEMA_ *, or USE_GTIVEN_SCHEMA)

dburl VARCHAR2 (2000) The URL to the database to use if WITH_SCHEMA is specified. If this
attribute is not specified, then Oracle declares the URL to the types as
a relative URL reference.

processingIns VARCHAR2 (4000) User-provided processing instructions, which are appended to the top
of the function output before the element.

The function that implements the XMLFormat object follows:

STATIC FUNCTION createFormat (

enclTag IN varchar2 := 'ROWSET',
schemaType IN varchar2 := 'NO_SCHEMA',
schemaName IN varchar2 := null,
targetNameSpace IN varchar2 := null,

dburlPrefix IN varchar2 := null,
processingIns IN varchar2 := null) RETURN XMLGenFormatType
deterministic parallel_enable,
MEMBER PROCEDURE genSchema (spec IN varchar2),
MEMBER PROCEDURE setSchemaName (schemaName IN varchar?),
MEMBER PROCEDURE setTargetNameSpace (targetNameSpace IN varchar2),
MEMBER PROCEDURE setEnclosingElementName (enclTag IN varchar2),
MEMBER PROCEDURE setDbUrlPrefix(prefix IN varchar2),
MEMBER PROCEDURE setProcessingIns(pi IN varchar2),
CONSTRUCTOR FUNCTION XMLGenFormatType (

enclTag IN varchar2 := 'ROWSET',
schemaType IN varchar2 := 'NO_SCHEMA',
schemaName IN varchar2 := null,
targetNameSpace IN varchar2 := null,

dbUrlPrefix IN varchar2 := null,
processingIns IN varchar2 := null) RETURN SELF AS RESULT
deterministic parallel_enable .

Nulls

If a column in a row has no value, then the column is said to be null, or to contain null.
Nulls can appear in columns of any datatype that are not restricted by NOT NULL or
PRIMARY KEY integrity constraints. Use a null when the actual value is not known or
when a value would not be meaningful.

Do not use null to represent a value of zero, because they are not equivalent.

2-68 Oracle Database SQL Reference

Nulls

Note: Oracle Database currently treats a character value with a
length of zero as null. However, this may not continue to be true in
future releases, and Oracle recommends that you do not treat empty
strings the same as nulls.

Any arithmetic expression containing a null always evaluates to null. For example,
null added to 10 is null. In fact, all operators (except concatenation) return null when
given a null operand.

Nulls in SQL Functions

All scalar functions (except REPLACE, NVL, and CONCAT) return null when given a null
argument. You can use the NVL function to return a value when a null occurs. For
example, the expression NVL (commission_pct, 0) returns 0 if commission_pct is
null or the value of commission_pct if it is not null.

Most aggregate functions ignore nulls. For example, consider a query that averages the
five values 1000, null, null, null, and 2000. Such a query ignores the nulls and
calculates the average to be (1000+2000)/2 = 1500.

Nulls with Comparison Conditions

To test for nulls, use only the comparison conditions IS NULL and IS NOT NULL. If you
use any other condition with nulls and the result depends on the value of the null,
then the result is UNKNOWN. Because null represents a lack of data, a null cannot be
equal or unequal to any value or to another null. However, Oracle considers two nulls
to be equal when evaluating a DECODE function. Please refer to DECODE on page 5-51
for syntax and additional information.

Oracle also considers two nulls to be equal if they appear in compound keys. That is,
Oracle considers identical two compound keys containing nulls if all the non-null
components of the keys are equal.

Nulls in Conditions

A condition that evaluates to UNKNOWN acts almost like FALSE. For example, a SELECT
statement with a condition in the WHERE clause that evaluates to UNKNOWN returns no
rows. However, a condition evaluating to UNKNOWN differs from FALSE in that further
operations on an UNKNOWN condition evaluation will evaluate to UNKNOWN. Thus, NOT
FALSE evaluates to TRUE, but NOT UNKNOWN evaluates to UNKNOWN.

Table 2-20 shows examples of various evaluations involving nulls in conditions. If the
conditions evaluating to UNKNOWN were used in a WHERE clause of a SELECT
statement, then no rows would be returned for that query.

Basic Elements of Oracle SQL 2-69

Comments

Table 2-20 Conditions Containing Nulls

Condition Value of A Evaluation
a IS NULL 10 FALSE

a IS NOT NULL 10 TRUE

a IS NULL NULL TRUE

a IS NOT NULL NULL FALSE

a = NULL 10 UNKNOWN
a != NULL 10 UNKNOWN
a = NULL NULL UNKNOWN
a != NULL NULL UNKNOWN
a =10 NULL UNKNOWN
a != 10 NULL UNKNOWN

For the truth tables showing the results of logical conditions containing nulls, see
Table 7-5 on page 7-8, Table 7-6 on page 7-8, and Table 7-7 on page 7-8.

Comments

You can associate comments with SQL statements and schema objects.

Comments Within SQL Statements

Comments can make your application easier for you to read and maintain. For
example, you can include a comment in a statement that describes the purpose of the
statement within your application. With the exception of hints, comments within SQL
statements do not affect the statement execution. Please refer to "Using Hints" on
page 2-71 on using this particular form of comment.

A comment can appear between any keywords, parameters, or punctuation marks in a
statement. You can include a comment in a statement in two ways:

= Begin the comment with a slash and an asterisk (/*). Proceed with the text of the
comment. This text can span multiple lines. End the comment with an asterisk and
a slash (*/). The opening and terminating characters need not be separated from
the text by a space or a line break.

= Begin the comment with -- (two hyphens). Proceed with the text of the comment.
This text cannot extend to a new line. End the comment with a line break.

Some of the tools used to enter SQL have additional restrictions. For example, if you
are using SQL*Plus, by default you cannot have a blank line inside a multiline
comment. For more information, please refer to the documentation for the tool you use
as an interface to the database.

A SQL statement can contain multiple comments of both styles. The text of a comment
can contain any printable characters in your database character set.
Example These statements contain many comments:

SELECT last_name, salary + NVL(commission_pct, 0),
job_id, e.department_id

/* Select all employees whose compensation is

greater than that of Pataballa.*/

2-70 Oracle Database SQL Reference

Comments

FROM employees e, departments d
/*The DEPARTMENTS table is used to get the department name.*/
WHERE e.department_id = d.department_id
AND salary + NVL(commission_pct,0) > /* Subquery: */
(SELECT salary + NVL(commission_pct,0)
/* total compensation is salar + commission_pct */
FROM employees
WHERE last_name = 'Pataballa');

SELECT last_name, -- select the name
salary + NVL(commission_pct, 0),-- total compensation
job_id, -- job
e.department_id -- and department

FROM employees e, -- of all employees

departments d
WHERE e.department_id = d.department_id

AND salary + NVL(commission_pct, 0) > -- whose compensation
-- 1s greater than
(SELECT salary + NVL(commission_pct,0) -- the compensation
FROM employees
WHERE last_name = 'Pataballa') -- of Pataballa.

Comments on Schema Objects

You can associate a comment with a table, view, materialized view, or column using
the COMMENT command. Comments associated with schema objects are stored in the
data dictionary. Please refer to COMMENT on page 13-57 for a description of
comments.

Using Hints
You can use comments in a SQL statement to pass instructions, or hints, to the Oracle

Database optimizer. The optimizer uses these hints to choose an execution plan for the
statement, unless some condition exists that prevents the optimizer from doing so.

Note: Hints should be used sparingly, and only after you have
collected statistics on the relevant tables and evaluated the optimizer
plan without hints using the EXPLAIN PLAN statement. Changing
database conditions as well as query performance enhancements in
subsequent releases can have significant impact on how hints in your
code affect performance.

A statement block can have only one comment containing hints, and that comment
must follow the SELECT, UPDATE, INSERT, MERGE, or DELETE keyword. Only two
hints are used with INSERT statements: The APPEND hint always follows the INSERT
keyword, and the PARALLEL hint can follow the INSERT keyword.

The following syntax diagram shows hints contained in both styles of comments that
Oracle supports within a statement block. The hint syntax must follow immediately
after an INSERT, UPDATE, DELETE, SELECT, or MERGE keyword that begins the
statement block.

Basic Elements of Oracle SQL 2-71

Comments

hint::=
]
hint
stnng]
hint
where:

= The plus sign (+) causes Oracle to interpret the comment as a list of hints. The plus
sign must follow immediately after the comment delimiter. No space is permitted.

= hintis one of the hints discussed in this section. The space between the plus sign
and the hint is optional. If the comment contains multiple hints, then separate the
hints by at least one space.

= stringis other commenting text that can be interspersed with the hints.
The --+ syntax requires that the entire comment be on a single line.

Oracle Database ignores hints and does not return an error under the following
circumstances:

s The hint contains misspellings or syntax errors. However, the database does
consider other correctly specified hints in the same comment.

s The comment containing the hint does not follow a DELETE, INSERT, MERGE,
SELECT, or UPDATE keyword.

s A combination of hints conflict with each other. However, the database does
consider other hints in the same comment.

s The database environment uses PL/SQL version 1, such as Forms version 3
triggers, Oracle Forms 4.5, and Oracle Reports 2.5.

Many hints can apply both to specific tables or indexes and more globally to tables
within a view or to columns that are part of indexes. The syntactic elements
tablespec and indexspec define these global hints.

tablespec::=

' view l'

(table }»

You must specify the table to be accessed exactly as it appears in the statement. If the
statement uses an alias for the table, then use the alias rather than the table name in
the hint. However, do not include the schema name with the table name within the
hint, even if the schema name appears in the statement.

See Also: Oracle Database Performance Tuning Guide for information
on the following topics:
= When to use global hints and how Oracle interprets them

s Using EXPLAIN PLAN to learn how the optimizer is executing a
query

» References in hints to tables within views

2-72 Oracle Database SQL Reference

Comments

indexspec::=

index

[@0

(column

When tablespec is followed by indexspec in the specification of a hint, a comma
separating the table name and index name is permitted but not required. Commas are
also permitted, but not required, to separate multiple occurrences of indexspec.

Specifying a Query Block in a Hint

You can specify an optional query block name in many hints to specify the query block
to which the hint applies. This syntax lets you specify in the outer query a hint that
applies to an inline view. When you specify a hint in the query block itself to which the
hint applies, you omit the @gqueryblock syntax.

The syntax of the query block argument is of the form @querybIlock, where
queryblockis an identifier that specifies a query block in the query. The
queryblock identifier can either be system-generated or user-specified.

s The system-generated identifier can be obtained by using EXPLAIN PLAN for the
query. Pretransformation query block names can be determined by running
EXPLAIN PLAN for the query using the NO_QUERY_TRANSFORMATION hint. See
"NO_QUERY_TRANSFORMATION Hint" on page 2-88.

» The user-specified name can be set with the QB_NAME hint. See "QB_NAME Hint"
on page 2-93.

Table 2-21 lists the hints by functional category and contains cross-references to the
syntax and semantics for each hint. An alphabetical listing of the hints follows the
table.

See Also: Oracle Database Performance Tuning Guide for
information on:

= using hints to optimize SQL statements and on detailed
information about using the tablespec and indexspec
syntax

= specifying a query block in a hint

s descriptions of hint categories and when to use them

Table 2-21 Hints by Functional Category

Hint Link to Syntax and Semantics
Optimization Goals and ALL_ROWS Hint on page 2-75
Approaches FIRST_ROWS Hint on page 2-78

-- RULE Hint on page 2-94

Access Path Hints CLUSTER Hint on page 2-76
-- FULL Hint on page 2-78
-- HASH Hint on page 2-79

- INDEX Hint on page 2-79
NO_INDEX Hint on page 2-85

Basic Elements of Oracle SQL 2-73

Comments

Table 2-21 (Cont.) Hints by Functional Category

Hint

Link to Syntax and Semantics

INDEX_ASC Hint on page 2-80
INDEX_DESC Hint on page 2-80

INDEX_COMBINE Hint on page 2-80

INDEX_JOIN Hint on page 2-81

INDEX_FFS Hint on page 2-81

INDEX_SS Hint on page 2-81

INDEX_SS_ASC Hint on page 2-82

INDEX_SS_DESC Hint on page 2-82

NO_INDEX_FFS Hint on page 2-85

NO_INDEX_SS Hint on page 2-86

Join Order Hints

ORDERED Hint on page 2-90

LEADING Hint on page 2-83

Join Operation Hints

USE_HASH Hint on page 2-96
NO_USE_HASH Hint on page 2-89

USE_MERGE Hint on page 2-96
NO_USE_MERGE Hint on page 2-89

USE_NL Hint on page 2-96
USE_NL_WITH_INDEX Hint on page 2-97
NO_USE_NL Hint on page 2-89

Parallel Execution Hints

PARALLEL Hint on page 2-90
NO_PARALLEL Hint on page 2-86

PARALLEL_INDEX Hint on page 2-91
NO_PARALLEL_INDEX Hint on page 2-87

PQ_DISTRIBUTE Hint on page 2-91

Query Transformation Hints

FACT Hint on page 2-78
NO_FACT Hint on page 2-85

MERGE Hint on page 2-83
NO_MERGE Hint on page 2-86

NO_EXPAND Hint on page 2-84
USE_CONCAT Hint on page 2-95

REWRITE Hint on page 2-94
NO_REWRITE Hint on page 2-88

UNNEST Hint on page 2-95
NO_UNNEST Hint on page 2-88

STAR_TRANSFORMATION Hint on page 2-94
NO_STAR_TRANSFORMATION Hint on page 2-88

NO_QUERY_TRANSFORMATION Hint on page 2-88

Other Hints

APPEND Hint on page 2-75
NOAPPEND Hint on page 2-84

2-74 Oracle Database SQL Reference

Comments

Table 2-21 (Cont.) Hints by Functional Category

Hint Link to Syntax and Semantics

-- CACHE Hint on page 2-76
NOCACHE Hint on page 2-84

- CURSOR_SHARING_EXACT Hint on page 2-76
- DRIVING_SITE Hint on page 2-77
-- DYNAMIC_SAMPLING Hint on page 2-77

-- PUSH_PRED Hint on page 2-92
NO_PUSH_PRED Hint on page 2-87

-- PUSH_SUBQ Hint on page 2-93
NO_PUSH_SUBQ Hint on page 2-87

-- PX_JOIN_FILTER Hint on page 2-93
NO_PX_JOIN_FILTER Hint on page 2-88

-- NO_XML_QUERY_REWRITE Hint on page 2-89
-- QB_NAME Hint on page 2-93
-- MODEL_MIN_ANALYSIS Hint on page 2-83

Alphabetical Listing of Hints

This section provides syntax and semantics for all hints in alphabetical order.

ALL_ROWS Hint
@ ©

The ALL_ROWS hint instructs the optimizer to optimize a statement block with a goal
of best throughput—that is, minimum total resource consumption. For example, the
optimizer uses the query optimization approach to optimize this statement for best
throughput:

SELECT /*+ ALL_ROWS */ employee_id, last_name, salary, job_id
FROM employees
WHERE employee_id = 7566;

If you specify either the ALL_ROWS or the FIRST_ROWS hint in a SQL statement, and if
the data dictionary does not have statistics about tables accessed by the statement,
then the optimizer uses default statistical values, such as allocated storage for such
tables, to estimate the missing statistics and to subsequently choose an execution plan.
These estimates might not be as accurate as those gathered by the DBMS_STATS
package, so you should use the DBMS_STATS package to gather statistics.

If you specify hints for access paths or join operations along with either the ALL_ROWS
or FIRST_ROWS hint, then the optimizer gives precedence to the access paths and join
operations specified by the hints.

APPEND Hint

OLET O

Basic Elements of Oracle SQL 2-75

Comments

The APPEND hint instructs the optimizer to use direct-path INSERT if your database is
running in serial mode. Your database is in serial mode if you are not using Enterprise
Edition. Conventional INSERT is the default in serial mode, and direct-path INSERT is
the default in parallel mode.

In direct-path INSERT, data is appended to the end of the table, rather than using
existing space currently allocated to the table. As a result, direct-path INSERT can be
considerably faster than conventional INSERT.

See Also: Oracle Database Administrator’s Guide for information on
direct-path inserts

CACHE Hint

queryblock
-0 P @ oo

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The CACHE hint instructs the optimizer to place the blocks retrieved for the table at the
most recently used end of the LRU list in the buffer cache when a full table scan is
performed. This hint is useful for small lookup tables.

In the following example, the CACHE hint overrides the default caching specification of
the table:

SELECT /*+ FULL (hr_emp) CACHE (hr_emp) */ last_name
FROM employees hr_emp;

The CACHE and NOCACHE hints affect system statistics table scans (long
tables) and table scans (short tables), as shown in the V$SYSSTAT data
dictionary view.

CLUSTER Hint

queryblock
- EEE oL N G0

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The CLUSTER hint instructs the optimizer to use a cluster scan to access the specified
table. This hint applies only to clustered tables.

CURSOR_SHARING_EXACT Hint

—(7'+)-{ CURSOR_SHARING_EXACT (/)

Oracle can replace literals in SQL statements with bind variables, when it is safe to do
so. This replacement is controlled with the CURSOR_SHARING initialization parameter.
The CURSOR_SHARING_EXACT hint instructs the optimizer to switch this behavior off.
In other words, Oracle executes the SQL statement without any attempt to replace
literals with bind variables.

2-76 Oracle Database SQL Reference

Comments

DRIVING_SITE Hint

@ queryblock
(- {oe STE @) DD

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The DRIVING_SITE hint instructs the optimizer to execute the query at a different site
than that selected by the database. This hint is useful if you are using distributed
query optimization.

For example:

SELECT /*+ DRIVING_SITE (departments) */ *
FROM employees, departments@rsite
WHERE employees.department_id = departments.department_id;

If this query is executed without the hint, then rows from departments are sent to
the local site, and the join is executed there. With the hint, the rows from employees

are sent to the remote site, and the query is executed there and the result set is
returned to the local site.

DYNAMIC_SAMPLING Hint

@ DYNAMIC_SAMPLING |->® @@@

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The DYNAMIC_SAMPLING hint instructs the optimizer how to control dynamic
sampling to improve server performance by determining more accurate predicate
selectivity and statistics for tables and indexes.

You can set the value of DYNAMIC_SAMPLING to a value from 0 to 10. The higher the
level, the more effort the compiler puts into dynamic sampling and the more broadly it
is applied. Sampling defaults to cursor level unless you specify tablespec.

The integer valueis 0 to 10, indicating the degree of sampling.

If a cardinality statistic already exists for the table, then the optimizer uses it.
Otherwise, the optimizer enables dynamic sampling to estimate the cardinality
statistic.

If you specify tablespec and the cardinality statistic already exists, then:

» If there is no single-table predicate (a WHERE clause that evaluates only one table),
then the optimizer trusts the existing statistics and ignores this hint. For example,
the following query will not result in any dynamic sampling if employees is
analyzed:

SELECT /*+ dynamic_sampling(e 1) */ count(*)
FROM employees e;
» If there is a single-table predicate, then the optimizer uses the existing cardinality
statistic and estimates the selectivity of the predicate using the existing statistics.
To apply dynamic sampling to a specific table, use the following form of the hint:

SELECT /*+ dynamic_sampling(employees 1) */ *
FROM employees
WHERE ..,

Basic Elements of Oracle SQL 2-77

Comments

See Also: Oracle Database Performance Tuning Guide for
information about dynamic sampling and the sampling levels that
you can set

FACT Hint

queryblock
- EFEROLEEEN G o0

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)
The FACT hint is used in the context of the star transformation. It instructs the
optimizer that the table specified in tablespec should be considered as a fact table.

FIRST_ROWS Hint

=) FIRST_ROWS B ()p(integer () (7>

The FIRST_ROWS hint instructs Oracle to optimize an individual SQL statement for
fast response, choosing the plan that returns the first n rows most efficiently. For
integer, specify the number of rows to return.

Note: The FIRST_ ROWS hint specified without an argument,
which optimizes for the best plan to return the first single row, is
retained for backward compatibility and plan stability only.

For example, the optimizer uses the query optimization approach to optimize the
following statement for best response time:

SELECT /*+ FIRST ROWS(10) */ employee_id, last_name, salary, job_id
FROM employees
WHERE department_id = 20;

In this example each department contains many employees. The user wants the first 10
employees of department 20 to be displayed as quickly as possible.

The optimizer ignores this hint in DELETE and UPDATE statement blocks and in
SELECT statement blocks that include any blocking operations, such as sorts or
groupings. Such statements cannot be optimized for best response time, because
Oracle Database must retrieve all rows accessed by the statement before returning the
first row. If you specify this hint in any such statement, then the database optimizes for
best throughput.

See Also: "ALL_ROWS Hint" on page 2-75 for additional
information on the FIRST_ROWS hint and statistics

FULL Hint

queryblock
LOEEN GO0

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The FULL hint instructs the optimizer to perform a full table scan for the specified
table. For example:

2-78 Oracle Database SQL Reference

Comments

SELECT /*+ FULL(e) */ employee_id, last_name
FROM hr.employees e
WHERE last_name LIKE :bl;

Oracle Database performs a full table scan on the employees table to execute this
statement, even if there is an index on the 1ast_name column that is made available
by the condition in the WHERE clause.

The employees table has alias e in the FROM clause, so the hint must refer to the table
by its alias rather than by its name. Do not specify schema names in the hint even if
they are specified in the FROM clause.

HASH Hint

queryblock
- @O @00

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The HASH hint instructs the optimizer to use a hash scan to access the specified table.
This hint applies only to tables stored in a table cluster.

INDEX Hint

queryblock ﬁw\
N @ L

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The INDEX hint instructs the optimizer to use an index scan for the specified table. You
can use the INDEX hint for function-based, domain, B-tree, bitmap, and bitmap join
indexes.

The behavior of the hint depends on the indexspec specification:

» If the INDEX hint specifies a single available index, then the database performs a
scan on this index. The optimizer does not consider a full table scan or a scan of
another index on the table.

= For a hint on a combination of multiple indexes, Oracle recommends using
INDEX_COMBINE rather than INDEX, because it is a more versatile hint. If the
INDEX hint specifies a list of available indexes, then the optimizer considers the
cost of a scan on each index in the list and then performs the index scan with the
lowest cost. The database can also choose to scan multiple indexes from this list
and merge the results, if such an access path has the lowest cost. The database
does not consider a full table scan or a scan on an index not listed in the hint.

» If the INDEX hint specifies no indexes, then the optimizer considers the cost of a
scan on each available index on the table and then performs the index scan with
the lowest cost. The database can also choose to scan multiple indexes and merge
the results, if such an access path has the lowest cost. The optimizer does not
consider a full table scan.

For example:

SELECT /*+ INDEX (employees emp_department_ix)*/
employee_id, department_id
FROM employees

Basic Elements of Oracle SQL 2-79

Comments

WHERE department_id > 50;

INDEX_ASC Hint

queryblock IM
e @ L g0,

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The INDEX_ASC hint instructs the optimizer to use an index scan for the specified
table. If the statement uses an index range scan, then Oracle Database scans the index
entries in ascending order of their indexed values. Each parameter serves the same
purpose as in "INDEX Hint" on page 2-79.

The default behavior for a range scan is to scan index entries in ascending order of
their indexed values, or in descending order for a descending index. This hint does not
change the default order of the index, and therefore does not specify anything more
than the INDEX hint. However, you can use the INDEX_ASC hint to specify ascending
range scans explicitly should the default behavior change.

INDEX_COMBINE Hint

® G

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The INDEX_COMBINE hint instructs the optimizer to use a bitmap access path for the
table. If indexspec is omitted from the INDEX_COMBINE hint, then the optimizer
uses whatever Boolean combination of indexes has the best cost estimate for the table.
If you specify indexspec, then the optimizer tries to use some Boolean combination
of the specified indexes. Each parameter serves the same purpose as in "INDEX Hint"
on page 2-79. For example:

SELECT /*+ INDEX_COMBINE (e emp_manager_ix emp_department_ix) */ *
FROM employees e
WHERE manager_id = 108
OR department_id = 110;

INDEX_DESC Hint

® Ao

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The INDEX_DESC hint instructs the optimizer to use a descending index scan for the
specified table. If the statement uses an index range scan and the index is ascending,
then Oracle scans the index entries in descending order of their indexed values. In a
partitioned index, the results are in descending order within each partition. For a
descending index, this hint effectively cancels out the descending order, resulting in a

2-80 Oracle Database SQL Reference

Comments

scan of the index entries in ascending order. Each parameter serves the same purpose
as in "INDEX Hint" on page 2-79. For example:

SELECT /*+ INDEX_ DESC(e emp_name_ix) */ *
FROM employees e;

See Also: Oracle Database Performance Tuning Guide for information
on full scans

INDEX_FFS Hint

queryblock ﬁW_\
AN oL 5,0,

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The INDEX_FFS hint instructs the optimizer to perform a fast full index scan rather
than a full table scan.

Each parameter serves the same purpose as in "INDEX Hint" on page 2-79. For
example:

SELECT /*+ INDEX_FFS(e emp_name_ix) */ first_name
FROM employees e;

INDEX_JOIN Hint

queryblock I%
N, @ L 50,

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The INDEX_JOIN hint instructs the optimizer to use an index join as an access path.
For the hint to have a positive effect, a sufficiently small number of indexes must exist
that contain all the columns required to resolve the query.

Each parameter serves the same purpose as in "INDEX Hint" on page 2-79. For
example, the following query uses an index join to access the manager_id and
department_id columns, both of which are indexed in the employees table.

SELECT /*+ INDEX_JOIN(e emp_manager_ix emp_department_ix) */ department_id
FROM employees e
WHERE manager_id < 110
AND department_id < 50;

INDEX_SS Hint

queryblock fw\
AN oL o

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The INDEX_SS hint instructs the optimizer to perform an index skip scan for the
specified table. If the statement uses an index range scan, then Oracle scans the index

Basic Elements of Oracle SQL 2-81

Comments

entries in ascending order of their indexed values. In a partitioned index, the results
are in ascending order within each partition.

Each parameter serves the same purpose as in "INDEX Hint" on page 2-79. For
example:

SELECT /*+ INDEX_SS(e emp_name_ix) */ last_name
FROM employees e
WHERE first_name = 'Steven';

See Also: Oracle Database Performance Tuning Guide for information
on index skip scans

INDEX_SS_ASC Hint

® @

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The INDEX_SS_ASC hint instructs the optimizer to perform an index skip scan for the
specified table. If the statement uses an index range scan, then Oracle Database scans
the index entries in ascending order of their indexed values. In a partitioned index, the
results are in ascending order within each partition. Each parameter serves the same
purpose as in "INDEX Hint" on page 2-79.

The default behavior for a range scan is to scan index entries in ascending order of
their indexed values, or in descending order for a descending index. This hint does not
change the default order of the index, and therefore does not specify anything more
than the INDEX_SS hint. However, you can use the INDEX_SS_ASC hint to specify
ascending range scans explicitly should the default behavior change.

See Also: Oracle Database Performance Tuning Guide for information
on index skip scans

INDEX_SS_DESC Hint

® G

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The INDEX_SS_DESC hint instructs the optimizer to perform an index skip scan for
the specified table. If the statement uses an index range scan and the index is
ascending, then Oracle scans the index entries in descending order of their indexed
values. In a partitioned index, the results are in descending order within each
partition. For a descending index, this hint effectively cancels out the descending
order, resulting in a scan of the index entries in ascending order.

Each parameter serves the same purpose as in the "INDEX Hint" on page 2-79. For
example:

SELECT /*+ INDEX_SS_DESC(e emp_name_ix) */ last_name
FROM employees e
WHERE first_name = ’Steven’;

2-82 Oracle Database SQL Reference

Comments

See Also: Oracle Database Performance Tuning Guide for information
on index skip scans

LEADING Hint

queryblock
[OEEN (G OO

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The LEADING hint instructs the optimizer to use the specified set of tables as the prefix
in the execution plan. This hint is more versatile than the ORDERED hint. For example:

SELECT /*+ LEADING(e j) */ *
FROM employees e, departments d, job_history j
WHERE e.department_id = d.department_id
AND e.hire_date = j.start_date;

The LEADING hint is ignored if the tables specified cannot be joined first in the order
specified because of dependencies in the join graph. If you specify two or more
conflicting LEADING hints, then all of them are ignored. If you specify the ORDERED
hint, it overrides all LEADING hints.

MERGE Hint

queryblock

() waons)

tablespec

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)
The MERGE hint lets you merge views in a query.

If a view's query block contains a GROUP BY clause or DISTINCT operator in the
SELECT list, then the optimizer can merge the view into the accessing statement only if
complex view merging is enabled. Complex merging can also be used to merge an IN
subquery into the accessing statement if the subquery is uncorrelated.

For example:

SELECT /*+ MERGE(v) */ el.last_name, el.salary, v.avg_salary
FROM employees el,
(SELECT department_id, avg(salary) avg_salary
FROM employees e2
GROUP BY department_id) v
WHERE el.department_id = v.department_id AND el.salary > v.avg_salary;

When the MERGE hint is used without an argument, it should be placed in the view
query block. When MERGE is used with the view name as an argument, it should be
placed in the surrounding query.

MODEL_MIN_ANALYSIS Hint

—(7+){ MODEL_MIN_ANALYSIS b(*7)»

Basic Elements of Oracle SQL 2-83

Comments

The MODEL_MIN_ANALYSIS hint instructs the optimizer to omit some compile-time
optimizations of spreadsheet rules—primarily detailed dependency graph analysis.
Other spreadsheet optimizations, such as creating filters to selectively populate
spreadsheet access structures and limited rule pruning, are still used by the optimizer.

This hint reduces compilation time because spreadsheet analysis can be lengthy if the
number of spreadsheet rules is more than several hundreds.

NOAPPEND Hint
@ Q

The NOAPPEND hint instructs the optimizer to use conventional INSERT by disabling
parallel mode for the duration of the INSERT statement. Conventional INSERT is the
default in serial mode, and direct-path INSERT is the default in parallel mode.

NOCACHE Hint

-queryblock
LN GO

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The NOCACHE hint instructs the optimizer to place the blocks retrieved for the table at
the least recently used end of the LRU list in the buffer cache when a full table scan is
performed. This is the normal behavior of blocks in the buffer cache. For example:

SELECT /*+ FULL (hr_emp) NOCACHE (hr_emp) */ last_name
FROM employees hr_emp;

The CACHE and NOCACHE hints affect system statistics table scans (long tables)
and table scans (short tables), as shown in the V$SYSSTAT view.

See Also: Oracle Database Performance Tuning Guide for information
on automatic caching of tables, depending on their size

NO_EXPAND Hint

ololc=DT0

(See "Specifying a Query Block in a Hint" on page 2-73)

The NO_EXPAND hint instructs the optimizer not to consider OR-expansion for queries
having OR conditions or IN-lists in the WHERE clause. Usually, the optimizer considers
using OR expansion and uses this method if it decides that the cost is lower than not
using it. For example:

SELECT /*+ NO_EXPAND */ *
FROM employees e, departments d
WHERE e.manager_id = 108
OR d.department_id = 110;

2-84 Oracle Database SQL Reference

Comments

See Also:

» Oracle Database Performance Tuning Guide for a discussion of
OR-expansion

s the "USE_CONCAT Hint" on page 2-95, which is the opposite of
this hint

NO_FACT Hint

queryblock
@R o-L2EEN G 00

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The NO_FACT hint is used in the context of the star transformation. It instruct the
optimizer that the queried table should not be considered as a fact table.

NO_INDEX Hint

queryblock ﬁw\

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The NO_INDEX hint instructs the optimizer not to use one or more indexes for the
specified table. For example:

SELECT /*+ NO_INDEX (employees emp_empid) */ employee_id
FROM employees
WHERE employee_id > 200;

Each parameter serves the same purpose as in "INDEX Hint" on page 2-79 with the
following modifications:

= If this hint specifies a single available index, then the optimizer does not consider a
scan on this index. Other indexes not specified are still considered.

= If this hint specifies a list of available indexes, then the optimizer does not consider
a scan on any of the specified indexes. Other indexes not specified in the list are
still considered.

= If this hint specifies no indexes, then the optimizer does not consider a scan on any
index on the table. This behavior is the same as a NO_INDEX hint that specifies a
list of all available indexes for the table.

The NO_INDEX hint applies to function-based, B-tree, bitmap, cluster, or domain
indexes. If a NO_INDEX hint and an index hint (INDEX, INDEX_ASC, INDEX_DESC,
INDEX_COMBINE, or INDEX_FFS) both specify the same indexes, then the database
ignores both the NO_INDEX hint and the index hint for the specified indexes and
considers those indexes for use during execution of the statement.

NO_INDEX_FFS Hint

® e

Basic Elements of Oracle SQL 2-85

Comments

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)
The NO_INDEX_FFS hint instructs the optimizer to exclude a fast full index scan of the

specified indexes on the specified table. Each parameter serves the same purpose as in
the "INDEX Hint" on page 2-79. For example:

SELECT /*+ NO_INDEX FFS(items item_order_ix) */ order_id
FROM order_items items;

NO_INDEX_SS Hint

® o)

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)
The NO_INDEX_SS hint instructs the optimizer to exclude a skip scan of the specified

indexes on the specified table. Each parameter serves the same purpose as in the
"INDEX Hint" on page 2-79.

See Also: Oracle Database Performance Tuning Guide for information
on index skip scans

NO_MERGE Hint

queryblock

(o)

tablespec

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The NO_MERGE hint instructs the optimizer not to combine the outer query and any
inline view queries into a single query.

This hint lets you have more influence over the way in which the view is accessed. For
example, the following statement causes view seattle_dept not to be merged.:

SELECT /*+NO_MERGE (seattle_dept)*/ el.last_name, seattle_dept.department_name
FROM employees el,
(SELECT location_id, department_id, department_name
FROM departments
WHERE location_id = 1700) seattle_dept
WHERE el.department_id = seattle_dept.department_id;

When you use the NO_MERGE hint in the view query block, specify it without an
argument. When you specify NO_MERGE in the surrounding query, specify it with the
view name as an argument.

NO_PARALLEL Hint

@ queryblock
({0 PR I (@) (DD

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

2-86 Oracle Database SQL Reference

Comments

The NO_PARALLEL hint overrides a PARALLEL parameter in the DDL that created or
altered the table. For example:

SELECT /*+ NO_PARALLEL (hr_emp) */ last_name
FROM employees hr_emp;

NOPARALLEL Hint
The NOPARALLEL hint has been deprecated. Use the NO_PARALLEL hint instead.

NO_PARALLEL_INDEX Hint

®)
@ NO_PARALLEL_INDEX @ »(tablespec) @@

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The NO_PARALLEL_INDEX hint overrides a PARALLEL parameter in the DDL that
created or altered the index, thus avoiding a parallel index scan operation.

NOPARALLEL_INDEX Hint

The NOPARALLEL_INDEX hint has been deprecated. Use the NO_PARALLEL_INDEX
hint instead.

NO_PUSH_PRED Hint

queryblock

(@) Eion)

tablespec

—(7+){ No_PUSH_PRED Chy

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The NO_PUSH_PRED hint instructs the optimizer not to push a join predicate into the
view. For example:

SELECT /*+ NO_MERGE(v) NO_PUSH_PRED(v) */ *
FROM employees e,
(SELECT manager_id
FROM employees
) v
WHERE e.manager_id = v.manager_id(+)
AND e.employee_id = 100;

NO_PUSH_SUBAQ Hint

O® O
—>(:)->| NO_PUSH_SUBQ @

(See "Specifying a Query Block in a Hint" on page 2-73)

The NO_PUSH_SUBQ hint instructs the optimizer to evaluate nonmerged subqueries as
the last step in the execution plan. Doing so can improve performance if the subquery
is relatively expensive or does not reduce the number of rows significantly.

Basic Elements of Oracle SQL 2-87

Comments

NO_PX_JOIN_FILTER Hint

@ NO_PX_JOIN_FILTER tablespec)@@

This hint prevents the optimizer from using parallel join bitmap filtering.

NO_REWRITE Hint

ololcnlo

(See "Specifying a Query Block in a Hint" on page 2-73)

The NO_REWRITE hint instructs the optimizer to disable query rewrite for the query
block, overriding the setting of the parameter QUERY_REWRITE_ENABLED. For
example:

SELECT /*+ NO_REWRITE */ sum(s.amount_sold) AS dollars
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

NOREWRITE Hint
The NOREWRITE hint has been deprecated. Use the NO_REWRITE hint instead.

NO_QUERY_TRANSFORMATION Hint

—(7'+){ NO_QUERY_TRANSFORMATION |-("/)>

The NO_QUERY_ TRANSFORMATION hint instructs the optimizer to skip all query
transformations, including but not limited to OR-expansion, view merging, subquery
unnesting, star transformation, and materialized view rewrite. For example:

SELECT /*+ NO_QUERY_TRANSFORMATION */ employee_id, last_name
FROM (SELECT *
FROM employees e) v
WHERE v.last_name = ’Smith’;

NO_STAR_TRANSFORMATION Hint

O® 0
@ NO_STAR_TRANSFORMATION | C/}

(See "Specifying a Query Block in a Hint" on page 2-73)

The NO_STAR_TRANSFORMATION hint instructs the optimizer not to perform star
query transformation.

NO_UNNEST Hint

ololcio

(See "Specifying a Query Block in a Hint" on page 2-73)

Use of the NO_UNNEST hint turns off unnesting .

2-88 Oracle Database SQL Reference

Comments

NO_USE_HASH Hint

@ queryblock
@ X (@) - DD

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The NO_USE_HASH hint instructs the optimizer to exclude hash joins when joining
each specified table to another row source using the specified table as the inner table.
For example:

SELECT /*+ NO_USE_HASH(e d) */ *
FROM employees e, departments d
WHERE e.department_id = d.department_id;

NO_USE_MERGE Hint

@ queryblock
O o= (] (@O

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The NO_USE_MERGE hint instructs the optimizer to exclude sort-merge joins when
joining each specified table to another row source using the specified table as the inner
table. For example:

SELECT /*+ NO_USE_MERGE(e d) */ *
FROM employees e, departments d
WHERE e.department_id = d.department_id
ORDER BY d.department_id;

NO_USE_NL Hint

queryblock
- eEERo YN (@) 00

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The NO_USE_NL hint instructs the optimizer to exclude nested loops joins when
joining each specified table to another row source using the specified table as the inner
table. For example:

SELECT /*+ NO_USE_NL(1 h) */ *
FROM orders h, order_items 1
WHERE 1l.order_id = h.order_id

AND 1l.order_id > 3500;

When this hint is specified, only hash join and sort-merge joins are considered for the
specified tables. However, in some cases tables can be joined only by using nested
loops. In such cases, the optimizer ignores the hint for those tables.

NO_XML_QUERY_REWRITE Hint

—(7"+)3{ NO_XML_QUERY_REWRITE |(*/)>

The NO_XML_QUERY_REWRITE hint instructs the optimizer to prohibit the rewriting of
XPath expressions in SQL statements. For example:

Basic Elements of Oracle SQL 2-89

Comments

SELECT /*+NO_XML_QUERY REWRITE*/ XMLQUERY (’'<A/>")
FROM dual;

ORDERED Hint

(F{omERes ()

The ORDERED hint instructs Oracle to join tables in the order in which they appear in
the FROM clause. Oracle recommends that you use the LEADING hint, which is more
versatile than the ORDERED hint.

When you omit the ORDERED hint from a SQL statement requiring a join, the optimizer
chooses the order in which to join the tables. You might want to use the ORDERED hint
to specify a join order if you know something that the optimizer does not know about
the number of rows selected from each table. Such information lets you choose an
inner and outer table better than the optimizer could.

The following query is an example of the use of the ORDERED hint:

SELECT /*+ORDERED */ o.order_id, c.customer_id, l.unit_price * l.quantity
FROM customers ¢, order_items 1, orders o
WHERE c.cust_last_name = :bl
AND o.customer_id = c.customer_id
AND o.order_id = 1l.order_id;

PARALLEL Hint
®)
@ < (o) 010}

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The PARALLEL hint instructs the optimizer to use the specified number of concurrent
servers for a parallel operation. The hint applies to the SELECT, INSERT, MERGE,
UPDATE, and DELETE portions of a statement, as well as to the table scan portion.

Note: The number of servers that can be used is twice the value in
the PARALLEL hint, if sorting or grouping operations also take
place.

If any parallel restrictions are violated, then the hint is ignored.

The integer value specifies the degree of parallelism for the specified table.
Specifying DEFAULT or no value signifies that the query coordinator should examine
the settings of the initialization parameters to determine the default degree of
parallelism. In the following example, the PARALLEL hint overrides the degree of
parallelism specified in the employees table definition:

SELECT /*+ FULL (hr_emp) PARALLEL (hr_emp, 5) */ last_name
FROM employees hr_emp;

In the next example, the PARALLEL hint overrides the degree of parallelism specified
in the employees table definition and instructs the optimizer to use the default
degree of parallelism determined by the initialization parameters.

SELECT /*+ FULL(hr_emp) PARALLEL (hr_emp, DEFAULT) */ last_name

2-90 Oracle Database SQL Reference

Comments

FROM employees hr_emp;

Oracle ignores parallel hints on temporary tables. Please refer to CREATE TABLE on
page 16-6 and Oracle Database Concepts for more information on parallel execution.

PARALLEL_INDEX Hint

I

)

O
(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The PARALLEL_INDEX hint instructs the optimizer to use the specified number of
concurrent servers to parallelize index range scans for partitioned indexes.

The integer value indicates the degree of parallelism for the specified index.
Specifying DEFAULT or no value signifies that the query coordinator should examine
the settings of the initialization parameters to determine the default degree of
parallelism. For example, the following hint indicates three parallel execution
processes are to be used:

SELECT /*+ PARALLEL_INDEX (tablel, indexl, 3) */
PQ_DISTRIBUTE Hint

@ queryblock
@ PQ_DISTRIBUTE ({tabIespec)—(outer_distribution)—(inner_distribution}@e@»

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The PQ_DISTRIBUTE hint instructs the optimizer how to distribute rows of joined
tables among producer and consumer query servers. Such distribution can improve
the performance of parallel join operations.

s outer_distributionis the distribution for the outer table.
s inner distribution is the distribution for the inner table.
The values of the distributions are HASH, BROADCAST, PARTITION, and NONE. Only

six combinations table distributions are valid, as described in Table 2-22:

Table 2-22 Distribution Hint Combinations

Distribution Description

HASH, HASH The rows of each table are mapped to consumer query servers,
using a hash function on the join keys. When mapping is
complete, each query server performs the join between a pair of
resulting partitions. This distribution is recommended when the
tables are comparable in size and the join operation is
implemented by hash-join or sort merge join.

Basic Elements of Oracle SQL 2-91

Comments

Table 2-22 (Cont.) Distribution Hint Combinations

Distribution

Description

BROADCAST, NONE

All rows of the outer table are broadcast to each query server.
The inner table rows are randomly partitioned. This distribution
is recommended when the outer table is very small compared
with the inner table. As a general rule, use this distribution
when the inner table size multiplied by the number of query
servers is greater than the outer table size.

NONE, BROADCAST

All rows of the inner table are broadcast to each consumer query
server. The outer table rows are randomly partitioned. This
distribution is recommended when the inner table is very small
compared with the outer table. As a general rule, use this
distribution when the inner table size multiplied by the number
of query servers is less than the outer table size.

PARTITION, NONE

The rows of the outer table are mapped using the partitioning of
the inner table. The inner table must be partitioned on the join
keys. This distribution is recommended when the number of
partitions of the outer table is equal to or nearly equal to a
multiple of the number of query servers; for example, 14
partitions and 15 query servers.

Note: The optimizer ignores this hint if the inner table is not
partitioned or not equijoined on the partitioning key.

NONE, PARTITION

The rows of the inner table are mapped using the partitioning of
the outer table. The outer table must be partitioned on the join
keys. This distribution is recommended when the number of
partitions of the outer table is equal to or nearly equal to a
multiple of the number of query servers; for example, 14
partitions and 15 query servers.

Note: The optimizer ignores this hint if the outer table is not
partitioned or not equijoined on the partitioning key.

NONE, NONE

Each query server performs the join operation between a pair of
matching partitions, one from each table. Both tables must be
equipartitioned on the join keys.

For example, given two tables r and s that are joined using a hash join, the following
query contains a hint to use hash distribution:

SELECT /*+ORDERED PQ_DISTRIBUTE (s HASH, HASH) USE_HASH (s)*/ column_list

FROM r,s
WHERE r.c=s.c;

To broadcast the outer table r, the query is:

SELECT /*+ORDERED PQ_DISTRIBUTE (s BROADCAST, NONE) USE_HASH (s) */ column_list

FROM r,s
WHERE r.c=s.c;

See Also: Oracle Database Concepts for more information on how
Oracle parallelizes join operations

PUSH_PRED Hint

(o)

tablespec

PUSH_PRED

2-92 Oracle Database SQL Reference

Comments

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The PUSH_PRED hint instructs the optimizer to push a join predicate into the view. For
example:

SELECT /*+ NO_MERGE(v) PUSH_PRED(v) */ *
FROM employees e,
(SELECT manager_id
FROM employees
) v
WHERE e.manager_id = v.manager_id(+)
AND e.employee_id = 100;

PUSH_SUBQ Hint

clolc®lo

(See "Specifying a Query Block in a Hint" on page 2-73)

The PUSH_SUBQ hint instructs the optimizer to evaluate nonmerged subqueries at the
earliest possible step in the execution plan. Generally, subqueries that are not merged
are executed as the last step in the execution plan. If the subquery is relatively
inexpensive and reduces the number of rows significantly, then evaluating the
subquery earlier can improve performance.

This hint has no effect if the subquery is applied to a remote table or one that is joined
using a merge join.

PX_JOIN_FILTER Hint
@ ® 0l©

This hint forces the optimizer to use parallel join bitmap filtering.
QB_NAME Hint

@ QB_NAME P@{quewblock}»@—)@—)

(See "Specifying a Query Block in a Hint" on page 2-73)

Use the QB_NAME hint to define a name for a query block. This name can then be used
in a hint in the outer query or even in a hint in an inline view to affect query execution
on the tables appearing in the named query block.

If two or more query blocks have the same name, or if the same query block is hinted
twice with different names, then the optimizer ignores all the names and the hints
referencing that query block. Query blocks that are not named using this hint have
unique system-generated names. These names can be displayed in the plan table and
can also be used in hints within the query block, or in query block hints. For example:

SELECT /*+ QB_NAME (gb) FULL(@gb e) */ employee_id, last_name
FROM employees e
WHERE last_name = ’'Smith’;

Basic Elements of Oracle SQL 2-93

Comments

REWRITE Hint

< (@0
@Y @

(See "Specifying a Query Block in a Hint" on page 2-73)

The REWRITE hint instructs the optimizer to rewrite a query in terms of materialized
views, when possible, without cost consideration. Use the REWRITE hint with or
without a view list. If you use REWRITE with a view list and the list contains an
eligible materialized view, then Oracle uses that view regardless of its cost.

Oracle does not consider views outside of the list. If you do not specify a view list,
then Oracle searches for an eligible materialized view and always uses it regardless of
the cost of the final plan.

See Also:

» Oracle Database Concepts and Oracle Database Advanced
Replication for more information on materialized views

» Oracle Database Data Warehousing Guide for more information on
using REWRITE with materialized views

RULE Hint

MR

The RULE hint disables the use of the optimizer. This hint is not supported and should
not be used.

STAR_TRANSFORMATION Hint

O® ®
@ STAR_TRANSFORMATION | @

(See "Specifying a Query Block in a Hint" on page 2-73)

The STAR_TRANSFORMATION hint instructs the optimizer to use the best plan in
which the transformation has been used. Without the hint, the optimizer could make a
query optimization decision to use the best plan generated without the transformation,
instead of the best plan for the transformed query. For example:

SELECT /*+ STAR_TRANSFORMATION */ *
FROM sales s, times t, products p, channels c
WHERE s.time_id = t.time_id
AND s.prod_id = p.product_id
AND s.channel_id = c.channel_id
AND p.product_status = 'obsolete';

Even if the hint is specified, there is no guarantee that the transformation will take
place. The optimizer generates the subqueries only if it seems reasonable to do so. If no
subqueries are generated, then there is no transformed query, and the best plan for the
untransformed query is used, regardless of the hint.

2-94 Oracle Database SQL Reference

Comments

See Also:

» Oracle Database Data Warehousing Guide for a full discussion of
star transformation.

» Oracle Database Reference for more information on the STAR_
TRANSFORMATION_ENABLED initialization parameter.

UNNEST Hint

0leICEDT0

(See "Specifying a Query Block in a Hint" on page 2-73)

The UNNEST hint instructs the optimizer to unnest and merge the body of the
subquery into the body of the query block that contains it, allowing the optimizer to
consider them together when evaluating access paths and joins.

Before a subquery is unnested, the optimizer first verifies whether the statement is
valid. The statement must then must pass heuristic and query optimization tests. The
UNNEST hint instructs the optimizer to check the subquery block for validity only. If
the subquery block is valid, then subquery unnesting is enabled without checking the
heuristics or costs.

See Also:

= "Collection Unnesting: Examples" on page 19-44 for more
information on unnesting nested subqueries and the conditions
that make a subquery block valid

» Oracle Database Performance Tuning Guide for additional
information on subquery unnesting

USE_CONCAT Hint

ololcEDo

(See "Specifying a Query Block in a Hint" on page 2-73)

The USE_CONCAT hint instructs the optimizer to transform combined OR-conditions in
the WHERE clause of a query into a compound query using the UNION ALL set operator.
Without this hint, this transformation occurs only if the cost of the query using the
concatenations is cheaper than the cost without them. The USE_CONCAT hint overrides
the cost consideration. For example:

SELECT /*+ USE_CONCAT */ *
FROM employees e
WHERE manager_id = 108
OR department_id = 110;

See Also: the "NO_EXPAND Hint" on page 2-84, which is the
opposite of this hint and Oracle Database Performance Tuning Guide for a
discussion of OR-expansion

Basic Elements of Oracle SQL 2-95

Comments

USE_HASH Hint

queryblock
- EEEOLLEN (G 00

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The USE_HASH hint instructs the optimizer to join each specified table with another
row source using a hash join. For example:

SELECT /*+ USE_HASH(1 h) */ *
FROM orders h, order_items 1
WHERE l.order_id = h.order_id

AND 1l.order_id > 3500;

USE_MERGE Hint

@ queryblock
O (@ -

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The USE_MERGE hint instructs the optimizer to join each specified table with another
row source using a sort-merge join. For example:
SELECT /*+ USE_MERGE (employees departments) */ *

FROM employees, departments
WHERE employees.department_id = departments.department_id;

Use of the USE_NL and USE_MERGE hints is recommended with the LEADING and
ORDERED hints. The optimizer uses those hints when the referenced table is forced to
be the inner table of a join. The hints are ignored if the referenced table is the outer
table.

USE_NL Hint

The USE_NL hint instructs the optimizer to join each specified table to another row
source with a nested loops join, using the specified table as the inner table.

queryblock
O (@ - O

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72)

The USE_NL hint instructs the optimizer to join each specified table to another row
source with a nested loops join, using the specified table as the inner table.

Use of the USE_NL and USE_MERGE hints is recommended with the LEADING and
ORDERED hints. The optimizer uses those hints when the referenced table is forced to
be the inner table of a join. The hints are ignored if the referenced table is the outer
table.

In the following example, where a nested loop is forced through a hint, orders is
accessed through a full table scan and the filter condition 1.order_id = h.order_
idis applied to every row. For every row that meets the filter condition, order_
items is accessed through the index order_id.

SELECT /*+ USE_NL(1 h) */ h.customer_id, l.unit_price * l.quantity
FROM orders h ,order_items 1
WHERE 1.order_id = h.order_id;

2-96 Oracle Database SQL Reference

Database Objects

Adding an INDEX hint to the query could avoid the full table scan on orders,
resulting in an execution plan similar to one used on larger systems, even though it
might not be particularly efficient here.

USE_NL_WITH_INDEX Hint

qﬂﬁﬂﬁﬁﬁ’; l(q‘HHHEHi'kxk
@ USE_NL_WITH_INDEX @ © s tablespec) @@

(See "Specifying a Query Block in a Hint" on page 2-73, tablespec::= on page 2-72,
indexspec::= on page 2-73)

The USE_NL_WITH_INDEX hint instructs the optimizer to join the specified table to
another row source with a nested loops join using the specified table as the inner table.
For example:

SELECT /*+ USE_NL_WITH_INDEX(l item product_ix) */ *
FROM orders h, order_items 1
WHERE 1l.order_id = h.order_id
AND 1.order_id > 3500;

The following conditions apply:

= Ifnoindex is specified, then the optimizer must be able to use some index with at
least one join predicate as the index key.

= If anindex is specified, then the optimizer must be able to use that index with at
least one join predicate as the index key.

Database Objects

Oracle Database recognizes objects that are associated with a particular schema and
objects that are not associated with a particular schema, as described in the sections
that follow.

Schema Objects

A schema is a collection of logical structures of data, or schema objects. A schema is
owned by a database user and has the same name as that user. Each user owns a single
schema. Schema objects can be created and manipulated with SQL and include the
following types of objects:

Clusters

Constraints

Database links

Database triggers
Dimensions

External procedure libraries
Index-organized tables
Indexes

Indextypes

Java classes, Java resources, Java sources
Materialized views
Materialized view logs
Object tables

Object types

Basic Elements of Oracle SQL 2-97

Schema Object Names and Qualifiers

Object views

Operators

Packages

Sequences

Stored functions, stored procedures
Synonyms

Tables

Views

Nonschema Objects

Other types of objects are also stored in the database and can be created and
manipulated with SQL but are not contained in a schema:

Contexts

Directories

Parameter files (PFILESs) and server parameter files (SPFILES)
Profiles

Roles

Rollback segments

Tablespaces

Users

In this reference, each type of object is briefly defined in Chapter 10 through

Chapter 19, in the section describing the statement that creates the database object.
These statements begin with the keyword CREATE. For example, for the definition of a
cluster, see CREATE CLUSTER on page 14-2.

See Also: Oracle Database Concepts for an overview of database
objects

You must provide names for most types of database objects when you create them.
These names must follow the rules listed in the following sections.

Schema Object Names and Qualifiers

Some schema objects are made up of parts that you can or must name, such as the
columns in a table or view, index and table partitions and subpartitions, integrity
constraints on a table, and objects that are stored within a package, including
procedures and stored functions. This section provides:

= Rules for naming schema objects and schema object location qualifiers

= Guidelines for naming schema objects and qualifiers

Schema Object Naming Rules

2-98

Every database object has a name. In a SQL statement, you represent the name of an
object with a quoted identifier or a nonquoted identifier.

= A quoted identifier begins and ends with double quotation marks ("). If you name
a schema object using a quoted identifier, then you must use the double quotation
marks whenever you refer to that object.

= A nonquoted identifier is not surrounded by any punctuation.

Oracle Database SQL Reference

Schema Object Names and Qualifiers

You can use either quoted or nonquoted identifiers to name any database object.
However, database names, global database names, and database link names are
always case insensitive and are stored as uppercase. If you specify such names as
quoted identifiers, then the quotation marks are silently ignored. Please refer to
CREATE USER on page 17-26 for additional rules for naming users and passwords.

The following list of rules applies to both quoted and nonquoted identifiers unless
otherwise indicated:

1. Names must be from 1 to 30 bytes long with these exceptions:
= Names of databases are limited to 8 bytes.
= Names of database links can be as long as 128 bytes.

If an identifier includes multiple parts separated by periods, then each attribute
can be up to 30 bytes long. Each period separator, as well as any surrounding
double quotation marks, counts as one byte. For example, suppose you identify a
column like this:

"schema"."table"."column"
The schema name can be 30 bytes, the table name can by 30 bytes, and the column

name can be 30 bytes. Each of the quotation marks and periods is a single-byte
character, so the total length of the identifier in this example can be up to 98 bytes.

2. Nonquoted identifiers cannot be Oracle Database reserved words. Quoted
identifiers can be reserved words, although this is not recommended.

Depending on the Oracle product you plan to use to access a database object,
names might be further restricted by other product-specific reserved words.

Note: The reserved word ROWID is an exception to this rule. You
cannot use the uppercase word ROWID, either quoted or nonquoted, as
a column name. However, you can use the uppercase word as a
quoted identifier that is not a column name, and you can use the word
with one or more lowercase letters (for example, "Rowid" or "rowid")
as any quoted identifier, including a column name.

See Also:

= Appendix D, "Oracle Database Reserved Words" for a listing of all
Oracle Database reserved words

s The manual for a specific product, such as Oracle Database PL/SQL
User’s Guide and Reference, for a list of the reserved words of that
product

3. The Oracle SQL language contains other words that have special meanings. These
words include datatypes, schema names, function names, the dummy system table
DUAL, and keywords (the uppercase words in SQL statements, such as
DIMENSION, SEGMENT, ALLOCATE, DISABLE, and so forth). These words are not
reserved. However, Oracle uses them internally in specific ways. Therefore, if you
use these words as names for objects and object parts, then your SQL statements
may be more difficult to read and may lead to unpredictable results.

In particular, do not use words beginning with SYS_ as schema object names, and
do not use the names of SQL built-in functions for the names of schema objects or
user-defined functions.

Basic Elements of Oracle SQL 2-99

Schema Object Names and Qualifiers

See Also: "Datatypes" on page 2-1, "SQL Functions" on page 5-1, and
"Selecting from the DUAL Table" on page 9-15

4. You should use ASCII characters in database names, global database names, and
database link names, because ASCII characters provide optimal compatibility
across different platforms and operating systems.

Note: Oracle recommends that user names and passwords be
encoded in ASCII or EBCDIC characters only, depending on your
platform. Please refer to Oracle Database Administrator’s Guide for more
information about this recommendation.

5. Nonquoted identifiers must begin with an alphabetic character from your
database character set. Quoted identifiers can begin with any character.

6. Nonquoted identifiers can contain only alphanumeric characters from your
database character set and the underscore (_), dollar sign ($), and pound sign (#).
Database links can also contain periods (.) and "at" signs (@). Oracle strongly
discourages you from using $ and # in nonquoted identifiers.

Quoted identifiers can contain any characters and punctuations marks as well as
spaces. However, neither quoted nor nonquoted identifiers can contain double
quotation marks or the null character (\0).

7. Within a namespace, no two objects can have the same name.
The following schema objects share one namespace:
» Tables
= Views
= Sequences
= Private synonyms
= Stand-alone procedures
= Stand-alone stored functions
= Packages
» Materialized views
» User-defined types
Each of the following schema objects has its own namespace:
= Indexes
= Constraints
» Clusters
= Database triggers
» Private database links
= Dimensions

Because tables and views are in the same namespace, a table and a view in the
same schema cannot have the same name. However, tables and indexes are in
different namespaces. Therefore, a table and an index in the same schema can have
the same name.

2-100 Oracle Database SQL Reference

Schema Object Names and Qualifiers

Each schema in the database has its own namespaces for the objects it contains.
This means, for example, that two tables in different schemas are in different
namespaces and can have the same name.

Each of the following nonschema objects also has its own namespace:
= User roles

= Public synonyms

» Public database links

n Tablespaces

» Profiles

»n Parameter files (PFILEs) and server parameter files (SPFILES)

Because the objects in these namespaces are not contained in schemas, these
namespaces span the entire database.

8. Nonquoted identifiers are not case sensitive. Oracle interprets them as uppercase.
Quoted identifiers are case sensitive.

By enclosing names in double quotation marks, you can give the following names
to different objects in the same namespace:

employees

"employees"
"Employees"
"EMPLOYEES"

Note that Oracle interprets the following names the same, so they cannot be used
for different objects in the same namespace:

employees
EMPLOYEES
"EMPLOYEES"

9. Columns in the same table or view cannot have the same name. However,
columns in different tables or views can have the same name.

10. Procedures or functions contained in the same package can have the same name, if
their arguments are not of the same number and datatypes. Creating multiple
procedures or functions with the same name in the same package with different
arguments is called overloading the procedure or function.

Schema Object Naming Examples
The following examples are valid schema object names:

last_name

horse

hr.hire_date

"EVEN THIS & THAT!"
a_very_long_and_valid_name

All of these examples adhere to the rules listed in "Schema Object Naming Rules" on
page 2-98. The following example is not valid, because it exceeds 30 characters:

a_very_very_long_and_valid_name

Basic Elements of Oracle SQL 2-101

Syntax for Schema Objects and Parts in SQL Statements

Although column aliases, table aliases, usernames, and passwords are not objects or
parts of objects, they must also follow these naming rules unless otherwise specified in
the rules themselves.

Schema Object Naming Guidelines

Here are several helpful guidelines for naming objects and their parts:

» Use full, descriptive, pronounceable names (or well-known abbreviations).
= Use consistent naming rules.

= Use the same name to describe the same entity or attribute across tables.

When naming objects, balance the objective of keeping names short and easy to use
with the objective of making names as descriptive as possible. When in doubt, choose
the more descriptive name, because the objects in the database may be used by many
people over a period of time. Your counterpart ten years from now may have difficulty
understanding a table column with a name like pmdd instead of payment_due_date.

Using consistent naming rules helps users understand the part that each table plays in
your application. One such rule might be to begin the names of all tables belonging to
the FINANCE application with fin_.

Use the same names to describe the same things across tables. For example, the
department number columns of the sample employees and departments tables are
both named department_id.

Syntax for Schema Objects and Parts in SQL Statements

This section tells you how to refer to schema objects and their parts in the context of a
SQL statement. This section shows you:

s The general syntax for referring to an object

= How Oracle resolves a reference to an object

= How to refer to objects in schemas other than your own

= How to refer to objects in remote databases

= How to refer to table and index partitions and subpartitions

The following diagram shows the general syntax for referring to an object or a part:

database_object or_part::=

where:

m object is the name of the object.

» schema is the schema containing the object. The schema qualifier lets you refer to
an object in a schema other than your own. You must be granted privileges to refer
to objects in other schemas. If you omit schema, then Oracle assumes that you are
referring to an object in your own schema.

Only schema objects can be qualified with schema. Schema objects are shown
with list item 7 on page 2-100. Nonschema objects, also shown with list item 7,
cannot be qualified with schema because they are not schema objects. An

2-102 Oracle Database SQL Reference

Syntax for Schema Objects and Parts in SQL Statements

exception is public synonyms, which can optionally be qualified with "PUBLIC".
The quotation marks are required.

» partisa part of the object. This identifier lets you refer to a part of a schema
object, such as a column or a partition of a table. Not all types of objects have
parts.

= dblink applies only when you are using the Oracle Database distributed
functionality. This is the name of the database containing the object. The dblink
qualifier lets you refer to an object in a database other than your local database. If
you omit dblink, then Oracle assumes that you are referring to an object in your
local database. Not all SQL statements allow you to access objects on remote
databases.

You can include spaces around the periods separating the components of the reference
to the object, but it is conventional to omit them.

How Oracle Database Resolves Schema Object References

When you refer to an object in a SQL statement, Oracle considers the context of the
SQL statement and locates the object in the appropriate namespace. After locating the
object, Oracle performs the operation specified by the statement on the object. If the
named object cannot be found in the appropriate namespace, then Oracle returns an
error.

The following example illustrates how Oracle resolves references to objects within SQL
statements. Consider this statement that adds a row of data to a table identified by the
name departments:

INSERT INTO departments VALUES (
280, 'ENTERTAINMENT CLERK', 206, 1700);

Based on the context of the statement, Oracle determines that departments can be:
= A table in your own schema

= A view in your own schema

= A private synonym for a table or view

= A public synonym

Oracle always attempts to resolve an object reference within the namespaces in your
own schema before considering namespaces outside your schema. In this example,
Oracle attempts to resolve the name departments as follows:

1. First, Oracle attempts to locate the object in the namespace in your own schema
containing tables, views, and private synonymes. If the object is a private synonym,
then Oracle locates the object for which the synonym stands. This object could be
in your own schema, another schema, or on another database. The object could
also be another synonym, in which case Oracle locates the object for which this
synonym stands.

2. If the object is in the namespace, then Oracle attempts to perform the statement on
the object. In this example, Oracle attempts to add the row of data to
departments. If the object is not of the correct type for the statement, then Oracle
returns an error. In this example, departments must be a table, view, or a private
synonym resolving to a table or view. If departments is a sequence, then Oracle
returns an error.

3. If the object is not in any namespace searched in thus far, then Oracle searches the
namespace containing public synonymes. If the object is in that namespace, then

Basic Elements of Oracle SQL 2-103

Syntax for Schema Objects and Parts in SQL Statements

Oracle attempts to perform the statement on it. If the object is not of the correct
type for the statement, then Oracle returns an error. In this example, if
departments is a public synonym for a sequence, then Oracle returns an error.

If a public synonym has any dependent tables or user-defined types, then you cannot
create an object with the same name as the synonym in the same schema as the
dependent objects.

If a synonym does not have any dependent tables or user-defined types, then you can
create an object with the same name in the same schema as the dependent objects.
Oracle invalidates any dependent objects and attempts to revalidate them when they
are next accessed.

See Also: Oracle Database PL/SQL User's Guide and Reference for
information about how PL/SQL resolves identifier names

Referring to Objects in Other Schemas

To refer to objects in schemas other than your own, prefix the object name with the
schema name:

schema.object

For example, this statement drops the employees table in the sample schema hr:

DROP TABLE hr.employees

Referring to Objects in Remote Databases

To refer to objects in databases other than your local database, follow the object name
with the name of the database link to that database. A database link is a schema object
that causes Oracle to connect to a remote database to access an object there. This
section tells you:

s How to create database links

= How to use database links in your SQL statements

Creating Database Links

You create a database link with the statement CREATE DATABASE LINK on
page 14-31. The statement lets you specify this information about the database link:

s The name of the database link

» The database connect string to access the remote database

s The username and password to connect to the remote database

Oracle stores this information in the data dictionary.

Database Link Names When you create a database link, you must specify its name.

Database link names are different from names of other types of objects. They can be as
long as 128 bytes and can contain periods (.) and the "at" sign (@).

The name that you give to a database link must correspond to the name of the
database to which the database link refers and the location of that database in the
hierarchy of database names. The following syntax diagram shows the form of the
name of a database link:

2-104 Oracle Database SQL Reference

Syntax for Schema Objects and Parts in SQL Statements

dblink::=

0 | (@) commect_desaipor

—(database)

where:

» database should specify the name portion of the global name of the remote
database to which the database link connects. This global name is stored in the
data dictionary of the remote database; you can see this name in the GLOBAL_
NAME data dictionary view.

= domainshould specify the domain portion of the global name of the remote
database to which the database link connects. If you omit domain from the name
of a database link, then Oracle qualifies the database link name with the domain of
your local database as it currently exists in the data dictionary.

s connect_descriptor lets you further qualify a database link. Using connect
descriptors, you can create multiple database links to the same database. For
example, you can use connect descriptors to create multiple database links to
different instances of the Real Application Clusters that access the same database.

The combination database. domain is sometimes called the service name.

See Also: Oracle Database Net Services Administrator’s Guide

Username and Password Oracle uses the username and password to connect to the
remote database. The username and password for a database link are optional.

Database Connect String The database connect string is the specification used by Oracle
Net to access the remote database. For information on writing database connect
strings, see the Oracle Net documentation for your specific network protocol. The
database string for a database link is optional.

Referring to Database Links

Database links are available only if you are using Oracle distributed functionality.
When you issue a SQL statement that contains a database link, you can specify the
database link name in one of these forms:

s The complete database link name as stored in the data dictionary, including the
database, domain, and optional connect_descriptor components.

» The partial database link name is the database and optional connect_
descriptor components, but not the domain component.

Oracle performs these tasks before connecting to the remote database:

1. If the database link name specified in the statement is partial, then Oracle expands
the name to contain the domain of the local database as found in the global
database name stored in the data dictionary. (You can see the current global
database name in the GLOBAL_NAME data dictionary view.)

2. Oracle first searches for a private database link in your own schema with the same
name as the database link in the statement. Then, if necessary, it searches for a
public database link with the same name.

= Oracle always determines the username and password from the first matching
database link (either private or public). If the first matching database link has
an associated username and password, then Oracle uses it. If it does not have

Basic Elements of Oracle SQL 2-105

Syntax for Schema Objects and Parts in SQL Statements

an associated username and password, then Oracle uses your current
username and password.

» If the first matching database link has an associated database string, then
Oracle uses it. Otherwise Oracle searches for the next matching (public)
database link. If no matching database link is found, or if no matching link has
an associated database string, then Oracle returns an error.

3. Oracle uses the database string to access the remote database. After accessing the
remote database, if the value of the GLOBAL_NAMES parameter is true, then
Oracle verifies that the database. domain portion of the database link name
matches the complete global name of the remote database. If this condition is true,
then Oracle proceeds with the connection, using the username and password
chosen in Step 2. If not, Oracle returns an error.

4. If the connection using the database string, username, and password is successful,
then Oracle attempts to access the specified object on the remote database using
the rules for resolving object references and referring to objects in other schemas
discussed earlier in this section.

You can disable the requirement that the database. domain portion of the database
link name must match the complete global name of the remote database by setting to
false the initialization parameter GLOBAL_NAMES or the GLOBAL_NAMES parameter
of the ALTER SYSTEM or ALTER SESSION statement.

See Also: Oracle Database Administrator’s Guide for more information
on remote name resolution

Referring to Partitioned Tables and Indexes

Tables and indexes can be partitioned. When partitioned, these schema objects consist
of a number of parts called partitions, all of which have the same logical attributes.
For example, all partitions in a table share the same column and constraint definitions,
and all partitions in an index share the same index columns.

Partition-extended and subpartition-extended names let you perform some
partition-level and subpartition-level operations, such as deleting all rows from a
partition or subpartition, on only one partition or subpartition. Without extended
names, such operations would require that you specify a predicate (WHERE clause). For
range- and list-partitioned tables, trying to phrase a partition-level operation with a
predicate can be cumbersome, especially when the range partitioning key uses more
than one column. For hash partitions and subpartitions, using a predicate is more
difficult still, because these partitions and subpartitions are based on a system-defined
hash function.

Partition-extended names let you use partitions as if they were tables. An advantage of
this method, which is most useful for range-partitioned tables, is that you can build
partition-level access control mechanisms by granting (or revoking) privileges on these
views to (or from) other users or roles.To use a partition as a table, create a view by
selecting data from a single partition, and then use the view as a table.

You can specify partition-extended or subpartition-extended table names for the
following DML statements:

s DELETE
L] INSERT
s LOCK TABLE

s SELECT

2-106 Oracle Database SQL Reference

Syntax for Schema Objects and Parts in SQL Statements

= UPDATE

Syntax The basic syntax for using partition-extended and subpartition-extended
table names is:

partition_extended_name::=

PARTITION @{paﬂition
SUBPARTITION subparition

view

Restrictions on Extended Names Currently, the use of partition-extended and
subpartition-extended table names has the following restrictions:

= No remote tables: A partition-extended or subpartition-extended table name
cannot contain a database link (dblink) or a synonym that translates to a table with
a dblink. To use remote partitions and subpartitions, create a view at the remote
site that uses the extended table name syntax and then refer to the remote view.

= No synonyms: A partition or subpartition extension must be specified with a base
table. You cannot use synonyms, views, or any other objects.

Example In the following statement, sales is a partitioned table with partition
sales_gl_2000. You can create a view of the single partition sales_gl_2000, and
then use it as if it were a table. This example deletes rows from the partition.

CREATE VIEW Q1_2000_sales AS
SELECT * FROM sales PARTITION (SALES_Q1_2000);

DELETE FROM Q1_2000_sales WHERE amount_sold < 0;

Referring to Object Type Attributes and Methods

To refer to object type attributes or methods in a SQL statement, you must fully qualify
the reference with a table alias. Consider the following example from the sample
schema oe, which contains a type cust_address_typ and a table customers with
a cust_address column based on the cust_address_typ:

CREATE TYPE cust_address_typ
0ID '82A4AF6A4CD1656DE034080020E0EE3D!

AS OBJECT

(street_address VARCHAR?2 (40)
, postal_code VARCHAR2 (10)
, city VARCHAR2 (30)
, state_province VARCHAR2 (10)
, country_id CHAR (2)
)

/

CREATE TABLE customers
(customer_id NUMBER (6)
, cust_first_name VARCHAR2 (20) CONSTRAINT cust_fname_nn NOT NULL
, cust_last_name VARCHAR2 (20) CONSTRAINT cust_lname_nn NOT NULL
, cust_address cust_address_typ

Basic Elements of Oracle SQL 2-107

Syntax for Schema Objects and Parts in SQL Statements

In a SQL statement, reference to the postal_code attribute must be fully qualified
using a table alias, as illustrated in the following example:

SELECT c.cust_address.postal_code FROM customers c;

UPDATE customers ¢ SET c.cust_address.postal_code = 'GU13 BE5'
WHERE c.cust_address.city = 'Fleet';

To reference a member method that does not accept arguments, you must provide
empty parentheses. For example, the sample schema oe contains an object table
categories_tab, based on catalog_typ, which contains the member function
getCatalogName. In order to call this method in a SQL statement, you must provide
empty parentheses as shown in this example:

SELECT TREAT (VALUE (c) AS catalog_typ) .getCatalogName() "Catalog Type"
FROM categories_tab c
WHERE category_id = 90;

Catalog Type

online catalog

See Also: Oracle Database Concepts for more information on
user-defined datatypes

2-108 Oracle Database SQL Reference

3

Pseudocolumns

A pseudocolumn behaves like a table column, but is not actually stored in the table.
You can select from pseudocolumns, but you cannot insert, update, or delete their
values. A pseudocolumn is also similar to a function without arguments (please refer
to Chapter 5, "Functions". However, functions without arguments typically return the
same value for every row in the result set, whereas pseudocolumns typically return a
different value for each row.

This chapter contains the following sections:
» Hierarchical Query Pseudocolumns
= Sequence Pseudocolumns

= Version Query Pseudocolumns

= COLUMN_VALUE Pseudocolumn
s OBJECT_ID Pseudocolumn

s OBJECT_VALUE Pseudocolumn

= ORA_ROWSCN Pseudocolumn

= ROWID Pseudocolumn

= ROWNUM Pseudocolumn

= XMLDATA Pseudocolumn

Hierarchical Query Pseudocolumns

The hierarchical query pseudocolumns are valid only in hierarchical queries. The
hierarchical query pseudocolumns are:

s CONNECT_BY_ISCYCLE Pseudocolumn
s CONNECT_BY_ISLEAF Pseudocolumn
s LEVEL Pseudocolumn

CONNECT BY ISCYCLE Pseudocolumn

The CONNECT_BY_ISCYCLE pseudocolumn returns 1 if the current row has a child
which is also its ancestor. Otherwise it returns 0.

You can specify CONNECT_BY_ISCYCLE only if you have specified the NOCYCLE
parameter of the CONNECT BY clause. NOCYCLE enables Oracle to return the results of
a query that would otherwise fail because of a CONNECT BY loop in the data.

Pseudocolumns 3-1

Hierarchical Query Pseudocolumns

See Also: "Hierarchical Queries" on page 9-2 for more information
about the NOCYCLE parameter and "Hierarchical Query Examples” on
page 9-5 for an example that uses the CONNECT_BY_ISCYCLE
pseudocolumn

CONNECT_BY_ISLEAF Pseudocolumn

The CONNECT_BY_ISLEAF pseudocolumn returns 1 if the current row is a leaf of the
tree defined by the CONNECT BY condition. Otherwise it returns 0. This information
indicates whether a given row can be further expanded to show more of the hierarchy.

CONNECT_BY_ISLEAF Example The following example shows the first three levels
of the hr . employees table, indicating for each row whether it is a leaf row (indicated
by 1in the IsLeaf column) or whether it has child rows (indicated by 0 in the
IsLeaf column):

SELECT last_name "Employee", CONNECT_BY_ISLEAF "IsLeaf",
LEVEL, SYS_CONNECT BY_PATH(last_name, '/') "Path"
FROM employees
WHERE LEVEL <= 3 AND department_id = 80
START WITH employee_id = 100
CONNECT BY PRIOR employee_id = manager_id AND LEVEL <= 4;

Employee IsLeaf LEVEL Path

Russell 0 2 /King/Russell

Tucker 1 3 /King/Russell/Tucker
Bernstein 1 3 /King/Russell/Bernstein
Hall 1 3 /King/Russell/Hall
Olsen 1 3 /King/Russell/Olsen
Cambrault 1 3 /King/Russell/Cambrault
Tuvault 1 3 /King/Russell/Tuvault
Partners 0 2 /King/Partners

King 1 3 /King/Partners/King
Sully 1 3 /King/Partners/Sully
McEwen 1 3 /King/Partners/McEwen
Smith 1 3 /King/Partners/Smith
Doran 1 3 /King/Partners/Doran
Sewall 1 3 /King/Partners/Sewall
Errazuriz 0 2 /King/Errazuriz

Vishney 1 3 /King/Errazuriz/Vishney

34 rows selected.

See Also: "Hierarchical Queries" on page 9-2 and SYS_CONNECT_
BY_PATH on page 5-176

LEVEL Pseudocolumn

For each row returned by a hierarchical query, the LEVEL pseudocolumn returns 1 for
a root row, 2 for a child of a root, and so on. A root row is the highest row within an
inverted tree. A child row is any nonroot row. A parent row is any row that has
children. A leaf row is any row without children. Figure 3-1 shows the nodes of an
inverted tree with their LEVEL values.

3-2 Oracle Database SQL Reference

Sequence Pseudocolumns

Figure 3—1 Hierarchical Tree

Level 1 pfgr%té X

Level 2 pa::rﬁ?é/ p%rﬁ?dt/

Lovets | St || i

Level 4 child/ child/ child/
leaf leaf leaf

To define a hierarchical relationship in a query, you must use the START WITH and
CONNECT BY clauses.

See Also: "Hierarchical Queries" on page 9-2 for information on
hierarchical queries in general and "IN Condition" on page 7-21 for
restrictions on using the LEVEL pseudocolumn

Sequence Pseudocolumns

A sequence is a schema object that can generate unique sequential values. These
values are often used for primary and unique keys. You can refer to sequence values in
SQL statements with these pseudocolumns:

= CURRVAL: Returns the current value of a sequence

= NEXTVAL: Increments the sequence and returns the next value

You must qualify CURRVAL and NEXTVAL with the name of the sequence:
sequence . CURRVAL

sequence . NEXTVAL

To refer to the current or next value of a sequence in the schema of another user, you
must have been granted either SELECT object privilege on the sequence or SELECT
ANY SEQUENCE system privilege, and you must qualify the sequence with the schema
containing it:

schema . sequence.CURRVAL
schema. sequence .NEXTVAL

To refer to the value of a sequence on a remote database, you must qualify the
sequence with a complete or partial name of a database link:

schema . sequence.CURRVAL@dblink
schema . sequence.NEXTVAL@dblink

See Also: "Referring to Objects in Remote Databases" on page 2-104
for more information on referring to database links

Where to Use Sequence Values
You can use CURRVAL and NEXTVAL in the following locations:

Pseudocolumns 3-3

Sequence Pseudocolumns

s The select list of a SELECT statement that is not contained in a subquery,
materialized view, or view

s The select list of a subquery in an INSERT statement

s The VALUES clause of an INSERT statement

s The SET clause of an UPDATE statement

Restrictions on Sequence Values You cannot use CURRVAL and NEXTVAL in the
following constructs:

s A subquery in a DELETE, SELECT, or UPDATE statement

= A query of a view or of a materialized view

= A SELECT statement with the DISTINCT operator

s A SELECT statement with a GROUP BY clause or ORDER BY clause

m A SELECT statement that is combined with another SELECT statement with the
UNION, INTERSECT, or MINUS set operator

s The WHERE clause of a SELECT statement
s The DEFAULT value of a column in a CREATE TABLE or ALTER TABLE statement
s The condition of a CHECK constraint

Within a single SQL statement that uses CURRVAL or NEXTVAL, all referenced LONG
columns, updated tables, and locked tables must be located on the same database.

How to Use Sequence Values

When you create a sequence, you can define its initial value and the increment
between its values. The first reference to NEXTVAL returns the initial value of the
sequence. Subsequent references to NEXTVAL increment the sequence value by the
defined increment and return the new value. Any reference to CURRVAL always
returns the current value of the sequence, which is the value returned by the last
reference to NEXTVAL.

Before you use CURRVAL for a sequence in your session, you must first initialize the
sequence with NEXTVAL. Please refer to CREATE SEQUENCE on page 15-71 for
information on sequences.

Within a single SQL statement containing a reference to NEXTVAL, Oracle increments
the sequence once:

= For each row returned by the outer query block of a SELECT statement. Such a
query block can appear in the following places:

- A top-level SELECT statement

- An INSERT .. SELECT statement (either single-table or multitable). For a
multitable insert, the reference to NEXTVAL must appear in the VALUES clause,
and the sequence is updated once for each row returned by the subquery, even
though NEXTVAL may be referenced in multiple branches of the multitable
insert.

— A CREATE TABLE ... AS SELECT statement
— A CREATE MATERIALIZED VIEW ... AS SELECT statement
s For each row updated in an UPDATE statement

» For each INSERT statement containing a VALUES clause

3-4 Oracle Database SQL Reference

Version Query Pseudocolumns

= For each row merged by a MERGE statement. The reference to NEXTVAL can
appear in the merge_insert_clause or the merge_update_clause or both.
The NEXTVALUE value is incremented for each row updated and for each row
inserted, even if the sequence number is not actually used in the update or insert
operation. If NEXTVAL is specified more than once in any of these locations, then
the sequence is incremented once for each row and returns the same value for all
occurrences of NEXTVAL for that row.

If any of these locations contains more than one reference to NEXTVAL, then Oracle
increments the sequence once and returns the same value for all occurrences of
NEXTVAL.

If any of these locations contains references to both CURRVAL and NEXTVAL, then
Oracle increments the sequence and returns the same value for both CURRVAL and
NEXTVAL.

A sequence can be accessed by many users concurrently with no waiting or locking.

Finding the next value of a sequence: Example This example selects the next value
of the employee sequence in the sample schema hr:

SELECT employees_seq.nextval
FROM DUAL;

Inserting sequence values into a table: Example This example increments the
employee sequence and uses its value for a new employee inserted into the sample
table hr . employees:

INSERT INTO employees
VALUES (employees_seq.nextval, 'John', 'Doe', 'jdoe',
'555-1212"', TO_DATE (SYSDATE), 'PU_CLERK', 2500, null, null,
30);

Reusing the current value of a sequence: Example This example adds a new order
with the next order number to the master order table. It then adds suborders with this
number to the detail order table:

INSERT INTO orders (order_id, order_date, customer_id)
VALUES (orders_seqg.nextval, TO_DATE(SYSDATE), 106);

INSERT INTO order_items (order_id, line_item_id, product_id)
VALUES (orders_seq.currval, 1, 2359);

INSERT INTO order_items (order_id, line_item id, product_id)
VALUES (orders_seqg.currval, 2, 3290);

INSERT INTO order_items (order_id, line_item_id, product_id)
VALUES (orders_seq.currval, 3, 2381);

Version Query Pseudocolumns

The version query pseudocolumns are valid only in Oracle Flashback Version Query,
which is a form of Oracle Flashback Query. The version query pseudocolumns are:

= VERSIONS_STARTTIME: Returns the timestamp of the first version of the rows
returned by the query.

m VERSIONS_STARTSCN: Returns the SCN of the first version of the rows returned
by the query.

Pseudocolumns 3-5

COLUMN_VALUE Pseudocolumn

= VERSIONS_ENDTIME: Returns the timestamp of the last version of the rows
returned by the query.

= VERSIONS_ENDSCN: Returns the SCN of the last version of the rows returned by
the query.

m VERSIONS_XID: For each version of each row, returns the transaction ID (a RAW
number) of the transaction that created that row version.

= VERSIONS_OPERATION: For each version of each row, returns a single character
representing the operation that caused that row version. The values returned are I
(for an insert operation), U (for an update operation) or D (for a delete operation).

See Also: flashback_guery_clause on page 19-14 for more information
on version queries

COLUMN_VALUE Pseudocolumn

When you refer to an XMLTable construct without the COLUMNS clause, or when you
use the TABLE function to refer to a scalar nested table type, the database returns a
virtual table with a single column. This name of this pseudocolumn is COLUMN_
VALUE.

In the context of XMLTable, the value returned is of datatype XMLType. For example,
the following two statements are equivalent, and the output for both shows COLUMN_
VALUE as the name of the column being returned:

SELECT * FROM XMLTABLE ('<a>123’);

COLUMN_VALUE

<a>123
SELECT COLUMN_VALUE FROM (XMLTable(’'<a>123'));

COLUMN_VALUE

<a>123

In the context of a TABLE function, the value returned is the datatype of the collection
element. The following statements create the two levels of nested tables illustrated in
"Multi-level Collection Example" on page 16-52 to show the uses of COLUMN_VALUE in
this context:

CREATE TYPE phone AS TABLE OF NUMBER;

/

CREATE TYPE phone_list AS TABLE OF phone;

/

The next statement uses COLUMN_VALUE to select from the phone type:

SELECT t.COLUMN_VALUE from table(phone(1,2,3)) t;

COLUMN_VALUE

In a nested type, you can use the COLUMN_VALUE pseudocolumn in both the select list
and the TABLE function:

3-6 Oracle Database SQL Reference

OBJECT_VALUE Pseudocolumn

SELECT t.COLUMN_VALUE FROM
TABLE (phone_list (phone(1,2,3))) p, TABLE(p.COLUMN_VALUE) t;
COLUMN_VALUE

The keyword COLUMN_VALUE is also the name that Oracle Database generates for the
scalar value of an inner nested table without a column or attribute name, as shown in
the example that follows. In this context, COLUMN_VALUE is not a pseudocolumn, but
an actual column name.

CREATE TABLE my_customers (
cust_id NUMBER,
name VARCHAR2 (25),
phone_numbers phone_list,
credit_limit NUMBER)
NESTED TABLE phone_numbers STORE AS outer_ntab
(NESTED TABLE COLUMN_VALUE STORE AS inner_ntab);

See Also:

= XMLTABLE on page 5-232 for information on that function

» table_collection_expression::= on page 18-53 for information on the
TABLE function

= ALTER TABLE examples in "Nested Tables: Examples" on
page 12-76

OBJECT ID Pseudocolumn

The OBJECT_ID pseudocolumn returns the object identifier of a column of an object
table or view. Oracle uses this pseudocolumn as the primary key of an object table.
OBJECT_ID is useful in INSTEAD OF triggers on views and for identifying the ID of a
substitutable row in an object table.

Note: In earlier releases, this pseudocolumn was called SYS_NC_
0IDs. That name is still supported for backward compatibility.
However, Oracle recommends that you use the more intuitive name
OBJECT_ID.

See Also: Oracle Database Application Developer’s Guide -
Object-Relational Features for examples of the use of this pseudocolumn

OBJECT _VALUE Pseudocolumn

The OBJECT_VALUE pseudocolumn returns system-generated names for the columns
of an object table, XMLType table, object view, or XMLType view. This pseudocolumn is
useful for identifying the value of a substitutable row in an object table and for
creating object views with the WITH OBJECT IDENTIFIER clause.

Pseudocolumns 3-7

ORA_ROWSCN Pseudocolumn

Note: In earlier releases, this pseudocolumn was called SYS_NC_
ROWINFOS. That name is still supported for backward compatibility.
However, Oracle recommends that you use the more intuitive name
OBJECT_VALUE.

See Also:

m object_table on page 16-48 and object_view_clause on page 17-35 for
more information on the use of this pseudocolumn

» Oracle Database Application Developer's Guide - Object-Relational
Features for examples of the use of this pseudocolumn

ORA_ROWSCN Pseudocolumn

For each row, ORA_ROWSCN returns the conservative upper bound system change
number (SCN) of the most recent change to the row. This pseudocolumn is useful for
determining approximately when a row was last updated. It is not absolutely precise,
because Oracle tracks SCNs by transaction committed for the block in which the row
resides. You can obtain a more fine-grained approximation of the SCN by creating
your tables with row-level dependency tracking. Please refer to CREATE TABLE ...
NOROWDEPENDENCIES | ROWDEPENDENCIES on page 16-44 for more
information on row-level dependency tracking.

You cannot use this pseudocolumn in a query to a view. However, you can use it to
refer to the underlying table when creating a view. You can also use this
pseudocolumn in the WHERE clause of an UPDATE or DELETE statement.

ORA_ROWSCN is not supported for Flashback Query. Instead, use the version query
pseudocolumns, which are provided explicitly for Flashback Query. Please refer to the
SELECT ... flashback_query_clause on page 19-14 for information on Flashback Query
and "Version Query Pseudocolumns" on page 3-5 for additional information on those
pseudocolumns.

Restriction: This pseudocolumn is not supported for external tables.
Example The first statement below uses the ORA_ROWSCN pseudocolumn to get the
system change number of the last operation on the employees table. The second

statement uses the pseudocolumn with the SCN_TO_TIMESTAMP function to
determine the timestamp of the operation:

SELECT ORA_ROWSCN, last_name FROM employees WHERE employee_id = 188;

SELECT SCN_TO_TIMESTAMP (ORA_ROWSCN), last_name FROM employees
WHERE employee_id = 188;

See Also: SCN_TO_TIMESTAMP on page 5-153

ROWID Pseudocolumn

For each row in the database, the ROWID pseudocolumn returns the address of the row.
Oracle Database rowid values contain information necessary to locate a row:

= The data object number of the object
s The data block in the datafile in which the row resides

» The position of the row in the data block (first row is 0)

3-8 Oracle Database SQL Reference

ROWNUM Pseudocolumn

» The datafile in which the row resides (first file is 1). The file number is relative to
the tablespace.

Usually, a rowid value uniquely identifies a row in the database. However, rows in
different tables that are stored together in the same cluster can have the same rowid.

Values of the ROWID pseudocolumn have the datatype ROWID or UROWID. Please refer
to "ROWID Datatype" on page 2-27 and "UROWID Datatype" on page 2-28 for more
information.

Rowid values have several important uses:

s They are the fastest way to access a single row.

s They can show you how the rows in a table are stored.
s They are unique identifiers for rows in a table.

You should not use ROWID as the primary key of a table. If you delete and reinsert a
row with the Import and Export utilities, for example, then its rowid may change. If
you delete a row, then Oracle may reassign its rowid to a new row inserted later.

Although you can use the ROWID pseudocolumn in the SELECT and WHERE clause of a
query, these pseudocolumn values are not actually stored in the database. You cannot
insert, update, or delete a value of the ROWID pseudocolumn.

Example This statement selects the address of all rows that contain data for
employees in department 20:

SELECT ROWID, last_name
FROM employees
WHERE department_id = 20;

ROWNUM Pseudocolumn

For each row returned by a query, the ROWNUM pseudocolumn returns a number
indicating the order in which Oracle selects the row from a table or set of joined rows.
The first row selected has a ROWNUM of 1, the second has 2, and so on.

You can use ROWNUM to limit the number of rows returned by a query, as in this
example:

SELECT * FROM employees WHERE ROWNUM < 10;

If an ORDER BY clause follows ROWNUM in the same query, then the rows will be
reordered by the ORDER BY clause. The results can vary depending on the way the
rows are accessed. For example, if the ORDER BY clause causes Oracle to use an index
to access the data, then Oracle may retrieve the rows in a different order than without
the index. Therefore, the following statement will not have the same effect as the
preceding example:

SELECT * FROM employees WHERE ROWNUM < 11 ORDER BY last_name;

If you embed the ORDER BY clause in a subquery and place the ROWNUM condition in
the top-level query, then you can force the ROWNUM condition to be applied after the
ordering of the rows. For example, the following query returns the employees with the
10 smallest employee numbers. This is sometimes referred to as top-N reporting;:

SELECT * FROM
(SELECT * FROM employees ORDER BY employee_id)
WHERE ROWNUM < 11;

Pseudocolumns 3-9

XMLDATA Pseudocolumn

In the preceding example, the ROWNUM values are those of the top-level SELECT
statement, so they are generated after the rows have already been ordered by
employee_id in the subquery.

Conditions testing for ROWNUM values greater than a positive integer are always false.
For example, this query returns no rows:

SELECT * FROM employees
WHERE ROWNUM > 1;

The first row fetched is assigned a ROWNUM of 1 and makes the condition false. The
second row to be fetched is now the first row and is also assigned a ROWNUM of 1 and
makes the condition false. All rows subsequently fail to satisfy the condition, so no
rows are returned.

You can also use ROWNUM to assign unique values to each row of a table, as in this
example:

UPDATE my_table
SET columnl = ROWNUM;

Please refer to the function ROW_NUMBER on page 5-150 for an alternative method
of assigning unique numbers to rows.

Note: Using ROWNUM in a query can affect view optimization. For
more information, see Oracle Database Concepts.

XMLDATA Pseudocolumn

Oracle stores XMLType data either in LOB or object-relational columns, based on
XMLSchema information and how you specify the storage clause. The XMLDATA
pseudocolumn lets you access the underlying LOB or object relational column to
specify additional storage clause parameters, constraints, indexes, and so forth.

Example The following statements illustrate the use of this pseudocolumn. Suppose
you create a simple table of XMLType:

CREATE TABLE xml_lob_tab of XMLTYPE;

The default storage is in a CLOB column. To change the storage characteristics of the
underlying LOB column, you can use the following statement:

ALTER TABLE xml_lob_tab MODIFY LOB (XMLDATA)

(STORAGE (BUFFER_POOL DEFAULT) CACHE);

Now suppose you have created an XMLSchema-based table like the xwarehouses
table created in "Using XML in SQL Statements" on page E-8. You could then use the
XMLDATA column to set the properties of the underlying columns, as shown in the
following statement:

ALTER TABLE xwarehouses ADD (UNIQUE (XMLDATA."WarehouseId"));

3-10 Oracle Database SQL Reference

4

Operators

An operator manipulates data items and returns a result. Syntactically, an operator
appears before or after an operand or between two operands.

This chapter contains these sections:
= About SQL Operators

= Arithmetic Operators

= Concatenation Operator

s Hierarchical Query Operators

= Set Operators

= Multiset Operators

s User-Defined Operators

This chapter discusses nonlogical (non-Boolean) operators. These operators cannot by
themselves serve as the condition of a WHERE or HAVING clause in queries or
subqueries. For information on logical operators, which serve as conditions, please
refer to Chapter 7, "Conditions".

About SQL Operators

Operators manipulate individual data items called operands or arguments. Operators
are represented by special characters or by keywords. For example, the multiplication
operator is represented by an asterisk (¥).

If you have installed Oracle Text, then you can use the SCORE operator, which is part
of that product, in Oracle Text queries. You can also create conditions with the built-in
Text operators, including CONTAINS, CATSEARCH, and MATCHES. For more
information on these Oracle Text elements, please refer to Oracle Text Reference.

If you are using Oracle Expression Filter, then you can create conditions with the
built-in EVALUATE operator that is part of that product. For more information, please
refer to Oracle Database Application Developer’s Guide - Rules Manager and Expression
Filter.

Operators 4-1

About SQL Operators

Note: The combined values of the NLLS_COMP and NLS_ SORT
settings determine the rules by which characters are sorted and
compared. If NLS_COMP is set to LINGUISTIC for your database, then
all entities in this chapter will be interpreted according to the rules
specified by the NL.S_SORT parameter. If NLS_COMP is not set to
LINGUISTIC, then the functions are interpreted without regard to the
NLS_SORT setting. NLS_SORT can be explicitly set. If it is not set
explicitly, it is derived from NLS_LANGUAGE. Please refer to Oracle
Database Globalization Support Guide for more information on these
settings.

Unary and Binary Operators

The two general classes of operators are:

= unary: A unary operator operates on only one operand. A unary operator typically
appears with its operand in this format:

operator operand

= binary: A binary operator operates on two operands. A binary operator appears
with its operands in this format:
operandl operator operand2

Other operators with special formats accept more than two operands. If an operator is

given a null operand, the result is always null. The only operator that does not follow
this rule is concatenation (I I).

Operator Precedence

Precedence is the order in which Oracle Database evaluates different operators in the
same expression. When evaluating an expression containing multiple operators,
Oracle evaluates operators with higher precedence before evaluating those with lower
precedence. Oracle evaluates operators with equal precedence from left to right within
an expression.

Table 4-1 lists the levels of precedence among SQL operators from high to low.
Operators listed on the same line have the same precedence.

Table 4-1 SQL Operator Precedence

Operator Operation

+, - (asunary operators), PRIOR, CONNECT_ identity, negation, location in hierarchy
BY_ROOT

o/ multiplication, division

+, - (asbinary operators), || addition, subtraction, concatenation
SQL conditions are evaluated after SQL See "Condition Precedence” on page 7-3
operators

Precedence Example In the following expression, multiplication has a higher
precedence than addition, so Oracle first multiplies 2 by 3 and then adds the result to
1.

1+2%*3

4-2 Oracle Database SQL Reference

Concatenation Operator

You can use parentheses in an expression to override operator precedence. Oracle
evaluates expressions inside parentheses before evaluating those outside.

SQL also supports set operators (UNION, UNION ALL, INTERSECT, and MINUS), which
combine sets of rows returned by queries, rather than individual data items. All set
operators have equal precedence.

See Also: "Hierarchical Query Operators" on page 4-5 and
"Hierarchical Queries" on page 9-2 for information on the PRIOR
operator, which is used only in hierarchical queries

Arithmetic Operators

You can use an arithmetic operator with one or two arguments to negate, add,
subtract, multiply, and divide numeric values. Some of these operators are also used in
datetime and interval arithmetic. The arguments to the operator must resolve to
numeric datatypes or to any datatype that can be implicitly converted to a numeric
datatype.

Unary arithmetic operators return the same datatype as the numeric datatype of the
argument. For binary arithmetic operators, Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that
datatype, and returns that datatype. Table 4-2 lists arithmetic operators.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on

page 2-41 for more information on implicit conversion, "Numeric
Precedence" on page 2-13 for information on numeric precedence, and
"Datetime/Interval Arithmetic" on page 2-19

Table 4-2 Arithmetic Operators

Operator Purpose Example
+- When these denote a positive or SELECT * FROM order_items
negative expression, they are unary WHERE quantity = -1;
operators. SELECT * FROM employees
WHERE -salary < 0;
+- When they add or subtract, they are SELECT hire_date
binary operators. FROM employees
WHERE SYSDATE - hire_date
> 365;
*/ Multiply, divide. These are binary UPDATE employees
operators. SET salary = salary * 1.1;

Do not use two consecutive minus signs (--) in arithmetic expressions to indicate
double negation or the subtraction of a negative value. The characters -- are used to
begin comments within SQL statements. You should separate consecutive minus signs
with a space or parentheses. Please refer to "Comments" on page 2-70 for more
information on comments within SQL statements.

Concatenation Operator

The concatenation operator manipulates character strings and CLOB data. Table 4-3
describes the concatenation operator.

Operators 4-3

Concatenation Operator

Table 4-3 Concatenation Operator

Operator Purpose Example
I Concatenates character strings SELECT 'Name is ' || last_name
and CLOB data. FROM employees;

The result of concatenating two character strings is another character string. If both
character strings are of datatype CHAR, the result has datatype CHAR and is limited to
2000 characters. If either string is of datatype VARCHAR2, the result has datatype
VARCHAR2 and is limited to 4000 characters. If either argument is a CLOB, the result is
a temporary CLOB. Trailing blanks in character strings are preserved by concatenation,
regardless of the datatypes of the string or CLOB.

On most platforms, the concatenation operator is two solid vertical bars, as shown in
Table 4-3. However, some IBM platforms use broken vertical bars for this operator.
When moving SQL script files between systems having different character sets, such as
between ASCII and EBCDIC, vertical bars might not be translated into the vertical bar
required by the target Oracle Database environment. Oracle provides the CONCAT
character function as an alternative to the vertical bar operator for cases when it is
difficult or impossible to control translation performed by operating system or
network utilities. Use this function in applications that will be moved between
environments with differing character sets.

Although Oracle treats zero-length character strings as nulls, concatenating a
zero-length character string with another operand always results in the other operand,
so null can result only from the concatenation of two null strings. However, this may
not continue to be true in future versions of Oracle Database. To concatenate an
expression that might be null, use the NVL function to explicitly convert the expression
to a zero-length string.

See Also:

s "Character Datatypes" on page 2-8 for more information on the
differences between the CHAR and VARCHAR?2 datatypes

s The functions CONCAT on page 5-36 and NVL on page 5-110

» Oracle Database Application Developer's Guide - Large Objects for
more information about CLOBs

Concatenation Example This example creates a table with both CHAR and VARCHAR2
columns, inserts values both with and without trailing blanks, and then selects these
values and concatenates them. Note that for both CHAR and VARCHAR?2 columns, the
trailing blanks are preserved.

CREATE TABLE tabl (coll VARCHAR2(6), col2 CHAR(6),
col3 VARCHAR2 (6), cold CHAR(6));

INSERT INTO tabl (coll, col2, col3, cold)
VALUES (rabc', 'def ', 'ghi Y, gkl ;

SELECT coll]||col2]||col3]||cold "Concatenation"
FROM tabl;

Concatenation

abcdef ghi jk1

4-4 Oracle Database SQL Reference

Multiset Operators

Hierarchical Query Operators

PRIOR

Two operators, PRIOR and CONNECT_BY_ROOT, are valid only in hierarchical queries.

In a hierarchical query, one expression in the CONNECT BY condition must be
qualified by the PRIOR operator. If the CONNECT BY condi tionis compound, then
only one condition requires the PRIOR operator, although you can have multiple
PRIOR conditions. PRIOR evaluates the immediately following expression for the
parent row of the current row in a hierarchical query.

PRIOR is most commonly used when comparing column values with the equality
operator. (The PRIOR keyword can be on either side of the operator.) PRIOR causes
Oracle to use the value of the parent row in the column. Operators other than the
equal sign (=) are theoretically possible in CONNECT BY clauses. However, the
conditions created by these other operators can result in an infinite loop through the
possible combinations. In this case Oracle detects the loop at run time and returns an
error. Please refer to "Hierarchical Queries" on page 9-2 for more information on this
operator, including examples.

CONNECT_BY_ROOT

CONNECT_BY_ROOT is a unary operator that is valid only in hierarchical queries.
When you qualify a column with this operator, Oracle returns the column value using
data from the root row. This operator extends the functionality of the CONNECT BY
[PRIOR] condition of hierarchical queries.

Restriction on CONNECT_BY_ROOT You cannot specify this operator in the START
WITH condition or the CONNECT BY condition.

See Also: "CONNECT_BY_ROOT Examples" on page 9-6

Set Operators

Set operators combine the results of two component queries into a single result.
Queries containing set operators are called compound queries. Table 4—4 lists SQL set
operators. They are fully described, including examples and restrictions on these
operators, in "The UNION [ALL], INTERSECT, MINUS Operators" on page 9-7.

Table 4-4 Set Operators

Operator Returns

UNION All distinct rows selected by either query

UNION ALL All rows selected by either query, including all duplicates
INTERSECT All distinct rows selected by both queries

MINUS All distinct rows selected by the first query but not the second

Multiset Operators

Multiset operators combine the results of two nested tables into a single nested table.

The examples related to multiset operators require that two nested tables be created
and loaded with data as follows:

Operators 4-5

Multiset Operators

First, make a copy of the oe. customers table called customers_demo. We will add
the nested table columns to customers_demo.

CREATE TABLE customers_demo AS
SELECT * FROM customers;

Next, create a table type called cust_address_tab_typ. This type will be used
when creating the nested table columns.

CREATE TYPE cust_address_tab_typ AS
TABLE OF cust_address_typ
/

Now, create two nested table columns in the customers_demo table:

ALTER TABLE customers_demo
ADD (cust_address_ntab cust_address_tab_typ,
cust_address2_ntab cust_address_tab_typ)
NESTED TABLE cust_address_ntab STORE AS cust_address_ntab_store
NESTED TABLE cust_address2_ntab STORE AS cust_address2_ntab_store;

Finally, load data into the two new nested table columns using data from the cust_
address column of the oe . customers table:

UPDATE CUSTOMERS_DEMO cd
SET cust_address_ntab =
CAST (MULTISET (SELECT cust_address
FROM customers c
WHERE c.customer_id =
cd.customer_id) as cust_address_tab_typ);

UPDATE CUSTOMERS_DEMO cd
SET cust_address2_ntab =
CAST (MULTISET (SELECT cust_address
FROM customers c
WHERE c.customer_id =
cd.customer_id) as cust_address_tab_typ);

MULTISET EXCEPT

MULTISET EXCEPT takes as arguments two nested tables and returns a nested table
whose elements are in the first nested table but not in the second nested table. The two
input nested tables must be of the same type, and the returned nested table is of the
same type as well.

ALL

l DISTINCT '
—><nested_table1>a| MULTISET |->| EXCEPT } (nested_table2)

s The ALL keyword instructs Oracle to return all elements in nested_tablel that
are not in nested_table2. For example, if a particular element occurs m times in
nested_tablel and n times in nested_tableZ2, then the result will have

(m-n) occurrences of the element if m >n and 0 occurrences if m<=n. ALL is the
default.

s The DISTINCT keyword instructs Oracle to eliminate any element in nested_
tablel which is also in nested_table2, regardless of the number of
occurrences.

4-6 Oracle Database SQL Reference

Multiset Operators

s The element types of the nested tables must be comparable. Please refer to
"Comparison Conditions" on page 7-4 for information on the comparability of
nonscalar types.

Example

The following example compares two nested tables and returns a nested table of those
elements found in the first nested table but not in the second nested table:

SELECT customer_id, cust_address_ntab
MULTISET EXCEPT DISTINCT cust_address2_ntab multiset_except
FROM customers_demo;

CUSTOMER_ID

MULTISET_EXCEPT (STREET ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
CUST_ADDRESS_TAB_TYP (
CUST_ADDRESS_TAB_TYP (
CUST_ADDRESS_TAB_TYP (
CUST_ADDRESS_TAB_TYP (
CUST_ADDRESS_TAB_TYP (

The preceding example requires the table customers_demo and two nested table
columns containing data. Please refer to "Multiset Operators" on page 4-5 to create this
table and nested table columns.

MULTISET INTERSECT

MULTISET INTERSECT takes as arguments two nested tables and returns a nested
table whose values are common in the two input nested tables. The two input nested
tables must be of the same type, and the returned nested table is of the same type as
well.

ALL

l DISTINCT l
—>(nested_table1>a| MULTISET |->| INTERSECT } 5 nested_table2)>

s The ALL keyword instructs Oracle to return all common occurrences of elements
that are in the two input nested tables, including duplicate common values and
duplicate common NULL occurrences. For example, if a particular value occurs m
times in nested_tablel and n times in nested_table2, then the result would
contain the element min (m, n) times. ALL is the default.

s The DISTINCT keyword instructs Oracle to eliminate duplicates from the returned
nested table, including duplicates of NULL, if they exist.

s The element types of the nested tables must be comparable. Please refer to
"Comparison Conditions" on page 7-4 for information on the comparability of
nonscalar types.

Example

The following example compares two nested tables and returns a nested table of those
elements found in both input nested tables:

SELECT customer_id, cust_address_ntab
MULTISET INTERSECT DISTINCT cust_address2_ntab multiset_intersect
FROM customers_demo;

CUSTOMER_ID MULTISET INTERSECT (STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID

101 CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US'))

Operators 4-7

Multiset Operators

102 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US'))

103 CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'))
104 CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US'))
105 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'))

The preceding example requires the table customers_demo and two nested table
columns containing data. Please refer to "Multiset Operators" on page 4-5 to create this
table and nested table columns.

MULTISET UNION

MULTISET UNION takes as arguments two nested tables and returns a nested table
whose values are those of the two input nested tables. The two input nested tables
must be of the same type, and the returned nested table is of the same type as well.

ALL

e

—><nested_table1>a| MULTISET |->| UNION } 5 nested_table2)>

s The ALL keyword instructs Oracle to return all elements that are in the two input
nested tables, including duplicate values and duplicate NULL occurrences. This is
the default.

s The DISTINCT keyword instructs Oracle to eliminate duplicates from the returned
nested table, including duplicates of NULL, if they exist.

s The element types of the nested tables must be comparable. Please refer to
"Comparison Conditions" on page 7-4 for information on the comparability of
nonscalar types.

Example

The following example compares two nested tables and returns a nested table of
elements from both input nested tables:

SELECT customer_id, cust_address_ntab
MULTISET UNION cust_address2_ntab multiset_union
FROM customers_demo;

CUSTOMER_ID MULTISET UNION(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)

101 CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US'),
CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US'))

102 CUST_ADDRESS_TAB_TYP(CUST ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US'),
CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN',6'US'))

103 CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'),
CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'))

104 CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US'),
CUST_ADDRESS_TYP('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US'))

105 CUST_ADDRESS_TAB_TYP(CUST ADDRESS_TYP('4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'),
CUST_ADDRESS_TYP('4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'))

The preceding example requires the table customers_demo and two nested table

columns containing data. Please refer to "Multiset Operators" on page 4-

table and nested table columns.

4-8 Oracle Database SQL Reference

5 to create this

User-Defined Operators

User-Defined Operators

Like built-in operators, user-defined operators take a set of operands as input and
return a result. However, you create them with the CREATE OPERATOR statement, and
they are identified by user-defined names. They reside in the same namespace as
tables, views, types, and standalone functions.

After you have defined a new operator, you can use it in SQL statements like any other
built-in operator. For example, you can use user-defined operators in the select list of a
SELECT statement, the condition of a WHERE clause, or in ORDER BY clauses and
GROUP BY clauses. However, you must have EXECUTE privilege on the operator to do
so, because it is a user-defined object.

See Also: CREATE OPERATOR on page 15-32 for an example of
creating an operator and Oracle Database Data Cartridge Developer’s
Guide for more information on user-defined operators

Operators 4-9

User-Defined Operators

4-10 Oracle Database SQL Reference

O

Functions

Functions are similar to operators in that they manipulate data items and return a
result. Functions differ from operators in the format of their arguments. This format
enables them to operate on zero, one, two, or more arguments:

function(argument, argument, ...)

A function without any arguments is similar to a pseudocolumn (please refer to
Chapter 3, "Pseudocolumns”). However, a pseudocolumn typically returns a different
value for each row in the result set, whereas a function without any arguments
typically returns the same value for each row.

This chapter contains these sections:
s SQL Functions

s User-Defined Functions

SQL Functions

SQL functions are built into Oracle Database and are available for use in various
appropriate SQL statements. Do not confuse SQL functions with user-defined
functions written in PL/SQL.

If you call a SQL function with an argument of a datatype other than the datatype
expected by the SQL function, then Oracle attempts to convert the argument to the
expected datatype before performing the SQL function. If you call a SQL function with
a null argument, then the SQL function automatically returns null. The only SQL
functions that do not necessarily follow this behavior are CONCAT, NVL, REPLACE, and
REGEXP_REPLACE.

Note: The combined values of the NL.S_COMP and NLS_SORT
settings determine the rules by which characters are sorted and
compared. If NLS_COMP is set to LINGUISTIC for your database, then
all entities in this chapter will be interpreted according to the rules
specified by the NL.S_SORT parameter. If NL.S_COMP is not set to
LINGUISTIC, then the functions are interpreted without regard to the
NLS_SORT setting. NLS_SORT can be explicitly set. If it is not set
explicitly, it is derived from NLS_LANGUAGE. Please refer to Oracle
Database Globalization Support Guide for more information on these
settings.

In the syntax diagrams for SQL functions, arguments are indicated by their datatypes.
When the parameter function appears in SQL syntax, replace it with one of the

Functions 5-1

SQL Functions

functions described in this section. Functions are grouped by the datatypes of their
arguments and their return values.

Note: When you apply SQL functions to LOB columns, Oracle
Database creates temporary LOBs during SQL and PL/SQL
processing. You should ensure that temporary tablespace quota is
sufficient for storing these temporary LOBs for your application.

See Also:

s "User-Defined Functions" on page 5-236 for information on user
functions and "Data Conversion" on page 2-40 for implicit
conversion of datatypes

» Oracle Text Reference for information on functions used with Oracle
Text

» Oracle Data Mining Application Developer’s Guide for information
on frequent itemset functions used with Oracle Data Mining

The syntax showing the categories of functions follows:

function::=

single_row_function

aggregate_function

il

analytic_function

—(object_reference_function)—

model_function

|

user_defined_function

single_row_function::=

numeric_function
character_function
data_mining_function
datetime_function
conversion_function
collection_function

XML_function

m

\Cmiscellaneous_single_row_function)/

The sections that follow list the built-in SQL functions in each of the groups illustrated
in the preceding diagrams except user-defined functions. All of the built-in SQL
functions are then described in alphabetical order.

See Also: "User-Defined Functions" on page 5-236 and CREATE
FUNCTION on page 14-48

5-2 Oracle Database SQL Reference

SQL Functions

Single-Row Functions

Single-row functions return a single result row for every row of a queried table or
view. These functions can appear in select lists, WHERE clauses, START WITH and
CONNECT BY clauses, and HAVING clauses.

Numeric Functions

Numeric functions accept numeric input and return numeric values. Most numeric
functions that return NUMBER values that are accurate to 38 decimal digits. The
transcendental functions COS, COSH, EXP, LN, LOG, SIN, SINH, SQRT, TAN, and TANH
are accurate to 36 decimal digits. The transcendental functions ACOS, ASIN, ATAN, and
ATAN2 are accurate to 30 decimal digits. The numeric functions are:

ABS

ACOS

ASIN

ATAN

ATAN2

BITAND

CEIL

COs

COSH

EXP

FLOOR

LN

LOG

MOD

NANVL

POWER
REMAINDER
ROUND (number)
SIGN

SIN

SINH

SQRT

TAN

TANH

TRUNC (number)
WIDTH_BUCKET

Character Functions Returning Character Values

Character functions that return character values return values of the following
datatypes unless otherwise documented:

= If the input argument is CHAR or VARCHAR?2, then the value returned is VARCHAR2.

= If the input argument is NCHAR or NVARCHARZ2, then the value returned is
NVARCHAR2.

The length of the value returned by the function is limited by the maximum length of
the datatype returned.

= For functions that return CHAR or VARCHAR?2, if the length of the return value
exceeds the limit, then Oracle Database truncates it and returns the result without
an error message.

= For functions that return CLOB values, if the length of the return values exceeds
the limit, then Oracle raises an error and returns no data.

Functions 5-3

SQL Functions

The character functions that return character values are:

CHR
CONCAT
INITCAP
LOWER

LPAD

LTRIM
NLS_INITCAP
NLS_LOWER
NLSSORT
NLS_UPPER
REGEXP_REPLACE
REGEXP_SUBSTR
REPLACE
RPAD

RTRIM
SOUNDEX
SUBSTR
TRANSLATE
TREAT

TRIM

UPPER

NLS Character Functions

The NLS character functions return information about the character set. The NLS
character functions are:

NLS_CHARSET_DECL_LEN
NLS_CHARSET_ID
NLS_CHARSET_NAME

Character Functions Returning Number Values

Character functions that return number values can take as their argument any
character datatype.

The character functions that return number values are:

ASCII

INSTR
LENGTH
REGEXP_INSTR

Datetime Functions

Datetime functions operate on date (DATE), timestamp (TIMESTAMP, TIMESTAMP
WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE), and interval (INTERVAL
DAY TO SECOND, INTERVAL YEAR TO MONTH) values.

Some of the datetime functions were designed for the Oracle DATE datatype (ADD_
MONTHS, CURRENT_DATE, LAST_DAY, NEW_TIME, and NEXT_DAY). If you provide a
timestamp value as their argument, Oracle Database internally converts the input type
to a DATE value and returns a DATE value. The exceptions are the MONTHS_BETWEEN
function, which returns a number, and the ROUND and TRUNC functions, which do not
accept timestamp or interval values at all.

The remaining datetime functions were designed to accept any of the three types of
data (date, timestamp, and interval) and to return a value of one of these types.

5-4 Oracle Database SQL Reference

SQL Functions

The datetime functions are:

ADD_MONTHS
CURRENT_DATE
CURRENT_TIMESTAMP
DBTIMEZONE
EXTRACT (datetime)
FROM_TZ

LAST_DAY
LOCALTIMESTAMP
MONTHS_BETWEEN
NEW_TIME
NEXT_DAY
NUMTODSINTERVAL
NUMTOYMINTERVAL
ROUND (date)
SESSIONTIMEZONE
SYS_EXTRACT_UTC
SYSDATE
SYSTIMESTAMP
TO_CHAR (datetime)
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_DSINTERVAL
TO_YMINTERVAL
TRUNC (date)
TZ_OFFSET

General Comparison Functions

The general comparison functions determine the greatest and or least value from a set

of values. The general comparison functions are:

GREATEST
LEAST

Conversion Functions

Conversion functions convert a value from one datatype to another. Generally, the
form of the function names follows the convention datatype TO datatype. The first
datatype is the input datatype. The second datatype is the output datatype. The SQL

conversion functions are:

ASCIISTR
BIN_TO_NUM

CAST
CHARTOROWID
COMPOSE

CONVERT
DECOMPOSE
HEXTORAW
NUMTODSINTERVAL
NUMTOYMINTERVAL
RAWTOHEX
RAWTONHEX
ROWIDTOCHAR
ROWIDTONCHAR
SCN_TO_TIMESTAMP

Functions 5-5

SQL Functions

TIMESTAMP_TO_SCN
TO_BINARY_DOUBLE
TO_BINARY_FLOAT
TO_CHAR (character)
TO_CHAR (datetime)
TO_CHAR (number)
TO_CLOB

TO_DATE
TO_DSINTERVAL
TO_LOB
TO_MULTI_BYTE
TO_NCHAR (character)
TO_NCHAR (datetime)
TO_NCHAR (number)
TO_NCLOB
TO_NUMBER
TO_DSINTERVAL
TO_SINGLE_BYTE
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TO_YMINTERVAL
TRANSLATE ... USING
UNISTR

Large Object Functions
The large object functions operate on LOBs. The large object functions are:

BFILENAME
EMPTY_BLOB, EMPTY_CLOB

Collection Functions

The collection functions operate on nested tables and varrays. The SQL collection
functions are:

CARDINALITY

COLLECT

POWERMULTISET
POWERMULTISET_BY_CARDINALITY
SET

Hierarchical Function
The hierarchical function applies hierarchical path information to a result set.

SYS_CONNECT_BY_PATH

Data Mining Functions

The data mining functions operate on models that have been built using the DBMS_
DATA_MINING package or the Oracle Data Mining Java API. The SQL data mining
functions are:

CLUSTER_ID
CLUSTER_PROBABILITY
CLUSTER_SET
FEATURE_ID

5-6 Oracle Database SQL Reference

SQL Functions

FEATURE_SET
FEATURE_VALUE
PREDICTION
PREDICTION_COST
PREDICTION_DETAILS
PREDICTION_PROBABILITY
PREDICTION_SET

XML Functions

The XML functions operate on or return XML documents or fragments. For more
information about selecting and querying XML data using these functions, including
information on formatting output, please refer to Oracle XML DB Developer’s Guide.
The SQL XML functions are:

APPENDCHILDXML
DELETEXML
DEPTH

EXTRACT (XML)
EXISTSNODE
EXTRACTVALUE
INSERTCHILDXML
INSERTXMLBEFORE
PATH
SYS_DBURIGEN
SYS_XMLAGG
SYS_XMLGEN
UPDATEXML
XMLAGG
XMLCDATA
XMLCOLATTVAL
XMLCOMMENT
XMLCONCAT
XMLFOREST
XMLPARSE

XMLPI
XMLQUERY
XMLROOT
XMLSEQUENCE
XMLSERIALIZE
XMLTABLE
XMLTRANSFORM

Encoding and Decoding Functions
The encoding and decoding functions let you inspect and decode data in the database.

DECODE
DUMP
ORA_HASH
VSIZE

NULL-Related Functions
The NULL-related functions facilitate null handling. The NULL-related functions are:

COALESCE
LNNVL

Functions 5-7

SQL Functions

NULLIF
NVL
NVL2

Environment and Identifier Functions

The environment and identifier functions provide information about the instance and
session. These functions are:

SYS_CONTEXT
SYS_GUID
SYS_TYPEID
UID

USER
USERENV

Aggregate Functions

Aggregate functions return a single result row based on groups of rows, rather than on
single rows. Aggregate functions can appear in select lists and in ORDER BY and
HAVING clauses. They are commonly used with the GROUP BY clause in a SELECT
statement, where Oracle Database divides the rows of a queried table or view into
groups. In a query containing a GROUP BY clause, the elements of the select list can be
aggregate functions, GROUP BY expressions, constants, or expressions involving one of
these. Oracle applies the aggregate functions to each group of rows and returns a
single result row for each group.

If you omit the GROUP BY clause, then Oracle applies aggregate functions in the select
list to all the rows in the queried table or view. You use aggregate functions in the
HAVING clause to eliminate groups from the output based on the results of the
aggregate functions, rather than on the values of the individual rows of the queried
table or view.

See Also: "Using the GROUP BY Clause: Examples" on page 19-32
and the "HAVING Clause" on page 19-23 for more information on the
GROUP BY clause and HAVING clauses in queries and subqueries

Many (but not all) aggregate functions that take a single argument accept these
clauses:

= DISTINCT causes an aggregate function to consider only distinct values of the
argument expression.

= ALL causes an aggregate function to consider all values, including all duplicates.

For example, the DISTINCT average of 1, 1, 1, and 3 is 2. The ALL average is 1.5. If you
specify neither, then the default is ALL.

All aggregate functions except COUNT(*) and GROUPING ignore nulls. You can use the
NVL function in the argument to an aggregate function to substitute a value for a null.
COUNT never returns null, but returns either a number or zero. For all the remaining
aggregate functions, if the data set contains no rows, or contains only rows with nulls
as arguments to the aggregate function, then the function returns null.

The aggregate functions MIN, MAX, SUM, AVG, COUNT, VARIANCE, and STDDEV, when
followed by the KEEP keyword, can be used in conjunction with the FIRST or LAST
function to operate on a set of values from a set of rows that rank as the FIRST or
LAST with respect to a given sorting specification. Please refer to FIRST on page 5-68
for more information.

5-8 Oracle Database SQL Reference

SQL Functions

You can nest aggregate functions. For example, the following example calculates the
average of the maximum salaries of all the departments in the sample schema hr:

SELECT AVG (MAX (salary)) FROM employees GROUP BY department_id;

AVG (MAX (SALARY))

This calculation evaluates the inner aggregate (MAX(salary)) for each group defined
by the GROUP BY clause (department_id), and aggregates the results again.

The aggregate functions are:

AVG

COLLECT

CORR

CORR_*

COUNT
COVAR_POP
COVAR_SAMP
CUME_DIST
DENSE_RANK
FIRST

GROUP_ID
GROUPING
GROUPING_ID
LAST

MAX

MEDIAN

MIN
PERCENTILE_CONT
PERCENTILE_DISC
PERCENT_RANK
RANK

REGR_ (Linear Regression) Functions
STATS_BINOMIAL_TEST
STATS_CROSSTAB
STATS_F_TEST
STATS_KS_TEST
STATS_MODE
STATS_MW_TEST
STATS_ONE_WAY_ANOVA
STATS_T_TEST_*
STATS_WSR_TEST
STDDEV
STDDEV_POP
STDDEV_SAMP
SUM

VAR_POP
VAR_SAMP
VARIANCE

Analytic Functions

Analytic functions compute an aggregate value based on a group of rows. They differ
from aggregate functions in that they return multiple rows for each group. The group

Functions 5-9

SQL Functions

of rows is called a window and is defined by the analytic_clause. For each row, a
sliding window of rows is defined. The window determines the range of rows used to
perform the calculations for the current row. Window sizes can be based on either a
physical number of rows or a logical interval such as time.

Analytic functions are the last set of operations performed in a query except for the
final ORDER BY clause. All joins and all WHERE, GROUP BY, and HAVING clauses are
completed before the analytic functions are processed. Therefore, analytic functions
can appear only in the select list or ORDER BY clause.

Analytic functions are commonly used to compute cumulative, moving, centered, and
reporting aggregates.

analytic_function::=

)
< O L 0 D Y0

analytic_clause::=

query_partition_clause —(order_by_clause) \

query_partition_clause::=

PARTITION

order_by_clause::=

M)
N
SC

- @ riEh
ORDER 1 BY osition

posttion)

c_alias

windowing_clause::=

UNBOUNDED |—)| PRECEDING UNBOUNDED |—)| FOLLOWING

CURRENT |->| ROW
PRECEDING
(e}

UNBOUNDED |_>| PRECEDING }7

CURRENT |->| ROW

RECEDING

=)

value_expr

value_expr

CURRENT |->| ROW }

valuefexpr)->| PRECEDING }_J

5-10 Oracle Database SQL Reference

SQL Functions

The semantics of this syntax are discussed in the sections that follow.

analytic_function

Specify the name of an analytic function (see the listing of analytic functions following
this discussion of semantics).

arguments

Analytic functions take 0 to 3 arguments. The arguments can be any numeric datatype
or any nonnumeric datatype that can be implicitly converted to a numeric datatype.
Oracle determines the argument with the highest numeric precedence and implicitly
converts the remaining arguments to that datatype. The return type is also that
datatype, unless otherwise noted for an individual function.

See Also: "Numeric Precedence" on page 2-13 for information on
numeric precedence and Table 2-10, " Implicit Type Conversion
Matrix" on page 2-41 for more information on implicit conversion

analytic_clause

Use OVER analytic_clause to indicate that the function operates on a query result
set. That is, it is computed after the FROM, WHERE, GROUP BY, and HAVING clauses. You
can specify analytic functions with this clause in the select list or ORDER BY clause. To
filter the results of a query based on an analytic function, nest these functions within
the parent query, and then filter the results of the nested subquery.

Notes on the analytic_clause: The following notes apply to the analytic_clause:

= You cannot specify any analytic function in any part of the analytic_clause.
That is, you cannot nest analytic functions. However, you can specify an analytic
function in a subquery and compute another analytic function over it.

= You can specify OVER analytic_clause with user-defined analytic functions as
well as built-in analytic functions. See CREATE FUNCTION on page 14-48.

query_partition_clause

Use the PARTITION BY clause to partition the query result set into groups based on
one or more value_expr. If you omit this clause, then the function treats all rows of
the query result set as a single group.

To use the query partition_ clausein an analytic function, use the upper branch
of the syntax (without parentheses). To use this clause in a model query (in the
model_column_clauses) or a partitioned outer join (in the outer_join clause),
use the lower branch of the syntax (with parentheses).

You can specify multiple analytic functions in the same query, each with the same or
different PARTITION BY keys.

If the objects being queried have the parallel attribute, and if you specify an analytic
function with the query_partition_clause, then the function computations are
parallelized as well.

Valid values of value_expr are constants, columns, nonanalytic functions, function
expressions, or expressions involving any of these.

order_by_clause

Use the order_by._clause to specify how data is ordered within a partition. For all
analytic functions except PERCENTILE_CONT and PERCENTILE_ DISC (which take

Functions 5-11

SQL Functions

only a single key), you can order the values in a partition on multiple keys, each
defined by a value_expr and each qualified by an ordering sequence.

Within each function, you can specify multiple ordering expressions. Doing so is
especially useful when using functions that rank values, because the second
expression can resolve ties between identical values for the first expression.

Whenever the order_by_clause results in identical values for multiple rows, the
function returns the same result for each of those rows. Please refer to the analytic
example for SUM on page 5-174 for an illustration of this behavior.

Restrictions on the ORDER BY Clause The following restrictions apply to the ORDER
BY clause:

= When used in an analytic function, the order_by._clause must take an
expression (expr). The SIBLINGS keyword is not valid (it is relevant only in
hierarchical queries). Position (position) and column aliases (c_alias) are also
invalid. Otherwise this order_by._clauseis the same as that used to order the
overall query or subquery.

= An analytic function that uses the RANGE keyword can use multiple sort keys in its
ORDER BY clause if it specifies either of these two windows:

— RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. The short form
of this is RANGE UNBOUNDED PRECEDING.

— RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING. The short form
of this is RANGE UNBOUNDED FOLLOWING.

Window boundaries other than these two can have only one sort key in the ORDER
BY clause of the analytic function. This restriction does not apply to window
boundaries specified by the ROW keyword.

ASC | DESC Specify the ordering sequence (ascending or descending). ASC is the
default.

NULLS FIRST | NULLS LAST Specify whether returned rows containing nulls should
appear first or last in the ordering sequence.

NULLS LAST is the default for ascending order, and NULLS FIRST is the default for
descending order.

Analytic functions always operate on rows in the order specified in the order. by
clause of the function. However, the order_by. clause of the function does not
guarantee the order of the result. Use the order._by. clause of the query to
guarantee the final result ordering.

See Also: order_by_clause of SELECT on page 19-28 for more
information on this clause

windowing_clause

Some analytic functions allow the windowing_clause. In the listing of analytic
functions at the end of this section, the functions that allow the windowing clause
are followed by an asterisk (¥).

ROWS | RANGE These keywords define for each row a window (a physical or logical
set of rows) used for calculating the function result. The function is then applied to all
the rows in the window. The window moves through the query result set or partition
from top to bottom.

5-12 Oracle Database SQL Reference

SQL Functions

= ROWS specifies the window in physical units (rows).
= RANGE specifies the window as a logical offset.

You cannot specify this clause unless you have specified the order_by. clause.
Some window boundaries defined by the RANGE clause let you specify only one
expression in the order_by._clause. Please refer to "Restrictions on the ORDER BY
Clause" on page 5-12.

The value returned by an analytic function with a logical offset is always deterministic.
However, the value returned by an analytic function with a physical offset may
produce nondeterministic results unless the ordering expression results in a unique
ordering. You may have to specify multiple columns in the order_by._clauseto
achieve this unique ordering.

BETWEEN ... AND Use the BETWEEN ... AND clause to specify a start point and end
point for the window. The first expression (before AND) defines the start point and the
second expression (after AND) defines the end point.

If you omit BETWEEN and specify only one end point, then Oracle considers it the start
point, and the end point defaults to the current row.

UNBOUNDED PRECEDING Specify UNBOUNDED PRECEDING to indicate that the
window starts at the first row of the partition. This is the start point specification and
cannot be used as an end point specification.

UNBOUNDED FOLLOWING Specify UNBOUNDED FOLLOWING to indicate that the
window ends at the last row of the partition. This is the end point specification and
cannot be used as a start point specification.

CURRENT ROW As a start point, CURRENT ROW specifies that the window begins at
the current row or value (depending on whether you have specified ROW or RANGE,
respectively). In this case the end point cannot be value_expr PRECEDING.

As an end point, CURRENT ROW specifies that the window ends at the current row or
value (depending on whether you have specified ROW or RANGE, respectively). In this
case the start point cannot be value_expr FOLLOWING.

value_expr PRECEDING or value_expr FOLLOWING For RANGE or ROW:

» If value_expr FOLLOWING is the start point, then the end point must be value_
expr FOLLOWING.

» If value_expr PRECEDING is the end point, then the start point must be value_
expr PRECEDING.

If you are defining a logical window defined by an interval of time in numeric format,
then you may need to use conversion functions.

See Also: NUMTOYMINTERVAL on page 5-109 and
NUMTODSINTERVAL on page 5-108 for information on converting
numeric times into intervals

If you specified ROWS:

s value_exprisa physical offset. It must be a constant or expression and must
evaluate to a positive numeric value.

» If value expris part of the start point, then it must evaluate to a row before the
end point.

Functions 5-13

SQL Functions

If you specified RANGE:

» value exprisalogical offset. It must be a constant or expression that evaluates
to a positive numeric value or an interval literal. Please refer to "Literals" on
page 2-44 for information on interval literals.

= You can specify only one expression in the order. by clause

m If value expr evaluates to a numeric value, then the ORDER BY expr must be a
numeric or DATE datatype.

s If value_ expr evaluates to an interval value, then the ORDER BY expr must be a
DATE datatype.

If you omit the windowing_clause entirely, then the default is RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW.

Analytic functions are commonly used in data warehousing environments. In the list
of analytic functions that follows, functions followed by an asterisk (*) allow the full
syntax, including the windowing_clause.

AVG*

CORR *
COVAR_POP *
COVAR_SAMP *
COUNT *
CUME_DIST
DENSE_RANK
FIRST
FIRST_VALUE *
LAG

LAST

LAST_VALUE *
LEAD

MAX *

MIN *

NTILE
PERCENT_RANK
PERCENTILE_CONT
PERCENTILE_DISC
RANK
RATIO_TO_REPORT
REGR_ (Linear Regression) Functions *
ROW_NUMBER
STDDEV *
STDDEV_POP *
STDDEV_SAMP *
SUM *

VAR_POP *
VAR_SAMP *
VARIANCE *

See Also: Oracle Database Data Warehousing Guide for more
information on these functions and for scenarios illustrating their use

Object Reference Functions

Object reference functions manipulate REF values, which are references to objects of
specified object types. The object reference functions are:

5-14 Oracle Database SQL Reference

ABS

DEREF
MAKE_REF
REF
REFTOHEX
VALUE

See Also: Oracle Database Concepts for more information about REF
datatypes

Model Functions

Model functions can be used only in the model_clause of the SELECT statement.
The model functions are:

Ccv
ITERATION_NUMBER
PRESENTNNV
PRESENTV

PREVIOUS

Alphabetical Listing of SQL Functions

ABS

The SQL functions are described in alphabetical order.

Syntax
0,0:0

Purpose
ABS returns the absolute value of n.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-41 for more information on implicit conversion

Examples
The following example returns the absolute value of -15:

SELECT ABS(-15) "Absolute" FROM DUAL;

Absolute

Functions 5-15

ACOS

ACOS

Syntax
K000

Purpose

ACOS returns the arc cosine of n. The argument n must be in the range of -1 to 1, and
the function returns a value in the range of 0 to pi, expressed in radians.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is BINARY_
FLOAT, then the function returns BINARY_DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-41 for more information on implicit conversion

Examples
The following example returns the arc cosine of .3:

SELECT ACOS(.3)"Arc_Cosine" FROM DUAL;

Arc_Cosine

1.26610367

ADD_MONTHS

Syntax
OEO ®
Purpose

ADD_MONTHS returns the date date plus integer months. The date argument can be
a datetime value or any value that can be implicitly converted to DATE. The integer
argument can be an integer or any value that can be implicitly converted to an integer.
The return type is always DATE, regardless of the datatype of date. If dateis the last
day of the month or if the resulting month has fewer days than the day component of
date, then the result is the last day of the resulting month. Otherwise, the result has
the same day component as date.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-41 for more information on implicit conversion

Examples
The following example returns the month after the hire date in the sample table
employees:

SELECT TO_CHAR (
ADD_MONTHS (hire_date, 1),
'DD-MON-YYYY') "Next month"
FROM employees
WHERE last_name = 'Baer';

5-16 Oracle Database SQL Reference

APPENDCHILDXML

Next Month

07-JUL-1994

APPENDCHILDXML

Syntax
O
—]{ APPENDCHILDXML |->®{XMLType_instance}@{XPath_string)@{value_expr) @
Purpose

APPENDCHILDXML appends a user-supplied value onto the target XML as the child of
the node indicated by an XPath expression.

»m XMLType_ instanceis an instance of XMLType.

s The XPath stringis an Xpath expression indicating one or more nodes onto
which one or more child nodes are to be appended. You can specify an absolute
XPath_string with an initial slash or a relative XPath_stringby omitting the
initial slash. If you omit the initial slash, the context of the relative path defaults to
the root node.

» The value_expr specifies one or more nodes of XMLType. It must resolve to a
string.

s The optional namespace_string provides namespace information for the
XPath_string. This parameter must be of type VARCHAR2.

See Also: Oracle XML DB Developer’s Guide for more information
about this function

Examples

The following example adds an /Owner node to the /Warehouse/Building node of
warehouse_spec in the oe.warehouses table if the value of the /Building node
is "Rented":

UPDATE warehouses SET warehouse_spec =
APPENDCHILDXML (warehouse_spec,
'Warehouse/Building',
XMLType (' <Owner>Grandco</Owner>"'))
WHERE EXTRACTVALUE (warehouse_spec, '/Warehouse/Building') = 'Rented';

SELECT warehouse_id, warehouse_name,
EXTRACTVALUE (warehouse_spec, '/Warehouse/Building/Owner') "Prop.Owner"
FROM warehouses
WHERE EXISTSNODE (warehouse_spec, '/Warehouse/Building/Owner') = 1;

WAREHOUSE_ID WAREHOUSE_NAME Prop.Owner

2 San Francisco Grandco
3 New Jersey Grandco

Functions 5-17

ASCIISTR

ASCIISTR

ASCII

Syntax
OEDO
Purpose

ASCIISTR takes as its argument a string, or an expression that resolves to a string, in
any character set and returns an ASCII version of the string in the database character
set. Non-ASCII characters are converted to the form \xxxx, where xxxx represents a
UTF-16 code unit.

See Also: Oracle Database Globalization Support Guide for information
on Unicode character sets and character semantics

Examples
The following example returns the ASCII string equivalent of the text string "ABACDE":

SELECT ASCIISTR('ABACDE') FROM DUAL;

ASCIISTR('

AB\00C4CDE

Syntax
O

Purpose

ASCII returns the decimal representation in the database character set of the first
character of char.

char can be of datatype CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The value returned
is of datatype NUMBER. If your database character set is 7-bit ASCII, then this function
returns an ASCII value. If your database character set is EBCDIC Code, then this
function returns an EBCDIC value. There is no corresponding EBCDIC character
function.

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-37 for more
information

Examples
The following example returns employees whose last names begin with the letter L,
whose ASCII equivalent is 76:

SELECT last_name FROM employees
WHERE ASCII(SUBSTR(last_name, 1, 1,)) = 76;

LAST_NAME

5-18 Oracle Database SQL Reference

ATAN

ASIN

ATAN

Ladwig
Landry

Lee
Livingston

Syntax
0,0:0

Purpose

ASIN returns the arc sine of n. The argument n must be in the range of -1 to 1, and the
function returns a value in the range of -pi/2 to pi/2, expressed in radians.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is BINARY__
FLOAT, then the function returns BINARY_ DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-41 for more information on implicit conversion

Examples
The following example returns the arc sine of .3:

SELECT ASIN(.3) "Arc_Sine" FROM DUAL;

Arc_Sine

.304692654

Syntax
0,00

Purpose

ATAN returns the arc tangent of n. The argument n can be in an unbounded range and
returns a value in the range of -pi/2 to pi/2, expressed in radians.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is BINARY_
FLOAT, then the function returns BINARY_DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-41 for more information on implicit conversion

Examples
The following example returns the arc tangent of .3:

SELECT ATAN(.3) "Arc_Tangent" FROM DUAL;

Functions 5-19

ATAN2

ATAN2

AVG

Arc_Tangent

.291456794

Purpose

ATAN?2 returns the arc tangent of n1 and n2. The argument n1 can be in an unbounded
range and returns a value in the range of -pi to pi, depending on the signs of n1 and
n2, expressed in radians. ATAN2(n1, n2) is the same as ATAN2(n1/n2).

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If any argument is BINARY_
FLOAT or BINARY_DOUBLE, then the function returns BINARY_DOUBLE. Otherwise
the function returns NUMBER.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-41 for more information on implicit conversion

Examples
The following example returns the arc tangent of .3 and .2:

SELECT ATAN2 (.3, .2) "Arc_Tangent2" FROM DUAL;
Arc_Tangent2

.982793723

Syntax

DISTINCT

[e| OVER P@»{analytic_clausem
(expr ())

AVG |((
See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

AVG returns average value of expr.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

5-20 Oracle Database SQL Reference

BFILENAME

BFILENAME

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-41 for more information on implicit conversion

If you specify DISTINCT, then you can specify only the query partition_clause
of the analytic _clause. The order_ by clauseand windowing clause are not
allowed.

See Also: "About SQL Expressions" on page 6-1 for information on
valid forms of expr and "Aggregate Functions" on page 5-8

Aggregate Example

The following example calculates the average salary of all employees in the
hr.employees table:

SELECT AVG(salary) "Average" FROM employees;

Average

Analytic Example

The following example calculates, for each employee in the employees table, the
average salary of the employees reporting to the same manager who were hired in the
range just before through just after the employee:

SELECT manager_id, last_name, hire_date, salary,
AVG(salary) OVER (PARTITION BY manager_id ORDER BY hire_date
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS c_mavg
FROM employees;

MANAGER_ID LAST_NAME HIRE_DATE SALARY C_MAVG
100 Kochhar 21-SEP-89 17000 17000
100 De Haan 13-JAN-93 17000 15000
100 Raphaely 07-DEC-94 11000 11966.6667
100 Kaufling 01-MAY-95 7900 10633.3333
100 Hartstein 17-FEB-96 13000 9633.33333
100 Weiss 18-JUL-96 8000 11666.6667
100 Russell 01-0CT-96 14000 11833.3333

Syntax

GrLENAE | D) D @resn) (OO0 (Temame) (DA
Purpose

BFILENAME returns a BFILE locator that is associated with a physical LOB binary file
on the server file system.

s 'directory'is a database object that serves as an alias for a full path name on the
server file system where the files are actually located.

» 'filename'is the name of the file in the server file system.

Functions 5-21

BIN_TO_NUM

You must create the directory object and associate a BFILE value with a physical file
before you can use them as arguments to BFILENAME in a SQL or PL/SQL statement,
DBMS_LOB package, or OCI operation.

You can use this function in two ways:
s Ina DML statement to initialize a BFILE column

= Ina programmatic interface to access BFILE data by assigning a value to the
BFILE locator.

The directory argument is case sensitive. That is, you must ensure that you specify the
directory object name exactly as it exists in the data dictionary. For example, if an
"Admin" directory object was created using mixed case and a quoted identifier in the
CREATE DIRECTORY statement, then when using the BFILENAME function you must
refer to the directory object as ' Admin'. You must specify the filename argument
according to the case and punctuation conventions for your operating system.

See Also:

» Oracle Database Application Developer’s Guide - Large Objects and
Oracle Call Interface Programmer’s Guide for more information on
LOBs and for examples of retrieving BFILE data

s CREATE DIRECTORY on page 14-42

Examples

The following example inserts a row into the sample table pm.print_media. The
example uses the BFILENAME function to identify a binary file on the server file
system in the directory SORACLE_HOME/demo/schema/product_media. The
example shows how the directory database object media_dir was created in the PM
schema.

CREATE DIRECTORY media_dir AS '/demo/schema/product_media';
INSERT INTO print_media (product_id, ad_id, ad_graphic)

VALUES (3000, 31001,
BFILENAME ('MEDIA_DIR', 'modem_comp_ad.gif'));

BIN_TO_NUM

Syntax

BIN_TO_NUM

Purpose

BIN_TO_NUM converts a bit vector to its equivalent number. Each argument to this
function represents a bit in the bit vector. This function takes as arguments any
numeric datatype, or any nonnumeric datatype that can be implicitly converted to
NUMBER. Each expr must evaluate to 0 or 1. This function returns Oracle NUMBER.

BIN_TO_NUM is useful in data warehousing applications for selecting groups of
interest from a materialized view using grouping sets.

5-22 Oracle Database SQL Reference

BITAND

BITAND

See Also:

» group_by_clause on page 19-21 for information on GROUPING SETS
syntax

s Table 2-10, " Implicit Type Conversion Matrix" on page 2-41 for
more information on implicit conversion

» Oracle Database Data Warehousing Guide for information on data
aggregation in general

Examples
The following example converts a binary value to a number:

SELECT BIN_TO_NUM(1,0,1,0) FROM DUAL;

BIN_TO_NUM(1,0,1,0)

Syntax
0lCDI0CDL0

Purpose

BITAND computes an AND operation on the bits of exprl and expr2, both of which
must resolve to nonnegative integers, and returns an integer. This function is
commonly used with the DECODE function, as illustrated in the example that follows.

An AND operation compares two bit values. If the values are the same, the operator
returns 1. If the values are different, the operator returns 0. Only significant bits are
compared. For example, an AND operation on the integers 5 (binary 101) and 1 (binary
001 or 1) compares only the rightmost bit, and results in a value of 1 (binary 1).

Both arguments can be any numeric datatype, or any nonnumeric datatype that can be
implicitly converted to NUMBER. The function returns NUMBER.

Note: This function does not determine the datatype of the value
returned. Therefore, in SQL*Plus, you must specify BITAND in a
wrapper, such as TO_NUMBER, which returns a datatype.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-41 for more information on implicit conversion

Examples

The following represents each order_status in the sample table oe . orders by
individual bits. (The example specifies options that can total only 7, so rows with
order_status greater than 7 are eliminated.)

SELECT order_id, customer_id,
DECODE (BITAND (order_status, 1), 1, 'Warehouse', 'PostOffice')
Location,
DECODE (BITAND (order_status, 2), 2, 'Ground', 'Air') Method,

Functions 5-23

CARDINALITY

DECODE (BITAND (order_status, 4), 4, 'Insured', 'Certified') Receipt
FROM orders
WHERE order_status < 8;

ORDER_ID CUSTOMER_ID LOCATION METHOD RECEIPT

2458 101 PostOffice Air Certified
2397 102 Warehouse Air Certified
2454 103 Warehouse Air Certified
2354 104 PostOffice Air Certified
2358 105 PostOffice Ground Certified
2381 106 Warehouse Ground Certified
2440 107 Warehouse Ground Certified
2357 108 Warehouse Air Insured
2394 109 Warehouse Air Insured
2435 144 PostOffice Ground Insured
2455 145 Warehouse Ground Insured
2356 105 Warehouse Air Insured
2360 107 PostOffice Air Insured
CARDINALITY

Syntax

—]{ CARDINALITY F@»Cnested_table)—)@»

Purpose

CARDINALITY returns the number of elements in a nested table. The return type is
NUMBER. If the nested table is empty, or is a null collection, then CARDINALITY returns
NULL.

Examples

The following example shows the number of elements in the nested table column ad_
textdocs_ntab of the sample table pm.print_media:

SELECT product_id, CARDINALITY (ad_textdocs_ntab)
FROM print_media;

PRODUCT_ID CARDINALITY (AD_TEXTDOCS_NTAB)

CAST

BCEDI0

subquery a

5-24 Oracle Database SQL Reference

CAST

Purpose

CAST converts one built-in datatype or collection-typed value into another built-in
datatype or collection-typed value.

CAST lets you convert built-in datatypes or collection-typed values of one type into
another built-in datatype or collection type. You can cast an unnamed operand (such
as a date or the result set of a subquery) or a named collection (such as a varray or a
nested table) into a type-compatible datatype or named collection. The type name
must be the name of a built-in datatype or collection type and the operand must be a
built-in datatype or must evaluate to a collection value.

For the operand, expr can be either a built-in datatype, a collection type, or an
instance of an ANYDATA type. If expr is an instance of an ANYDATA type, CAST will try
to extract the value of the ANYDATA instance and return it if it matches the cast target
type, otherwise, null will be returned. MULTISET informs Oracle Database to take the
result set of the subquery and return a collection value. Table 5-1 shows which built-in
datatypes can be cast into which other built-in datatypes. (CAST does not support
LONG, LONG RAW, or the Oracle-supplied types.)

CAST does not directly support any of the LOB datatypes. When you use CAST to
convert a CLOB value into a character datatype or a BLOB value into the RAW datatype,
the database implicitly converts the LOB value to character or raw data and then
explicitly casts the resulting value into the target datatype. If the resulting value is
larger than the target type, then the database returns an error.

When you use CAST ... MULTISET to get a collection value, each select list item in the
query passed to the CAST function is converted to the corresponding attribute type of
the target collection element type.

Table 5-1 Casting Built-In Datatypes
from
BINARY_ from
FLOAT, from from DATETIME / from from ROWID, from
BINARY_ CHAR, INTERVAL UROWID NCHAR,
DOUBLE VARCHAR2 NUMBER (Note 1) RAW (Note 2) NVARCHAR2
to BINARY_FLOAT, x X X - _— __ x
BINARY_DOUBLE
to CHAR, X X X X X X _
VARCHAR2
to NUMBER X X X - -- - X
to DATE, - X - X - - -
TIMESTAMP,
INTERVAL
to RAW - X - - X __ -
to ROWID, UROWID -- X - - - Xa __
to NCHAR, X - X X X X X
NVARCHAR2

Note 1: Datetime/interval includes DATE, TIMESTAMP, TIMESTAMP WITH
TIMEZONE, INTERVAL DAY TO SECOND, and INTERVAL YEAR TO MONTH.

Note 2: You cannot cast a UROWID to a ROWID if the UROWID contains the value of a
ROWID of an index-organized table.

If you want to cast a named collection type into another named collection type, then
the elements of both collections must be of the same type.

Functions 5-25

CAST

See Also: "Implicit Data Conversion" on page 2-41 for information
on how Oracle Database implicitly converts collection type data into
character data

If the result set of subguery can evaluate to multiple rows, then you must specify the
MULTISET keyword. The rows resulting from the subquery form the elements of the
collection value into which they are cast. Without the MULTISET keyword, the
subquery is treated as a scalar subquery.

Built-In Datatype Examples
The following examples use the CAST function with scalar datatypes:

SELECT CAST('22-0CT-1997' AS TIMESTAMP WITH LOCAL TIME ZONE)
FROM dual;

SELECT product_id,
CAST (ad_sourcetext AS VARCHAR2 (30)
FROM print_media;

Collection Examples

The CAST examples that follow build on the cust_address_typ found in the sample
order entry schema, oe.

CREATE TYPE address_book_t AS TABLE OF cust_address_typ;

/
CREATE TYPE address_array_t AS VARRAY(3) OF cust_address_typ;
/
CREATE TABLE cust_address (
custno NUMBER,
street_address VARCHAR2 (40) ,
postal_code VARCHAR2 (10),
city VARCHAR2 (30) ,
state_province VARCHAR2 (10) ,
country_id CHAR(2));

CREATE TABLE cust_short (custno NUMBER, name VARCHAR2 (31));
CREATE TABLE states (state_id NUMBER, addresses address_array_t);

This example casts a subquery:

SELECT s.custno, s.name,

CAST (MULTISET (SELECT ca.street_address,
ca.postal_code,
ca.city,
ca.state_province,
ca.country_id

FROM cust_address ca
WHERE s.custno = ca.custno)
AS address_book_t)
FROM cust_short s;

CAST converts a varray type column into a nested table:

SELECT CAST(s.addresses AS address_book_t)
FROM states s
WHERE s.state_id = 111;

The following objects create the basis of the example that follows:

5-26 Oracle Database SQL Reference

CHARTOROWID

CEIL

CREATE TABLE projects
(employee_id NUMBER, project_name VARCHAR2 (10));

CREATE TABLE emps_short
(employee_id NUMBER, last_name VARCHAR2(10));

CREATE TYPE project_table_typ AS TABLE OF VARCHAR2(10);
/
The following example of a MULTISET expression uses these objects:

SELECT e.last_name,
CAST (MULTISET (SELECT p.project_name
FROM projects p
WHERE p.employee_id = e.employee_id
ORDER BY p.project_name)
AS project_table_typ)

FROM emps_short e;

Syntax
0,00

Purpose
CEIL returns smallest integer greater than or equal to n.
This function takes as an argument any numeric datatype or any nonnumeric datatype

that can be implicitly converted to a numeric datatype. The function returns the same
datatype as the numeric datatype of the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-41 for more information on implicit conversion

Examples
The following example returns the smallest integer greater than or equal to the order
total of a specified order:

SELECT order_total, CEIL(order_total) FROM orders
WHERE order_id = 2434;

ORDER_TOTAL CEIL (ORDER_TOTAL)

268651.8 268652

CHARTOROWID

Syntax
OCDI0
Purpose

CHARTOROWID converts a value from CHAR, VARCHAR2, NCHAR, or NVARCHAR?2
datatype to ROWID datatype.

Functions 5-27

CHR

This function does not support CLOB data directly. However, CLOBs can be passed in
as arguments through implicit data conversion.

See Also: "Datatype Comparison Rules" on page 2-37 for more
information.

Examples

The following example converts a character rowid representation to a rowid. (The
actual rowid is different for each database instance.)

SELECT last_name FROM employees
WHERE ROWID = CHARTOROWID ('AAAFd1AAFAAAABSAA/');

LAST_NAME

Greene

CHR

Syntax

USING |5 NCHAR_CS |—\
a o

Purpose

CHR returns the character having the binary equivalent to n as a VARCHAR2 value in
either the database character set or, if you specify USING NCHAR_CS, the national
character set.

For single-byte character sets, if n > 256, then Oracle Database returns the binary
equivalent of n mod 256. For multibyte character sets, n must resolve to one entire
code point. Invalid code points are not validated, and the result of specifying invalid
code points is indeterminate.

This function takes as an argument a NUMBER value, or any value that can be implicitly
converted to NUMBER, and returns a character.

Note: Use of the CHR function (either with or without the optional
USING NCHAR_CS clause) results in code that is not portable between
ASCII- and EBCDIC-based machine architectures.

See Also: NCHR on page 5-99 and Table 2-10, " Implicit Type
Conversion Matrix" on page 2-41 for more information on implicit
conversion

Examples

The following example is run on an ASCII-based machine with the database character
set defined as WESISO8859P1:

SELECT CHR(67) | |CHR(65) | |CHR(84) "Dog" FROM DUAL;
Dog

CAT

5-28 Oracle Database SQL Reference

CLUSTER_ID

To produce the same results on an EBCDIC-based machine with the WESEBCDIC1047
character set, the preceding example would have to be modified as follows:

SELECT CHR(195) | |CHR(193) | |CHR(227) "Dog"
FROM DUAL;

Dog

CAT

For multibyte character sets, this sort of concatenation gives different results. For
example, given a multibyte character whose hexadecimal value is ala2 (al
representing the first byte and a2 the second byte), you must specify for n the decimal
equivalent of 'ala2’, or 41378. That is, you must specify:

SELECT CHR(41378) FROM DUAL;

You cannot specify the decimal equivalent of al concatenated with the decimal
equivalent of a2, as in the following example:

SELECT CHR(161)||CHR(162) FROM DUAL;

However, you can concatenate whole multibyte code points, as in the following

example, which concatenates the multibyte characters whose hexadecimal values are
ala2 and ala3:

SELECT CHR(41378) | |CHR(41379) FROM DUAL;

The following example assumes that the national character set is UTF16:

SELECT CHR (196 USING NCHAR_CS) FROM DUAL;

CH

i

CLUSTER_ID

Syntax

CLUSTER_ID |(((modeD-(mining_anribute_clause)@

mining_attribute_clause::=

*

M)
N
table

expr

Purpose

This function is for use with clustering models that have been created using the DBMS_
DATA_MINING package or with the Oracle Data Mining Java API. It returns the cluster

Functions 5-29

CLUSTER_PROBABILITY

identifier of the predicted cluster with the highest probability for the set of predictors
specified in the mining attribute_clause. The value returned is an Oracle
NUMBER.

The mining attribute clause behaves as described for the PREDICTION
function. Please refer to mining_attribute_clause on page 5-121.

See Also:

» Oracle Data Mining Concepts for detailed information on Oracle
Data Mining features

» Oracle Data Mining Administrator’s Guide for information on the
demo programs available in the code

» Oracle Data Mining Application Developer’s Guide for information
on writing Oracle Data Mining applications

= PREDICTION on page 5-120

Examples

The following example lists the clusters into which customers of a given dataset have
been grouped.

This example, and the prerequisite data mining operations, including the creation of
the dm_sh_clus_sample model and the dm_sh_sample_apply_prepared view,
can be found in the demo file SORACLE_HOME/rdbms /demo/dmkmdemo . sgl.
General information on data mining demo files is available in Oracle Data Mining
Administrator’s Guide. The example is presented here to illustrate the syntactic use of
the function.

SELECT CLUSTER_ID(km_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt
FROM km_sh_sample_apply_prepared

GROUP BY CLUSTER_ID(km_sh_clus_sample USING *)

ORDER BY cnt DESC;

CLUS CNT
2 580
10 199
6 185
8 115
12 98
16 82
19 81
15 68
18 65
14 27

10 rows selected.

CLUSTER_PROBABILITY

Syntax

O O
—{ CLUSTER PROBABILITY @ (‘model) ((mining_attribute_clause) }>

5-30 Oracle Database SQL Reference

CLUSTER_PROBABILITY

mining_attribute_clause::=

*

(M)
O
table

expr

Purpose

This function is for use with clustering models that have been created with the DBMS_
DATA_MINING package or with the Oracle Data Mining Java APL. It returns a measure
of the degree of confidence of membership of an input row in a cluster associated with
the specified model.

» For cluster_id, specify the identifier of the cluster in the model. The function
returns the probability for the specified cluster. If you omit this clause, then the
function returns the probability associated with the best predicted cluster. You can
use the form without cIuster_idin conjunction with the CLUSTER_ID function
to obtain the best predicted pair of cluster ID and probability.

» Themining attribute_clause behaves as described for the PREDICTION
function. Please refer to mining_attribute_clause on page 5-121

See Also:

» Oracle Data Mining Concepts for detailed information on Oracle
Data Mining features

» Oracle Data Mining Administrator’s Guide for information on the
demo programs available in the code

» Oracle Data Mining Application Developer’s Guide for information
on writing Oracle Data Mining applications

s CLUSTER_ID on page 5-29 and PREDICTION on page 5-120 for
information on related data mining functions

Examples

The following example determines the ten most representative customers, based on
likelihood, in cluster 2.

This example, and the prerequisite data mining operations, including the creation of
the dm_sh_clus_sample model and the dm_sh_sample_apply_ prepared view,
can be found in the demo file $ORACLE_HOME/rdbms /demo /dmkmdemo . sql.
General information on data mining demo files is available in Oracle Data Mining
Administrator’s Guide. The example is presented here to illustrate the syntactic use of
the function.

SELECT *
FROM (SELECT cust_id, CLUSTER_PROBABILITY (km_sh_clus_sample, 2 USING *) prob
FROM km_sh_sample_apply_prepared
ORDER BY prob DESC)
WHERE ROWNUM < 11;

CUST_ID PROB

100052 .9993

Functions 5-31

CLUSTER_SET

100962 .9993
101208 .9993
100281 .9993
100012 .9993
101009 .9992
100173 .9992
101176 .9991
100672 .9991
101420 .9991

10 rows selected.

CLUSTER_SET

Syntax

_ \
CLUSTER_SET (model mining_attribute_clause)(>

mining_attribute_clause::=

*

table
expr

Purpose

This function is for use with clustering models that have been created with the DBMS_
DATA_MINING package or with the Oracle Data Mining Java APL It returns a varray of
objects containing all possible clusters that a given row belongs to. Each object in the
varray is a pair of scalar values containing the cluster ID and the cluster probability.
The object fields are named CLUSTER_ID and PROBABILITY, and both are Oracle
NUMBER.

= For the optional topNargument, specify a positive integer. Doing so restricts the
set of predicted clusters to those that have one of the top N probability values. If
you omit topN or set it to NULL, then all clusters are returned in the collection. If
multiple clusters are tied for the Nth value, the database still returns only N
values.

= For the optional cutoff argument, specify a positive integer to restrict the
returned clusters to those with a probability greater than or equal to the specified
cutoff. You can filter only by cutoff by specifying NULL for topN and the desired
cutoff value for cutoff.

You can specify topNand cutoff together to restrict the returned clusters to those
that are in the top N and have a probability that passes the threshold.

The mining attribute clause behaves as described for the PREDICTION
function. Please refer to mining_attribute_clause on page 5-121.

5-32 Oracle Database SQL Reference

CLUSTER_SET

See Also:

» Oracle Data Mining Concepts for detailed information on Oracle
Data Mining features

» Oracle Data Mining Administrator’s Guide for information on the
demo programs available in the code

» Oracle Data Mining Application Developer’s Guide for information
on writing Oracle Data Mining applications

Examples

The following example lists the most relevant attributes (with confidence > 55%) of
each cluster to which customer 101362 belongs with > 20% likelihood.

This example, and the prerequisite data mining operations, including the creation of
the dm_sh_clus_sample model and the views and type, can be found in the demo
file SORACLE_HOME/rdbms /demo/dmkmdemo . sgl. General information on data
mining demo files is available in Oracle Data Mining Administrator’s Guide. The
example is presented here to illustrate the syntactic use of the function.

WITH
clus_tab AS (
SELECT id,
A.attribute_name aname,
A.conditional_operator op,
NVL (A.attribute_str_value,
ROUND (DECODE (A.attribute_name, N.col,
A.attribute_num_value * N.scale + N.shift,
A.attribute_num value),4)) val,
A.attribute_support support,
A.attribute_confidence confidence
FROM TABLE (DBMS_DATA_MINING.GET_MODEL_DETAILS_KM('km_sh clus_sample')) T,
TABLE (T.rule.antecedent) A,
km_sh_sample_norm N
WHERE A.attribute_name = N.col (+) AND A.attribute_confidence > 0.55
),
clust AS (
SELECT 1id,
CAST (COLLECT (Cattr (aname, op, TO_CHAR(val), support, confidence))
AS Cattrs) cl_attrs
FROM clus_tab
GROUP BY id
)
custclus AS (
SELECT T.cust_id, S.cluster_id, S.probability
FROM (SELECT cust_id, CLUSTER_SET (km_sh_clus_sample, NULL, 0.2 USING *) pset
FROM km_sh_sample_apply_prepared
WHERE cust_id = 101362) T,
TABLE (T.pset) S
)
SELECT A.probability prob, A.cluster_id cl_id,
B.attr, B.op, B.val, B.supp, B.conf
FROM custclus A,
(SELECT T.id, C.*
FROM clust T,
TABLE(T.cl_attrs) C) B
WHERE A.cluster_id = B.id
ORDER BY prob DESC, cl_id ASC, conf DESC, attr ASC, val ASC;

Functions 5-33

COALESCE

PROB CL_ID ATTR OP VAL SUPP CONF

L7873 8 HOUSEHOLD_SIZE 1IN 09+ 126 .7500

L7873 8 CUST_MARITAL_ST IN Divorc. 118 .6000
ATUS

L7873 8 CUST_MARITAL_ST IN NeverM 118 .6000
ATUS

L7873 8 CUST_MARITAL_ST IN Separ. 118 .6000
ATUS

L7873 8 CUST_MARITAL_ST IN Widowed 118 .6000
ATUS

.2016 6 AGE >= 17 152 .6667

.2016 6 AGE <= 31.6 152 .6667

.2016 6 CUST_MARITAL_ST IN NeverM 168 .6667
ATUS

8 rows selected.

COALESCE

Syntax

Purpose

COALESCE returns the first non-null expr in the expression list. At least one expr
must not be the literal NULL. If all occurrences of expr evaluate to null, then the
function returns null.

Oracle Database uses short-circuit evaluation. That is, the database evaluates each
expr value and determines whether it is NULL, rather than evaluating all of the expr
values before determining whether any of them is NULL.

If all occurrences of expr are numeric datatype or any nonnumeric datatype that can
be implicitly converted to a numeric datatype, then Oracle Database determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, and returns that datatype.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-41 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence
This function is a generalization of the NVL function.
You can also use COALESCE as a variety of the CASE expression. For example,

COALESCE (exprl, expr2)

is equivalent to:

CASE WHEN exprl IS NOT NULL THEN exprl ELSE expr2 END

5-34 Oracle Database SQL Reference

COLLECT

COLLECT

Similarly,

COALESCE (exprl, expr2, ..., exprn), for n>=3

is equivalent to:

CASE WHEN exprl IS NOT NULL THEN exprl
ELSE COALESCE (expr2, ..., exprn) END

See Also: NVL on page 5-110 and "CASE Expressions” on page 6-5

Examples

The following example uses the sample oe.product_information table to
organize a clearance sale of products. It gives a 10% discount to all products with a list
price. If there is no list price, then the sale price is the minimum price. If there is no
minimum price, then the sale price is "5"

SELECT product_id, list_price, min_price,
COALESCE(0.9*1ist_price, min_price, 5) "Sale"
FROM product_information
WHERE supplier_id = 102050;

PRODUCT_ID LIST PRICE MIN_PRICE Sale
2382 850 731 765
3355 5
1770 73 73
2378 305 247 274.5
1769 48 43.2

Syntax

—J| coLLecT F@—)(column)—)@»

Purpose

COLLECT takes as its argument a column of any type and creates a nested table of the
input type out of the rows selected. To get the results of this function you must use it
within a CAST function.

If column is itself a collection, then the output of COLLECT is a nested table of
collections.

See Also: CAST on page 5-24

Examples

The following example creates a nested table from the varray column of phone
numbers in the sample table ce . customers:

CREATE TYPE phone_book_t AS TABLE OF phone_list_typ;

/
SELECT CAST (COLLECT (phone_numbers) AS phone_book_t)
FROM customers;

Functions 5-35

COMPOSE

COMPOSE

CONCAT

Syntax
D@D
Purpose

COMPOSE takes as its argument a string, or an expression that resolves to a string, in
any datatype, and returns a Unicode string in its fully normalized form in the same
character set as the input. char can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. For example, an o code point qualified by an umlaut
code point will be returned as the o-umlaut code point.

CLOB and NCLOB values are supported through implicit conversion. If charis a
character LOB value, it is converted to a VARCHAR value before the COMPOSE
operation. The operation will fail if the size of the LOB value exceeds the supported
length of the VARCHAR in the particular development environment.

See Also: Oracle Database Globalization Support Guide for information
on Unicode character sets and character semantics

Examples

The following example returns the o-umlaut code point:
SELECT COMPOSE ('o' || UNISTR('\0308')) FROM DUAL;
co

5

See Also: UNISTR on page 5-210

Syntax
OO0
Purpose

CONCAT returns charl concatenated with char2. Both charl and char2 can be any
of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The string
returned is in the same character set as char1. Its datatype depends on the datatypes
of the arguments.

In concatenations of two different datatypes, Oracle Database returns the datatype that
results in a lossless conversion. Therefore, if one of the arguments is a LOB, then the
returned value is a LOB. If one of the arguments is a national datatype, then the
returned value is a national datatype. For example:

s CONCAT(CLOB, NCLOB) returns NCLOB
s CONCAT(NCLOB, NCHAR) returns NCLOB
s CONCAT(NCLOB, CHAR) returns NCLOB

s CONCAT(NCHAR, CLOB) returns NCLOB

5-36 Oracle Database SQL Reference

CONVERT

CONVERT

This function is equivalent to the concatenation operator (I I).

See Also: "Concatenation Operator" on page 4-3 for information on
the CONCAT operator

Examples

This example uses nesting to concatenate three character strings:

SELECT CONCAT (CONCAT (last_name, '''s job category is '),
job_id) "Job"

FROM employees
WHERE employee_id = 152;

Hall's job category is SA_REP

Syntax
ool CEE o
Purpose

CONVERT converts a character string from one character set to another. The datatype of
the returned value is VARCHAR2.

s The char argument is the value to be converted. It can be any of the datatypes
CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB.

s The dest_char_set argument is the name of the character set to which charis
converted.

s The source _char_set argument is the name of the character set in which char
is stored in the database. The default value is the database character set.

Both the destination and source character set arguments can be either literals or
columns containing the name of the character set.

For complete correspondence in character conversion, it is essential that the
destination character set contains a representation of all the characters defined in the
source character set. Where a character does not exist in the destination character set, a
replacement character appears. Replacement characters can be defined as part of a
character set definition.

Examples

The following example illustrates character set conversion by converting a Latin-1
string to ASCII. The result is the same as importing the same string from a
WESISO8859P1 database to a US7ASCII database.

SELECT CONVERT('A 81 0 ¢ ABCDE ', 'USTASCII', 'WES8ISO8859P1')
FROM DUAL;

CONVERT (' AEIO@ABCDE'

AEI??ABCDE?

Functions 5-37

CORR

CORR

Common character sets include:

» US7ASCII: US 7-bit ASCII character set

» WESDEC: West European 8-bit character set

» F7DEC: DEC French 7-bit character set

s WESEBCDIC500: IBM West European EBCDIC Code Page 500

s WESISO8859P1: ISO 8859-1 West European 8-bit character set

s UTFS8: Unicode 4.0 UTF-8 Universal character set, CESU-8 compliant
s AL32UTEFS8: Unicode 4.0 UTF-8 Universal character set

Syntax

f—)| OVER P@»{analytic,clausem
D@D

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

CORR returns the coefficient of correlation of a set of number pairs. You can use it as an
aggregate or analytic function.

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, and returns that datatype.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-41 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence

Oracle Database applies the function to the set of (exprl, expr2) after eliminating the
pairs for which either expril or expr2 is null. Then Oracle makes the following
computation:

COVAR_POP (exprl, expr2) / (STDDEV_POP (exprl) * STDDEV_POP (expr2))

The function returns a value of type NUMBER. If the function is applied to an empty set,
then it returns null.

Note: The CORR function calculates the Pearson's correlation
coefficient, which requires numeric expressions as arguments. Oracle
also provides the CORR_S (Spearman's rho coefficient) and CORR_K
(Kendall's tau-b coefficient) to support nonparametric or rank
correlation.

5-38 Oracle Database SQL Reference

CORR_*

See Also: "Aggregate Functions" on page 5-8, "About SQL
Expressions" on page 6-1 for information on valid forms of expr, and
CORR_* on page 5-39 and CORR_S on page 5-40

Aggregate Example

The following example calculates the coefficient of correlation between the list prices
and minimum prices of products by weight class in the sample table oe.product_
information:

SELECT weight_class, CORR(list_price, min_price)

FROM product_information
GROUP BY weight_class;

WEIGHT_CLASS CORR(LIST_PRICE,MIN_PRICE)

1 .99914795
2 .999022941
3 .998484472
4 .999359909
5 .999536087

Analytic Example

The following example shows the correlation between duration at the company and
salary by the employee's position. The result set shows the same correlation for each
employee in a given job:

SELECT employee_id, job_id,
TO_CHAR ((SYSDATE - hire_date) YEAR TO MONTH) "Yrs-Mns", salary,
CORR (SYSDATE-hire_date, salary)
OVER (PARTITION BY job_id) AS "Correlation"

FROM employees

WHERE department_id in (50, 80)

ORDER BY job_id, employee_id;

EMPLOYEE_ID JOB_ID Yrs-Mns SALARY Correlation
145 SA_MAN +08-07 14000 .912385598
146 SA_MAN +08-04 13500 .912385598
147 SA_MAN +08-02 12000 .912385598
148 SA_MAN +05-07 11000 .912385598
149 SA_MAN +05-03 10500 .912385598
150 SA_REP +08-03 10000 .80436755
151 SA_REP +08-02 9500 .80436755
152 SA_REP +07-09 9000 .80436755
153 SA_REP +07-01 8000 .80436755
154 SA_REP +06-05 7500 .80436755
155 SA_REP +05-06 7000 .80436755

CORR_*
The CORR_* functions are:
n CORR_S

s CORR_K

Functions 5-39

CORR_S

CORR_S

Syntax
correlation::=

I COEFFICIENT -
ONE_SIDED_SIG

ONE_SIDED_SIG_POS

ONE_SIDED_SIG_NEG

TWO_SIDED_SIG

C

==

Purpose

The CORR function (see CORR on page 5-38) calculates the Pearson's correlation
coefficient and requires numeric expressions as input. The CORR_* functions support
nonparametric or rank correlation. They let you find correlations between expressions
that are ordinal scaled (where ranking of the values is possible). Correlation
coefficients take on a value ranging from -1 to 1, where 1 indicates a perfect
relationship, -1 a perfect inverse relationship (when one variable increases as the other
decreases), and a value close to 0 means no relationship.

These functions takes as arguments any numeric datatype or any nonnumeric
datatype that can be implicitly converted to a numeric datatype. Oracle Database
determines the argument with the highest numeric precedence, implicitly converts the
remaining arguments to that datatype, makes the calculation, and returns NUMBER.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-41 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence

exprl and expr2 are the two variables being analyzed. The third argument is a
return value of type VARCHAR?2. If you omit the third argument, the default is
COEFFICIENT. The meaning of the return values is shown in the table that follows:

Table 5-2 CORR_* Return Values

Return Value Meaning

COEFFICIENT Coefficient of correlation

ONE_SIDED_SIG Positive one-tailed significance of the correlation
ONE_SIDED_SIG_POS Same as ONE_SIDED_SIG
ONE_SIDED_SIG_NEG Negative one-tailed significance of the correlation
TWO_SIDED_SIG Two-tailed significance of the correlation

CORR_S calculates the Spearman's rho correlation coefficient. The input expressions
should be a set of (x;, y;) pairs of observations. The function first replaces each value
with a rank. Each value of x; is replaced with its rank among all the other x;s in the
sample, and each value of y; is replaced with its rank among all the other y;s. Thus,
each x; and y; take on a value from 1 to n, where n is the total number of pairs of
values. Ties are assigned the average of the ranks they would have had if their values

5-40 Oracle Database SQL Reference

COSs

CORR_K

COS

had been slightly different. Then the function calculates the linear correlation
coefficient of the ranks.

CORR_S Example Using Spearman's rho correlation coefficient, the following
example derives a coefficient of correlation for each of two different comparisons --
salary and commission_pct,and salary and employee_id:

SELECT COUNT(*) count,
CORR_S (salary, commission_pct) commission,
CORR_S (salary, employee_id) empid

FROM employees;

COUNT COMMISSION EMPID

107 .735837022 -.04482358

CORR_K calculates the Kendall's tau-b correlation coefficient. As for CORR_S, the input
expressions are a set of (x;, y;) pairs of observations. To calculate the coefficient, the
function counts the number of concordant and discordant pairs. A pair of observations
is concordant if the observation with the larger x also has a larger value of y. A pair of
observations is discordant if the observation with the larger x has a smaller y.

The significance of tau-b is the probability that the correlation indicated by tau-b was
due to chance--a value of 0 to 1. A small value indicates a significant correlation for
positive values of tau-b (or anticorrelation for negative values of tau-b).

CORR_K Example Using Kendall's tau-b correlation coefficient, the following
example determines whether a correlation exists between an employee's salary and
commission percent:

SELECT CORR_K(salary, commission_pct, 'COEFFICIENT') coefficient,
CORR_K (salary, commission_pct, 'TWO_SIDED_SIG') two_sided_p_value
FROM hr.employees;

COEFFICIENT TWO_SIDED_P_VALUE

.603079768 3.4702E-07

Syntax
EE30.0:0

Purpose

COS returns the cosine of n (an angle expressed in radians).

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is BINARY__

FLOAT, then the function returns BINARY_DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-41 for more information on implicit conversion

Functions 5-41

COSH

COSH

COUNT

Examples
The following example returns the cosine of 180 degrees:

SELECT COS (180 * 3.14159265359/180)
"Cosine of 180 degrees" FROM DUAL;

Cosine of 180 degrees

Syntax
0,0:0

Purpose
COSH returns the hyperbolic cosine of n.

This function takes as an argument any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. If the argument is BINARY__
FLOAT, then the function returns BINARY_ DOUBLE. Otherwise the function returns the
same numeric datatype as the argument.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-41 for more information on implicit conversion

Examples
The following example returns the hyperbolic cosine of zero:

SELECT COSH(0) "Hyperbolic cosine of 0" FROM DUAL;

Hyperbolic cosine of 0

Syntax

f—)| OVER F@{aﬂalytic_clausem
)

DISTINCT
O ()
ALL

expr

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

COUNT returns the number of rows returned by the query. You can use it as an
aggregate or analytic function.

5-42 Oracle Database SQL Reference

COUNT

If you specify DISTINCT, then you can specify only the query. partition_clause
of the analytic _clause. The order by clauseand windowing clause are not
allowed.

If you specify expr, then COUNT returns the number of rows where expr is not null.
You can count either all rows, or only distinct values of expzr.

If you specify the asterisk (*), then this function returns all rows, including duplicates

and nulls. COUNT never returns null.

See Also: "About SQL Expressions" on page 6-1 for information on
valid forms of expr and "Aggregate Functions" on page 5-8

Aggregate Examples
The following examples use COUNT as an aggregate function:

SELECT COUNT(*) "Total" FROM employees;

SELECT COUNT(*) "Allstars" FROM employees
WHERE commission_pct > 0;

Allstars

SELECT COUNT (commission_pct) "Count" FROM employees;

SELECT COUNT (DISTINCT manager_id) "Managers" FROM employees;

Managers

Analytic Example

The following example calculates, for each employee in the employees table, the
moving count of employees earning salaries in the range 50 less than through 150
greater than the employee's salary.

SELECT last_name, salary,
COUNT (*) OVER (ORDER BY salary RANGE BETWEEN 50 PRECEDING
AND 150 FOLLOWING) AS mov_count FROM employees;

LAST NAME SALARY MOV_COUNT
Olson 2100 3
Markle 2200 2
Philtanker 2200 2
Landry 2400 8
Gee 2400 8
Colmenares 2500 10
Patel 2500 10

Functions 5-43

COVAR_POP

COVAR_POP

Syntax

OVER analytic_clause
0w PO p(DA(ee)())

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

COVAR_POP returns the population covariance of a set of number pairs. You can use it
as an aggregate or analytic function.

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, and returns that datatype.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-41 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence

Oracle Database applies the function to the set of (expri, expr?2) pairs after
eliminating all pairs for which either expr1 or expr2 is null. Then Oracle makes the
following computation:

(SUM (exprl * expr2) - SUM(expr2) * SUM(exprl) / n) / n

where n is the number of (expri, expr2) pairs where neither exprl nor expr2is
null.

The function returns a value of type NUMBER. If the function is applied to an empty set,
then it returns null.

See Also: "About SQL Expressions" on page 6-1 for information on
valid forms of expr and "Aggregate Functions" on page 5-8

Aggregate Example

The following example calculates the population covariance and sample covariance for
time employed (SYSDATE - hire_date) and salary using the sample table
hr.employees:

SELECT job_id,
COVAR_POP (SYSDATE-hire_date, salary) AS covar_pop,
COVAR_SAMP (SYSDATE-hire_date, salary) AS covar_samp
FROM employees
WHERE department_id in (50, 80)
GROUP BY job_id;

JOB_ID COVAR_POP COVAR_SAMP
ST_MAN 436092.000 545115.000
SH_CLERK 782717.500 823913.158
SA_MAN 660700.000 825875.000
SA_REP 579988.466 600702.340

ST_CLERK 176577.250 185870.789

5-44 Oracle Database SQL Reference

COVAR_SAMP

Analytic Example

The following example calculates cumulative sample covariance of the list price and
minimum price of the products in the sample schema oe:

SELECT product_id, supplier_id,
COVAR_POP(list_price, min_price)
OVER (ORDER BY product_id, supplier_id)
AS CUM_COVP,
COVAR_SAMP (list_price, min_price)
OVER (ORDER BY product_id, supplier_id)
AS CUM_COVS
FROM product_information p
WHERE category_id = 29
ORDER BY product_id, supplier_id;

PRODUCT _ID SUPPLIER_ID CUM_COVP CUM_COVS

1774 103088 0
1775 103087 1473.25 2946.5
1794 103096 1702.77778 2554.16667
1825 103093 1926.25 2568.33333
2004 103086 1591.4 1989.25
2005 103086 1512.5 1815
2416 103088 1475.97959 1721.97619

COVAR_SAMP

Syntax

[e| OVER F@{analytic_clausem
D@D @D

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

COVAR_SAMP returns the sample covariance of a set of number pairs. You can use it as
an aggregate or analytic function.

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, and returns that datatype.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-41 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence

Oracle Database applies the function to the set of (expril, expr?2) pairs after
eliminating all pairs for which either expr1 or expr2 is null. Then Oracle makes the
following computation:

(SUM (exprl * expr2) - SUM(exprl) * SUM(expr2) / n) / (n-1)

where n is the number of (expri, expr2) pairs where neither exprl nor expr2is
null.

Functions 5-45

CUME_DIST

CUME_DIST

The function returns a value of type NUMBER. If the function is applied to an empty set,
then it returns null.

See Also: "About SQL Expressions" on page 6-1 for information on
valid forms of expr and "Aggregate Functions" on page 5-8

Aggregate Example
Please refer to the aggregate example for COVAR_POP on page 5-44.

Analytic Example
Please refer to the analytic example for COVAR_POP on page 5-44.

Aggregate Syntax

cume_dist_aggregate::=

O
oG oy et

Analytic Syntax

cume_dist_analytic::=
query_partition_clause
CUME_DIST o o OVER B({((order_by_clause)»(:)»

See Also: "Analytic Functions" on page 5-9 for information on
syntax, semantics, and restrictions

Purpose

CUME_DIST calculates the cumulative distribution of a value in a group of values. The
range of values returned by CUME_DIST is >0 to <=1. Tie values always evaluate to the
same cumulative distribution value.

This function takes as arguments any numeric datatype or any nonnumeric datatype
that can be implicitly converted to a numeric datatype. Oracle Database determines
the argument with the highest numeric precedence, implicitly converts the remaining
arguments to that datatype, makes the calculation, and returns NUMBER.

See Also: Table 2-10, " Implicit Type Conversion Matrix" on
page 2-41 for more information on implicit conversion and "Numeric
Precedence" on page 2-13 for information on numeric precedence

5-46 Oracle Database SQL Reference

CURRENT_DATE

= Asan aggregate function, CUME_DIST calculates, for a hypothetical row r
identified by the arguments of the function and a corresponding sort specification,
the relative position of row r among the rows in the aggregation group. Oracle
makes this calculation as if the hypothetical row r were inserted into the group of
rows to be aggregated over. The arguments of the function identify a single
hypothetical row within each aggregate group. Therefore, they must all evaluate to
constant expressions within each aggregate group. The constant argument
expressions and the expressions in the ORDER BY clause of the aggregate match by
position. Therefore, the number of arguments must be the same and their types
must be compatible.

= Asan analytic function, CUME_DIST computes the relative position of a specified
value in a group of values. For a row r, assuming ascending ordering, the CUME_
DIST of ris the number of rows with values lower than or equal to the value of r,
divided by the number of rows being evaluated (the entire query result set or a
partition).

Aggregate Example

The following example calculates the cumulative distribution of a hypothetical
employee with a salary of $15,500 and commission rate of 5% among the employees in
the sample table oe . employees:

SELECT CUME_DIST (15500, .05) WITHIN GROUP
(ORDER BY salary, commission_pct) "Cume-Dist of 15500"
FROM employees;

Cume-Dist of 15500

.972222222

Analytic Example

The following example calculates the salary percentile for each employee in the
purchasing division. For example, 40% of clerks have salaries less than or equal to
Himuro.

SELECT job_id, last_name, salary, CUME_DIST()
OVER (PARTITION BY job_id ORDER BY salary) AS cume_dist
FROM employees
WHERE job_id LIKE 'PU%';

JOB_1ID LAST_NAME SALARY CUME_DIST
PU_CLERK Colmenares 2500 2
PU_CLERK Himuro 2600 4
PU_CLERK Tobias 2800 .6
PU_CLERK Baida 2900 .8
PU_CLERK Khoo 3100 1
PU_MAN Raphaely 11000 1

CURRENT_DATE

Syntax

CURRENT_DATE

Functions 5-47

CURRENT_TIMESTAMP

Purpose

CURRENT_DATE returns the current date in the session time zone, in a value in the
Gregorian calendar of datatype DATE.

Examples

The following example illustrates that CURRENT_DATE is sensitive to the session time
zone:

ALTER SESSION SET TIME_ZONE = '-5:0';

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

SESSIONTIMEZONE CURRENT_DATE

-05:00 29-MAY-2000 13:14:03

ALTER SESSION SET TIME_ZONE = '-8:0';
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

SESSIONTIMEZONE CURRENT_DATE

-08:00 29-MAY-2000 10:14:33

CURRENT_TIMESTAMP

Syntax

0 precision o

_>| CURRENT_TIMESTAMP }

Purpose

CURRENT_TIMESTAMP returns the current date and time in the session time zone, in a
value of datatype TIMESTAMP WITH TIME ZONE. The time zone offset reflects the
current local time of the SQL session. If you omit precision, then the default is 6. The
difference between this function and LOCALTIMESTAMP is that CURRENT_TIMESTAMP
returns a TIMESTAMP WITH TIME ZONE value while LOCALTIMESTAMP returns a
TIMESTAMP value.

In the optional argument, precision specifies the fractional second precision of the

time value returned.

See Also: LOCALTIMESTAMP on page 5-89

Examples
The following example illustrates that CURRENT_TIMESTAMP is sensitive to the
session time zone:

ALTER SESSION SET TIME_ZONE = '-5:0';
ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
SELECT SESSIONTIMEZONE, CURRENT_TIMESTAMP FROM DUAL;

SESSIONTIMEZONE CURRENT_TIMESTAMP

-05:00 04-APR-00 01.17.56.917550 PM -05:00

ALTER SESSION SET TIME_ZONE = '-8:0';

5-48 Oracle Database SQL Reference

cv

CvV

SELECT SESSIONTIMEZONE, CURRENT_TIMESTAMP FROM DUAL;

SESSIONTIMEZONE CURRENT_TIMESTAMP

-08:00 04-APR-00 10.18.21.366065 AM -08:00

If you use the CURRENT_TIMESTAMP with a format mask, take care that the format
mask matches the value returned by the function. For example, consider the following
table:

CREATE TABLE current_test (coll TIMESTAMP WITH TIME ZONE);
The following statement fails because the mask does not include the TIME ZONE
portion of the type returned by the function:

INSERT INTO current_test VALUES
(TO_TIMESTAMP_TZ (CURRENT_TIMESTAMP, 'DD-MON-RR HH.MI.SSXFF PM'));

The following statement uses the correct format mask to match the return type of
CURRENT_TIMESTAMP:

INSERT INTO current_test VALUES (TO_TIMESTAMP_TZ
(CURRENT_TIMESTAMP, 'DD-MON-RR HH.MI.SSXFF PM TZH:TZM'));

Syntax
OF
Purpose

The CV function can be used only in the model_clause of a SELECT statement and
then only on the right-hand side of a model rule. It returns the current value of a
dimension column carried from the left-hand side to the right-hand side of a rule. This
function is used in the model_clause to provide relative indexing with respect to the
dimension column. The return type is that of the datatype of the dimension column. If
you omit the argument, it defaults to the dimension colum