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Abstract 

Segmenting portrait images into semantic areas is an important step towards scene understanding 
and image analysis. Although segmentation is a very active field of study, there are few studies in the 
field of portrait segmentation.  One of the most crucial steps in portrait segmentation is the precise 
segmentation process where semantically related pixels grouped together including hair, face, body, 
and background. However, this is a challenging problem due to the extreme variations in hair shape, 
color, and background. In order to handle such variations, we proposed a deep residual network 
based on ERFNet architecture. We used geometrically normalized faces as an input for the network. 
Experimental studies on EG1800 dataset (two-classes) and LFW Part Labels Dataset (three-classes) 
showed that the proposed method provides state of the art mIoU (mean intersection over union) and 
pixel-based accuracy. We obtained 96.37% mIoU and 98.17% pixel based accuracy for EG1800 
dataset and 90.1% mIoU and 97.14% accuracy for the LFW dataset.  
Keywords: Portrait Segmentation, Deep Learning, Deep Residual Networks, Geometric Normalization, Encoder Decoder 

Networks 

 

Öz 

Portre görüntülerini anlamsal alanlara bölütlemek, sahne anlama ve görüntü analizinde önemli bir 
adımdır. Bölütleme çok aktif bir çalışma alanı olmakla birlikte, portre bölümlendirme alanında az 
sayıda çalışma bulunmaktadır. Portre bölütlemesindeki en önemli adımlardan biri, saç, yüz, gövde ve 
arka plan gibi anlamsal olarak ilişkili piksellerin birlikte gruplandığı, detaylı bölütleme işlemidir. 
Ancak, saç şekli, rengi ve arka planındaki aşırı farklılıklar nedeniyle bu zor bir problemdir. 
Çalışmamızda, bu çeşitliliklerin üstesinden gelmek için ERFNet mimarisine dayanan derin bir kalıntı 
ağı önerdik. Geometrik olarak normalleştirilmiş yüzleri ağ için bir girdi olarak kullandık. İki sınıflı 
EG1800 veri kümesi ve üç sınıflı LFW Parts Labels Veri Seti üzerinde yapılan deneysel çalışmalar, 
önerilen yöntemin yüksek doğrulukta ortalama kesişim değeri (mIoU) verdiğini ve piksel tabanlı 
doğruluğu sağladığını göstermiştir. EG1800 veri kümesi için %96,37 mIoU ve % 98,17 piksel tabanlı 
doğruluk ve LFW veri kümesi için %90,1 mIoU ve %97,14 doğruluk elde ettik. 
Anahtar Kelimeler: Portre Bölütleme, Derin Öğrenme, Derin Kalıntı Ağlar, Geometrik Normalleştirme, Kodlayıcı Kod Çözücü 

Ağlar 
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1. Introduction 

In recent years, selfie and self-portrait images 
become more popular among mobile users. 
According to Google Inc. 24 billion selfie images 
uploaded to their servers in 2015.  Semantic 
segmentation of different parts of photographs 
can be used to develop existing methods based 
on face analysis as well as tasks such as portrait 
editing and manipulation. The precision of the 
segmentation is also an important feature for 
different domains including the defense 
industry, remote sensing, intelligent vehicle 
technologies, and microscopic images. However, 
basic approaches to the segmentation problem 
such as threshold method are not enough to 
solve the visual challenges. Therefore, 
researchers use Artificial Intelligence methods 
as a machine learning approach, which achieve 
high success rates, especially in image 
segmentation problem.  

Artificial Intelligence aims to teach human 
behaviors to machines by using machine 
learning methods. Convolutional Neural 
Networks (CNN) is one of the most successful 
machine learning method used for image 
segmentation task. They have been applied to 
image segmentation problems since the 1980s 
and recently get more interest due to their high 
success rates. Although Deep CNN's are 
successful, they must be well designed for the 
given problem. There are many factors that 
affect the performance of the network such as 
the depth of the network, size and number of 
convolution filters, augmentation (artificially 
creating the training images through rotations, 
shifts, flips) and regularization (modifications on 
the learning algorithm to reduce the 
generalization error [1]). Theoretically, more 
layers provide better representation of the input 
data. For this reason, it is expected that the multi 
layered network with more layers can solve the 
more complex problems. Therefore, the depth of 
the network has great prominence. However, 
more layers will also bring the over-fitting 
problem and increases the learning duration. It 
is also likely that the learning error rate is going 
to increase when more layers added [2]. A 
solution to this problem is the use of early stop, 
dropout techniques and Deep Residual 
Networks (DRN) [3]. Early-stop and dropout 
techniques can be applied to any CNN. However, 
DRNs need architectural changes to allow the 
transfer of data to deeper layers. Compared to 
the traditional CNN's, the DRNs are easy to 

optimize, and they provide better segmentation 
results with deeper nets. 

There are different taxonomies exist in the object 
segmentation problem. Mainly the segmentation 
methods are classified into Layer based and 
Block based segmentation methods [4]. Layered 
methods focus on object detectors and depth 
ordering. Block based methods use image 
intensity values, edge/color discontinuities and 
regional features for the segmentation. It can be 
further divided into intensity based, region 
based, edge and boundary based methods. A list 
of unsupervised image segmentation studies can 
be found in [5]. In this study, we did not cover 
segmentation based on hand crafted features 
(e.g. SIFT, HOG). 

Threshold based methods aim to segment the 
image over pixel densities using the best 
threshold value. It is a simple method, but it 
performs poorly in semantic areas with different 
textures. The most known threshold method in 
the literature is the Otsu method [6]. This 
method assumes that there are two classes 
(foreground and background) in the image. It 
aims to find the most suitable threshold value 
with the lowest variance in the class and the 
largest variance between the classes. However, 
the success of the Otsu method is limited in cases 
where one of the classes of pixels in the image is 
relatively less than the other. If the average gray 
density difference between classes is small, then 
this method may also fail. In addition, it provides 
only two class segmentation and it does not 
consider the semantic integrity of the regions. 
[7] used histogram peaks distribution (HPD) and 
quantum evolution algorithm for portrait 
segmentation problem. However, they segment 
portraits from a blue background only.  

Conditional Random Fields (CRF) based models 
are also well studied methods for the object 
segmentation problem [8–12]. CRFs use 
Conditional Probability Distributions of label 
sequences, and thus they are similar to the 
Logistic Regression. A hierarchical CRF model 
for object segmentation problem is proposed by 
[13]. They integrate features derived from 
different quantization levels, which improve 
quality of segmentation. Graph Cut method is 
proposed in [14] where the image is treated as a 
graph. Max-flow/min-cut algorithms determine 
the pixel labels. Like other graph based methods, 
this method requires manual background and 
foreground segmentation. FaceCut method [15], 
focuses on accurate facial feature segmentation 
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using Modified Active Shape Models (MASM). 
However, ASM is a deformable template based 
approach and can even be affected by the user's 
facial expression. In another study, [16] used 
deep learning along with one class SVM to detect 
the human facial regions. They used region 
refinement and MASM to refine the segmented 
regions on LFW dataset. These methods focus 
only on the inner face area and do not address 
the challenging hair segmentation problem. 

The aforementioned methods do not take into 
account the semantic integrity of the segmented 
regions. Therefore, an AI based solution is 
needed. Deep convolutional networks 
automatically detect key features in the input 
image through convolutions. Deep CNN's and 
Deep Residual Networks (DRNs) can achieve 
higher success rates than traditional methods 
especially for multi class image segmentation 
problems. The major deep architectures used in 
the literature for the image segmentation 
problem is as shown in Table 1. 

Table 1. Major deep learning architectures. 

Network Architecture 
# of 

Layers 
Year 

LeNet5 [17] 7 1998 

AlexNet [18] 8 2012 

VGGNet [19] 19 2014 

GoogLeNet [20] 22 2015 

ResNet [3] 152 2016 

ResNeXt [21] 101  2016 

SegNet [22] 37 2017 

ERFNet [23] 23 2018 

In general, a CNN designed for the object 
segmentation problem consists of a set of layers 
for extracting, learning and classifying pixels.  It 
is composed of Convolutional, ReLU ( REctified 
Linear Unit), Pooling, Deconvolution Up 
Sampling) and SoftMax layers respectively.  

The convolution and pooling layers are repeated 
several times with respect to the size of the input 
image to extract the important features. The 
ReLU layer applies the function in (1) in all 
elements on an input x, without changing its 
spatial or depth information. Another said all 

positive elements in x remain unchanged while 
the negatives become zero. The ReLU function is 
advantageous in terms of computational needs. 
Therefore, the majority of the deep learning 
methods use it as an activation function. 

𝑓(𝑥) = max(0, 𝑥) (1) 

A deep residual encoder decoder network 
composed of three sections. These are factorized 
residual network modules with dilations, down 
sampling, and up sampling. Residual network 
with dilations increases the resolution of output 
feature maps without reducing the receptive 
field of individual neurons [24]. Down sampling 
in the encoder supports multiple branching and 
creates two branches where max pooling and 
convolution are applied to the input image. The 
results then fused to obtain the output. Up 
sampling provides inverse convolutions in the 
decoder to obtain the original size of the input 
image.   

Although there are numerous studies exist for 
general semantic image segmentation especially 
on Pascal VOC tasks [25] there a few studies 
focusing on portrait segmentation problem. [26] 
proposed PortraitFCN+ which is a fully 
automatic segmentation for portrait images. 
They extend the FCN-8s framework [27] to use 
the domain knowledge. The input image is 
segmented into foreground and background 
classes. In order to solve different geometric 
positions of the portrait faces, they introduced x 
and y channels representing the positions of the 
pixels relative to the face. They also report that 
the use of a shape channel improves the 
segmentation results. By using augmentation 
techniques, they generate 19,000 training 
samples from 1,500 Flickr photos. They obtained 
95.91% of mIoU on their EG1800 dataset. 

[28] use Portrait Mode in their AI supported 
cameras on Android mobile devices (Google 
Pixel series) to segment foreground and 
background objects to provide optical depth of 
field effect. Part of their work that provides 
foreground and background segmentation is 
available in DeepLab v3+ API. They used 3 
stacked U Nets, on 4 channel input images (RGB 
and encoded face mask) for person 
segmentation. They obtained 97.01% mIoU on 
EG1800 test using the EG1800 training set (1.5K 
images). When they use their own training set 
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(465K images), they obtained 97.7% mIoU on 
EG1800 test set. 

[29] used convolutional networks to extract 
features from regions based on SLIC super pixels. 
In order to preserve spatial context, they used 
the zoom out technique by defining local, 
proximal, distant and scene levels. A more 
detailed review on deep learning techniques 
applied to semantic segmentation problem can 
be found in [30]. 

In this study, we proposed a deep residual 
network inspired by the ERFNet  [23] 
architecture to segment portrait images into 
semantic regions. Original ERFNet architecture 
focuses on visual semantic segmentation for 
intelligent vehicles. Since we have fewer classes 
in portrait segmentation problem, we simplified 
the architecture to make it more suitable for 
boundary-based object segmentation. Existing 
methods like Conditional Random Fields (CRF) 
models cannot perform long range connections 
and among different parts of the object which 
results in excessive smoothing of object 
boundaries [31]. Similar problems exist in the 
deconvolution layers of the Deep CNN's such as 
dilated convolutions produce gridding artifacts. 
Therefore, we designed a simplified architecture 
to improve the coarse segmentation results. The 
main contribution of our study is three fold: 

• We proposed a modified ERFNet architecture 
for the portrait image segmentation task. 

• We showed that combined use of the IPD 
(Interpupillary Distance) based normalization 

and augmentation techniques improve the 
segmentation results for the portrait 
segmentation problem. 

• We obtained 96.37% mIoU score and 98.16% 
pixel based accuracy on the EG1800 
Segmentation dataset.  

Section 2 presents the details of the proposed 
study and deep residual architecture. The 
datasets, our preprocessing methodology, and 
the environment also presented in Section 2. 
Section 3 covers experimental results obtained 
on LFW Part Labels [32] and EG1800 [26] 
dataset. Section 4 concludes the study with a 
discussion and conclusion. 

2. Material and Method 

In this study, we formulate a Deep Residual 
Network as illustrated in Figure 1 for portrait 
segmentation problem whose core architecture 
is inspired by recent ERFNet architecture 
proposed in [23]. 

In the encoder decoder type of networks, there 
are two steps in the training process. Training of 
the encoder for extracting information and 
training of the decoder using the encoder model 
for segmenting the image. The encoder 
computes a coarse segmentation of the input 
data and extracts valuable information from the 
input image through a variety of convolutional 
filters. 

 

 

Figure 1. The encoder decoder deep residual network architecture used in the study. 
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Table 2. Details of the deep layers used in experiments. 

Network  Type Input Feature Output Feature 
Output Resolution for 

LFW/EG1800 

E
n

co
d

er
 

 Input 3 3 256×256 152×200 

1 Downsampler 3 16 128×128 76×100 

2 Downsampler 16 64 64×64 38×50 

3-5 3 × Residual Block 64 64 64×64 38×50 

6 Downsampler 64 128 32×32 19×25 

7-8 3 × Residual Block  128 128 32×32 19×25 

D
ec

o
d

er
 

9 Upsampler 128 64 64×64 38×50 

10-11 2 × Residual Block 64 64 64×64 38×50 

12 Upsampler 64 16 128×128 76×100 

13-14 2 × Residual Block 16 16 128×128 76×100 

15 Upsampler 16 3 256×256 152×200 

 

Decoder network performs up scaling of the 
image obtained from the encoder. Table 2 
presents the details of the deep layers used in 
LFW and EG1800 dataset experiments. The 
encoder utilizes 3×3 filters over a 256×256 and 
152×200 input image for the LFW and EG1800 
dataset respectively. The three downsampler 
blocks in the encoder reduce the image size to 
one eighth of the initial size of the image. 
Therefore, the output of the encoder for an image 
with a resolution of 256×256 is 32×32 (19×25 
for EG1800). Because of this low resolution, we 
need to upscale it properly to obtain fine 
segmented results using the decoder. We have 
reduced the EG1800 sample size from 600×800 
to 152×200 to reduce complex calculations. 

The main job of the decoder is then to learn a 
way to map the low resolution output of the 
encoder to pixel based predictions at higher 
resolution space using upsampler blocks, 
original data, and the encoder. The upsampling is 
a nonlinear process for low resolution input 
feature maps. In order to provide object 
coherency (e.g. elimination of holes in 
segmented areas), the decoder network 
equipped with a sequence of dilation layers. 
Finally, it provides the output as the same size as 
the input image.  

The objective of the residual blocks is to ensure 
that the information contained in the previous 
layer is transferred to the subsequent layers. It is 
aimed that the general information is not lost in 
the feature extraction layers. Residual blocks 
allow us to create deeper networks while 
transferring the same input to the next layer 
with the encoded information. The input is 
transmitted to the next layer without any 
convolution so that the added new layer can 
learn the problem being solved. In this way, the 
new layer can learn different knowledge than the 
previous layers learned. The transfer creates a 
deeper and still learnable architecture. Each 
residual block (Layer 3-5, 7-8, 10-11 and 13-14) 
utilizes 3×1, 1×3, 3×1 and 1×3 filters over the 
input. These 1D factorized convolutions both 
provide information transfer and reduce 
computational complexity. Original ERFNet 
architecture contains a total of 23 layers 
(encoder: 16 layers, decoder: 7 layers) for 
twenty class segmentation task. Since we focus 
on two class (foreground and background in 
EG1800 dataset) and three class (background, 
hair, and skin in LFW dataset) segmentation 
problem, our modified network composed of 15 
layers (encoder: 8 layers, decoder: 7 layers). 
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The learning architecture is finalized by the 
Softmax layer. It computes the likelihood that the 
input image belongs to a particular class by using 
the values generated by the network in multi 
class classification problems. Besides that, a 
dropout value of 0.02 is applied to the hidden 
layers. It randomly removes nodes and their 
incoming and outgoing connections from the 
network. As a result, the model becomes robust 
and insensitive to the weights of the other nodes 
thus it can generate the more generalized model. 

2.1. Dataset 

We used the original LFW Part Labels [32] and 
EG1800 dataset [26] in our experiments. The 
LFW dataset contains a total of 2,927 face images 
of size 250×250 pixels and corresponding 
background, skin, and hair labels. Manual 
annotations are based on super pixels performed 
on funneled images. We used 2,587 images for 
training and 100 images for testing. The train set 
is composed of 1,798 male photos and 609 
Female photos. The test set is equally split in 
terms of gender.   

The original EG1800 dataset is a URL based 
dataset that contains a total of 1,800 images of 
size 600×800 pixels where 1,500 images are 
reserved for training and the remaining 300 
images are reserved for testing. These images 
were manually annotated using Photoshop quick 
selection tool. Because of this, there are 
annotation errors in the segmentation data as 
shown in Figure 2. Besides that, some image 
URLs are not available anymore. Therefore, in 
this study, we used 1,589 of them. 

 

Figure 2. Random annotation errors from 
EG1800 dataset. Small square regions show the 
location of the annotation errors. 

After the preprocessing step we obtained a total 
of 1,502 images. 1,352 of them are used for the 
training and 150 of them are used for testing.  

2.2. Preprocessing 

The first step is the normalization of the input 
image. Although the deep learning based 
methods skip positional and geometric 
normalizations, [28] showed that face masks and 
additional information increase the 
segmentation accuracy. We performed several 
geometric normalizations to normalize the 
approximate distance of the faces to the camera. 
Viola Jones face detector [33] is used for face 
detection. For eye detection, we used a neural 
network based eye detector [34] available in 
STASM library [35]. Note that we did not directly 
use the funneled images and the annotations.  
Instead, we performed our own geometric 
normalization method on both the funneled 
images and the annotations based on eye centers 
as shown in Figure 3. 

The first row in Figure 4 shows the funneled 
images from LFW Part Labels dataset and the 
second row shows our normalized samples using 
the proposed method.  

 

Figure 3. Geometric normalization steps in preprocessing. a) Face and eye detection. b) Region of 
Interest (ROI) selection with respect to interpupillary distance (IPD). c) Geometric normalization and 
ROI selection. d) Final result. 
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Figure 4. a) Input images from LFW. b) Ground 
truth segmentation data. c) Geometric 
normalization results obtained from input 
images. In these images, left and right eye 
locations are automatically fixed to known 
positions using the eye detection algorithm. d) 
Normalized ground truth images. 

Since we modified the funneled images with our 
geometric normalization method, we also 
performed the same geometric normalization 
steps for the ground truth data including 
rotation and cropping. 

2.3. Environment 

We performed our experiments using Torch 
Deep Learning Framework Torch-7 [36] on an 
Ubuntu OS (18.04) with CUDA 9.2 (Nvidia GTX 
1060 6GB RAM). OpenCV implementation of 
Viola Jones face detector and neural network 
based eye detector is used in the normalization 
step.  

2.4. Evaluation metrics 

We used commonly accepted mIoU (Mean 
Intersection over Union) and total pixel based 
accuracy metrics to measure the quality of the 
segmentation process. mIoU metric also known 
as the Jaccard similarity coefficient which is the 
size of the intersected pixels divided by the size 
of the union of the pixels as shown in (2) where 
Fg and Bg denote predicted foreground and 
background pixels respectively. 

𝐼𝑜𝑈(𝐹𝑔, 𝐵𝑔) =
Fg ∩ Bg

Fg ∪ Bg
 (2) 

We compute the IoU score for foreground and 
background classes separately and then 
averaged over all classes to create the mIoU 
score. It takes into account both the false alarms 
and the missed values for each class. 

In order to compute the pixel based accuracy, we 
consider the correctly classified pixels for each 
class divided by the total number of pixels as 
shown in (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + TN + FP + FN
 (3) 

3. Results  

We performed our experiments on LFW and 
EG1800 datasets. For both of the dataset, we 
follow the same protocol except the SoftMax 
layers (two-classes vs three-classes).  

3.1. Experiments on LFW dataset 

In the encoder, the input image size is set to be 
256×256 pixels and maximum epoch is set to 
100 epochs. Note that the original image size in 
LFW dataset is 250×250 pixels. Since our 
downsampling layers shrink the initial image to 
the one eighth of the initial size, the objective 
here is to select a dimension that can be divisible 
by eight to get the maximum benefit from the 
convolutions in the encoding step. The learning 
rate is initially set to 5×10-4 and it is divided by 2 
into every 50 epochs. Dropout is set to 0.2. We 
performed 100 epochs in the encoder training 
and 200 epochs for the decoder training. Table 3 
presents detailed results. 

According to Table 3, our method provides 
higher segmentation accuracy and mIoU value 
for all segmentation classes. Since we use the 
same deep residual architecture and 
configuration for both of the methods, the main 
reason for the difference is the geometric 
normalization which provides better alignment 
of the patterns. Figure 5 shows the results 
obtained during the training and testing of 
encoder and decoder. It shows that the use of the 
normalized images provides higher 
segmentation accuracy than funneled images.
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Figure 5.  Training error, testing error and the accuracy for the encoder and decoder on the LFW 
Dataset. Use of the normalized images boosts up the training accuracy for both the encoder and the 
decoder. 

We obtained 95.48% training accuracy and 
94.94% testing accuracy for the encoder. The 
highest IoU values obtained from the encoder in 
the training and testing are 84.62% and 83.74% 
respectively.  For the decoder, we obtained 
97.99% training accuracy and 97.14% testing 
accuracy. The highest mIoU values for the 
training and testing of the decoder is 92.39% and 

90.10%. In order to find the effect of our IPD 
(Interpupillary Distance) based normalization to 
the portrait segmentation problem, we also 
performed the same tests on the funneled LFW 
Part Labels dataset [37] without our 
normalization step. Note that funneled dataset is 
composed of aligned images with respect to 
image funnel. .

Table 3. Details of the segmentation results used in this study. 

  Encoder Decoder 

  mIoU Skin Hair Bg. Acc. mIoU Skin Hair Bg. Acc. 

Our Method 

Train 84.62 94.53 89.12 96.16 95.48 92.39 97.09 95.53 98.27 97.99 

Test 83.74 94.16 90.61 96.01 94.94 90.10 95.79 93.98 97.96 97.14 

Funneled 

Train 80.99 92.39 85.19 93.97 93.26 86.48 95.12 93.16 95.71 92.42 

Test 77.46 90.58 82.91 93.55 91.13 80.93 91.61 87.19 94.60 92.66 
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Figure 6. The first row shows normalized 
images. The second row shows the result of the 
encoder at 32 × 32 pixels resolution. The third 
row shows the result of the decoder at 250 × 250 
resolution. The fourth row shows the result of 
the decoder trained with the original funneled 
images. The last row shows the ground truth 
data. Note that black pixels are also background 
pixels. 

Figure 6 presents the low resolution output of 
the encoder and high resolution output of the 
decoder network as well as the ground truth 
data. The effect of using geometric normalization 
is clearly visible when we compare our results in 
the third row and funneled results in the fourth 
row. With the normalization of the images, we 
obtained more precise segmentation. 

3.2. Experiments on EG1800 dataset 

We used augmentation technique (e.g. flip, 
random x and y translations) to increase the 
number of samples. In order to prevent noisy 
updates, we also utilized mini batch hyper 
parameter as 40.  

Figure 7 shows training and testing results for 
the encoder and decoder. We obtained 96.37% 
mIoU and 98.17% pixel based accuracy on the 
EG1800 dataset. Considering Figure 7, it is clear 
that the use of the normalization improves the 
accuracy for both the encoder and decoder. In 
the tests, we achieved a pixel accuracy of 98.17% 
using geometric normalization and 97.64% 
without using it. Similarly, we obtained higher 
mIoU score when using the normalizations than 
original data (96.37% vs 95.16%).  

According to the experiments, our mIoU score 
96.37% is the second best score for the EG1800 
dataset. Table 4 summarizes state of the art 
mIoU results of different studies.  

Table 4. mIoU results for the EG1800 dataset. 
Since the EG1800 is a URL based dataset, some of 
the URLs are not available anymore. Therefore, 
the total training size is not the same size for 
different studies. *: Google research team 
artificially increased the training set size to 
465,000 in their study. 

Deep Model Train Set 
Size 

mIoU 
% 

PortraitFCN  [26] 1,500 94.20 

PortraitFCN+ [26] 1,500 95.91 

Google research [28] 1,500 97.01 

Google research [28] 465,000* 97.70 

Our Model without 
normalizations+ augmentation 

1,439 95.16 

Our Model with normalizations 1,439 96.12 

Our Model with 
normalizations+ augmentation 

1,439 96.37 

PortraitFCN  [26] (our tests) 1,439 93.41 

We also tested our deep model on the unseen 
Selfie dataset [38]. The Selfie dataset composed 
of 46,836 selfie images of Instagram users. 
However, it does not contain any segmentation 
data. Therefore, we provide overlaid 
segmentations (presented in red color) as shown 
in Figure 8. 

3.3. Computation time 

Computation time depends on many factors such 
as number of layers in encoder/decoder, 
optimizer algorithm, learning rate, momentum, 
batch size, data augmentation and input/output 
resolution. It is a natural result that more layers 
in deep learning bring additional complexity in 
computations. Our 15-layer network utilizes 
residual layers to decrease the computation 
time. Data augmentation is also computationally  
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Figure 7. Training error, testing error and the accuracy for the encoder and decoder on the EG1800 
Dataset.

complex process but provides more generalized 
models. For training, our network uses random 
data augmentation methods, which may affect 
the overall total computation time in each run. 
We used the augmentation techniques for 
training only. In this study, we did not consider 
test time augmentation (TTA) but planned it as 
future work.  

According to our experiments, at 152×200 
resolution, time to test one sample on Nvidia GTX 
1060 GPU is 23ms (43 FPS) which is an 
acceptable rate for a real life scenario. At 
600×800 initial resolution, it takes 163ms (6 
FPS). 

 

Figure 8. Segmentation examples from Selfie Dataset. First row: Normalized input images. Second 
row: Output of the decoder. Third row: Segmentation result overlaid on the input image. 
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4. Discussion and Conclusion 

In this study, we proposed a modified Deep 
Residual Network inspired by the ERFNet 
architecture for the portrait segmentation 
problem. One of the most difficult tasks in 
portrait segmentation problem is the hair 
segmentation due to the challenging variations 
in color and shape. In order to target this 
problem, we employed Deep CNN residual 
learning units. We further support our model by 
augmenting the training data using flip and 
translations. According to the experiments on 
LFW and EG1800 datasets, we showed the IPD 
based geometric normalization boost the 
segmentation accuracy for all segmentation 
classes. It also provides higher mIoU values in all 
tests. For the skin, hair and background classes 
in LFW dataset we obtained segmentation 
accuracy of 95.79%, 93.98% and 97.96% 

respectively. Similarly, the use of geometric 
normalization increases both the pixel based 
accuracy and mIoU score on the EG1800 dataset 
where we obtained 96.37% mIoU score.  

We showed that use of the normalized images 
with the proposed architecture provides state-
of-the-art segmentation results. Since we use 
portrait images, we assumed that there is only 
one face in the image. As future work, we are 
planning to study on non-portrait and selfie 
images typically having multiple people using 
instance segmentation technique. We also plan 
to perform snapshot ensembling and test time 
augmentation techniques to improve the overall 
mIoU performance of proposed method.  
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