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Abstract 

In this paper, an initial-boundary value problem for a two-dimensional wave equation which arises 
in the equation of motion for the forced transverse vibration of a rectangular membrane is considered. 
Giving an additional condition, a time-dependent coefficient is determined and existence and 
uniqueness theorem for small times is proved. Moreover, characterization of the conditional stability 
is given and numerical solution of the inverse problem investigated by using finite difference method. 
Keywords: Inverse problem, Fourier method, Two dimensional wave equation, Finite difference method 

 

Öz 

Bu çalışmada, dikdörtgen bir zarın zorlanmış enine titreşimi için hareket denkleminde ortaya çıkan 
iki boyutlu bir dalga denklemi için başlangıç-sınır değer problemi ele alınmıştır. Verilmiş bir ek koşul  
ile zamana bağlı katsayı belirlenmiştir ve yeteri kadar küçük zaman değerleri için varlık ve teklik 
teoremi ispatlanmıştır. Ayrıca, koşullu kararlılığın karakterizasyonu verilmiş ve ters problemin 
sayısal çözümü sonlu farklar yöntemi kullanılarak incelenmiştir. 
Anahtar Kelimeler: Ters problem, Fourier yöntemi, İki boyutlu dalga denklemi, Sonlu farklar yöntemi 

 

 

1. Introduction 

The wave equation, which arises in fields like 
acoustics, electro magnetics, elasticity, and fluid 
dynamics, is an important second order 
hyperbolic partial differential equation. 
Vibrations of structures (as buildings and 
beams) are modelled by hyperbolic partial 
differential equations. For instance; the vibrating 
string is a basic one-dimensional vibrational 
problem and its two-dimensional analogue, 
namely, the motion of a membrane which is a 

perfectly flexible thin plate or lamina that is 
subject to tension as drumhead and diagrams of 
condenser microphones, [1]. 

In this paper, we consider the two dimensional 
wave equation 

𝑢𝑡𝑡  
=  𝑢𝑥𝑥 + 𝑢𝑦𝑦 +  𝑎(𝑡)𝑢(𝑡, 𝑥, 𝑦)

+  𝑓 (𝑡, 𝑥, 𝑦), (𝑡, 𝑥, 𝑦) ∈  𝐷𝑇  , 
(1) 

with the initial conditions 
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{
𝑢(0, 𝑥, 𝑦) =  𝜑(𝑥, 𝑦),

𝑢𝑡(0, 𝑥, 𝑦) =  𝜓(𝑥, 𝑦),
      (𝑥, 𝑦)  ∈  Ω (2) 

boundary conditions 

{
𝑢(𝑡, 0, 𝑦)  =  𝑢(𝑡, 1, 𝑦)  =  0,
𝑢(𝑡, 𝑥, 0)  =  𝑢(𝑡, 𝑥, 1)  =  0,

  

𝑡 ∈  [0, 𝑇 ], (𝑥, 𝑦)  ∈  Ω̅, 

(3) 

where 𝐷𝑇 = [0, 𝑇 ] ×  Ω, Ω =  {(𝑥, 𝑦): 0 <
 𝑥, 𝑦 <  1} for some fixed 𝑇 >  0. 𝑢 = 𝑢(𝑡, 𝑥, 𝑦) 
represents the displacement at the instant t of 
the point located at (𝑥, 𝑦), 𝑎(𝑡) is the time 
dependent potential, the functions 𝜑(𝑥, 𝑦) and 
𝜓(𝑥, 𝑦) are the displacement and velocity at t = 
0, respectively. 

This model can be used for the equation of 
motion for the forced transverse vibration of a 
rectangular membrane with time dependent 
potential which is clamped or fixed on all the 
edges. 

For a given function 𝑎(𝑡), 0 ≤  𝑡 ≤  𝑇 the 
problem (1)-(3) for the unknown function 
𝑢(𝑡, 𝑥, 𝑦) is called direct (forward) problem. The 
well-posedness of the direct problem for the 
two-dimensional linear wave equation has been 
established in [1, 2]. Moreover, the papers [3] 
and [4] are dedicated to the study of existence of 
classical solution of an initial-boundary value 
problem for one class of semi-linear and non-
linear multidimensional wave equations, 
respectively. For numerical aspects of direct 
problem [5] applies the compact finite difference 
approximation which is combined collocation 
technique to two dimensional homogeneous 
wave equation. 

If 𝑎(𝑡), 0 ≤  𝑡 ≤  𝑇 is unknown, finding the pair 
of solution {𝑎(𝑡), 𝑢(𝑡, 𝑥, 𝑦)} of the problem (1)-
(3) with the additional condition  

𝑢(𝑡, 𝑥0, 𝑦0) =  ℎ(𝑡), (𝑥0, 𝑦0) ∈  Ω,
𝑡 ∈  [0, 𝑇 ] 

(4) 

is called inverse problem. 

The inverse problems for the one-dimensional 
wave equation with different boundary 
conditions and space dependent coefficients are 
considered in [6-9]. The inverse problem for the 
one-dimensional wave equation with time 
dependent coefficient with integral condition is 

investigated in [10] and with non-classical 
boundary condition is studied in [11]. 

For a multidimensional hyperbolic equation 
local solvability of inverse Cauchy problem is 
studied in [12] and the problem of regularization 
of a solution to the Cauchy problem for a two-
dimensional hyperbolic equation on the half-
plane is studied in [13]. Under a weak regularity 
assumption, the uniqueness and stability of the 
solution of inverse problem of finding space-
dependent potential in a multidimensional wave 
equation is established in [14]. More recently, 
the global uniqueness and stability in 
determining the solely space-dependent 
coefficient 𝑝(𝑥), (𝑥 ∈  Ω, Ω ⊂  ℝ𝑛, 𝑛 =  1, 2, 3) 
from the extra data is studied in [15]. 

For the some numerical aspects of inverse initial-
boundary value problems for the two and 
multidimensional wave equations are 
considered in [16-19], and [20]. 

It is important to note that the paper [21] which 
considers a multidimensional inverse boundary-
value problem of recovering three solely time-
dependent functions for a linear wave equation 
in a bounded domain and proves the existence 
and uniqueness theorem for the inverse problem 
in a suitable Banach space.  

In this paper, we consider an inverse initial-
boundary value problem for a two-dimensional 
wave equation. We transform the inverse 
problem (1)-(4) to a fixed-point system and 
prove the existence and uniqueness of a solution 
on a sufficiently small time interval by means of 
the contraction principle. The fixed-point system 
is presented via Fourier series. Such a form of the 
system brings along computations that are 
technically more simple than in the case of the 
usual Green’s function approach. Moreover, we 
give the theorem of continuous dependence 
upon the data and numerical solution of the 
inverse problem by using finite difference 
method. 

The article is organized as following: In Section 
2, we present auxiliary spectral problem of this 
problem and its properties. In Section 3, the 
series expansion method in terms of 
eigenfunctions converts the inverse problem to a 
fixed point problem in a suitable Banach space. 
Under some consistency, regularity conditions 
on initial and boundary data the existence and 
uniqueness of the solution of the inverse 
problem is shown by the way that the fixed point 
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problem has a unique solution for small T. Also, 
we characterize the estimation of conditional 
stability of the solution of inverse problem. In 
section 4, the inverse problem of finding time-
dependent coefficient is studied by using the 
finite difference method and we present three 
numerical examples intended to illustrate the 
behaviour of the proposed methods and the tests 
are performed by using MATLAB. While the 
second example’s data does not provide the 
conditions of the existence and uniqueness 
theorem, the first example’s data provides the 
conditions. The third example’s data satisfies the 
conditions of the theorem but the coefficient 
solution is not smooth. 

2. Auxiliary Spectral Problem 

Since the function a is space independent and the 
boundary conditions are linear and 
homogeneous, the method of separation of 
variables is suitable. The auxiliary spectral 
problem of the problem (1)-(3) is 

{

𝑍𝑥𝑥(𝑥, 𝑦) + 𝑍𝑦𝑦(𝑥, 𝑦) + µ𝑍(𝑥, 𝑦) = 0,

𝑍(0, 𝑦) = 𝑍(1, 𝑦) = 0, 0 ≤ 𝑦 ≤ 1,

𝑍(𝑥, 0) = 𝑍(𝑥, 1) = 0, 0 ≤ 𝑥 ≤ 1.

 (5) 

Let us present the solution of (5) in the form 

𝑍(𝑥, 𝑦)  =  𝑋(𝑥)𝑌 (𝑦). (6) 

Substituting the expression (6) into (5), we 
obtain following two problems: 

{
𝑌′′ (𝑦) + 𝜆𝑌 (𝑦) = 0, 0 < 𝑦 < 1,

𝑌 (0) = 𝑌 (1) = 0,
 (7) 

{
𝑋′′ (𝑥) + 𝛾𝑋(𝑥) = 0, 0 < 𝑥 < 1,

𝑋(0) = 𝑋(1) = 0,
 

(8) 

where 𝛾 =  µ −  𝜆. It is easy to see that the 
solutions of the problems (7) and (8) have the 

form 𝜆𝑘 = (𝜋𝑘)
2,  𝑌 (𝑦) = √2 sin(𝜋𝑘𝑦) , 𝑘 =

 1, 2, … and 𝛾𝑚 = (𝜋𝑚)2,  𝑋(𝑥) =

√2 sin(𝜋𝑚𝑥) ,𝑚 =  1, 2, …,  respectively. 

Thus, the eigenvalues (or natural frequencies of 
the membrane) and corresponding 
eigenfunctions (or mode shape) of the problem 
(5) have the form  

µ𝑚𝑘 = 𝛾𝑚 + 𝜆𝑘 = (𝜋𝑚)
2 + (𝜋𝑘)2, 

 𝑍𝑚𝑘(𝑥, 𝑦) =  2 sin(𝜋𝑚𝑥) sin(𝜋𝑘𝑦) ,
𝑘,𝑚 =  1, 2, …. 

Note that the system 𝑍𝑚𝑘(𝑥, 𝑦), 𝑘,𝑚 =  1, 2, … is 
bi-orthonormal on Ω, i.e. for any admissible 
indices 𝑚, 𝑙, 𝑘 and 𝑝 

(𝑍𝑚𝑘 , 𝑍𝑙𝑝) = ∬𝑍𝑚𝑘(𝑥, 𝑦)𝑍𝑙𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦

Ω

 

= {
1,   𝑚 = 𝑙, 𝑘 = 𝑝
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Let us introduce the functional space 

𝐵2,𝑇

3
2

= {𝑢(𝑡, 𝑥, 𝑦) = ∑ 𝑢𝑚𝑘(𝑡)𝑍𝑚𝑘(𝑥, 𝑦)

∞

𝑚,𝑘=1

: 𝑢𝑚𝑘(𝑡)

∈  𝐶[0, 𝑇 ],

𝐽𝑇(𝑢) = [ ∑ (µ𝑚𝑘

3
2 max

0≤𝑡≤𝑇
|𝑢𝑚𝑘(𝑡)|)

2∞

𝑚,𝑘=1

]

1
2

< +∞ } 

with the norm ‖𝑢(𝑡, 𝑥, 𝑦)‖
𝐵2,𝑇

3
2
≡ 𝐽𝑇(𝑢) which 

relates the Fourier coefficients of the function 
𝑢(𝑡, 𝑥, 𝑦) by the eigenfunctions 
𝑍𝑚𝑘(𝑥, 𝑦),𝑚, 𝑘 =  1, 2, …. It is shown in [22] that 

𝐵2,𝑇

3

2  is Banach space. Obviously for the couple 

𝑧 =  {𝑎(𝑡), 𝑢(𝑡, 𝑥, 𝑦)}, 𝐸𝑇

3

2 = 𝐵2,𝑇

3

2  ×  𝐶[0, 𝑇 ] with 

the norm ‖𝑧‖
𝐸𝑇

3
2
= ‖𝑢(𝑡, 𝑥, 𝑦)‖

𝐵2,𝑇

3
2
 +

 ‖𝑎(𝑡)‖𝐶[0,𝑇 ] is also Banach space. 

3. Solution of the Inverse Problem 

In this section, we will examine the existence and 
uniqueness of the solution of the inverse initial-
boundary value problem for the equation (1) 
with time-dependent coefficient. 

Definition 1. The pair {𝑎(𝑡), 𝑢(𝑡, 𝑥, 𝑦)} from the 

class 𝐶[0, 𝑇 ] × (𝐶2 (𝐷̅𝑇)) for which the 

conditions (1)-(4) are satisfied is called the 
classical solution of the inverse problem (1)-(4). 

From this definition, the consistency conditions 

𝐴0 = {

𝜑(0, 𝑦) = 𝜑(1, 𝑦) = 0,

𝜓(0, 𝑦) = 𝜓(1, 𝑦) = 0,

ℎ(0) = 𝜑(𝑥0, 𝑦0), ℎ
′(0) = 𝜓(𝑥0, 𝑦0)

 

holds for the data 𝜑(𝑥, 𝑦), 𝜓(𝑥, 𝑦) ∈ 𝐶1(Ω̅) , and 
ℎ(𝑡) ∈  𝐶1[0, 𝑇 ], with ℎ(𝑡) ≠ 0, ∀𝑡 ∈ [0, 𝑇 ]. 
Moreover, we will use the following assumptions 
on the data of problem (1)-(4) to guarantee the 
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convergence of the majorizing series which arise 
in the solution:  

𝐴1 =

{
 

 
𝜑(0, 𝑦) = 𝜑(1, 𝑦) = 0,

𝜑𝑥𝑥(0, 𝑦) = 𝜑𝑥𝑥(1, 𝑦) = 0,

𝜑𝑥𝑥𝑥(𝑥, 0) = 𝜑𝑥𝑥𝑥(𝑥, 1) = 0,

𝜑𝑥𝑥𝑥𝑦𝑦(𝑥, 0) = 𝜑𝑥𝑥𝑥𝑦𝑦(𝑥, 1) = 0,

 

𝐴2 = {
𝜓(0, 𝑦) = 𝜓(1, 𝑦) = 0,

𝜓𝑥𝑥(𝑥, 0) = 𝜓𝑥𝑥(𝑥, 1) = 0,
 

𝐴3 = {
ℎ(𝑡) ∈ 𝐶2[0, 𝑇 ], ℎ(0) = 𝜙(𝑥0, 𝑦0),

ℎ’(0) = 𝜓(𝑥0, 𝑦0), ℎ(𝑡) ≠ 0, ∀𝑡 ∈ [0, 𝑇 ],
    

𝐴4 =

{
 

 
 𝑓(𝑡, 𝑥, 𝑦) ∈ 𝐶(𝐷𝑇),

 𝑓(𝑡, 𝑥, 𝑦) ∈ 𝐶2(Ω̅), ∀𝑡 ∈ [0, 𝑇 ]

𝑓(𝑡, 0, 𝑦) = 𝑓(𝑡, 1, 𝑦) = 0,

𝑓𝑥𝑥(𝑡, 𝑥, 0) = 𝑓𝑥𝑥(𝑡, 𝑥, 1) = 0.

, 

  

Theorem 1 (Existence and uniqueness). Let 
the assumptions (𝐴0) − (𝐴4) be satisfied. Then, 
the inverse problem (1)-(4) has a unique solution 
for small T . 

Proof. Let 𝑎(𝑡), 𝑡 ∈  [0, 𝑇 ] is an unknown 
function. Since the function 𝑎(𝑡) is solely time 
dependent, seeking the solution of the problem 
(1)-(3) in the following form is suitable: 

𝑢(𝑡, 𝑥, 𝑦) = ∑ 𝑢𝑚𝑘

∞

𝑚,𝑘=1

(𝑡)𝑍𝑚𝑘(𝑥, 𝑦) (9) 

where 𝑢𝑚𝑘(𝑡) = ∬ 𝑢(𝑡, 𝑥, 𝑦)𝑍𝑚𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦Ω̅
, 

𝑚, 𝑘 =  1, 2, . . .. 

From the equation (1) and initial conditions (2), 
we obtain 

{
𝑢𝑚𝑘(𝑡) + µ𝑚𝑘𝑢𝑚𝑘(𝑡) = 𝐹𝑚𝑘(𝑡; 𝑎, 𝑢𝑚𝑘  ),

𝑢𝑚𝑘(0) = 𝜑𝑚𝑘 , 𝑢′𝑚𝑘(0) = 𝜓𝑚𝑘 ,
 (10) 

Where 𝐹𝑚𝑘(𝑡; 𝑎, 𝑢𝑚𝑘  ) = 𝑎(𝑡)𝑢𝑚𝑘(𝑡) + 𝑓𝑚𝑘(𝑡), 

𝑓𝑚𝑘(𝑡) = ∬ 𝑓(𝑡, 𝑥, 𝑦)𝑍𝑚𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦Ω̅
, 𝜑𝑚𝑘 =

∬ 𝜑( 𝑥, 𝑦)𝑍𝑚𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦Ω̅
, 𝜓𝑚𝑘 =

∬ 𝜓( 𝑥, 𝑦)𝑍𝑚𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦Ω̅
 and 𝑚, 𝑘 = 1,2, …. 

Solving the Cauchy problems (10), we get 

𝑢𝑚𝑘(𝑡)

=  𝜑𝑚𝑘 𝑐𝑜𝑠(√µ𝑚𝑘 𝑡)

+
1

√µ𝑚𝑘
𝜓𝑚𝑘 𝑠𝑖𝑛(√µ𝑚𝑘 𝑡)

+
1

√µ𝑚𝑘
∫𝐹𝑚𝑘(𝜏; 𝑎, 𝑢𝑚𝑘)

𝑡

0

𝑠𝑖𝑛(√µ𝑚𝑘 (𝑡

− 𝜏)𝑑𝜏. 

(11) 

Substituting (11) into (9), the second component 
of the pair {𝑎(𝑡), 𝑢(𝑡, 𝑥, 𝑦)} is 

𝑢(𝑡, 𝑥, 𝑦)

= ∑ [𝜑𝑚𝑘 𝑐𝑜𝑠(√µ𝑚𝑘 𝑡)

∞

𝑚,𝑘=1

+
1

√µ𝑚𝑘
𝜓𝑚𝑘 𝑠𝑖𝑛(√µ𝑚𝑘 𝑡)

+
1

√µ𝑚𝑘
∫𝐹𝑚𝑘(𝜏; 𝑎, 𝑢𝑚𝑘)

𝑡

0

𝑠𝑖𝑛(√µ𝑚𝑘 (𝑡

− 𝜏)𝑑𝜏] 𝑍𝑚𝑘(𝑥, 𝑦). 

(12) 

Considering the over-determination condition 
(4), into the equation (1) we get 

𝑎(𝑡)  =
1

ℎ(𝑡)
[ℎ′′(𝑡) − 𝑓(𝑡, 𝑥0, 𝑦0)  

−  𝑢𝑥𝑥(𝑡, 𝑥0, 𝑦0)  
−  𝑢𝑦𝑦(𝑡, 𝑥0, 𝑦0)] . 

By using this equality and equation (12), we 
obtain the first component of the pair as 

𝑎(𝑡)

=
1

ℎ(𝑡)
[ℎ′′(𝑡) − 𝑓(𝑡, 𝑥0, 𝑦0)

+ ∑ µ𝑚𝑘 [𝜑𝑚𝑘 𝑐𝑜𝑠(√µ𝑚𝑘 𝑡)

∞

𝑚,𝑘=1

+
1

√µ𝑚𝑘
𝜓𝑚𝑘 𝑠𝑖𝑛(√µ𝑚𝑘 𝑡)

+
1

√µ𝑚𝑘
∫𝐹𝑚𝑘(𝜏; 𝑎, 𝑢𝑚𝑘)

𝑡

0

𝑠𝑖𝑛(√µ𝑚𝑘 (𝑡

− 𝜏)𝑑𝜏] 𝑍𝑚𝑘(𝑥0, 𝑦0)].  

(13) 
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We get the equalities of the pair {𝑎(𝑡), 𝑢(𝑡, 𝑥, 𝑦)}. 
Thus the solution of problem (1)-(4) is reduced 
to the solution of system of equations (12) and 
(13) with respect to the unknown functions 
{𝑎(𝑡), 𝑢(𝑡, 𝑥, 𝑦)}. It follows that to prove the 
uniqueness of the solution of the problem (1)-(4) 
is equivalent to prove the uniqueness of the 
solution of system of equations (12) and (13). 

Let us denote 𝑧 = [𝑎(𝑡), 𝑢(𝑡, 𝑥, 𝑦)]𝑇 and consider 
the operator equation 

𝑧 =  𝛷(𝑧). (14) 

The operator 𝛷 is determined in the set of 
functions z and has the form [𝜙1, 𝜙2]

𝑇 , where 

𝜙1(𝑧)  

=
1

ℎ(𝑡)
[ℎ′′(𝑡) − 𝑓(𝑡, 𝑥0, 𝑦0)

+ ∑ µ𝑚𝑘 [𝜑𝑚𝑘 𝑐𝑜𝑠(√µ𝑚𝑘 𝑡)

∞

𝑚,𝑘=1

+
1

√µ𝑚𝑘
𝜓𝑚𝑘 𝑠𝑖𝑛(√µ𝑚𝑘 𝑡)

+
1

√µ𝑚𝑘
∫𝐹𝑚𝑘(𝜏; 𝑎, 𝑢𝑚𝑘)

𝑡

0

𝑠𝑖𝑛(√µ𝑚𝑘 (𝑡

− 𝜏)𝑑𝜏] 𝑍𝑚𝑘(𝑥0, 𝑦0). ]  

(15) 

𝜙2(𝑧)

= ∑ [𝜑𝑚𝑘 𝑐𝑜𝑠(√µ𝑚𝑘 𝑡)

∞

𝑚,𝑘=1

+
1

√µ𝑚𝑘
𝜓𝑚𝑘 𝑠𝑖𝑛(√µ𝑚𝑘 𝑡)

+
1

√µ𝑚𝑘
∫𝐹𝑚𝑘(𝜏; 𝑎, 𝑢𝑚𝑘)

𝑡

0

𝑠𝑖𝑛(√µ𝑚𝑘 (𝑡

− 𝜏)𝑑𝜏] 𝑍𝑚𝑘(𝑥, 𝑦). 

 

 

 

 

(16) 

Let us show that 𝛷 maps 𝐸𝑇

3

2  onto itself 

continuously. In other words, we need to show 

𝜙1(𝑧) ∈ 𝐶[0, 𝑇 ] and 𝜙2(𝑧) ∈ 𝐵2,𝑇

3

2  for arbitrary 

𝑧 = [𝑎(𝑡), 𝑢(𝑡, 𝑥, 𝑦)]𝑇 with 𝑎(𝑡) ∈  𝐶[0, 𝑇 ], 

 𝑢(𝑡, 𝑥, 𝑦) ∈ 𝐵2,𝑇

3

2  . 

Using integration by parts under the 
assumptions (𝐴0) − (𝐴4), we can derive that 

𝜑𝑚𝑘 =
1

(𝜋𝑚)3(𝜋𝑘)3
 

∬ 𝜑𝑥𝑥𝑥𝑦𝑦𝑦(𝑥, 𝑦)𝑐𝑜𝑠(𝜋𝑚𝑥)𝑐𝑜𝑠(𝜋𝑘𝑦)𝑑𝑥𝑑𝑦
Ω̅

, 

𝜓𝑚𝑘 =
1

(𝜋𝑚)2(𝜋𝑘)2
 

∬ 𝜓𝑥𝑥𝑦𝑦(𝑥, 𝑦)
Ω̅

𝑠𝑖𝑛(𝜋𝑚𝑥)𝑠𝑖𝑛(𝜋𝑘𝑦)𝑑𝑥𝑑𝑦, 

𝑓𝑚𝑘(𝑡) =
1

(𝜋𝑚)2(𝜋𝑘)2
 

∬ 𝑓𝑥𝑥𝑦𝑦(𝑡, 𝑥, 𝑦)
Ω̅

𝑠𝑖𝑛(𝜋𝑚𝑥)𝑠𝑖𝑛(𝜋𝑘𝑦)𝑑𝑥𝑑𝑦. 

First, let us show that 𝜙1(𝑧) ∈ 𝐶[0, 𝑇 ]. Under the 
assumptions (𝐴0) − (𝐴4),  we obtain from (15) 

|𝜙1(𝑧) |

≤
1

min
0≤𝑡≤𝑇

|ℎ(𝑡)|
[|ℎ′′(𝑡)| + |𝑓(𝑡, 𝑥0, 𝑦0)|

+ ∑ (
µ𝑚𝑘

(𝜋𝑚)3(𝜋𝑘)3
|𝛼𝑚𝑘|

∞

𝑚,𝑘=1

+
µ𝑚𝑘

(𝜋𝑚)2(𝜋𝑘)2
|𝛽𝑚𝑘|

+
𝑇√µ𝑚𝑘

(𝜋𝑚)2(𝜋𝑘)2
|𝜂𝑚𝑘(𝑡)|

+
𝑇|𝑎(𝑡)|

µ𝑚𝑘
µ𝑚𝑘

3
2 |𝑢𝑚𝑘(𝑡)|)],  

(17) 

where 

𝛼𝑚𝑘

=∬ 𝜑𝑥𝑥𝑥𝑦𝑦𝑦(𝑥, 𝑦)𝑐𝑜𝑠(𝜋𝑚𝑥)𝑐𝑜𝑠(𝜋𝑘𝑦)𝑑𝑥𝑑𝑦
Ω̅

, 

𝛽𝑚𝑘 =∬ 𝜓𝑥𝑥𝑦𝑦(𝑥, 𝑦)
Ω̅

𝑠𝑖𝑛(𝜋𝑚𝑥)𝑠𝑖𝑛(𝜋𝑘𝑦)𝑑𝑥𝑑𝑦, 

𝜂𝑚𝑘(𝑡)

= ∬ 𝑓𝑥𝑥𝑦𝑦(𝑡, 𝑥, 𝑦)
Ω̅

𝑠𝑖𝑛(𝜋𝑚𝑥)𝑠𝑖𝑛(𝜋𝑘𝑦)𝑑𝑥𝑑𝑦. 

Since 𝑢(𝑡, 𝑥, 𝑦) ∈ 𝐵2,𝑇

3

2  , the majorizing series of 

(17) is convergent by using Cauchy-Schwartz 
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inequality and Bessel inequality. This implies 
that by the Weierstrass-M test, the series (15) is 
uniformly convergent in [0, 𝑇]. Thus 𝜙1(𝑧) is 
continuous in [0, 𝑇]. 

Now, let us show that 𝜙2(𝑧) ∈ 𝐵2,𝑇

3

2  , i.e. we need 

to show 

𝐽𝑇(𝜙2) = [ ∑ (µ𝑚𝑘

3
2 max

0≤𝑡≤𝑇
|𝜙2𝑚𝑘(𝑡)|)

2∞

𝑚,𝑘=1

]

1
2

< +∞ 

where 

𝜙2𝑚𝑘(𝑡)

= 𝜑𝑚𝑘 𝑐𝑜𝑠(√µ𝑚𝑘 𝑡) +
1

√µ𝑚𝑘
𝜓𝑚𝑘 𝑠𝑖𝑛(√µ𝑚𝑘 𝑡)

+
1

√µ𝑚𝑘
∫𝐹𝑚𝑘(𝜏; 𝑎, 𝑢𝑚𝑘)

𝑡

0

𝑠𝑖𝑛(√µ𝑚𝑘 (𝑡 − 𝜏)𝑑𝜏 

After some manipulations under the 
assumptions (𝐴0) − (𝐴4), we get 

∑ (µ𝑚𝑘

3
2 max

0≤𝑡≤𝑇
|𝜙2𝑚𝑘(𝑡)|)

2∞

𝑚,𝑘=1

≤
36

𝜋6
 ∑ |𝛼𝑚𝑘|

2

∞

𝑚,𝑘=1

+
16

𝜋4
 ∑ |𝛽𝑚𝑘|

2

∞

𝑚,𝑘=1

+
16𝑇2

𝜋4
 ∑ (max

0≤𝑡≤𝑇
|𝜂𝑚𝑘(𝑡)|)

2
∞

𝑚,𝑘=1

+
(max
0≤𝑡≤𝑇

|𝑎(𝑡)|)
2

𝑇2

2𝜋4
∑ (µ𝑚𝑘

3
2 max

0≤𝑡≤𝑇
|𝑢𝑚𝑘(𝑡)|)

2∞

𝑚,𝑘=1

  

(18) 

From the Bessel inequality and 

∑ (µ𝑚𝑘

3

2 max
0≤𝑡≤𝑇

|𝑢𝑚𝑘(𝑡)|)
2

< +∞,∞
𝑚,𝑘=1  series on the 

right side of (18) are convergent. Thus 𝐽𝑇(𝜙2) <

 +∞  and 𝜙2 is belongs to the space 𝐵2,𝑇

3

2 . 

Now, let 𝑧1 and 𝑧2  be any two elements of 𝐸𝑇

3

2  . 

We know that ‖𝛷(𝑧1) −  𝛷(𝑧2)‖
𝐸𝑇

3
2
= ‖𝛷1(𝑧1) −

 𝛷1(𝑧2)‖𝐶[0,𝑇 ] + ‖𝛷2(𝑧1) − 𝛷2(𝑧2)‖
𝐵2,𝑇

3
2
. 

Here 𝑧𝑖  =  [𝑎
𝑖(𝑡), 𝑢𝑖(𝑡, 𝑥, 𝑦)]

𝑇
 , 𝑖 = 1,2. 

Under the assumptions (𝐴0) − (𝐴4) and 
considering (17)-(18), we obtain 

‖𝛷(𝑧1) −  𝛷(𝑧2)‖
𝐸𝑇

3
2

≤ 𝐴(𝑇)𝐶(𝑎1, 𝑢2)‖𝑧1 − 𝑧2‖
𝐸𝑇

3
2
 

where 𝐴(𝑇) = 𝑇 (
1

min
0≤𝑡≤𝑇

|ℎ(𝑡)|
+

1

𝜋√2
) and  

𝐶(𝑎1, 𝑢2)is the constant includes the norms of 
‖𝑎1(𝑡)‖𝐶[0,𝑇 ] and ‖𝑢2(𝑡, 𝑥, 𝑦)‖

𝐵2,𝑇

3
2
. 

For sufficiently small 𝑇 such that   0 < 𝐴(𝑇) < 1, 
the operator 𝛷 is contraction mapping which 

maps 𝐸𝑇

3

2  onto itself continuously.  Then 

according to Banach fixed point theorem there 
exists a unique solution of (14). Thus, the inverse 
problem (1)-(4) has a unique classical solution 

𝑎(𝑡) ∈  𝐶[0, 𝑇 ],  𝑢(𝑡, 𝑥, 𝑦) ∈ 𝐵2,𝑇

3

2  . 

3.1. Continuous dependence of the data 

Now, let us investigate the stability of the 
solution of the inverse problem. Because of the 
presence of the term 𝑎(𝑡)𝑢(𝑡, 𝑥, 𝑦) in the 
equation (1), finding the pair of solution 
{ 𝑎(𝑡), 𝑢(𝑡, 𝑥, 𝑦)}  of the inverse problem (1)-(4) 
is non-linear. Therefore we can not apply the 
standard stability criteria but we can 
characterize the estimation of conditional 
stability. Thus we can obtain a stability estimate 
under a priori assumption on the smallness of  
𝑎(𝑡). Now, let us characterize the estimation of 
conditional stability of the solution of inverse 
problem. Such an estimate can be obtained by 
setting a certain class of data 
ℑ(𝛼, 𝑁0 , 𝑁1 , 𝑁2 , 𝑁3 ) for the functions 
𝜑(𝑥, 𝑦), 𝜓(𝑥, 𝑦), ℎ(𝑡), 𝑓(𝑡, 𝑥, 𝑦) and a class ℵ(𝑀0) 
for the functions 𝑎(𝑡) if they satisfy 

‖𝑓‖𝐶(𝐷̅𝑇) ≤ 𝑁0, ‖𝜑‖𝐶3(Ω̅) ≤ 𝑁1, ‖𝜓‖𝐶2(Ω̅) ≤ 𝑁2,  

‖ℎ‖𝐶2[0,𝑇] ≤ 𝑁3, 0 < 𝛼 < |ℎ(𝑡)|, 

and 

‖𝑎(𝑡)‖𝐶[0,𝑇] ≤ 𝑀0, 

respectively. 

Since 𝜑,𝜓, ℎ, 𝑓 ∈ ℑ(𝛼,𝑁0 , 𝑁1 , 𝑁2 , 𝑁3 ) and 
𝑎(𝑡)  ∈  ℵ(𝑀0), we get the estimate 

‖𝑢(𝑡, 𝑥, 𝑦)‖
𝐵2,𝑇

3
2
≤ 𝑀1 

where 𝑀1 =
2√2

√2𝜋2−4𝑇𝑀0
(2𝑇𝑁0 +

3𝑁1

𝜋
+ 2𝑁2). 

Let {𝑎(𝑡), 𝑢(𝑡, 𝑥, 𝑦)} and {𝑎̅(𝑡), 𝑢̅(𝑡, 𝑥, 𝑦)} be the 
solutions of (1)-(4) corresponding to data 
𝜑(𝑥, 𝑦), 𝜓(𝑥, 𝑦), ℎ(𝑡), 𝑓(𝑡, 𝑥, 𝑦)  and 
𝜑̅(𝑥, 𝑦),  𝜓̅(𝑥, 𝑦), ℎ̅(𝑡), 𝑓(̅𝑡, 𝑥, 𝑦) respectively. 
Then, we obtain from (12) and (13) 
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𝑢(𝑡, 𝑥, 𝑦) − 𝑢̅(𝑡, 𝑥, 𝑦, ) =

∑ ([𝜑𝑚𝑘 𝑐𝑜𝑠(√µ𝑚𝑘 𝑡) +
∞
𝑚,𝑘=1

1

√µ𝑚𝑘
𝜓𝑚𝑘 𝑠𝑖𝑛(√µ𝑚𝑘 𝑡) +

1

√µ𝑚𝑘
∫ 𝐹𝑚𝑘(𝜏; 𝑎, 𝑢𝑚𝑘)
𝑡

0
𝑠𝑖𝑛(√µ𝑚𝑘 (𝑡 − 𝜏)𝑑𝜏] −

[𝜑̅𝑚𝑘 𝑐𝑜𝑠(√µ𝑚𝑘 𝑡) +
1

√µ𝑚𝑘
𝜓̅𝑚𝑘 𝑠𝑖𝑛(√µ𝑚𝑘 𝑡) +

1

√µ𝑚𝑘
∫ 𝐹𝑚𝑘(𝜏; 𝑎̅, 𝑢̅𝑚𝑘)
𝑡

0
𝑠𝑖𝑛(√µ𝑚𝑘 (𝑡 −

𝜏)𝑑𝜏]) 𝑍𝑚𝑘(𝑥, 𝑦), 

and 

𝑎(𝑡) − 𝑎̅(𝑡) =
1

ℎ(𝑡)ℎ̅(𝑡)
(ℎ̅(𝑡) [ℎ′′(𝑡) −

𝑓(𝑡, 𝑥0, 𝑦0) + ∑ µ𝑚𝑘 [𝜑𝑚𝑘 𝑐𝑜𝑠(√µ𝑚𝑘 𝑡) +
∞
𝑚,𝑘=1

1

√µ𝑚𝑘
𝜓𝑚𝑘 𝑠𝑖𝑛(√µ𝑚𝑘 𝑡) +

1

√µ𝑚𝑘
∫ 𝐹𝑚𝑘(𝜏; 𝑎, 𝑢𝑚𝑘)
𝑡

0
𝑠𝑖𝑛(√µ𝑚𝑘 (𝑡 −

𝜏)𝑑𝜏] 𝑍𝑚𝑘(𝑥0, 𝑦0)] − ℎ(𝑡) [ℎ̅
′′(𝑡) − 𝑓(̅𝑡, 𝑥0, 𝑦0) +

∑ µ𝑚𝑘 [𝜑̅𝑚𝑘 𝑐𝑜𝑠(√µ𝑚𝑘 𝑡) +
∞
𝑚,𝑘=1

1

√µ𝑚𝑘
𝜓̅𝑚𝑘 𝑠𝑖𝑛(√µ𝑚𝑘 𝑡) +

1

√µ𝑚𝑘
∫ 𝐹𝑚𝑘(𝜏; 𝑎̅, 𝑢̅𝑚𝑘)
𝑡

0
𝑠𝑖𝑛(√µ𝑚𝑘 (𝑡 −

𝜏)𝑑𝜏] 𝑍𝑚𝑘(𝑥0, 𝑦0)]). 

Denote the difference between two functions 
with the tilde (∼), i.e. 𝑎 ̃ =  𝑎 − 𝑎̅, 𝑢̃  =  𝑢 − 𝑢̅, etc. 
Then, under the conditions (𝐴0) − (𝐴4) by using 
the estimates given above we obtain  

‖𝑎̃(𝑡)‖𝐶[0,𝑇]

≤
𝐷1
∆(𝑇)

{‖ℎ̃‖
𝐶2[0,𝑇]

+‖𝑓‖
𝐶(𝐷̅𝑇)

+ ‖𝜑̃‖𝐶3(Ω̅) + ‖𝜓̃‖𝐶2(Ω̅)},  

 

 

(19) 

‖𝑢̃(𝑡, 𝑥, 𝑦)‖
𝐵2,𝑇

3
2

≤
𝐷2
∆(𝑇)

{‖ℎ̃‖
𝐶2[0,𝑇]

+‖𝑓‖
𝐶(𝐷̅𝑇)

+ ‖𝜑̃‖𝐶3(Ω̅) + ‖𝜓̃‖𝐶2(Ω̅)},  

 

 

 

(20) 

where ∆(𝑇) = 𝑑1𝑑4 − 𝑑2𝑑3 ≠ 0, 𝑑1 = 1 −
𝑇

𝜋𝛼2√2
𝑁3𝑀1, 𝑑2 =

𝑇

𝜋𝛼2√2
𝑁3𝑀0, 𝑑3 =

𝑇

𝜋√2
𝑀1, 𝑑4 =

1 −
𝑇

𝜋√2
𝑀0 and 𝐷1 , 𝐷2 are constants depend only 

the parameters 𝛼,𝑁0, 𝑁1, 𝑁2, 𝑁3, 𝑀0 and 𝑀1. 

Thus we proved the follwing theorem: 

Theorem 2 (continuous dependence upon 
the data). Let {𝑎(𝑡), 𝑢(𝑡, 𝑥, 𝑦)} and 
{𝑎̅(𝑡),  𝑢̅(𝑡, 𝑥, 𝑦)} be two solutions of the inverse 
problem (1)-(4) with the data 𝜑(𝑥, 𝑦), 𝜓(𝑥, 𝑦),
ℎ(𝑡), 𝑓(𝑡, 𝑥, 𝑦)  and 𝜑̅(𝑥, 𝑦),  𝜓̅(𝑥, 𝑦), ℎ̅(𝑡), 
 𝑓(̅𝑡, 𝑥, 𝑦), respectively, which are satisfied the 
conditions of the Theorem 1. Then the estimates 
(19)-(20) are true for small 𝑇 . The constants 𝐷1 
and 𝐷2 depend only on the choice of the classes 
ℑ(𝛼, 𝑁0 , 𝑁1 , 𝑁2 , 𝑁3 )  and ℵ(𝑀0, 𝑀1). 

4. Numerical Method and Examples 

In this section,we describe the numerical 
method applied to the inverse initial-boundary 
value problem (1)-(4). As in the one dimensional 
case, the standard and most natural difference 
method for the two dimensional wave equation 
is an explicit central finite difference 
approximation which is very fast and effective. 

The discrete form of our problem is as follows: 
We divide the domain [0, 𝑇 ] × [0, 1] × [0, 1] into 
𝑛𝑡, 𝑛𝑥 and 𝑛𝑦 subintervals of equal length ∆𝑡, ∆𝑥 

and ∆𝑦, where ∆𝑡 =  
𝑇

𝑛𝑡
, ∆𝑥 =

1

𝑛𝑥
 and ∆𝑦 =

1

𝑛𝑦
, 

respectively. We denote by 𝑈𝑖,𝑗
𝑘 : = 𝑈 (𝑡𝑘 , 𝑥𝑖 , 𝑦𝑗) , 

𝑎 ∶=  𝑎(𝑡𝑘 ) and 𝑓𝑖,𝑗
𝑘 : =  𝑓 (𝑡𝑘 , 𝑥𝑖  , 𝑦𝑗  ), where 𝑡𝑘 =

𝑘∆𝑡, 𝑥𝑖 = 𝑖∆𝑥, 𝑦𝑗 = 𝑗∆𝑦 for 𝑘 0, . . . , 𝑛𝑡, 𝑖 =

 0, . . . , 𝑛𝑥, and 𝑗 = 0, . . . , 𝑛𝑦. Then, an explicit 
central finite difference approximation to the 

equation (1) at the mesh points (𝑡𝑘 , 𝑥𝑖 , 𝑦𝑗) is 

𝑈𝑖,𝑗
𝑘+1−2𝑈𝑖,𝑗

𝑘 +𝑈𝑖,𝑗
𝑘−1

(∆𝑡)2
=

𝑈𝑖+1,𝑗
𝑘 −2𝑈𝑖,𝑗

𝑘 +𝑈𝑖−1,𝑗
𝑘

(∆𝑥)2
+

𝑈𝑖,𝑗+1
𝑘 −2𝑈𝑖,𝑗

𝑘 +𝑈𝑖,𝑗−1
𝑘

(∆𝑦)2
+ 𝑎𝑘𝑈𝑖,𝑗

𝑘 + 𝑓𝑖,𝑗
𝑘 . 

If we let 𝑟𝑥 = (
∆𝑡

∆𝑥
)
2

 and 𝑟𝑦 = (
∆𝑡

∆𝑦
)
2

, we can 

rewrite the above discrete form as 

𝑈𝑖,𝑗
𝑘+1 = 2(1 − (𝑟𝑥 + 𝑟𝑦))𝑈𝑖,𝑗

𝑘 +

𝑟𝑥(𝑈𝑖+1,𝑗
𝑘 + 𝑈𝑖−1,𝑗

𝑘 ) + 𝑟𝑦(𝑈𝑖,𝑗+1
𝑘 +

𝑈𝑖,𝑗−1
𝑘 ) − 𝑈𝑖,𝑗

𝑘−1 + (∆𝑡)2(𝑎𝑘𝑈𝑖,𝑗
𝑘 + 𝑓𝑖,𝑗

𝑘 ), 

𝑘 = 1, . . . , 𝑛𝑡 − 1, 𝑖 = 1, . . . , 𝑛𝑥 − 1,
𝑗 = 1, . . . , 𝑛𝑦 − 1. 

 

 

(21) 

Discretizing the initial and boundary conditions 
(2) and (3) we obtain 

𝑈𝑖,𝑗
0 = 𝜑𝑖,𝑗 ,

𝑈𝑖,𝑗
1 − 𝑈𝑖,𝑗

−1

2∆𝑡
= 𝜓𝑖,𝑗 ,

𝑖 = 0, . . . , 𝑛𝑥,
𝑗 = 0, . . . , 𝑛𝑦 

 

(22) 
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𝑈0,𝑗
𝑘 = 𝑈𝑛𝑥,𝑗

𝑘 = 𝑈𝑖,0
𝑘 = 𝑈𝑖,𝑛𝑦

𝑘 = 0,

𝑘 = 0,… , 𝑛𝑡. 
(23) 

Considering (22) into (21), we derive the finite 
difference approximation for 𝑘 = 0 as 

𝑈𝑖,𝑗
1 =

1

2
[2 (1 − (𝑟𝑥 + 𝑟𝑦))𝜑𝑖,𝑗 +

𝑟𝑥(𝜑𝑖+1,𝑗 + 𝜑𝑖−1,𝑗) + 𝑟𝑦(𝜑𝑖,𝑗+1 +

𝜑𝑖,𝑗−1) + 2∆𝑡𝜓𝑖,𝑗 + (∆𝑡)
2(𝑎0𝜑𝑖,𝑗 +

𝑓𝑖,𝑗
0 )] , 𝑖 = 1, . . . , 𝑛𝑥 − 1, 𝑗 =

1, . . . , 𝑛𝑦 − 1. 

 

 

 

 

 
(24) 

If 𝑎(𝑡), 0 ≤  𝑡 ≤  𝑇 is known, the system (21)-
(24) can be easily solved explicitly and has a 
second order accuracy in both (∆𝑡)2, (∆𝑥)2 and 
(∆𝑦)2. Moreover, the stability of this explicit 
finite difference method for multidimensional 
wave equation is dictated by the Courant–

Friedrichs–Lewy (CFL) condition 𝑟 ≤
1

√𝑠
 where s 

is the space dimensions of the wave equation, 
and 𝑟 = 𝑟𝑥 = 𝑟𝑦 . In the two dimensional case, the 

explicit scheme is stable for 𝑟 ≤
1

√2
 . Now, let us 

construct the mechanism for the coefficients 
𝑎(𝑡). Consider (14) into the equation (1), we 
obtain 

𝑎(𝑡)  =
1

ℎ(𝑡)
[ℎ′′(𝑡) − 𝑓(𝑡, 𝑥0, 𝑦0)  

−  𝑢𝑥𝑥(𝑡, 𝑥0, 𝑦0)  
−  𝑢𝑦𝑦(𝑡, 𝑥0, 𝑦0)] . 

The finite difference approximation of this 
equation is 

𝑎𝑘 =
1

ℎ𝑘
[
ℎ𝑘+1−2ℎ𝑘+ℎ𝑘−1

(∆𝑡)2
− 𝑓𝑥0𝑖,𝑦0𝑗

𝑘 −

𝑈𝑥0𝑖+1,𝑦0𝑗
𝑘 −2𝑈𝑥0𝑖,𝑦0𝑗

𝑘 +𝑈𝑥0𝑖−1,𝑦0𝑗
𝑘

(∆𝑥)2
−

𝑈𝑥0𝑖,𝑦0𝑗+1
𝑘 −2𝑈𝑥0𝑖,𝑦0𝑗

𝑘 +𝑈𝑥0𝑖,𝑦0𝑗−1
𝑘

(∆𝑦)2
] , 𝑘 =

1, . . . , 𝑛𝑡 − 1,  

 

 

(25) 

where 𝑥0𝑖 and 𝑦0𝑗 are the mesh points according 
to known 𝑥0 and 𝑦0 , respectively. For 𝑘 = 0 and 
𝑘 = 𝑛𝑡, 

𝑎0

=
1

ℎ0
[
ℎ2 − 2ℎ1 + ℎ0

(∆𝑡)2
− 𝑓𝑥0𝑖,𝑦0𝑗

0

−
𝜑𝑥0𝑖+1,𝑦0𝑗 − 2𝜑𝑥0𝑖,𝑦0𝑗 + 𝜑𝑥0𝑖−1,𝑦0𝑗

(∆𝑥)2

−
𝜑𝑥0𝑖,𝑦0𝑗+1 − 2𝜑𝑥0𝑖,𝑦0𝑗 + 𝜑𝑥0𝑖,𝑦0𝑗−1

(∆𝑦)2
], 

 

 

(26) 

𝑎𝑛𝑡

=
1

ℎ𝑛𝑡
[
ℎ𝑛𝑡 − 2ℎ𝑛𝑡−1 + ℎ𝑛𝑡−2

(∆𝑡)2
− 𝑓𝑥0𝑖,𝑦0𝑗

𝑛𝑡

−
𝑈𝑥0𝑖+1,𝑦0𝑗
𝑛𝑡 − 2𝑈𝑥0𝑖,𝑦0𝑗

𝑛𝑡 + 𝑈𝑥0𝑖−1,𝑦0𝑗
𝑛𝑡

(∆𝑥)2

−
𝑈𝑥0𝑖,𝑦0𝑗+1
𝑛𝑡 − 2𝑈𝑥0𝑖,𝑦0𝑗

𝑛𝑡 + 𝑈𝑥0𝑖,𝑦0𝑗−1
𝑛𝑡

(∆𝑦)2
]. 

 

 

(27) 

 

Now let us consider (25) with the conditions 
(26)-(27) in the system (21)-(24), we obtain the 

system with respect to 𝑈𝑖,𝑗
𝑘 , 𝑘 = 0, . . . , 𝑛𝑡, 𝑖 =

0, . . . , 𝑛𝑥, 𝑗 = 0, . . . , 𝑛𝑦 which can be solved 
explicitly. Then using the calculated values of 

𝑈𝑥0𝑖,𝑦0𝑗
𝑘  in (25), we obtain the values of 𝑎𝑘 , 𝑘 =

0, . . . , 𝑛𝑡. 

Numerical examples for the inverse problem are 
presented below. We also calculate the absolute 
error (ae) to analyse the error between the exact 
and numerically obtained solution 𝑢(𝑡, 𝑥, 𝑦), and 
it is defined as 𝑎𝑒(𝑢(𝑡, 𝑥, 𝑦))  =  |𝑢𝑛𝑢𝑚 − 𝑢𝑒𝑥𝑎𝑐𝑡|. 

In the following examples we take (𝑥0, 𝑦0) =

(
1

2
,
1

2
) and 𝑇 = 1. 

Example 1. Consider the inverse initial-
boundary value problem (1)-(4) with the input 
data 𝜑(𝑥, 𝑦) = 𝑠𝑖𝑛(𝜋𝑥)𝑠𝑖𝑛(𝜋𝑦), 𝜓(𝑥, 𝑦) =
 𝑠𝑖𝑛(𝜋𝑥)𝑠𝑖𝑛(𝜋𝑦), ℎ(𝑡)  = 𝑒𝑡 , 𝑓(𝑡, 𝑥, 𝑦) = (1 +
2𝜋2)𝑠𝑖𝑛(𝜋𝑥)𝑠𝑖𝑛(𝜋𝑦)𝑒𝑡 − 𝑠𝑖𝑛(𝜋𝑥)𝑠𝑖𝑛(𝜋𝑦), 
(𝑡, 𝑥, 𝑦) ∈ [0,1] × [0,1] × [0, 1].  

The data 𝜑(𝑥, 𝑦) ∈ 𝐶3(Ω̅) , 𝜓(𝑥, 𝑦) ∈ 𝐶2(Ω̅) ,  
ℎ(𝑡) ∈ 𝐶2[0, 𝑇 ], and 𝑓(𝑡, 𝑥, 𝑦) ∈ 𝐶(𝐷𝑇), 
𝑓(𝑡, 𝑥, 𝑦) ∈ 𝐶2(Ω̅), ∀𝑡 ∈ [0, 𝑇 ] satisfy the 
conditions (𝐴0) − (𝐴4). Hence, according to the 
Theorem 1 the solution of the inverse problem 
exists and unique. In fact, using the direct 
substitution the exact solution of the inverse 
problem (1)-(4) is given by 

{𝑎(𝑡), 𝑢(𝑡, 𝑥, 𝑦)}  = {𝑒−𝑡 , 𝑠𝑖𝑛(𝜋𝑥)𝑠𝑖𝑛(𝜋𝑦)𝑒𝑡}  
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with 𝑎(𝑡) ∈  𝐶[0, 𝑇 ], and  𝑢(𝑡, 𝑥, 𝑦) ∈ 𝐵2,𝑇

3

2  . 

Figure 1 and Figure 2 show the exact and 
numerical solutions of {𝑎(𝑡), 𝑢(𝑡, 𝑥, 𝑦)} for 𝑛𝑥 =

 𝑛𝑦 =  50 and 𝑛𝑡 = 50√2 to satisfy CFL 
condition, respectively. It is seen from these 
figures that the exact and inverse numerical 
solutions are in a good agreement. 

 

 

 

Figure 1. Exact and inverse numerical solutions 
of 𝑢(𝑡, 𝑥, 𝑦) at 𝑡 = 1 and the absolute error for 
the direct and inverse numerical solutions for 
Example 1. 

 

Figure 2. Exact and inverse numerical solutions 
of 𝑎(𝑡) for Example 1. 

Example 2. In previous example, we consider 
the inverse problem where that 𝜑(𝑥, 𝑦) ∈
𝐶3(Ω̅) , 𝜓(𝑥, 𝑦) ∈ 𝐶2(Ω̅) ,  ℎ(𝑡) ∈ 𝐶2[0, 𝑇 ], and 
𝑓(𝑡, 𝑥, 𝑦) ∈ 𝐶(𝐷𝑇), 𝑓(𝑡, 𝑥, 𝑦) ∈ 𝐶

2(Ω̅), ∀𝑡 ∈ [0, 𝑇 ] 

satisfy the conditions (𝐴0) − (𝐴4). Now, consider 
the inverse initial-boundary value problem (1)-
(4) with the input data 𝜑(𝑥, 𝑦) = (𝑥2 − 𝑥)(𝑦2 −

𝑦), 𝜓(𝑥, 𝑦) = (𝑥2 − 𝑥)(𝑦2 − 𝑦), ℎ(𝑡)  =
𝑒
𝑡
2

16
, 

𝑓(𝑡, 𝑥, 𝑦) = (
1

4
(𝑥2 − 𝑥)(𝑦2 − 𝑦) − 2(𝑥2 + 𝑦2 −

𝑥 − 𝑦)) 𝑒𝑡/2 − (𝑥2 − 𝑥)(𝑦2 − 𝑦), (𝑡, 𝑥, 𝑦) ∈

[0,1] × [0,1] × [0, 1]. 

From the second derivative of the initial data we 
obtain  𝜑𝑥𝑥(𝑥, 𝑦) = 𝜓𝑥𝑥(𝑥, 𝑦) = 2(𝑦

2 − 𝑦) and 
𝜑𝑥𝑥(0, 𝑦), 𝜑𝑥𝑥(1, 𝑦) ≠ 0. Thus, the condition (𝐴1) 
is not satisfied. As the condition of Theorem 1 is 
not satisfied we can not conclude the unique 
solvability of the inverse problem. However, the 
solution at least exists and is given by 
{𝑎(𝑡), 𝑢(𝑡, 𝑥, 𝑦)}  = { 𝑒−𝑡/2, (𝑥2 − 𝑥)(𝑦2 −

𝑦)𝑒𝑡/2 }  which can be checked by direct 

substitution. Figure 3 and Figure 4 show the 
exact and numerical solutions of {𝑎(𝑡), 𝑢(𝑡, 𝑥, 𝑦)} 
for 𝑛𝑡 = 𝑛𝑥 = 100, respectively. Although the 
existence and uniqueness theorem is not 
satisfied, we can conclude from these figures that 
convergent exact and inverse numerical 
solutions are obtained. 
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Figure 3. Exact and inverse numerical solutions 
of 𝑢(𝑡, 𝑥, 𝑦) at 𝑡 =  1 and the absolute error for 
the direct and inverse numerical solutions for 
Example 2. 

 

Figure 4. Exact and inverse numerical solutions 
of 𝑎(𝑡) for Example 2. 

Example 3. In Example 1 and Example 2, we 
consider the inverse problem where the solution 
𝑎(𝑡) is smooth. Now, consider the example with 
the data which derive a non-smooth coefficient. 
Consider the inverse initial-boundary value 
problem (1)-(4) with the input data 𝜑(𝑥, 𝑦) =
𝑠𝑖𝑛(𝜋𝑥)𝑠𝑖𝑛(𝜋𝑦), 𝜓(𝑥, 𝑦) =  𝑠𝑖𝑛(𝜋𝑥)𝑠𝑖𝑛(𝜋𝑦), 

ℎ(𝑡)  = 𝑒𝑡 , 𝑓(𝑡, 𝑥, 𝑦) = (1 + 2𝜋2 −

1

|𝑡−
1

2
|+1
) 𝑠𝑖𝑛(𝜋𝑥)𝑠𝑖𝑛(𝜋𝑦)𝑒𝑡 , (𝑡, 𝑥, 𝑦) ∈ [0,1] ×

[0,1] × [0, 1]. Obviously, 𝜑(𝑥, 𝑦) ∈ 𝐶3(Ω̅) , 
𝜓(𝑥, 𝑦) ∈ 𝐶2(Ω̅) ,  ℎ(𝑡) ∈ 𝐶2[0, 𝑇 ], and 
𝑓(𝑡, 𝑥, 𝑦) ∈ 𝐶(𝐷𝑇), 𝑓(𝑡, 𝑥, 𝑦) ∈ 𝐶

2(Ω̅), ∀𝑡 ∈ [0, 𝑇 ] 
satisfy the conditions (𝐴0) − (𝐴4). Then the 
exact solution of the problem (1)-(4) is 

{𝑎(𝑡), 𝑢(𝑡, 𝑥, 𝑦)}  = {|𝑡 −
1

2
| + 1,

𝑠𝑖𝑛(𝜋𝑥)𝑠𝑖𝑛(𝜋𝑦)𝑒𝑡}  

The corresponding exact and numerical non-
smooth coefficient solution 𝑎(𝑡) of the problem 
(1)-(4) is presented in Figure 5. From this figure 
it can be seen that the recovered coefficient is in 
very good agreement with their corresponding 
exact solution. Since the numerical performance 
of the smooth coefficients is shown in previous 
example, we present the numerical performance 
for non-smooth coefficient 𝑎(𝑡). 
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Figure 5. Exact and inverse numerical solutions 
of non-smooth 𝑎(𝑡) for Example 3. 

5. Discussion and Conclusion 

The paper considers the inverse problem of 
recovering a time-dependent potential in an 
initial-boundary value problem for a two 
dimensional wave equation. The series 
expansion method in terms of eigenfunction of a 

Sturm-Liouville problem converts the 
considered inverse problem to a fixed point 
problem in a suitable Banach space. Under some 
consistency and regularity conditions on initial 
and boundary data, the existence and 
uniqueness of the solution of inverse problem is 
shown by using the Banach fixed point theorem 
and conditional stability of the solution of the 
inverse problem is shown in a certain class of 
data. For the numerical solution of inverse 
problem finite difference approximations of the 
second order derivatives appearing in the 
numerical schemes are used. It is important to 
note that by using finite differences method we 
can solve the inverse problem which does not 
satisfy the theoretical conditions. The presented 
numerical examples for the inverse problem are 
solved accurately.  
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