Preparation and characterization of magnetic featured supported heterogeneous catalysts

Yıldız Aldemir¹, Elif Ant Bursalı², Müruvvet Yurdakoc²*
¹Dokuz Eylül University, Graduate School of Natural and Applied Sciences, Department of Chemistry, İzmir, TURKEY.
²Dokuz Eylül University, Faculty of Sciences, Department of Chemistry, 35390 İzmir, TURKEY
Sorumlu Yazar / Corresponding Author*: m.yurdakoc@deu.edu.tr

Abstract

Magnesium ferrite nanoparticles containing organic or inorganic support materials were prepared as heterogeneous catalysts. The characterization of the catalysts was performed by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), emission scanning electronic microscope/energy dispersive spectroscopy (SEM/EDS). Magnetic properties of the catalysts were determined by a vibrating sample magnetometer (VSM). Specific surface area and pore size distribution of the catalysts were obtained from nitrogen adsorption-desorption data at 77K by Brunauer-Emmett-Teller (BET) method.

Keywords: Heterogeneous catalysts, Nanoparticles, Magnesium ferrite

Öz

Anahtar Kelimeler: Heterojen katalizörler, Nanoparçacıklar, Magnezyum ferrit

1. Introduction

Magnetic nanoparticles have gained considerable interest due to having diverse chemical and physical properties in various technological applications such as catalysis [5-9], drug delivery [10, 11], adsorption [12-15], sensors [16, 17] and biomedical applications [18-20]. Magnetic nanoparticles with tunable catalytic activities are attractive catalysts since they can be separated from the reaction medium after magnetization by an external magnet.
The cubic spinel ferrites represent an important class of magnetic nanoparticles. Nano magnesium ferrite (MgFe₂O₄) with a cubic structure of inverse spinel type is a member of spinel ferrites. It is a soft magnetic n-type semiconducting material which has good photoelectrical properties, low saturation magnetization, high resistivity, uniform and reproducible characteristics [3, 4].

Also clays are important in industrial raw materials such as catalyst and catalyst supports. Clay minerals such as bentonite (HB/CTAB), organo-bentonite (HB/CTAB) and nano aluminum oxide (NPs-Al₂O₃) supported nano spheres of MgFe₂O₄ were prepared by co-precipitation method [20].

All prepared catalysts were characterized by XRD, FTIR, SEM/EDS, and VSM methods and compared with each other. Specific surface areas and adsorption-desorption isotherms of the catalysts were determined by BET method.

2. Material and Method

Iron(II) chloride tetrahydrate (FeCl₂·4H₂O) (Merck), Iron(III) chloride hexahydrate (FeCl₃·6H₂O) (Merck), aqueous ammonia (NH₃) (Carlo Erba), magnesium acetate tetrahydrate (Mg(OAc)₂·4H₂O) (Merck) and sodium hydroxide (NaOH) (Merck) were used for the preparation of magnesium ferrite nano spheres.

Natural Enez/Edirne bentonite (B), organo-bentonite (HB/CTAB) [23] and nano aluminum oxide (NPs-Al₂O₃) (Aldrich) were used as support materials for the preparation of catalysts. All other chemicals used were of analytical reagent grade and used without further purification. The water used throughout the study was deionized. A Heidolph MR 3001 model magnetic shaker and a Carbolite model muffle furnace were used during the experiments.

2.1. Preparation of the nano spheres of magnesium ferrite with different support materials

The catalysts were prepared by co-precipitation method because of its simplicity and having a good product distribution. So, 30 mL solution of FeCl₂·4H₂O (368 mg, 1.85 mmol) and FeCl₃·6H₂O (1g, 3.7 mmol) was prepared with deionized water under a nitrogen atmosphere in order to avoid oxidation of magnetic nanoparticles. The mixture was slowly added to the flask containing 1g support material (B, HB/CTAB or NPs-Al₂O₃) in the same atmosphere. After 10 min. aqueous solution of 10 mL 25% NH₃ was added to the mixture at a constant dropping rate (2mL/min) at room temperature and was stirred at 700 rpm for 20 min. 10 mL solution of Mg(OAc)₂·4H₂O (750 mg, 3.5 mmol) in deionized water was added drop wise to the suspension. Mg(OH)₂ was allowed to precipitate with the controlled addition of 1 M NaOH to the solution. The precipitate formed was filtered, washed several times with deionized water, dried in an oven and was calcined at 550 °C for 6.5 h. The synthesized catalysts were named as MgFe₂O₄/B, MgFe₂O₄/HB-CTAB, MgFe₂O₄/NPs-Al₂O₃ respectively.

Hypothetically proposed reaction scheme for preparation of MgFe₂O₄/B was given as an example in Scheme 1.[20]

![Scheme 1](image-url)
2.2. Characterization of the catalysts

The X-ray diffraction patterns (XRD) of the catalysts were recorded in a Rigaku - Rint 2200/PC (Ultima 3) X-Ray diffractometer using Cu Kα radiation in the 2θ range of 10-90° with a scanning rate of 0.4 degree/min.

Fourier transform infrared spectroscopy (FTIR) spectra of the catalysts were recorded with a Perkin Elmer Spectrum BX-II Model Fourier Transform IR spectrometer using KBr pellets in the range of 4000 and 400 cm⁻¹ at a resolution of 4 cm⁻¹ and averages of 50 scans.

Morphological analyses of catalysts were performed with an emission scanning electronic microscope (SEM), FEI Quanta FEG 250 operated at an acceleration voltage of 5 kV. Also, elemental distribution was determined by energy dispersive spectroscopy (EDS) working in conjunction with the SEM.

The magnetization measurements were carried out by using a vibrating sample magnetometer (VSM) (Cryogenic Limited PPMS) with a magnetic field range up to ±5 T at room temperature.

The specific surface area of catalysts determined according to the Brunauer-Emmett-Teller (BET) method after N₂ adsorption-desorption at 77 K by using Quantachrome Corporation, Autosorb-6.

3. Results

3.1. XRD analysis

The X-ray powder diffraction pattern of MgFe₂O₄ (Figure 1) was evaluated according to JCPDS 17-0464 and Hematite, α-Fe₂O₃ phase has been observed as impurity [24].

![Figure 1. XRD pattern of MgFe₂O₄](image_url)
As can be seen from Figure 2 the structure of active ingredient, MgFe₂O₄, was protected. The intensities of the signals of MgFe₂O₄/B, MgFe₂O₄/HB-CTAB and MgFe₂O₄/NPs-Al₂O₃ were increased in comparison with the signals of MgFe₂O₄.

Also by using XRD data, the crystallite sizes of the MgFe₂O₄, MgFe₂O₄/B, MgFe₂O₄/HB-CTAB and MgFe₂O₄/NPs-Al₂O₃ catalysts were calculated as 31, 15, 9 and 27 nm, respectively, which indicated nano sized catalysts.

3.2. FTIR analysis

The FTIR spectra of the samples in the range of 4000-400 cm⁻¹ were shown in Figure 3. The spectra of MgFe₂O₄ showed absorption bands around 3380 cm⁻¹ and 1637 cm⁻¹, which were characteristic stretching and bending vibrations of hydroxylate (O-H) remain at the calcination temperature of 550 °C, respectively [25].

The small bands lying at 2924 cm⁻¹ and 1046 cm⁻¹ were characteristic of C-H stretching and bending modes, respectively. The absorption band observed at 2364 cm⁻¹ could be assigned to atmospheric CO₂ [26].

The characteristic absorption bands appeared at 567 cm⁻¹ and 460 cm⁻¹ were corresponding to stretching vibration of metal–oxygen bonds at tetrahedral and octahedral sites respectively and they were responsible for the formation of MgFe₂O₄ structure [20, 27, 28]. According to the spectra of MgFe₂O₄, a significant decrease in intensities and increase in frequencies of the bands occurred in the spectra of MgFe₂O₄/NPs-Al₂O₃.

Besides, the intensities of the bands observed in the spectra of B were increased in the spectra of MgFe₂O₄/B by the effect of MgFe₂O₄. In comparison with the spectra of MgFe₂O₄ and HB-CTAB, the intensities of all bands were significantly reduced and some bands could not be observed in the spectrum of MgFe₂O₄/HB-CTAB.

3.3. SEM analysis

SEM and EDS analysis were applied to all samples and their support materials. Images of the surface of the samples at 25000x magnification were shown in Figure 4 and the EDS results of the samples were given in Table 1.

In the SEM image of MgFe₂O₄ (Figure 4g), any aggregate was observed. On the other hand, as can be seen from Figure 4 that for MgFe₂O₄/HB-CTAB and MgFe₂O₄/NPs-Al₂O₃ (Figure 4d and f) catalysts, aggregations as a part in the images were observed. In the case of MgFe₂O₄/HB-CTAB maximum degree of aggregation was observed with spacings between the aggregates. In Figure 4b, for MgFe₂O₄/B, formation of an aggregation was not seen and when compared with B (Figure 4a) due to the small particles it may be considered that the effect of MgFe₂O₄ on the structure was more than bentonite.
Figure 3. FTIR spectra of the samples

Figure 4. SEM images of the surface of samples at 25000x magnification. (a) B, (b) MgFe₂O₄/B, (c) HB-CTAB, (d) MgFe₂O₄/HB-CTAB, (e) NPs-Al₂O₃, (f) MgFe₂O₄/NPs-Al₂O₃ and (g) MgFe₂O₄
Table 1. EDS results of the samples (w %)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mg</th>
<th>Fe</th>
<th>Al</th>
<th>C</th>
<th>O</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgFe₂O₄</td>
<td>6.92</td>
<td>76.34</td>
<td>-</td>
<td>1.85</td>
<td>14.89</td>
<td>-</td>
</tr>
<tr>
<td>MgFe₂O₄/B</td>
<td>4.43</td>
<td>22.16</td>
<td>3.47</td>
<td>17.81</td>
<td>42.15</td>
<td>9.98</td>
</tr>
<tr>
<td>MgFe₂O₄/HB-CTAB</td>
<td>4.70</td>
<td>21.01</td>
<td>3.63</td>
<td>15.15</td>
<td>45.72</td>
<td>9.79</td>
</tr>
<tr>
<td>MgFe₂O₄/NPs-Al₂O₃</td>
<td>3.71</td>
<td>29.59</td>
<td>10.59</td>
<td>15.69</td>
<td>40.42</td>
<td>-</td>
</tr>
</tbody>
</table>

C% values seen in Table 1 could be explained by carbon strips used in sample preparation of SEM analysis for MgFe₂O₄, by calcite and carbonate structures of natural bentonite for MgFe₂O₄/B and by the solute of commercial NPs-Al₂O₃ (20% isopropanol) for MgFe₂O₄/NPs-Al₂O₃.

3.4. VSM analysis

The magnetization behaviors of the samples were evaluated using a VSM, as shown in Figure 5. It is clear that the samples exhibit S-shape curves and hysteresis were not observed which was typical for superparamagnetic behavior [17, 29-31]. Having magnetic properties provide to be easily and quickly separated from the suspensions for the obtained nanoparticles.

The saturation magnetization (Mₛ) values of MgFe₂O₄/HB-CTAB, MgFe₂O₄/NPs-Al₂O₃, MgFe₂O₄/B and MgFe₂O₄ were 11.8, 8.7, 2.1 and 7.8 emu/g at room temperature, respectively.

MgFe₂O₄/HB-CTAB and MgFe₂O₄/NPs-Al₂O₃ had higher Mₛ values than that of MgFe₂O₄, where MgFe₂O₄/B had a lower value. The value of Mₛ was related to the crystallinity of the nanoparticles [31].
3.5. BET Analysis

BET multi point specific surface areas (S_{BET} (m^2/g)), BJH pore volumes (V_{p} (cm^3/g)) and BJH pore diameters (Å) of B, HB-CTAB, NPs-Al_2O_3, MgFe_2O_4, MgFe_2O_4/B, MgFe_2O_4/HB-CTAB and MgFe_2O_4/NPs-Al_2O_3 after N_2 adsorption-desorption at 77 K were represented in Table 2.

When the surface area values of B and HB-CTAB were compared, it was observed that the surface areas decreased with the acid activation of B and the diffusion of CTAB between the layers and may be being partially filling the pores. The proximity of the values of B and MgFe_2O_4/B to each other showed that MgFe_2O_4 has not diffused between the layers or porous structure of bentonite but probably dispersed onto the surface. The highest surface area of MgFe_2O_4/HB-CTAB among the catalysts was inferred from the increase in pore volume and average pore diameter which was probably due to the penetration of HB-CTAB into the layers of MgFe_2O_4. This may be due to the treatment of acid activated bentonite (HB) or B with CTAB will increase the distance between the layers of HB, namely B which can be confirmed with the XRD results. This extra space may be resulted an increase in the specific surface area of the MgFe_2O_4/HB-CTAB.

Besides, it was observed that more N_2 was adsorbed because of the increase in pore volume and average pore diameter, and by the increase of monolayer capacity, the specific surface area was also increased.

In the case of MgFe_2O_4/NPs-Al_2O_3, a significant decrease in the specific surface area value was observed as compared with NPs-Al_2O_3. This may be due to the filling of the pores with MgFe_2O_4 particles.

As can be seen from Figure 6, the BET isotherms indicated a non-porous or mesoporous structure with Type S, Type II, according to IUPAC classification [32].
Table 2. \(S_{\text{BET}} \), Pore Volume (\(V_p \)) and Pore Diameter of B, HB-CTAB, NPs-Al\(_2\)O\(_3\), MgFe\(_2\)O\(_4\), MgFe\(_2\)O\(_4\)/B, MgFe\(_2\)O\(_4\)/HB-CTAB and MgFe\(_2\)O\(_4\)/NPs-Al\(_2\)O\(_3\)

<table>
<thead>
<tr>
<th>Sample</th>
<th>(S_{\text{BET}}) m(^2)/g</th>
<th>(BJH)* Pore Volume, (V_p) cm(^3)/g</th>
<th>(BJH) Method Pore Diameter Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>65</td>
<td>0.1300</td>
<td>41.0</td>
</tr>
<tr>
<td>HB-CTAB</td>
<td>25</td>
<td>0.0774</td>
<td>14.5</td>
</tr>
<tr>
<td>NPs-Al(_2)O(_3)</td>
<td>98</td>
<td>0.6928</td>
<td>305</td>
</tr>
<tr>
<td>MgFe(_2)O(_4)</td>
<td>27</td>
<td>0.2365</td>
<td>299</td>
</tr>
<tr>
<td>MgFe(_2)O(_4)/B</td>
<td>67</td>
<td>0.2176</td>
<td>38.6</td>
</tr>
<tr>
<td>MgFe(_2)O(_4)/HB-CTAB</td>
<td>101</td>
<td>0.2160</td>
<td>30.8</td>
</tr>
<tr>
<td>MgFe(_2)O(_4)/NPs-Al(_2)O(_3)</td>
<td>66</td>
<td>0.4278</td>
<td>291</td>
</tr>
</tbody>
</table>

*The method of Barrett, Joyner, and Halenda (BJH) is a procedure for calculating pore size distributions from experimental isotherms using the Kelvin model of pore filling. It applies only to the mesopore and small macropore size range.

Figure 6. Multi point BET adsorption-desorption isotherms of \(N_2 \) at 77 K for B, HB-CTAB, NPs-Al\(_2\)O\(_3\), MgFe\(_2\)O\(_4\), MgFe\(_2\)O\(_4\)/B, MgFe\(_2\)O\(_4\)/HB-CTAB and MgFe\(_2\)O\(_4\)/NPs-Al\(_2\)O\(_3\)

4. Discussion and Conclusion

MgFe\(_2\)O\(_4\)/B, MgFe\(_2\)O\(_4\)/HB-CTAB and MgFe\(_2\)O\(_4\)/NPs-Al\(_2\)O\(_3\) catalysts were synthesized and the calculated crystallite sizes of these catalysts indicated nano sized particles according to XRD datas. The characteristic bands of magnesium ferrite were observed in all of the FTIR spectra. Samples exhibit S-shape curves in VSM analysis and hysteresis was not observed which was typical for superparamagnetic behavior. The saturation magnetization (\(M_s \)) values of MgFe\(_2\)O\(_4\)/HB-CTAB, MgFe\(_2\)O\(_4\)/NPs-Al\(_2\)O\(_3\), MgFe\(_2\)O\(_4\)/B and MgFe\(_2\)O\(_4\) were obtained as 11.8, 8.7, 2.1 and 7.8 emu/g at room temperature, respectively. Also BET isotherms indicated a non-porous or mesoporous structure with Type S, Type II, according to
IUPAC classification. As a result, the synthesized magnetic catalysts may be used as photocatalysts and noncomposite adsorbents by interacting with light sensitive materials and organic monomers in later stages. In addition, the magnetic property can provide advantages in terms of time and application by reducing the catalyst loss compared to conventional methods such as filtration and precipitation in separation processes.

References
146

