
DEÜ FMD 24(71), 665-677, 2022

665

1 Pamukkale University, Department of Logistics, Denizli, Turkey
2 Muğla Sıtkı Koçman University, Computer Engineering Department, Muğla, Turkey

Sorumlu Yazar / Corresponding Author *: gurhangunduz@mu.edu.tr

Geliş Tarihi / Received: 05.11.2021

Kabul Tarihi / Accepted: 28.01.2022

 Araştırma Makalesi/Research Article

DOI:10.21205/deufmd.2022247129

Atıf şekli/ How to cite: KARAGÜL, K., GÜNDÜZ, G. (2022). Gezgin Satici Problemi Için Yeni Bir Sezgisel:maxS. DEUFMD, 24(71), 665-677.

Abstract

In this study, a new initial solution heuristic was proposed for the traveling salesman problem. The
proposed maxS method is based on a new distance matrix obtained by normalizing the distance
matrix of the problem being addressed according to the maximum row value. The proposed
method was tested on 20 small and 11 large-scale problems, recommended by Hougardy and
Zhong, which are difficult to solve optimally. The same problems were also solved by Greedy,
Boruvka, Quick-Boruvka, Nearest-Neighborhood and Lin-Kernighan heuristics working on the
Concorde software. Based on the comparisons, it is seen that the recommended maxS heuristic
performance was better than that of Greedy and Nearest-Neighborhood heuristics and it showed
a similar performance with Boruvka in small-scale problems. When the same comparisons were
made for large-scale problems, maxS showed better performance than Quick Boruvka and Nearest-
Neighborhood heuristics, on average. The maxS heuristic, which is very effective in terms of
solution times, can be proposed as a promising initial solution method.
Keywords: Traveling Salesman Problem, maxS, Boruvka, Nearest-Neighborhood, Lin-Kernighan, Initial Solutions

Öz

Bu çalışmada, gezgin satıcı problemi için yeni bir başlangıç çözüm sezgiseli önerilmiştir. Önerilen
maxS metodu, üzerinde çalışılan problemin mesafe matrisinin maksimum satır değerine göre
normalize edilmesiyle elde edilen yeni mesafe matrisi ile çalışır. Önerilen metot, Hougardy ve
Zhong tarafından tavsiye edilen ve optimal çözümü zor olan 20 küçük ve 11 büyük ölçekte
problem üzerinde test edilmiştir. Aynı problemler, Concorde yazılımı üzerinde çalışan Greedy,
Boruvka, Quick-Boruvka, Nearest-Neighborhood and Lin-Kernighan sezgiselleri ile de
çözülmüştür. Çözümler karşılaştırıldığında küçük ölçekli problemler için maxS sezgiselinin
performansının Greedy ve Nearest-Neighborhood sezgisellerinden daha iyi olduğu ve Boruvka ile
benzer performansta olduğu gözlenmiştir. Benzer karşılaştırmalar büyük ölçekli problemler için
yapıldığında maxS, Quick Boruvka ve Nearest-Neighborhood sezgisellerinden ortalama olarak
daha iyi performans göstermiştir. Çözüm zamanları açısından çok etkili olan maxS sezgiseli,
gelecek vaadeden başlangıç çözüm yöntemi olarak önerilebilir.

Anahtar Kelimeler: Gezgin Satıcı Problemi, maxS, Boruvka, Nearest-Neighbourhood, Lin-Kernighan, başlangıç çözümü

Gezgin Satici Problemi Için Yeni Bir Sezgisel:maxS

A Novel Heuristic For The Traveling Salesman Problem:
maxS
Kenan Karagül 1* , Gürhan Gündüz 2

mailto:gurhangunduz@mu.edu.tr
http://web.deu.edu.tr/fmd/index.htm
https://orcid.org/0000-0001-5397-4464
https://orcid.org/my-orcid?orcid=0000-0002-0719-2688

DEÜ FMD 24(71), 665-677, 2022

666

1. Introduction

Thousands of years ago, the famous irony of
Socrates expressed that knowledge is an immense
ocean: "The only true wisdom is in knowing you
know nothing." The Traveling Salesman Problem
(TSP) can be expressed as the shortest possible
travel plan starting from a salesman's starting
position and providing all customer locations in
the sales area only once and returning to the initial
position in case that both all the locations to be
traveled and the distances between the pairs of
customer locations are known. This definition can
tell someone who is not involved in the
optimization field: What a simple problem!
Indeed, explaining and defining TSP is a simple
problem. But the solution is hard enough to
remind the famous irony of Socrates, and it has a
very important place in the scientific literature. In
this context, there is a constant challenge in this
area, and efforts to develop better solution
approaches are ongoing.

It would be appropriate to start by explaining
some concepts from graph theory for TSP. A G
graph is a sequential pair of G=(V,E) where V is a
finite set and E is a set of two-point subsets of V.
The elements of the V set are vertices, the
elements of the cluster E are called edges of the
G [1]. An example diagram is given in Figure 1
[2]. Walk, path, circuit, Hamiltonian path and
TSP will be defined on this graph.

Figure 1: A sample graph [2]

Definition1. In a 𝐺 graph,
𝑣1, 𝑒1, 𝑣2, 𝑒2, 𝑣3, … , 𝑒𝑘 , 𝑣𝑘 as a list of vertices and
edges are defined a walk, and here 𝑒𝑖 edge is the
one that combines 𝑣𝑖 and 𝑣𝑖+1 vertices. In this
case 𝑣1, 𝑒1, 𝑣2, 𝑒2, 𝑣3, 𝑒3, 𝑣4, 𝑒6, 𝑣2,, 𝑒2, 𝑣3, list in

Figure 1 is a walk. A walk is considered to be
closed if the starting vertex is the same as the
ending vertex, that is v0=vk. A walk is considered
open otherwise.

Definition 2: A Trail is defined as a walk with no
repeated edges. In Figure 1,
𝑣1, 𝑒1, 𝑣2, 𝑒2, 𝑣3, 𝑒3, 𝑣4, 𝑒4, 𝑣1,, 𝑒5, 𝑣3 list is a trail.

Definition 3: A Path is defined as an open trail
with no repeated vertices. In Figure 1,
𝑣1, 𝑒1, 𝑣2, 𝑒2, 𝑣3, 𝑒3, 𝑣4 list is a path.

Definition 4: A Cycle is defined as a closed trail
where no other vertices are repeated apart from
the start/end vertex. In Figure 1,
𝑣1, 𝑒1, 𝑣2, 𝑒2, 𝑣3, 𝑒5, 𝑣1 list is a cycle.

Definition 5. Hamiltonian Cycle is a cycle that
visits each node of the graph exactly once. In
Figure 1, 𝑣1, 𝑒1, 𝑣2, 𝑒2, 𝑣3, 𝑒3, 𝑣4, , 𝑒4, 𝑣1 list is a
cycle.

Calculating a tour in a graph with the minimum
total weight values that can be found as a
Hamiltonian cycle is called a Traveling Salesman
Problem (TSP). For TSP, the weight values of the
edges are retained as the distance matrix. TSP
can be expressed in two ways as symmetric and
asymmetric according to the distance matrix. For
a TSP, if n is assumed to be the number of towns
in the salesman's region, it is expressed by an n-
node graph. The distance between these n nodes

is expressed as 𝐷 = [𝑐𝑖𝑗], 𝑛𝑥𝑛 distance matrix. In

the distance matrix, if 𝑐𝑖𝑗 = 𝑐𝑗𝑖 and 𝑐𝑖𝑗 = 0, ∀𝑖 =

𝑗, it is defined as symmetric TSP. If 𝑐𝑖𝑗 ≠ 𝑐𝑗𝑖 , ∃𝑖 =

𝑗 and 𝑐𝑖𝑗 = 0, ∀𝑖 = 𝑗 then it is defined as an

asymmetric TSP.

Flood, a well-known researcher in the field of
TSP, worked on school bus routing in 1937 to
find optimal solutions. In the mid-1950s the TSP
became one of the most up-to-date and
challenging issues. One of the first references to
the term TSP was given in 1949 by Robinson in
his report entitled "Hamilton Game (Traveling
Salesman Problem)". This report written by
Robinson is a TSP solution report prepared due
to a challenge for the RAND Corporation. The
Hamiltonian cycle term was used for the
memory of him. Hamilton is known for his work
on the dodecahedron which shows that anyone
can return to the starting point by moving over
the distances, regardless of the point where
he/she has started. In 1972, Karp showed that
the Hamiltonian problem was NP-complete. TSP
is a problem in the NP-difficult class [3,4,5].
Along with the improvements in computer
software and hardware, 24978 vertices TSP
solution was reached in 2004, 50 years after the
49-node GSP solution of Dantzig, Fulkerson and
Johnson. Table 1 shows solution milestones for
TSP instances [6].

DEÜ FMD 24(71), 665-677, 2022

667

Table 1. TSP Milestones [6]

Year Researchers Problem Size Problem Name

1954 G. Dantzig, R. Fulkerson, and S. Johnson 49 dantzig42

1971 M. Held and R.M. Karp 64 64 random points

1975 P.M. Camerini, L. Fratta, and F. Maffioli 67 67 random points

1977 M. Grötschel 120 gr120

1980 H. Crowder and M.W. Padberg 318 lin318

1987 M. Padberg and G. Rinaldi 532 att532

1987 M. Grötschel and O. Holland 666 gr666

1987 M. Padberg and G. Rinaldi 2392 pr2392

1994 D. Applegate, R. Bixby, V. Chvátal, and W. Cook 7397 pla7397

1998 D. Applegate, R. Bixby, V. Chvátal, and W. Cook 13509 usa13509

2001 D. Applegate, R. Bixby, V. Chvátal, and W. Cook 15112 d15112

2004 D. Applegate, R. Bixby, V. Chvátal, W. Cook, 24978 sw24798

2004 K. Helsgaun 24978 sw24798

Different solution algorithms are available for
TSP. A classification of solution approaches can
be made in the form of constructive algorithms,
tour improvement algorithms and hybrid
algorithms.

Constructive algorithms usually continue to visit
the nodes by completing one of the nodes to be
visited in each iteration until the tour is
completed and finds a suitable solution. The
nearest-neighborhood algorithm can be given as
an example. The tour improvement algorithms
consider a given initial solution and investigate
whether there is a more least costly tour with
changes to nodes and/or edges. If a possible low-
cost tour is available, the tour will be improved.
An example of tour improvement algorithms is
the 2-Opt algorithm. Hybrid algorithms are used
to obtain the initial solution using any tour
constructive algorithms and improve this initial
solution with a metaheuristic algorithm [7,8]. In
this study, the literature search will be
concentrated at this point on constructive

algorithms, as the algorithm is proposed to
produce a constructive initial solution for TSP.

Srour et al. [9] proposed an approach for TSP
solution called the Water Flow-Like Algorithm.
In this study, the initial solutions were
constructed with the nearest-neighborhood
algorithm and water flow algorithm and ant
colony system (ACS) solutions were compared.
In another study, Brute Force, Greedy, Nearest-
Neighborhood, 2-Opt, Branch-Bound, Genetic
Algorithm, Simulated Annealing and Artificial
Neural Networks were used for TSP solutions
and in terms of solution quality and solution
times on the test bed. [10]. In another study, the
initial solutions for a Water Flow-Like and Tabu
Search hybrid method are constructed randomly
[11]. Kamarudin et al. [12] proposed two
different initial solutions for TSP: The Simulated
Annealing and Nearest-Neighborhood
algorithms and analyzed the performance of the
Water Flow-Like algorithm and suggested that
they achieved better performance with initial

DEÜ FMD 24(71), 665-677, 2022

668

solutions constructed by Simulated Annealing.
Wu et al. [13] used the Enhanced Water Flow-
Like Algorithm for scheduling and sequencing of
identical machines and constructed the initial
solutions in a random format. Demiriz [14]
proposed a solution based on the rank technique
for TSP and solutions comparisons have been
made using Concorde software.

Some of the researchers in the field of
combinatorial optimization think that initial
solutions are not useful, while others suggest
that initial solutions are useful. Lin and
Kernighan [15] proposed a very effective TSP
solution algorithm and this algorithm is referred
to as the Lin-Kernighan algorithm. The Lin and
Kernighan algorithm randomly produces an
initial solution as the first step and then tries to
improve it. Later on, the Lin-Kernighan
algorithm was improved by Helsgaun [8] and is
now known as Lin-Kernighan-Helsgaun (LKH). It
is one of the most effective TSP solution
algorithms. It has been proposed by Helsgaun
about the Lin-Kernighan algorithm and its initial
solutions: The Lin-Kernighan algorithm
repeatedly applies edge changes to different
initial solutions for the same problem. The
original Lin-Kernighan algorithm selects the
initial tours randomly. Lin-Kernighan argues
that the time spent on initial solutions is vaste of
energy. They produce only constructive
solutions that’s why there is only one initial
solution. Furthermore, Helsgaun claims that the
problem of dealing with initial solutions is not an
easy-to-answer question. On the other hand,
LKH code uses different initial solution
algorithms. These algorithms are Boruvka,
Greedy, Nearest-Neighborhood, Quick-Boruvka,
Sierpinski, Random Walk. The same algorithms
are also included in the Concorde software, the
world's fastest exact solver [6]. Karagül has
proposed new solution approaches for TSP,
based on Transportation Problem solution [16],
based on Hungarian solution [17], Prüfer based
solution [18], 2-opt local search algorithm based
solution[22] and hybrid fluid genetic algortihm
based solution[23]. Sahin et. al proposed
metaheuristics approaches for TSP on a
spherical surface[24]. Aydemir at al proposed an
algorithm for generating initial solutions for
capacitated vehicle routing problem[25].

In this study, an algorithm that produces initial
solutions using a constructive solution approach
for TSP is proposed. In the second section, the

proposed algorithm is given and explained on a
small sample graph. In the third section, the
performance of the proposed algorithm is
compared with various initial solution
algorithms from the literature and the results are
analyzed. In the last section, conclusions and
discussions for further studies are given.

2. Material and Method

2.1. Explanation of maxS algorithm on Small

TSP

Explaining newly developed techniques through
small sample problems facilitates both
understanding and analysis. Therefore, the maxS
method will be explained through the TSP
example used in Demiriz [14]. The small instance
problem data and the solution steps have been
demonstrated step by step in Table 2.

Step 1: Table 2(a) shows the distance matrix for
the problem. The problem corresponds to the
symmetric TSP problem and it has seven
vertices.

Step 2: Before moving to Table 2(b), the maxS
column appears. This column represents the
maximum value in each row. The maxS matrix is
obtained by dividing each line of the distance
matrix by the elements in the maxS column.

Step 3: Table 2(b) is the solution matrix of the
proposed method. Using this solution matrix, the
steps of the algorithm are completed and the TSP
initial solution is obtained.

Step 4: As in Table 2(c), the first row is used and
the element with the smallest on this row is
found. The smallest element in this row is 0,
which corresponds to the first column.
Therefore, the first node of the TSP solution
becomes 1. This column is then closed with 1
values. Then as the selected node is 1, the
algorithm goes to the related row 1.

Step 5: In Table 2(d), the element with the
smallest value in row 1 is 0.32 which
corresponds to column 7. In this case, node 7 is
added as the second node of the TSP solution and
column 7 is closed with 1 value.

Step 6: In Table 2(e), the algorithm goes to row
7 where the element with the smallest value is
0.44 which corresponds to column 4. Thus, the
next node of the TSP solution is added as 4 and
column 4 is closed with 1 value.

DEÜ FMD 24(71), 665-677, 2022

669

Step 7: In Table 2(f), the algorithm is positioned
on row 4 in the maxS matrix where the smallest
element is 0.32. This cell points to column 3 and
thus node 3 is added to the TSP solution. And
then column 3 is closed by 1 value.

Step 8: In Table 2(g), the algorithm goes to row
3 in the maxS matrix where the smallest element
is 0.71, which indicates column 6. Thus, node 6 is
added to the TSP solution and column 6 is closed
with 1 value.

Step 9: In Table 2(h), the algorithm moves to
row 6 in the maxS matrix and the smallest
element indicates column 2 with 0.29. Therefore,

node 2 is added to the TSP solution and column
2 is closed with 1 value.

Step 10: In Table 2(i), the algorithm goes to row
2 in the maxS matrix where the smallest element
is 0.61. This cell points to column 5. Therefore,
node 5 is added to the TSP solution and column
5 is closed with 1 value.

Step 11: In Table 2(j), as all of the maxS matrices
are covered with 1 value, there is no node left to
be added to another TSP solution. This
terminates the algorithm.

Table 2. Proposed Algortihm: maxS Solution Steps

(a)

(b)

Distance Matrix

maxS Matrix

1 2 3 4 5 6 7 maxS

1 2 3 4 5 6 7

1 0 786 549 657 331 559 250 786 1 0.00 1.00 0.70 0.84 0.42 0.71 0.32

2 786 0 668 979 593 224 905 979 2 0.80 0.00 0.68 1.00 0.61 0.23 0.92

3 549 668 0 316 607 472 467 668 3 0.82 1.00 0.00 0.47 0.91 0.71 0.70

4 657 979 316 0 890 769 400 979 4 0.67 1.00 0.32 0.00 0.91 0.79 0.41

5 331 593 607 890 0 386 559 890 5 0.37 0.67 0.68 1.00 0.00 0.43 0.63

6 559 224 472 769 386 0 681 769 6 0.73 0.29 0.61 1.00 0.50 0.00 0.89

7 250 905 467 400 559 681 0 905 7 0.28 1.00 0.52 0.44 0.62 0.75 0.00

(c)

(d)

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1

0.00 1.00 0.70 0.84 0.42 0.71 0.32

1 1 1.00 0.70 0.84 0.42 0.71 0.32

2 0.80 0.00 0.68 1.00 0.61 0.23 0.92

2 1 0.00 0.68 1.00 0.61 0.23 0.92

3 0.82 1.00 0.00 0.47 0.91 0.71 0.70

3 1 1.00 0.00 0.47 0.91 0.71 0.70

4 0.67 1.00 0.32 0.00 0.91 0.79 0.41

4 1 1.00 0.32 0.00 0.91 0.79 0.41

5 0.37 0.67 0.68 1.00 0.00 0.43 0.63

5 1 0.67 0.68 1.00 0.00 0.43 0.63

6 0.73 0.29 0.61 1.00 0.50 0.00 0.89

6 1 0.29 0.61 1.00 0.50 0.00 0.89

7 0.28 1.00 0.52 0.44 0.62 0.75 0.00

7 1 1.00 0.52 0.44 0.62 0.75 0.00

TSP 1

TSP 1 7

(e)

(f)

 1 2 3 4 5 6 7

1 2 3 4 5 6 7

DEÜ FMD 24(71), 665-677, 2022

670

1 1 1.00 0.70 0.84 0.42 0.71 1

1 1 1.00 0.70 1 0.42 0.71 1

2 1 0.00 0.68 1.00 0.61 0.23 1

2 1 0.00 0.68 1 0.61 0.23 1

3 1 1.00 0.00 0.47 0.91 0.71 1

3 1 1.00 0.00 1 0.91 0.71 1

4 1 1.00 0.32 0.00 0.91 0.79 1

4 1 1.00 0.32 1 0.91 0.79 1

5 1 0.67 0.68 1.00 0.00 0.43 1

5 1 0.67 0.68 1 0.00 0.43 1

6 1 0.29 0.61 1.00 0.50 0.00 1

6 1 0.29 0.61 1 0.50 0.00 1

7

1 1.00 0.52 0.44 0.62 0.75 1

7 1 1.00 0.52 1 0.62 0.75 1

TSP 1 7 4

TSP 1 7 4 3

(g)

(h)

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 1 1.00 1 1 0.42 0.71 1

1 1 1.00 1 1 0.42 1 1

2 1 0.00 1 1 0.61 0.23 1

2 1 0.00 1 1 0.61 1 1

3

1 1.00 1 1 0.91 0.71 1

3 1 1.00 1 1 0.91 1 1

4 1 1.00 1 1 0.91 0.79 1

4 1 1.00 1 1 0.91 1 1

5 1 0.67 1 1 0.00 0.43 1

5 1 0.67 1 1 0.00 1 1

6 1 0.29 1 1 0.50 0.00 1

6 1 0.29 1 1 0.50 1 1

7 1 1.00 1 1 0.62 0.75 1

7 1 1.00 1 1 0.62 1 1

TSP 1 7 4 3 6

TSP 1 7 4 3 6 2

(i)

(j)

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 1 1 1 1 0.42 1 1

1 1 1 1 1 1 1 1

2

1 1 1 1 0.61 1 1

2 1 1 1 1 1 1 1

3 1 1 1 1 0.91 1 1

3 1 1 1 1 1 1 1

4 1 1 1 1 0.91 1 1

4 1 1 1 1 1 1 1

5 1 1 1 1 0.00 1 1

5 1 1 1 1 1 1 1

6 1 1 1 1 0.50 1 1

6 1 1 1 1 1 1 1

7 1 1 1 1 0.62 1 1

7 1 1 1 1 1 1 1

TSP 1 7 4 3 6 2 5

TSP 1 7 4 3 6 2 5

Cost = 2585 km / Optimal=2575 km

The maxS solution for this problem was found to
be 2585 km and the related route is [1-7-4-3-6-

2-5]. The optimal solution value for the problem
is given as 2575 km. In this case, the maxS

DEÜ FMD 24(71), 665-677, 2022

671

solution approach was able to approach the
optimal solution with a 0.388% gap value.

2.2. Proposed Algorithm maxS Matlab/

Octave Code

In this subsection, Matlab / Octave code for the
proposed solution approach is given as in Figure

2, to guide the reader. Octave is an alternative
open source application to the Matlab scientific
computing language. The code in Figure 2 is
designed to be easy to read and easy to use in
scientific studies. Using the code of the proposed
algorithm maxS, performance analysis will be
explained in the next section.

% maxS.m algorithm Matlab/Octave Code for TSP

xy=Read(berlin52.tsp); % Read the TSP data file and get the xy coordinates.

D=Distance(xy); % Calculate the distance matrix and assign to matrix D.

[m,n]=size(D); % Get the size information.

xD=D; % Prepare the temporary distance matrix xD.

maxS=zeros(1,m); % Create an empty maxS vector.

for i=1:m

 maxS(i)=max(xD(i,:)); % Get each row’s max value and assign to the maxS vector.

end

M=zeros(m,m); %Create an empty maxS matrix.

for i=1:m

 M(i,:)=xD(i,:)./maxS(i); % Calculate the elements of maxS matrix.

end

A=M; % Assign the maxS matrix to matrix A and use matrix A for routing.

%--------Creating TSP tour------------------------

rotaMx=zeros(1,m); % Create an empty route vector.

t=1; ss=1;

while t<=m

 [~,bx]=min(A(ss,:));

 rotaMx(t)=bx;

 A(:,bx)=1;

 ss=bx;

 t=t+1;

end

rotaCost=CostTSP(rotaMx,D); % Calculate TSP cost and assign cost to rotaCost.

Figure 2. maxS Algorithm Code for Matlab/Octave

3. Computational Analysis for maxS

Algorithm

For the analysis and comparison of the proposed
method, a TSP test bed was chosen and the
algorithms in version 1.1 of the Concorde
software was used for comparisons. Concorde
software can produce solutions for Greedy,
Boruvka, Quick-Boruvka (QBoruvka), Nearest-
Neighborhood (NN), Lin-Kernighan (L-K)
algorithms. The proposed algorithm maxS was
coded in Matlab environment. The solutions of
the maxS heuristic were obtained using Matlab

version 2016b, 2.40 GHz Intel Dual Core, 8 MB
memory and single kernel on Linux operating
system. For the analysis of the heuristics on the
Concorde software, the Windows operating
system, Intel Core (TM) i7-4800MQ CPU
2.70GHz, 16 MB RAM was used with only a single
core.

In their study conducted on the test bed
instances by Hougardy and Zhong [19], detailed
explanations about the problems were given.
They have explained how difficult it is to solve
these new problem types optimally, and at the
same time they analyzed solutions from 52 to

DEÜ FMD 24(71), 665-677, 2022

672

199 nodes with Concorde software, the world's
fastest exact solver. As seen in Table 3,
Concorde's solution times were far beyond the
acceptable limits. However, solutions were
produced and reported by Helsgaun using LKH
for all of these problems [20]. The test problems
produced by Hougardy and Zhong can be found

on the University website of Hougardy [21]. In
our study, the first 20 test bed problems
produced by Hougardy and Zhong were selected
for the analysis.

Table 3. Exact and heuristic solutions of Concorde and maxS solutions

P.No P. Name A (s) B (s) Optimal maxS Greedy Boruvka Qboruvka NN L-K

1 Tnm52 12 0,004006 551609 616205 621663 635322 610775 663064 552619

2 Tnm55 17 0,001212 605778 676292 679763 696292 679406 731891 606838

3 Tnm58 21 0,000935 660687 734525 743899 755968 732429 735026 661279

4 Tnm61 30 0,001033 716131 795235 811773 871037 792790 812696 717865

5 Tnm64 33 0,000831 770162 831125 862167 851075 855268 882447 772302

6 Tnm67 47 0,000908 825328 918639 945407 929682 921815 915631 825328

7 Tnm70 68 0,000771 881036 989672 1001787 988407 980248 984974 881440

8 Tnm73 84 0,000781 893843 1043838 1066162 1075388 1041748 1063838 938396

9 Tnm76 103 0,000955 949961 1069196 1141042 1116756 1117109 1093550 992771

10 Tnm79 152 0,000790 1006535 1170144 1195862 1149375 1138971 1137707 1048105

11 Tnm82 190 0,000862 1062686 1252852 1214567 1250845 1203570 1203439 1107116

12 Tnm85 164 0,000900 1117381 1314011 1315646 1216265 1275674 1339318 1156776

13 Tnm88 196 0,000944 1172734 1296026 1316025 1277425 1291828 1277426 1174331

14 Tnm91 275 0,001672 1228726 1318062 1396595 1338027 1353120 1326122 1229432

15 Tnm94 397 0,001604 1285416 1425383 1396066 1399991 1396675 1396066 1285626

16 Tnm97 566 0,001022 1342086 1503342 1481644 1466578 1443332 1474709 1342567

17 Tnm100 664 0,001247 1398070 1574837 1565822 1507563 1513639 1544845 1399036

18 Tnm103 478 0,001465 1412229 1584255 1589900 1557687 1560003 1602903 1455346

19 Tnm106 761 0,001446 1469617 1717744 1659819 1628262 1654474 1688920 1513698

20 Tnm109 1068 0,001692 1527709 1780021 1699171 1709318 1667927 1760381 1569687

Averages 1043886 1180570 1185239 1171063 1161540 1181748 1061528

A : Concorde run time (s) / B: maxS run time (s) / Optimal: Concorde optimal solutions / s:seconds

In Table 3, the numbers next to each problem
name refer to the number of nodes in the related

problem. The times shown in column A are
Concorde's solution times and for instance 1069

DEÜ FMD 24(71), 665-677, 2022

673

seconds were spent for a 109 node TSP. The
solution times for the maxS approach are given,
but there are no solution times for heuristic
methods on the Concorde software interface.
Therefore, no comparisons will be made for the
time durations. Only the simulated times for
maxS are added as a reference for further
studies. Since the L-K approach in these heuristic
solutions uses these solutions by using an initial

solution, the L-K algorithm is not only used for
comparisons but is intended as a reference for
future studies. In order to make a better
comparision between the maxS approach and
the approaches that produce different starting
solution, the gap% values that indicate the
deviations from the optimal are given in Table 4.

Table 4. Gaps % of the Concorde heuristics and maxS solutions from optimal

 Gap %

P.No P. Adı maxS Greedy Boruvka Qboruvka NN L-K

1 Tnm52 11.71 12.70 15.18 10.73 20.21 0.18

2 Tnm55 11.64 12.21 14.94 12.15 20.82 0.17

3 Tnm58 11.18 12.59 14.42 10.86 11.25 0.09

4 Tnm61 11.05 13.36 21.63 10.70 13.48 0.24

5 Tnm64 7.92 11.95 10.51 11.05 14.58 0.28

6 Tnm67 11.31 14.55 12.64 11.69 10.94 0.00

7 Tnm70 12.33 13.71 12.19 11.26 11.80 0.05

8 Tnm73 16.78 19.28 20.31 16.55 19.02 4.98

9 Tnm76 12.55 20.11 17.56 17.60 15.12 4.51

10 Tnm79 16.25 18.81 14.19 13.16 13.03 4.13

11 Tnm82 17.89 14.29 17.71 13.26 13.25 4.18

12 Tnm85 17.60 17.74 8.85 14.17 19.86 3.53

13 Tnm88 10.51 12.22 8.93 10.16 8.93 0.14

14 Tnm91 7.27 13.66 8.90 10.12 7.93 0.06

15 Tnm94 10.89 8.61 8.91 8.66 8.61 0.02

16 Tnm97 12.02 10.40 9.28 7.54 9.88 0.04

17 Tnm100 12.64 12.00 7.83 8.27 10.50 0.07

18 Tnm103 12.18 12.58 10.30 10.46 13.50 3.05

19 Tnm106 16.88 12.94 10.79 12.58 14.92 3.00

20 Tnm109 16.52 11.22 11.89 9.18 15.23 2.75

Averages 12.86 13.75 12.85 11.51 13.64 1.57

DEÜ FMD 24(71), 665-677, 2022

674

When Table 4 and the heuristic approach
compared to the first 20 problems selected from
the Euclidean GSP test bed of Hougardy and
Zhong that are difficult to solve, are evaluated, it
is possible to sort the algorithms QBoruvka,
Boruvka and maxS at the first row as scoreless
and then NN as the second one and Greedy as the
third one according to the average solution gaps.
These comparisons are also clearly visible on the

graph given in Figure 3. The algorithms shown
by the signs A, B, C, D, E in Figure 3 are maxS,
Greedy, Boruvka, Qboruvka, NN, respectively. As
can be seen from this comparison chart, it can be
said that maxS shows a competitive deviation
from the optimal on average.

Figure 3: maxS Algorithm and Other Heuristics Deviations from the Optimal

Table 5. Heuristics and maxS solutions for Large-Scale Instances

P.N
o

P. Name H
maxS
(sec)

BKS maxS Greedy Boruvka Qboruvka NN L-K

1 Tnm502 * 0.01 8749995 9106673 9030246 9006411 8978114 9362888 8755518

2 Tnm1000 * 0.08 18137296 18553989 18454589 18438723 18426701 19618679 18145598

3 Tnm2002 * 0.22 37029600 37475105 37370253 37288700 38108787 37698300 37046387

4 Tnm3001 * 0.50 55939349 56399706 56373914 56197326 56623001 59962938 55948513

5 Tnm4000 * 0.86 74858233 75252693 75236866 75226869 75254384 76282814 74863285

6 Tnm5002 * 1.32 93784081 94254080 94154563 94084686 94487854 97922507 93790079

7 Tnm6001 * 1.96
11270811

8
11318144

0
11307122

3
11298934

6
11378711

1
11379702

5
11271224

7

8 Tnm7000 * 2.58
13163337

1
13212088

0
13200833

8
13199231

4
13218999

6
13582585

3
13164287

8

0

5

10

15

20

25

0 5 10 15 20 25

% Gap diagram for the compared heuristic algorithms

A B C D E

DEÜ FMD 24(71), 665-677, 2022

675

9 Tnm8002 * 3.42
15056144

6
15103751

8
15101848

3
15090251

4
15087894

3
15202370

0
15056148

6

10 Tnm9001 * 4.86
16948754

6
16988992

3
16986405

4
16980404

5
17020377

5
17531763

6
16949233

8

11
Tnm1000

0
* 7.22

18841426
2

18889312
1

18878176
3

18871674
2

18868399
9

19667886
1

18841518
4

Averages 2.09
9466393

6
9510592

0
9503311

7
9496797

0
9523842

4
9768101

8
9467031

9

* : Keld Helsgaun Solutions / BKS: Best Known Solutions calculated by Keld Helsgaun [20].

The most large-scale problem that can be solved
with Concorde is the 199-node Tnm example.
Therefore, for large-scale test problems, 11
large-scale problems produced by Hougardy and
Zhong are selected. These problems do not seem
to be solvable by the Concorde software in
today's conditions. In Table 5, with the BKS
column, the solutions obtained by Helsgaun with
LKH code are given. At the same time, the
solution values of the maxS method in seconds

are given for reference in future studies. In Table
6, the percentage gap values of solved heuristics
from BKS are given both for maxS and for the
algorithms of Concorde software. The Greedy
and Boruvka algorithms were found to have a
better mean deviation than maxS in the case of
large-scale problems. On the other hand, the
Qboruvka and NN methods are behind the maxS
performance.

Table 6. Heuristics and maxS gap (%) values for large-scale TSPs

Gap %

P.No P. Name maxS Greedy Boruvka QBoruvka NN L-K

1 Tnm502 4.08 3.20 2.93 2.61 7.00 0.06312

2 Tnm1000 2.30 1.75 1.66 1.60 8.17 0.04577

3 Tnm2002 1.20 0.92 0.70 2.91 1.81 0.04533

4 Tnm3001 0.82 0.78 0.46 1.22 7.19 0.01638

5 Tnm4000 0.53 0.51 0.49 0.53 1.90 0.00675

6 Tnm5002 0.50 0.40 0.32 0.75 4.41 0.00640

7 Tnm6001 0.42 0.32 0.25 0.96 0.97 0.00366

8 Tnm7000 0.37 0.28 0.27 0.42 3.18 0.00722

9 Tnm8002 0.32 0.30 0.23 0.21 0.97 0.00003

10 Tnm9001 0.24 0.22 0.19 0.42 3.44 0.00283

11 Tnm10000 0.25 0.20 0.16 0.14 4.39 0.00049

Averages 1.00 0.81 0.70 1.07 3.95 0.01800

DEÜ FMD 24(71), 665-677, 2022

676

4. Conclusions and Discussion

In this study, maxS was proposed as a new initial
solution method for TSP. Solutions and the
solution times were obtained on 20 small size
and 11 large size problems that were chosen
from the problem group defined by Hougardy
and Zhong as difficult to find the optimal solution
problems. The size of the small problems ranges
from 52 nodes to 109 nodes. The size of the large
problems ranges from 502 nodes to 10000
nodes. The same problems were also solved with
the Greedy, Boruvka, Qboruvka, NN and L-K
heuristics provided by the Concorde software
and the results were recorded.

The average deviations of maxS, Greedy,
Boruvka, QBoruvka, NN and L-K heuristic
algorithms for small problems were calculated
as 12.86, 13.75, 12.85, 11.51, 13.64, 1.57. The
average deviations of maxS, Greedy, Boruvka,
QBoruvka, NN and L-K heuristic algorithms for
large-scale problems were found as 1.00, 0.81,
0.70, 1.07, 3.95, 0.018. The maxS algorithm
shows an equal performance with the Boruvka
algorithm while showing a better performance
than the Greedy, and NN algorithms in small
problems. For the large-scale problems, the
maxS algorithm performed better than the
Qboruvka and NN algorithms, but remained
behind the Greedy and Boruvka algorithms. In
the light of these analysis, maxS heuristics which
is proposed as a new initial solution algorithm,
shows a very competitive performance. Another
case is the performance of the proposed maxS
solution times. The average solution time for 20
small problems is 0.0012 seconds. The average
solution time for 11 large-scale problems was
recorded as 2.09 seconds.

The proposed new approach is important from
two points of view. The first one is that it is
competitive with the methods in the literature in
terms of the test results. Therefore, some tour
improvement methods and/or initial solutions
for metaheuristics may be proposed as
constructive heuristics. From another point of
view, it can be proposed as a constructive
solution approach to the application and
solution of different problems that can be
modeled as TSP because it produces fast and
effective results.

References

[1] Matausek, J., Nesetril, J., 2008. An Invitation to
Discrete Mathematics, (2nd edition). Oxford
University Press, New York, USA.

[2] Papadimitriou, C. H., Steiglitz, K., 1998.
Combinatorial Optimization: Algorithms and
Complexity, Dover Publications, New York, USA.

[3] Cook, W.J., 2012. In Pursuit of the Traveling
Salesman: Mathematics at the Limits of Computation,
Princeton University Press, New Jersey, USA.

[4] Gass, S.I., Assad, A.A., 2005. An Annotated Timeline
of Operations Research: An Informal History, Kluwer
Academic Publishers, New York, USA.

[5] Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.,
Shmoys, D.B., 1985. The Traveling Salesman
Problem: A Guided Tour of Combinatorial
Optimization, John Wiley & Sons, New York, USA.

[6] Cook, W., “The Traveling Salesman Problem”,
http://www.math.uwaterloo.ca/tsp/
history/milestone.html, Accessed:20/03/2019.

[7] Kim, I.B., Shim, I.J., Zhang, M., 1998. Comparison of
TSP algorithms, Project for Models in Facilities
Planning and Materials Handling.

[8] Helsgaun, K., 2000. “An effective implementation of
the Lin–Kernighan traveling salesman heuristic”,
European Journal of Operational Research, 126(1):
106–130.

[9] Srour, A., Othman, Z.A., Hamdan, A.R., 2014. “A water
flow-like algorithm for the travelling salesman
problem”, Advances in Computer Engineering,
Hindawi Publishing Corporation, 1-14.

[10] Abid, M.M., Muhammad, I., 2015. “Heuristic
approaches to solve traveling salesman problem”,
TELKOMNIKA Indonesian Journal of Electrical
Engineering, 15(2): 390-396.

[11] Bostamam, J.M., Othman, Z., 2016. “Hybrid water
flow-like algorithm with Tabu search for traveling
salesman problem”, AIP Conference Proceedings
1761, 020058.

[12] Kamarudin, A.A., Othman, Z.A., Sarim, H.M., 2016.
“Improvement initial solution water flow like
algorithm using simulated annealing for travelling
salesman problem”, International Review of
Management and Marketing, 6(8): 63-66.

[13] Wu, G-H., Cheng, C-Y., Yang, H-I., Chena, C-T., 2018.
“An improved water flow-like algorithm for order
acceptance and scheduling with identical parallel
machines”, Applied Soft Computing, 71, 1072-1084.

[14] Demiriz, A., “Solving Traveling Salesman Problem by
Ranking”,
http://www.ayhandemiriz.com/SakaryaWebSite/p
apers/benelearn09.pdf, Accessed: 19/03/2019.

[15] Lin, S., Kernighan, B.W., 1973. “An Effective Heuristic
Algorithm for the Traveling-Salesman Problem”,
Operations Research, 21(2): 498–516.

[16] Karagül, K. (2019). A Novel Solution Approach for
Travelling Salesman Problem: TPORT. DEUFMD,
21(63), 819-832

[17] Karagül, K. (2019). A Novel Solution Approach for
Travelling Salesman Problem Based on Hungarian
Algorithm. Mühendislik Bilimleri ve Tasarım Dergisi
, 7 (3) , 561-571 . DOI: 10.21923/jesd.523623

[18] Karagül, K . (2019). Prüfer-Karagül Algorithm: A
Novel Solution Approach for Travelling Salesman

DEÜ FMD 24(71), 665-677, 2022

677

Problem. Mehmet Akif Ersoy Üniversitesi İktisadi ve
İdari Bilimler Fakültesi Dergisi , 6 (2) , 452-470 . DOI:
10.30798/makuiibf.508842

[19] Hougardy, S., Zhong, X., 2018. “Hard to Solve
Instances of the Euclidean Traveling Salesman
Problem”, arXiv:1808.02859 [cs.DM].

[20] Helsgaun, K., “Lin-Kernighan-Helsgaun”,
http://akira.ruc.dk/~keld/research/LKH/,
Accessed:01/03/2019.

[21] Hougardy, S., Zhong, X., “Hard to Solve Instances of
the Euclidean Traveling Salesman Problem”,
http://www.or.uni-bonn.de
/~hougardy/HardTSPInstances.html, Accessed:
01/03/2019.

[22] Karagul, K., Aydemir, E. and Tokat, S., 2016. Using 2-
Opt based evolution strategy for travelling salesman
problem. An International Journal of Optimization
and Control: Theories & Applications (IJOCTA), 6(2),
pp.103-113.

[23] Şahin, Y. and Karagül, K.,2019. Solving Travelling
Salesman Problem Using Hybrid Fluid Genetic
Algorithm (HFGA). Pamukkale University Journal of
Engineering Sciences, 25(1), pp.106-114.

[24] Sahin, Y., Aydemir, E., Karagul, K., Tokat, S. and Oran,
B., 2021. Metaheuristics Approaches for the
Travelling Salesman Problem on a Spherical Surface.
In Interdisciplinary Perspectives on Operations
Management and Service Evaluation (pp. 94-113).
IGI Global.

[25] Aydemir, E., Karagül, K. And Tokat, S., Kapasite Kisitli
Araç Rotalama Problemlerinde Başlangiç Rotalarinin
Kurulmasi İçin Yeni Bir Algoritma. Mühendislik
Bilimleri Ve Tasarım Dergisi, 4(3), Pp.215-226.

http://www.or.uni-bonn.de/

