PLANT IN VITRO ART

(BİTKİLERLE VİTRO SANAT)

Aynur GÜREL¹, Meltem BAYRAKTAR², Arif ANSIZ³, Begüm AKYOL⁴, Esra İLHAN⁵, Müniire EKMEKÇİGİL⁶, Irmak ANSIZ⁷, Berk ÜNAL⁸, Sündüş ÜNAL⁹, Alpaslan Şevket ACAR¹⁰, Cana YILAN¹¹

ABSTRACT

In this study, plant biotechnology and art are handled together, because art is the most powerful means of bridging differences. This study aims to bring plants of different ecological environments together in various designs by artistic approaches.

Keywords: Plant biotechnology, Art, Design

ÖZ

Sanat farklı dünyaları birleştirmeye kullanılabilecek en kuvvetli araç olması sebebi ile bu çalışmada bitki biyoteknolojisi ile sanat aynı çerçevede ele alınmıştır. Değişik ekolojilere ait bitki türlerinin in vitro’da sanatsal yaklaşılarda farklı tasarımlarda buluşturulması hedeflenmiştir.

Anahtar Kelimeler: Bitki biyoteknolojisi, Sanat, Tasarım

¹Ege Üniversitesi, Mühendislik Fakültesi, Biyomühendislik Bölümü, İZMİR, aynurgurel@gmail.com
²Ahi Evran Üniversitesi, Mühendislik-Mimarlık Fakültesi, Genetik ve Biyomühendislik Bölümü, KİRŞEHİR, meltembayraktar5@gmail.com (Corresponding Author)
³Ege Üniversitesi, Mühendislik Fakültesi, Biyomühendislik Bölümü, İZMİR, arif.ansiz@gmail.com
⁴Ege Üniversitesi, Mühendislik Fakültesi, Biyomühendislik Bölümü, İZMİR, begumakyol.ege@gmail.com
⁵Ege Üniversitesi, Mühendislik Fakültesi, Biyomühendislik Bölümü, İZMİR, esrailhan01@gmail.com
⁶Ege Üniversitesi, Fen Bilimleri Enstitüsü, Biyoteknoloji Bölümü, İZMİR, munire.ekmekcigil@gmail.com
⁷Ege Üniversitesi, Fen Bilimleri Enstitüsü, Biyoteknoloji Bölümü, İZMİR, irmacakcikmin@gmail.com
⁸Ege Üniversitesi, Fen Bilimleri Enstitüsü, Biyoteknoloji Bölümü, İZMİR, berkunal@yahoo.com
⁹Ege Üniversitesi, Fen Bilimleri Enstitüsü, Biyoteknoloji Bölümü, İZMİR, sundusunal@gmail.com
¹⁰Ege Üniversitesi, Fen Bilimleri Enstitüsü, Biyoteknoloji Bölümü, İZMİR, alpaslansevket@hotmail.com
¹¹Ege Üniversitesi, Mühendislik Fakültesi, Biyomühendislik Bölümü, İZMİR, canan.yilan40@gmail.com
1. INTRODUCTION

Plant \textit{in vitro} art arises from a combination of science, imagination and skills in an \textit{in vitro} environment. It ensures science an artistic view of life. Studies in this context aim to touch people by getting out a bit of the pure and experimental features of science by means of art. Thus, science and scientific words will be made clearer in daily life. Science fields will have a chance to become better known by an \textit{in vitro} art approach [1].

Today, it is popular to develop new designs with different types of plant species, materials, objects and culture vessels by handling \textit{in vitro} plantlet systems with an aesthetical aim. Presented to the people who want to move away from city-life, stressful business life and monotony and who have as yet had no opportunity to look after plants, \textit{in vitro} plantlets give a chance to move from laboratories to indoors and also offer aesthetic pleasures as well as their potential in the marketplace on account of their wide product range [1].

This study aims to handle the plant biotechnology and art together and to bring plants of different ecological environments together in various designs by artistic approaches. In addition, this study is an original work and contains new words for the literature.

2. MATERIAL AND METHODS

\textit{In vitro} plants of different species were designed with various materials, objects and culture vessels \textit{in vitro} environments and sterile conditions for establishing the \textit{in vitro} aqua forest, \textit{in vitro} parks and gardens, \textit{in vitro} flowering, \textit{in vitro} glass design works (Figure 1). In addition, various plant species grown \textit{in vitro} and transferred outdoors were used in \textit{ex vitro} open terrarium (Figure 2) and \textit{ex vitro} closed terrarium (Figure 4) works. Also depending on plant growth regulators and nutrient medium composition, some visual beauties can be obtained \textit{in vitro} conditions as in daffodil plantlets (Figure 3) [1, 2].

3. RESULTS AND CONCLUSION

The study we work on gives us the opportunity for dealing with science and discovering amusing things in some of the works we do [1].

The “\textit{In Vitro Art}” concept can be varied and extended depending on the pleasures, manner and imaginations of people, and it can develop product range of firms dealing with plant tissue culture.

After in a certain period of time, medium gets dry. Therefore, moving plantlets from \textit{in vitro} terraria to outdoors can ensure their permanency. Implementation of this process can be explained by developing a user guide.

Terraria ensure both aesthetics and ecosystem. They are different from classical terraria because plantlets are grown \textit{in vitro} conditions, and also they ensure study on the tested plants free from pathogens.
Figure 1. Some samples for plant *in vitro* art [1]
Figure 2. Some samples for *ex vitro* open terrarium [1]

Figure 3. Daffodils were developed *in vitro* conditions: a: Heart shaped leaves *in vitro*; b: Ballerina legs *in vitro*; c: Sisterhood of narcissus bulblets *in vitro* [2]
Figure 4. Ex vitro closed terrarium [1]

4. ACKNOWLEDGEMENT

The authors would like to thank ALGEN Biotechnology Company in Istanbul/Turkey.

REFERENCES

CV/ÖZGEÇMİŞ

Aynur GÜREL; Prof. Dr. (Professor)
She got her bachelors’ degree in the Field Crops Department at Ege University, Izmir/Turkey in 1982, her master degree in the Field Crops Department at Ege University, Izmir/Turkey in 1984, PhD degree in the Field Crops Department at Ege University, Izmir/Turkey in 1989. She is still an academic member of the Bioengineering Department at Ege University. Her major areas of interest are: Plant Tissue Culture, Plant Stress Physiology, Plant Biotechnology and Bioengineering.

Meltem BAYRAKTAR; Yrd. Doç. Dr. (Assistant Professor)

She got her bachelors’ degree in the Biology Department at Ege University, Izmir/Turkey in 2000, her master degree in the Biotechnology Department at Ege University, Izmir/Turkey in 2004, PhD degree in the Biotechnology Department at Ege University, Izmir/Turkey in 2013. She is still an academic member of the Genetic and Bioengineering Department at Ahi Evran University. Her major areas of interest are: Plant Tissue Culture and Bioengineering.

Arif ANSIZ; Yüksek Biyomühendis (Msc. Bioengineer)

He got his bachelors’ degree in the Bioengineering Department at Ege University, Izmir/Turkey in 2011, his master degree in the Bioengineering Department at Ege University, Izmir/Turkey in 2015. He has been working at ALGEN Biotechnology Company. His major area of interest are: Plant Tissue Culture and Bioengineering.

Begüm AKYOL; Araştırma Görevlisi (Research Assistant)

She got her bachelors’ degree in the Bioengineering Department at Ege University, Izmir/Turkey in 2011, her master degree in the Bioengineering Department at Ege University, Izmir/Turkey in 2015. She is a student in the Bioengineering PhD program at The Graduate School of Natural and Applied Sciences of Ege University and has been working as a research assistant at Bioengineering Department of the same university. Her major areas of interest are: Plant Tissue Culture and Bioengineering.

Esra İLHAN; Araştırma Görevlisi (Research Assistant)

She got her bachelors’ degree in the Bioengineering Department at Ege University, Izmir/Turkey in 2012, her master degree in the Bioengineering Department at Ege University, Izmir/Turkey in 2015. She is a student in the Bioengineering PhD program at The Graduate School of Natural and Applied Sciences of Ege University and has been working as a research assistant at Bioengineering Department of the same university. Her major areas of interest are: Plant Tissue Culture and Bioengineering.

Münire EKMEKÇİGİL; Yüksek Biyolog (Msc. Biologist)

She got her bachelors’ degree in the Biology Department at Ankara University, Ankara/Turkey in 2003, her master degree in the Biology Department at Ankara University, Ankara/Turkey in 2006. She is a student in the Biotechnology PhD program at The Graduate School of Natural and Applied Sciences of Ege University. Her major area of interest is: Plant Tissue Culture.
Programı’nda öğrencidir. Temel çalışma alanı Bitki Doku Kültürü üzerindedır.

Irmak ANSIZ; Yüksek Biyoteknolog (Msc. biotechnologist)
She got her bachelors’ degree in Molecular Biology and Genetics Department at İstanbul Kültür University, İstanbul/Turkey in 2011, her master degree in the Biotechnology Department at Ege University, İzmir/Turkey in 2015. She has been working at ALGEN Biotechnology Company. Her major area of interest is: Plant Tissue Culture.

Berk ÜNAL; Yüksek Ziraat Mühendisi (Msc. Agricultural Engineer)
He got his bachelors’ degree in the Horticulture Department at Gaziosmanpaşa University, Tokat/Turkey in 2008, his master degree in the Horticulture Department at Gaziosmanpaşa University, Tokat/Turkey in 2011. He is a student in the Biotechnology PhD program at The Graduate School of Natural and Applied Sciences of Ege University. His major area of interest is: Plant Tissue Culture.

Sündüs ÜNAL; Dr. (Ph.D.)
She got her bachelors’ degree in the Field Crops Department at Ege University, İzmir/Turkey in 1998, her master degree in the Biotechnology Department at Ege University, İzmir/Turkey in 2006, PhD degree in the Biotechnology Department at Ege University, İzmir/Turkey in 2013. Her major areas of interest is: Plant Tissue Culture.

Alpaslan Şevket ACAR; Ziraat Mühendisi (Agricultural Engineer)
He got his bachelors’ degree in the Field Crops Department at Selçuk University, Konya/Turkey in 2011. He is a student in the Biotechnology MSc program at The Graduate School of Natural and Applied Sciences of Ege University and has been working at ALGEN Biotechnology Company. His major area of interest is: Plant Tissue Culture.

Canan YILAN; Biyomühendis (Bioengineer)
She got her bachelors’ degree in the Bioengineering Department at Ege University, İzmir/Turkey in 2014. She is a student in the Bioengineering MSc program at The Graduate School of Natural and Applied Sciences of Ege University. Her major areas of interest are: Plant Tissue Culture and Bioengineering.