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Abstract 

The wheel rims are an essential part of the car. The wheels carry the load of the car and its 

passengers. To carry this load and prevent loss of life in a possible accident, it is necessary and 

crucial for the wheel to be strong. Additionally, a wheel rim should also be aesthetically pleasing for 

customers. First of all, design specifications of the rim model are determined. A user study is then 

conducted, in which each participants create a detailed wheel rim model from a given conceptual 

model and parametrizes it using design parameters such as spoke number/shape and hub thickness. 

In a generative design step, participants then generate 20 distinct models using design parameters. 

The finite element method (FEM) under stationary car forces is then established to find the stress 

and displacement distribution. The models are next ranked according to the aesthetic scores (given 

by a volunteer having mechanical design experience) and stress/displacement values (obtained 

from the FEM analysis). After such sorting, distinct and aesthetic models were obtained using a 

genetic algorithm (GA). The participant(s) then select the best model(s) among the new models 

obtained from GA. Two different wheel rim models obtained during the user study are utilized in a 

GA-based optimization process. According to the optimization results, parametrization highly affects 

the aesthetic and mechanical performance of the obtained designs. 

Keywords: Design Parametrization, Finite Element Method, Genetic Algorithm, Design Optimization 

 

Öz 

Jantlar arabanın önemli bir parçasıdır ve tekerlekler ile birlikte arabanın ve yolcularının yükünü 

taşırlar. Bu yükü taşımak ve olası bir kazada can kaybını önlemek için jantın sağlam olması gerekli 

ve önemlidir. Diğer taraftan estetik açıdan da göze hitap etmelidir. Bu çalışmada öncelikle araba 

jantının sınır koşulları belirlenmiştir. Bu sınırlar içerisinde farklı jant tasarımları elde edebilmek için 

bir kullanıcı çalışması gerçekleştirilmiştir. Kullanıcı çalışmasındaki her bir katılımcı bir model 
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tasarlamış ve parametrize etmiştir. Jant telinin sayısı, şekli ve göbek kalınlığı gibi tasarım 

parametreleri kullanıcı tarafından belirtilmiştir. Sonrasında kullanıcılardan bu parametreler 

kullanarak jeneratif tasarım yoluyla birbirinden farklı 20 tane jant modeli elde etmeleri istenmiştir. 

Durağan arabanın etki ettiği kuvvetler altında (parametrik olarak elde edilen) jantlar modellerinin 

gerilme ve yer değiştirme dağılımını bulmak için sonlu elemanlar yöntemi (FEM) kullanılmıştır. FEM 

kullanırken, ağ elemanlarının sayısına ve analiz edilen jantın yönüne dikkat edilmiştir. Jantlar 

tasarım kabiliyetine sahip gönüllü birisinin verdiği estetik puanlara ve FEM testlerinden elde edilen 

stres ve yer değiştirme değerlerine göre sıralanmıştır. Sıralamanın ardından genetik algoritma (GA) 

kullanılarak farklı ve estetik modeller elde edilip, kullanıcıya sunulmuş ve seçimi ile en uygun jant 

tasarım(lar)ı elde edilmiştir. Bu optimizasyon çalışması parametrizasyonu yapılmış iki farklı jant 

modeli kullanılarak yapılmıştır. Sonuçlar incelendiğinde parametrizasyon optimizasyon sonrası elde 

edilen modellerin performanslarını etkilemektedir. 

Anahtar Kelimeler: Tasarım Parametrizasyonu, Sonlu Elemanlar Yöntemi, Genetik Algoritma, Tasarım Optimizasyonu 

 

 

1. Introduction 

Technological developments provide a more 
reliable and comfortable life for people. 
Developments in automobile industry have also 
revealed some innovations in terms of the 
developments people follow. The primary 
priority of the changes in car industry is safety. 
Wheels are basic elements that ensure the 
performance and safety of cars. Wheel rims are 
one of the components that carry the entire 
burden of the car, and therefore, they should 
have good mechanical properties. Although 
wheel rim models having improved mechanical 
performance are preferable, they should also 
have good looking from a customer's point of 
view. However, it may be hard to obtain a 
design with both good aesthetic and mechanical 
performance as they are potentially conflicting 
each other. In this work, we aim at optimizing 
both of these criteria. In a design 
parametrization step (via a user study), a model 
is developed by a participant and then 
parametrized by determining its important 
features (i.e., design parameters). New models 
can then be obtained by changing values of 
these parameters. One can obtain plenty 
amount of designs in this step, however, only 
some of them will potentially be suitable 
according to the user-defined criteria. To 
evaluate the obtained designs, their mechanical 
performance (computed using finite element 
method - FEM) and aesthetic scoring (by a 
volunteer having mechanical design experience) 
are taken into account.  

Figure 1. Design parameters for a wheel rim. 

In a user study, an outline of a wheel rim design 
(Figure 1) with its design specifications (Table 
1) is given to users, who then conduct detailed 
design according to those specifications. Note 
here that different users create different 
designs starting from the base design in Figure 
1. They add details on the given model by 
drawing rim curves and then determine 
important dimensions in the model. We call all 
this process as design parametrization. After the 
user study, we focused only on the two 
parametrized models to further investigate the 
effect of the parametrization on the optimized 
models based on the mechanical and aesthetic 
performance.  
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Table 1. Wheel rim design specifications. 

 
Abaqus1 program was used for the FEM 
analysis. Material selection was chosen in 
accordance with the literature [1-3]. Recall that 
the prior objective of the study is to investigate 
the effect of the design parametrization on the 
optimized models. The material properties of 
the wheel rim are also given in Table 2. These 
properties are taken by 356.0-T6 Permanent 
Mold cast (SS) aluminum alloy in Solidworks 
20172 .  

Fig. 2 shows the wheel rim optimization 
pipeline. Wheel rim design specifications are 
given to participants in a design 
parametrization study (Figure 2.a). The wheel 
rim models are parametrized in different ways 
by the participants. Figure 2.b illustrates models 
obtained after a design parametrization step. 
Various loads are applied to the wheels when 
the cars are in motion and standing.  

Table 2. Material properties for the wheel rim. 

                                                                        

1 Dassault Systemes SIMULIA Abaqus CAE 2019 
2 Dassault Systemes SOLIDWORKS 2017 SP04 

The wheels are highly affected by these forces 
and should be tested for the mechanical 
properties of the wheel models. For its 
applicability, the forces affecting the stationary 
car are taken as a basis. As a result of the FEM 
analysis, the stress distribution and 
displacement of the forces applied by the 
stationary car can be seen on the rims (Figure 
2.c). Accordingly, some wheel models with the 
lowest stress value and the lowest 
displacement value are selected as parents for 
the GA. In addition to these features, a ranking 
is made with relative aesthetic issues. Here, 
several wheel models having the highest values 
have been selected as parent items. The new 
generation from these parents is subjected to 
the same GA process (Figure 2.d).  

 

     (a)                    (b)                    (c)                   (d) 

Figure 2.  (a) A model with design 
specifications are given. (b) The model is 
developed by adding some details to the given 
model and several variations of the model are 
obtained. (c) FEM model is obtained and 
performance of the models are validated. (d) 
New models are finally obtained using a genetic 
algorithm while taking mechanical performance 
and aesthetic criterion into account. 

In summary, goals of the present work are listed 
as follows: 

 To perform a user study, in which 
participants parametrize a given 
model in their own way. 

 Multi-objective optimization via 
genetic algorithm for the wheel rim 
models considering both mechanical 
and aesthetic performance. 

 To evaluate the effect of the design 
parametrization on the optimized 
wheel rim models.  

2. Related Works 

There are many works in literature about wheel 
rim design. Here, we only mention a few of 
them. Generative design techniques are also 
mentioned. Cosseron et al.[4] made a wheel 
optimal parametrization study similar to this 
study. Gondhali et al.[5] used a reverse 

Feature Dimension 

Diameter 355 mm 

Width 165 mm 

Offset 45 mm 

Thickness 20 mm 

Bead seats 10 mm 

Center hub diameter 134.74 mm 

Center bore diameter 59 mm 

Flange height 10 mm 

Flange width 10 mm 

Bolt diameter 16 mm 

Pitch circle diameter 100 mm 

Aluminum 356.0-T6 Permanent Mold cast (SS) 
Mechanical Properties 

Density 2680 kg/m3 

Elastic Modulus 72400 MPa 

Poisson's Ratio 0.33 

Yield Strength 152 MPa 

Tensile Strength 228 MPa 
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engineering methodology to determine the size 
of the current Maruti Eeco automobile rim. 
While Cosseron was working on a single design, 
in this study, two different parametrizations 
were used to increase its accuracy and 
reliability. Zimmermann et al. [6]  designed a 
wheel rim using topology optimization. They 
analyzed, simulated, and optimized his design 
both aesthetically and mechanically in their 
generative shape design study. Due to the 
increasing importance of external appearance 
in today's customer preferences, aesthetics in 
addition to mechanical properties were also 
analyzed and optimized in our study. While the 
analysis was performed both statically and 
dynamically in the studies of Sureddi et al. [7] 
and Gondhali et al. [5], only static analysis was 
performed in this study. 

In recent decades, generative design, an 
algorithm-driven design method that empowers 
designers to generate acceptable ideas under 
given design objectives and limitations[8], has 
grown in popularity and can be used to explore 
design space. In order to produce desired 
designs under certain design objectives and 
restrictions [8,9]. Krish [10] suggested a 
generative method for providing design options 
based on an exhaustive search. In [11], the 
authors developed a tool that generates side 
silhouettes of sedan automobiles, which were 
then employed in a generative GD system to 
forecast drag coefficients of the car silhouette 
[12]. After uniformly sampling the offsprings, 
Gunpinar and Khan [13] developed a new 
offspring selection based on a genetic algorithm. 
Kazi et al. [14] created a sketching system to aid 
in the conceptualization of generative design. In 
[15], a motorcycle or particle tracking algorithm 
was used to generate unique geometric models 
based on the authors' explicit design 
requirements. The Teaching-Learning-Based 
Optimization approach was used as a sampling 
method for limited and unconstrained design 
spaces [16]. Sousa and Xavier [17] proposed a 
symmetric-based generative system for the 
digital production of geometric structures (such 
as rhombicuboctahedrons and triangular 
prisms). After creating the contour of a given 
model, Dogan et al. [18] created a tool that 
made it easier to use primitives and affinities as 
restrictions. In [19], user perceptions of design 
uniqueness are incorporated into a generative 
sampling process. Adam et al. [20] proposed a 
biologically inspired algorithm for generative 

leaf venation pattern development. Shea et al. 
[21] and Turrin et al. [22] also created 
performance-driven GD systems to achieve 
lightweight architectural structures. In [23], a 
design system named "GenYacht" was 
presented, which created optimal yacht hull 
designs [24] based on user-specified 
parameters (s). GD approaches have also been 
offered by many academics for creating site 
layouts [25], as well as energy efficient and 
environmentally friendly building designs [26]. 
Finally, Tasmektepligil and Gunpinar [27] 
provided a generative learning method to 
extract design constraints of a B-spline surface 
model and demonstrated it using car extroir 
surfaces. In the literature, generative design 
efforts (such as [12,15,16,23]) primarily used 
manually defined design limitations prior to the 
design exploration process, potentially pruning 
away the good designs already present in the 
design space. 

Design space contains both feasible and 
impossible designs. If there is a mathematical 
form that represents design limitations, this 
filtering can be done quickly. In a generative 
design process, these shapes can be integrated 
into generative design algorithms to explore 
only viable concepts. By trial and error in a 
design change stage, Gunpinar & Gunpinar[16] 
learned design constraints. However, learning 
design constraints in this manner is a time-
consuming and inaccurate process, as there may 
be complicated (i.e., high-order) relationships 
between design parameters. In the design 
space, there may be more impossible designs 
than plausible ones which are needed to be 
eliminated [12]. As a result, in this study, a 
generative designed model is developed by 
collaborating with participants (i.e., aesthetics 
sorting and design parameter selection) and 
Finite Element Analysis (i.e., for Stress, 
Displacement) to extract design constraints for 
a CAD model. 

The work in this paper does not only involve a 
wheel rim optimization study (like previous 
works), but also demonstrates the effect of its 
parametrization on the wheel rim performance.  
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3. Wheel Rim Parametrization and 

Optimization Study 

3.1. Design Parametrization and Generative 

Design 

104 people, who are able to use a Computer-
Aided Design (CAD) tool, are participated in a 
user study. Design specifications (Figure 1 and 
Table 1) and instructions are given to the 
participants (Figure 3.a). Participants created 
their own designs  from this base model by 
drawing curves on the model and specified 
important dimensions for them, which were 
considered as design parameters. Whole this 
step is considered as design parametrization 
step. By changing values for the design 
parameters, new models can be obtained (See 
Figure 3.b).  

 

(a)                                  (b) 

Figure 3. (a) Initial model for user study, (b) 
designs obtained from several participants 
participating the user study. 

The participants of the user study are asked to 
first add details on the base model as they like. 
After that, design parameters, which are 
considered as important features of the model, 
are specified.  They are then requested to create 
20 distinct designs by changing values of the 
design parameters (See Figures 5 and 6). All 
these steps have been achieved using 
SOLIDWORKS CAD tool. 

At the end of the user study, 104 distinct 
parametrized wheel rim models have been 
obtained. Two of them are selected by the 
authors to proceed for the optimization step, 
which is conducted by the authors as well. 

 
Figure 4.  Design parameters of P-design 1. 

The variables for the first model shown in 
Figure 1 and Table 1, which are fixed. The first 
wheel rim (P-design 1) is parametrized as 
shown in Figure 4 [28]. Design 
variables/parameters are chosen as hub 
thickness, extrude diameter, angle, fillet radius 
and number of spokes. Via a generative design 
process, the participant generates 20 distinct 
designs in Figure 5 from the base model in 
Figure 4. 

 

Figure 5. 20 new models generated from P-

design 1. 

Another participant parametrized the wheel rim 
model as shown in Figure 6 (P-design 2). The 
design parameters are chosen as spoke top 
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width, spoke bottom width, spoke major radius 
and minor radius. Figure 7 involves 20 different 
models obtained from the base model in Figure 
6.  

 

Figure 6. Design parameters of P-design 2. 

 

Figure 7. 20 new models generated from P-
design 2. 

 

3.2. Finite Element Method Generation 

CAD model is converted to a mesh model as 
illustrated in Figure 8. Boundary and loading 
conditions are inspired by a study that 
examined the pressure and radial load on the 
wheel by Stearns et al. [1], where the car is 
assumed to be stationary. The boundary 
conditions were fixed at the bolt circles. There 

are three types of load on rim for a stationary 
car. These are air pressure, the load on the 
circumference of the rim flange due to air 
pressure and radial load on tire contact location 
because of car weight (Figure 9). 

 

 

Figure 8. Conversion of a CAD model to a 
tetrahedral mesh model. 

For the air pressure for wheel rim, Dede et. al. 
[29] stated that the air pressure was 35 psi in 
their study. Since the rim dimensions are close 
to the dimensions in this study, same value was 
used as air pressure in the present work. 

 

  (a)                          (b) 

 

(c) 
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(d) 

Figure 9. Air pressure (a) and the load (b) on 
the circumference of the rim flange.  Radial load 
on tire contact location (c). Boundary 
conditions and loads on a wheel rim(d). 

The air pressure of the tire is apply load on the 
center of the rim  (Figure 9.a) and bead seats 
(Figure 9.b) for the flange area. According to 
Stearns et. al. [1], both the tread of the tire and 
the flange of the rim support the axial load. The 
load on the circumference of the rim flange is 
calculated as 0.495 MPa according to 
formulation on this work. They stated that the 
tires transmitted the load to the rim, and the 
load only affected a limited area of the rim. The 
distributed loading for an 1175 kg vehicle was 
maximum 2.009 MPa, and the applied angle was 
taken at 80 degrees (Figure 9.c). The final stage 
of the FEM model with boundary conditions and 
forces before running is shown in Figure 9.d. 

In our analyses, the tetrahedral element 
(C3D10) type was utilized. A mesh 
independence test was further performed based 
on the boundary conditions mentioned above to 
prevent errors caused by the few number of 
elements. Figure 10.a and b show plots of 
maximum stress/displacement versus the 
number of mesh elements for P-models 1 and 2. 
It can be observed that stress and displacement 
values change according to the number of 
elements. Additionally, FEM analysis time is 
also crucial as many analysis is planned in our 
own study. After considering all these issues, 
439-473k and 340-476k mesh elements were 
selected for P-model 1 and P-model 2, 
respectively.  

 

(a)

 

(b) 

Figure 10. Mesh independency test for (a) P-
model 1, (b) P-model 2. 

Spoke orientation is crucial during FEM 
analysis, and differences in stress distribution 
and displacement occur when the positions of 
the spokes are different. Fig. 11 shows FEM 
analysis results for different spoke orientations. 
It is easy to observe the changes in results. This 
difference is due to the radial load on tire 
contact location. In this case, a fair ranking can 
be made by placing the blank of two spoke each 
model symmetrically downwards. Thus, we 
orient one of the spokes in a way that is exactly 
at the bottom.     

Figure 11. FEM results for different spoke 
orientations. 

3.3. Design Optimization 

In the design optimization process, GA was used 
to increase model diversity and to obtain more 
original models. This section includes three 
stages which are selection, cross-over, and 
mutation. Parents were selected and then 
crossed between these parents to produce new 
offspring. As new generations were created, 
existing genes are changed by mutation.  
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Five genes were used in the first wheel rim 
model (P-model 1). The variables chosen (in 
GA) were rim width, center hub offset, 
thickness, extrude diameter and spoke number 
for the first wheel rim model. Four gens were 
utilized in the second wheel rim model (P-
model 2). Variables for the second wheel rim 
model were spoke top width, spoke bottom 
width, spoke major radius and minor radius. 
According to analysis results, best designs in 
each field were used as the parent, new 
generation wheels were obtained by genetic 
algorithm using the two-point cross-over 
methodology.  In the two-point crossover, the 
genes were split at two points and gene 
exchange took place between the two parents.  
Children were created for each evaluation 
result, and four children were obtained created 
using mutation operator. Among the newly 
generated rim models, the best ones were used 
as parents. New models were again obtained 
using cross-over and mutation operators.  

 

Figure 12. Design optimization procedure 

Design optimization procedure is summarized 
in Figure 12. From an initial design, 20 new 
designs are obtained via a generative design 
process. After analysis of these designs based on 
aesthetic and mechanical performance 
(displacement and stress criteria), 8 designs are 
separately chosen for each criteria. (1) GA is 
again utilized, in which 8 designs are 
considered as parents. 60 new designs are then 
obtained separately for each criteria. (2) 7 
designs are first obtained from the previous 20 
designs while taking all three criteria into 
account (by comparing the performance values 
of these 20 designs). The 7 designs are utilized 

as parents in a further GA process so that 20 
new designs are generated. As a result, 101 
designs exist, which are again analyzed in a last 
step. Note that the models with the lowest 
(maximum) stress/displacement values and 
highest aesthetic values are regarded as the 
best parents in this design study. 

4. Results  

In an optimization process, parents for the next 
crossover in GA were selected based on the 
minimum maximum stress, minimum 
displacement and maximum aesthetic values. In 
the first 20 models of P-model 1, the highest 
aesthetic value was 10, the lowest value was 2. 
Furthermore, the highest displacement was 
0.1950 mm and the lowest was 0.0897 mm. 
Additionally, the maximum (Von mises) stress 
value was 62.32 MPa and the lowest value was 
22.53 MPa. In the same order, these values for 
the first 20 models of the P-model 2 were as 
follows: 4 and 8 for aesthetics, 0.1154 and 
0.2962 mm for displacement and 20.73 MPa 
and 77.78 MPa for the maximum stress. Note 
that aesthetic values were given by a volunteer, 
who is interested in cars and has design 
experience using CAD tools. Scaling was done 
for the maximum stress, displacement and 
aesthetic scores as follows using the lowest and 
highest scores for the criteria for easily evaluate 
the results: 

𝑆𝑐𝑜𝑟𝑒

= 1 −
𝑋 − 𝑡ℎ𝑒 𝑙𝑜𝑤𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒

𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝑡ℎ𝑒 𝑙𝑜𝑤𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒
 (1) 

𝑆𝑐𝑜𝑟𝑒

=
𝑋 − 𝑡ℎ𝑒 𝑙𝑜𝑤𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒

𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝑡ℎ𝑒 𝑙𝑜𝑤𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒
 (2) 

Equation 1 is for the aesthetic criterion, while 
Equation 2 is for the maximum stress and 
displacement scores. The scores of P-model 1 
and 2 are summarized in Figures 13 and 15, 
resp. Additionally, the best models for P-model 
1 and 2 are given in Figures 14 and 16, resp. 
Furthermore, Figures 17 and 18 compares the 
initial and optimized models of the P-model 1 
and 2, resp. Note that designs in the group 
named as 'best' are obtained using GA utilizing 
7 designs selected among 20 designs according 
to all three criteria. 
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Figure 13. Scaled scores of the whole models of P-model 1. 

 

 

Figure 14. The preferable models of P-model 1. 
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Figure 15. Scaled scores of the whole models of P-model 2. 

 

 

Figure 16. The preferable models of P-model 2. 
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In Figures 13 and 15, some models are marked 
with the red rectangle, which are potentially 
preferable models (by the participants) 
according to the all three criteria. Equations 1 
and 2 scales all three criteria between 0 and 1 

for better readability of the scores. The scores 
close to zero is regarded as preferable. 

 

 

 

Figure 17. Comparison of the initial and optimized models for the P-model 1. 

The preferable models of P-model 1 and P-
model 2 after the optimization studies are 
shown in Figures 14 and 16, resp. One can 
easily notice the difference of the preferable 
designs of P-model 1 and P-model 2. This can 
also demonstrate the effect of the design 

parametrization on the obtained models after 
the GA optimization. 
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Figure 18. Comparison of the initial and optimized models for the P-model 2. 

In Figures 17 and 18, the most eligible models 
selected for P-models 1 and 2 are shown with a 
red rectangle. For P-model 1, there was no 
improvement according to the aesthetic 
criterion, while the displacement value 
improved by 26% and the stress value by 35%. 
For the P-model 2, the aesthetic criterion was 
improved by 20%, the displacement value by 
33%, and the stress value by 56%. When both 
P-models are compared with each other, the 
aesthetic value of P-model 2 is 14% and its 
displacement value is 5% worse than P-model 
1. But its stress value is 23% better. As a result, 
design parametrization is crucial and strongly 
affects the obtained models after optimization. 
The models having the highest scores according 
to the aesthetic, displacement and stress scores 
are shown in Figure 19. 

 

 

 

 

              (a)                        (b)                          (c) 

Figure 19. The best models according to 
aesthetic (a), displacement (b) and stress (c) 
scores. 

5. Discussion and Conclusion 

This work involves a wheel rim optimization 
study. A rim was designed and parametrized to 
generatively obtain 20 new designs. They were 
then scored according to aesthetic and 
mechanical criteria. The selected designs were 
then used as parents in a crossover process of 
GA in line with mutation operator. After 
applying a GA-based approach, several wheel 
rim designs are selected. Distinctly 
parametrized models are gone under this 
optimization process. According to the results, 
optimized models from different 
parametrizations may have different 
mechanical and aesthetic properties. This 
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implies that parametrization is an important 
step, which has to be carefully performed before 
the optimization process.  
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