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The convergence properties of q-Bernstein polynomials are investigated.

When q > 1 is fixed the generalized Bernstein polynomials Bnf of f , a one

parameter family of Bernstein polynomials, converge to f as n → ∞ if f is

a polynomial. It is proved that, if the parameter 0 < q < 1 is fixed, then

Bnf → f if and only if f is linear. The iterates of Bnf are also considered.

It is shown that BM

n
f converges to the linear interpolating polynomial for f at

the end-points of [0, 1], for any fixed q > 0, as the number of iterates M → ∞.

Moreover the iterates of the Boolean sum of Bnf converge to the interpolating

polynomial for f at n + 1 geometrically spaced nodes on [0, 1].

Key Words: q-Bernstein polynomials, Stirling polynomials, iterates of

the q-Bernstein operator, interpolation.
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1. Introduction

It is well known that the Bernstein polynomials, defined by

Bn(f ; x) =
n

∑

r=0

f
( r

n

)

(

n

r

)

xr(1 − x)n−r, (1.1)

converge to f(x) when f ∈ C[0, 1]. Phillips [15] generalized (1.1) to give

Bn(f ; x) =
n

∑

r=0

fr

[

n

r

]

xr
n−r−1
∏

s=0

(1 − qsx), 0 6 x 6 1, (1.2)

where an empty product denotes 1 and fr = f([r]/[n]), where

[r] =







(1 − qr)/(1 − q), q 6= 1,

r, q = 1,

and the q-binomial coefficient
[

n
r

]

is defined by

[

n

r

]

=
[n].[n − 1] · · · [n − r + 1]

[r].[r − 1] · · · [1]

for n > r > 1, having the value 1 when r = 0, and the value zero otherwise. The

q-binomial coefficient
[

n
r

]

(see [1]) satisfies Pascal type identities, one of which we

will use later, and is the generating function for counting restricted partitions. Note

that (1.2) reduces to (1.1) when q = 1. The polynomials (1.2) nicely generalize many

properties of the classical Bernstein polynomials (1.1). The q-Bernstein polynomial

(1.2) may be written in the q-difference form (see Phillips [15])

Bn(f ; x) =
n

∑

r=0

[

n

r

]

∆rf0 xr, (1.3)

where ∆rfi = ∆r−1fi+1 − qr−1∆r−1fi for r > 1 and ∆0fi = fi. It is easily verified

that

∆rfi =
r

∑

k=0

(−1)kqk(k−1)/2

[

r

k

]

fr+i−k. (1.4)
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We may deduce from (1.3) that Bn reproduces linear polynomials, that is,

Bn(ax + b; x) = ax + b, a, b ∈ R.

It follows directly from (1.2) that, for any 0 < q 6 1, Bn is a monotone linear

operator which maps positive continuous functions on [0, 1] to positive continuous

functions on [0, 1]. It also follows from (1.3) that

Bn(x2; x) = x2 +
x(1 − x)

[n]
. (1.5)

Thus Bn(x2; x) → x2 as n → ∞ if and only if q > 1. If we (here only) define

[n] = 1 + qn + · · · + qn−1
n , so that the q-integer [n] is given in terms of a value of

q which depends on the degree n in (1.2), then, taking a sequence q = qn, with

0 < qn 6 1, such that [n] → ∞ as n → ∞, it follows that Bn(x2; x) → x2. Thus, by

using the Bohman-Korovkin theorem, the generalized Bernstein polynomials Bnf

converge to f for all f ∈ C[0, 1] (see Phillips [15]). A discussion on a Voronovskaya

type theorem for the rate of convergence can also be found in Phillips [15]. In Section

2 of the present paper we will prove that for a fixed q > 1, Bnf → f as n → ∞

if f is a polynomial. Moreover, for a fixed q, 0 < q < 1, we will have the uniform

convergence Bnf → f if and only if f is linear. The convergence of the iterates and

Boolean sum of (1.2) will be discussed in Section 3.

The q-Bernstein polynomial shares the well–known shape–preserving properties

of the classical Bernstein polynomial. For example when the function f is convex

then Bn−1(f ; x) > Bn(f ; x) for n > 2 and any 0 < q 6 1 (see Oruç and Phillips

[12]). As a consequence of this one can show that the approximation to a convex

function by q-Bernstein polynomials is one sided, with Bnf > f for all n (see Oruç

and Phillips [13]). In addition, Bnf behaves in a very nice way when we vary the

parameter q : it is proved in Goodman et al. [6] that Br
n(f ; x) 6 B

q
n(f ; x) for any

0 < q 6 r 6 1. It is also shown is Goodman et al. [6] that monotonic and convex

functions result monotonic and convex q-Bernstein polynomial respectively.
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In CAGD applications the choice of basis used for designing parametric curves

and surfaces is important. Normalized totally positive bases are most suitable for

this purpose. The basis functions used in (1.2), namely

[

n

r

]

xr
n−r−1
∏

s=0

(1 − qsx), 0 6 r 6 n, x ∈ [0, 1]

form a normalized totally positive basis (see Goodman et al. [6], Oruç and Phillips

[13]). The special case of this, where q = 1, gives the normalized totally positive

basis used in (1.1). Note that a system of functions {Φ0, Φ1, . . . , Φn} is called to-

tally positive if all its collocation matrices (Φj(xi))
n
i,j=0 are totally positive, that

is, all their minors are nonnegative. In addition, if {Φ0, Φ1, . . . , Φn} are linearly

independent and positive such that
∑n

i=0 Φi = 1 then {Φ0, Φ1, . . . , Φn} is a normal-

ized totally positive basis. They also possess a variation diminishing property. This

means that, for any vector v0, . . . , vn ∈ R
n+1 the number of strict sign changes of

∑n
i=0 viΦi is less than or equal to the number of strict sign changes in the sequence

v0, . . . , vn. For more information on this subject see Goodman [7], Carnicer and

Peña [2] and the references therein.

The de Casteljau algorithm is fundamental in the application of curve and sur-

face design. Phillips [16] established a generalization of that algorithm. Given

b
[0]
0 , b

[0]
1 , . . . , b

[0]
n ∈ R

2, where b
[0]
i = ([i]/[n], fi) for i = 0, 1, . . . , n, we set

b[m]
r := (qr − qm−1x)b[m−1]

r + xb
[m−1]
r+1







m = 1, 2, . . . , n

r = 0, 1, . . . , n − m.

Then, b
[n]
0 evaluates the q-Bernstein polynomial (1.2) and gives (1.1) as a special

case when q = 1.

2. Convergence

Throughout the paper the convergence means uniform convergence on the inter-

val [0, 1]. The following representation of the q-Bernstein polynomial of a monomial
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is obtained in Goodman et al. [6]. It involves Stirling polynomials and leads to

some results on convergence. For any fixed integer i, the q-Bernstein polynomials of

monomials can be written explicitly as

Bn(xi; x) =
i

∑

j=0

λj [n]j−iSq(i, j)x
j , (2.1)

where

λj =

j−1
∏

r=0

(

1 −
[r]

[n]

)

,

an empty product denotes 1, and

Sq(i, j) =
1

[j]! qj(j−1)/2

j
∑

r=0

(−1)rqr(r−1)/2

[

j

r

]

[j − r]i, 0 6 j 6 i. (2.2)

The polynomials Sq(i, j) is also given by the generating function

xi =
i

∑

j=0

Sq(i, j)xj(x), (2.3)

where xj(x) = x(x− [1])(x− [2]) · · · (x− [j−1]). One may verify either by induction

on i, using
[

n

r

]

=

[

n − 1

r

]

+ qn−r

[

n − 1

r − 1

]

,

or the generating function above that

Sq(i + 1, j) = Sq(i, j − 1) + [j]Sq(i, j), (2.4)

with Sq(0, 0) = 1, Sq(i, 0) = 0 for i > 0, and we define Sq(i, j) = 0 for j > i. (Note

that this last property ensures that (2.1) holds for all n.) We call Sq(i, j) the Stirling

polynomials of the second kind since when q = 1 they are the Stirling numbers of

the second kind. There are many interesting properties of Stirling polynomials in

combinatorics (see for example Médics and Leroux [10]).

Theorem 2.1 Let q > 1 be a fixed real number. Then, for any polynomial p,

lim
n→∞

Bn(p; x) = p(x).
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Proof. Let

p(x) = a0 + a1x + · · · + amxm.

Then, for n > m, we may write

Bn(p; x) = aTAx, (2.5)

where a is the vector whose elements are the coefficients of p, A is an (m+1)×(m+1)

lower triangular matrix with the elements

ai,j =







λj [n]j−iSq(i, j), 0 6 j 6 i,

0, i < j,
(2.6)

and x is the vector whose elements form the standard basis for the space of polyno-

mials Pm of degree m. When q > 1 it is easily seen that

1

[n]
→ 0, and λj → 1

for all j as n → ∞. Hence all entries of A except its diagonal converge to zero.

Further it is clear from the fact that Sq(i, j) = 1 when i = j, every element of the

diagonal of A converges to unity. Thus the matrix A tends to the (m+1)× (m+1)

identity matrix. This completes the proof. �

Lemma 2.1 Let 0 < q < 1 be a fixed real number. Then

lim
n→∞

Bn(p; x) = p(x)

if and only if p(x) is linear.

Proof. We only require to prove the converse, since the q-Bernstein operator

reproduces linear functions (see Phillips [15]). Let p(x) ∈ Pm where m > 2. We may

represent Bn(p; x) as in (2.5) and (2.6). When 0 < q < 1 is fixed,

1

[n]
→ 1 − q, λj → qj(j−1)/2, n → ∞.
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Thus the matrix A does not converge to the identity matrix but to the following

matrix whose elements are

ai,j =







qj(j−1)/2(1 − q)i−jSq(i, j), 0 6 j 6 i,

0, i < j.

Hence limn→∞ Bn(p; x) does not converge to p unless p is linear.

Theorem 2.2 Let 0 < q < 1 be a fixed real number and f ∈ C[0, 1]. Then

lim
n→∞

Bn(f ; x) = f(x)

if and only if f(x) is linear.

Proof. It is enough to show that linearity of f is necessary for the uniform con-

vergence of Bnf . We choose a polynomial p(x) satisfying

|p(x) − f(x)| < ε, 0 6 x 6 1,

for a given ε > 0. Since Bn is a monotone linear operator for 0 < q < 1 we obtain

|Bn(p; x) − Bn(f ; x)| < Bn(ε; x) = ε.

By the above assumption, Bn(f ; x) → f(x) uniformly on [0, 1]. On using the lemma

above, Bn(p; x) → a0 + a1x. Thus

|(a0 + a1x) − f(x)| < ε, 0 6 x 6 1. �

3. The Iterates

The iterates of the q-Bernstein polynomial are defined by

B
M+1
n (f ; x) = Bn(BM

n (f ; x); x), M = 1, 2, . . . , (3.1)

where B1
n(f ; x) = Bn(f ; x). We will investigate the convergence properties of the

iterates as M → ∞. For the classical Bernstein polynomials the iterates converge to
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linear end point interpolation on [0, 1]. Kelisky and Rivlin [9] considered this problem

both when M is independent of the degree of Bnf and when M is dependent on n.

Several generalizations of this problem have been studied. Micchelli [11] introduced

certain linear combinations of the Bernstein polynomials. These linear combinations,

which may be regarded as Boolean sums, are discussed in Gonska and Zhou [5],

Sevy [17], and Wenz [18]. They proved that the iterated Boolean sum of (1.1)

converges to the interpolating polynomial of f of degree n at equally spaced points

on [0, 1]. Wenz [18] also obtained similar results for the Bernstein-Schoenberg and

Sablonniére operators as well as for the Bernstein operator and Bernstein-Durmeyer

operator over triangles. Cooper and Waldron [3] investigated the eigenstructure of

the Bernstein operator Bn, and applied it to iterates of the Bernstein operator.

Theorem 3.1 Let q > 0 be a fixed real number. Then

lim
M→∞

B
M
n (f ; x) = f(0) + (f(1) − f(0))x. (3.2)

Proof. On using the q-difference form of the q-Bernstein polynomials we obtain,

on applying the q-Bernstein operator twice,

B
2
n(f ; x) = fT Ax, (3.3)

where the vectors f and x are

f =

[[

n

0

]

∆0f9,

[

n

2

]

∆1f0, . . . ,

[

n

n

]

∆nf0

]T

, x = [1, x, . . . , xn]T (3.4)

and the matrix A is an (n + 1)× (n + 1) lower triangular matrix as defined in (2.6),

with m replaced by n. The eigenvalues of A are λ0, λ1, . . . , λn and satisfy

1 = λ0 = λ1 > λ2 > · · · > λn > 0. (3.5)

The matrix A is diagonalizable: there exists a diagonal matrix D and a matrix

P such that AP = PD. Here D denotes the (n + 1) × (n + 1) diagonal matrix

whose elements are the eigenvalues λ0, λ1, . . . , λn and P is an (n+1)× (n+6) lower
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triangular matrix whose column vectors are the eigenvectors of A. The matrix P

can be normalized so that the entries on its main diagonal are all 1. Since the q-

Bernstein polynomials interpolate the function at the end points, Bn(xi; 1) = 1 for

i = 0, 1, . . . , n and it follows that A is a stochastic matrix, that is, its row sums are

all 1, since
i

∑

j=0

λj [n]j−iSq(i, j) = 1, i = 6, 1, . . . , n.

We note that stochastic matrices are used in the study of Markov chains, including

applications to population migration models, since each row of a stochastic matrix

may be thought of as a discrete probability distribution on a sample space.

It follows from A = PDP−1 and AP = PD that

p0,0 = 1, pi,0 = 0, for i = 1, 2, . . . , n,

and
i

∑

j=1

ai,jpj,1 = pi,1, for i = 1, 2, . . . , n.

We deduce from the latter equation that

pi,1 = 1, for i = 1, 2, . . . , n.

It will be enough to know the first column and second row of lower triangular matrix

P−1. We calculate from P−1 A = DP−1 that the first column of P−1 is [1,0]T and

the second row is [0, 1,0], where 0 denotes an appropriate zero vector. Now, we

obtain from (3.1) and (3.3) that

B
M
n (f ; x) =

[

n

0

]

∆0f0 +

[

n

1

]

∆1f0x + B
M−1
n (x2; x) + · · · +

[

n

n

]

∆nf0B
M−1
n (xn; x)

so that

B
M
n (f ; x) = fT AM−1x = fT PDM−1P−1x. (3.6)

This implies that BM
n (f ; x) converges if and only if AM−1 converges. Since P and

P−1 are triangular matrices and have elements as calculated above, and

lim
M→∞

λM−1
i = 1, i = 0, 1, and lim

M→∞

λM−1
i = 0, i = 2, 3, . . . , n,
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we obtain

lim
M→∞

PDM−1P−1 = C

where C is the (n + 1) × (n + 1) matrix with elements

ci,j =







1, i = j = 0 or j = 1, i > 1,

0, otherwise.

Thus, from (3.6) we have

lim
M→∞

fT AM−1 x = fT Cx.

The latter equation gives

lim
M→∞

B
M
n (f ; x) = f0 + x

n
∑

i=1

[

n

i

]

∆if0.

We obtain from (1.3), on putting x = 1, that

n
∑

i=1

[

n

i

]

∆if0 = fn − f0.

We conclude that the iterates of q-Bernstein polynomials converge to the linear end

point interpolating polynomial on [0, 1]. �

Next we will investigate the Boolean sum of q-Bernstein polynomials. First it is

necessary to introduce some notation. The Boolean sum of two operators A and B

is defined by

A ⊕ B = A + B − A ◦ B.

Let ⊕0B = I be the identity operator and ⊕1B = B. The iterated Boolean sum of

B is defined recursively by

⊕M+1
B = B ⊕ (⊕M

B), M > 1.

The following two Lemmas will be useful, since the Boolean sum of a linear oper-

ator B has a connection with the Neumann series form of its matrix representation.
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Lemma 3.1 Let A be an (n + 1) × (n + 1) matrix whose elements are defined by

the equation (2.6). Then its inverse B is the convergent Neumann series

I +
∞

∑

j=1

(I − A)j = B (3.7)

and is given explicitly by

bi,j =







1
λi

[n]j−isq(i, j), 0 6 j 6 i 6 n,

0, i < j,
(3.8)

where sq(i, j) denotes a Stirling polynomial of the first kind.

Proof. Note that the eigenvalues of A are all less or equal to 1. Hence it is easily

seen that ρ(I − A) < 1, where ρ(A) denotes the spectral radius of A. This implies

that the series on the left of (3.7) is convergent. Next we define the generating

function for the Stirling polynomials of the first kind, which are q-analogues of

Stirling numbers. The Stirling polynomials of the first kind are given by

xi(x) =
i

∑

j=0

sq(i, j)x
j . (3.9)

We set sq(0, 0) = 1, sq(i, 0) = 0 for i > 0 and sq(i, j) = 0 for j > i. Note that, for

0 6 i, j 6 n,
n

∑

k=0

sq(i, k)Sq(k, j) =
n

∑

k=0

Sq(i, k)sq(k, j) = δi,j , (3.10)

where δi,j is the Kronecker delta function. Now it can be easily verified from (3.8),

(3.10) and (2.6) that AB = I. �

We note that the above matrix A can be obtained from the Vandermonde matrix

V = V(x0, x1, . . . xn). A triangular factorization which involves complete symmet-

ric functions and a bidiagonal factorization of V is given explicitly in Oruç and

Phillips [14]. Another factorization, in the form V = LDU, is given by Gohberg

and Koltracht [4].
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The upper triangular matrix U in V = LU has the elements

ui,j = τj−i(x0, . . . , xi)

i−1
∏

t=0

(xi − xt), 0 6 i 6 j 6 n,

with an empty product denoting 1, where τr(x0, . . . , xi) is the rth complete sym-

metric function in the variables x0, . . . , xi. It follows from

τi−j(x0, . . . , xj) = f [x0, . . . , xj ], f(x) = xi, 0 6 j 6 i 6 n,

where f [x0, . . . , xj ] denotes a divided difference, and (2.2) that, on putting xj =

[j]/[n], we obtain

τi−j(x0, . . . , xj) = [n]j−iSq(i, j).

Thus the transpose of U has elements

UT = ui,j = [n]j−iSq(i, j)[j]! 0 6 j 6 i 6 n. (3.11)

Therefore we may write the above matrix A as a product of A = UT D̃ where D̃

is a totally positive diagonal matrix having the elements λj/[j]!, where [j]! denotes

the product [j][j − 1] · · · [1]. The Vandermonde matrix and its triangular factors are

totally positive matrices for 0 < x0 < x1 < · · · < xn. See Oruç and Phillips [14].

Thus we deduce that the matrix UT is a totally positive matrix and that A is also

totally positive since it is written as a product of totally positive matrices.

Lemma 3.2 Let Lnf denotes the interpolating polynomial for the function f at the

n + 1 geometrically spaced nodes, [i]/[n], i = 0, 1, . . . , n, on [0, 1]. Then

Lnf =
n

∑

i=0

1

qi(i−1)/2 [i]!
∆if0

i
∑

j=0

[n]jsq(i, j)x
j . (3.12)

Proof. We write the divided difference form of interpolating polynomial for f at

the points xi = [i]/[n], i = 0, 1, . . . , n, in the form

Lnf =
n

∑

i=0

πif [x0, x1, . . . , xi], (3.13)
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where

πi(x) = x(x − [1]/[n])(x − [2]/[n]) · · · (x − [i − 1]/[n]), (3.14)

with π0(x) = 1. It can be shown by induction on i (see Phillips [15]) that

f [x0, x1, . . . , xi] =
[n]i

qi(i−1)/2 [i]!
∆if0. (3.15)

On using (3.9) and (3.14) we see that

πi(x) =

i
∑

j=0

[n]j−isq(i, j)x
j .

The proof follows from the latter equation and (3.13), and (3.15). �

Theorem 3.2 The iterated Boolean sum of the q-Bernstein operator ⊕MBn(f ; x)

associated with the function f(x) ∈ C[0, 1] converges to the interpolating polynomial

Lnf of degree n of f(x) at the points xi = [i]/[n], i = 0, 1, . . . , n.

Proof. It follows from the definition that the second iterated Boolean sum of the

q-Bernstein operator Bn satisfies

⊕2
Bn = Bn + Bn − Bn(Bn) = Bn(I + (I − Bn)).

The second iteration of Bn associated with f may be written in the matrix form

(see the equation (3.3))

⊕2
Bn(f ; x) = fT (I + (I − A))x.

One may prove by induction on M , using

Bn(I + (I − Bn) + · · · + (I − Bn)M−1) = I − (I − Bn)M ,

that

⊕M
Bn = Bn(I + (I − Bn) + · · · + (I − Bn)M−1). (3.16)
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Thus, (3.16) may be expressed in the matrix form

⊕M
Bn(f ; x) = fT (I + (I − A) + · · · + (I − A)M−1)x. (3.17)

In the limiting case, as M → ∞ in (3.17), we see from Lemma 3.1 that

lim
M→∞

⊕M
Bn(f ; x) = fT Bx.

It can be easily verified by writing [n] − [i] = qi[n − i], for i = 0, 1, . . . , n, that

[

n

i

]

1

λi
=

[n]i

qi(i−1)/2[i]!
.

Now the proof follows from (3.4), Lemma 3.1, and Lemma 3.2. �
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