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Convexity and generalized Bernstein polynomials
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In a recent generalization of the Bernstein polynomials, the approximated function f
is evaluated at points spaced at intervals which are in geometric progression on [0,1],
instead of at equally spaced points. For each positive integer n, this replaces the single
polynomial Bnf by a one-parameter family of polynomials Bq

nf , where 0 < q 6 1.
This paper summarizes briefly the previously known results concerning these generalized
Bernstein polynomials and gives new results concerning Bq

nf when f is a monomial. The
main results of the paper are obtained by using the concept of total positivity. It is
shown that if f is increasing then Bq

nf is increasing, and if f is convex then Bq
nf is

convex, generalizing well known results when q = 1. It is also shown that if f is convex
then, for any positive integer n, Br

nf 6 Bq
nf for 0 < q 6 r 6 1. This supplements the

well known classical result that f 6 Bnf when f is convex.

1991 Mathematics subject classification: 41A10.

1. Introduction

In this paper we discuss further properties of the generalized Bernstein polynomials defined
by

Bn(f ; x) =
n∑

r=0

fr

[
n

r

]
xr

n−r−1∏

s=0

(1− qsx), (1.1)
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where an empty product denotes 1 and fr = f([r]/[n]). It is necessary to explain the notation.
The function f is evaluated at the ratios of the q-integers [r] and [n], where q is a positive
real number and

[r] =
{

(1− qr)/(1− q), q 6= 1,
r, q = 1.

We then define the q-factorial [r]! by

[r]! =
{

[r].[r − 1]...[1], r = 1, 2, ...,
1, r = 0

and the q-binomial coefficient
[
n

r

]
by

[
n

r

]
=

[n]!
[r]![n− r]!

for integers n > r > 0. These q-binomial coefficients satisfy the recurrence relations
[
n

r

]
= qn−r

[
n− 1
r − 1

]
+

[
n− 1

r

]

and [
n

r

]
=

[
n− 1
r − 1

]
+ qr

[
n− 1

r

]
.

We note from the above recurrence relations that
[
n

r

]
is positive for n > r > 0 and all q.

It is then clear from (1.1) that if f is positive on [0,1] then, for all q such that 0 < q 6 1,
Bnf is positive on [0,1]. It is also easily verified that Bn(f ; 0) = f(0), Bn(f ; 1) = f(1) and
Bn(f ; x) = f(x), 0 6 x 6 1, when f(x) is a polynomial of degree 1 or less.
In [4] there is a discussion of convergence and a Voronovskaya theorem on the rate of conver-
gence, and a de Casteljau algorithm is given in [5] for computing Bn(f ; x) recursively. In [3]
it is shown that, if f if convex,

Bn(f ; x) 6 Bn−1(f ;x), 0 6 x 6 1,

for n > 1 and 0 < q 6 1.
This paper is concerned with the behaviour of the generalized Bernstein polynomials as q
varies. When we need to emphasize the dependence on q we will write Bq

n(f ; x) in place of
Bn(f ; x). In section 2 we discuss the Bernstein polynomials for the monomials, which have a
particularly simple form. In section 3 we quote some results on the theory of total positivity
which are used in the following sections. In section 4 we discuss a change of basis, in order
to show later how Bn(f ; x) varies with the parameter q. Finally it is proved for all n > 1 and
0 < q 6 1 that if f is increasing, Bq

nf is increasing, and if f is convex then Bq
nf is convex.

We also show that if f is convex on [0,1] then Br
nf 6 Bq

nf for 0 < q 6 r 6 1.
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2. The monomials

We require some preliminaries. For any real function f we define ∆0fi = fi for i = 0, 1, ...n
and, recursively,

∆k+1fi = ∆kfi+1 − qk∆kfi

for k = 0, 1, ..., n − i − 1, where fi denotes f([i]/[n]). It is easily shown by induction on k
that q-differences satisfy the relation

∆kfi =
k∑

r=0

(−1)rqr(r−1)/2

[
k

r

]
fi+k−r, (2.1)

see Schoenberg [6], Lee and Phillips [2]. The generalized Bernstein polynomial (1.1) may also
be written in the q-difference form (see [4])

Bn(f ; x) =
n∑

j=0

[
n

j

]
∆jf0 xj . (2.2)

We now express the q-binomial coefficients as
[
n

j

]
=

[n]j

[j]! qj(j−1)/2
πn

j , 0 6 j 6 n, (2.3)

where

πn
j =

j−1∏

r=0

(
1− [r]

[n]

)

and an empty product denotes 1. It follows from (2.2) that Bn(xi; x) is a polynomial of
degree less or equal to min(i, n) and, using (2.2), (2.1) and (2.3), we obtain

Bn(xi; x) =
i∑

j=1

πn
j [n]j−iSq(i, j)xj , (2.4)

where

Sq(i, j) =
1

[j]! qj(j−1)/2

j∑

r=0

(−1)rqr(r−1)/2

[
j

r

]
[j − r]i. (2.5)

We may verify by induction on i that

Sq(i + 1, j) = Sq(i, j − 1) + [j]Sq(i, j) (2.6)

for i > 0 and j > 1 with Sq(0, 0) = 1, Sq(i, 0) = 0 for i > 0 and we define Sq(i, j) = 0 for
j > i. We call Sq(i, j) the Stirling polynomials of the second kind since when q = 1 they are
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the Stirling numbers of the second kind. The recurrence relation (2.6) shows that, for q > 0,
the Stirling polynomials are polynomials in q with non-negative integer coefficients and so
are positive monotonic increasing functions of q. Thus Bn(xi;x) and all its derivatives are
non-negative on [0,1]. In particular, Bn(xi;x) is convex. In section 4, we will find that, more
generally, Bn(f ; x) is convex when f is convex.

3. Total positivity

In this section we will cite some results concerning totally positive matrices, which we require
later to verify the shape-preserving properties of the generalized Bernstein polynomials.

Definition 3.1 For any real sequence v, finite or infinite, we denote by S−(v) the number
of strict sign changes in v.

We use the same notation to denote sign changes in a function, as follows.

Definition 3.2 For a real-valued function f on an interval I, we define S−(f) to be the
number of sign changes of f , that is

S−(f) = supS−(f(x0), . . . , f(xm))

where the supremum is taken over all increasing sequences (x0, . . . , xm) in I for all m.

Definition 3.3 We say that a matrix A = (aij) is m-banded if , for some l, aij 6= 0 implies
l 6 j − i 6 l + m.

Definition 3.4 A matrix is said to be totally positive if all its minors are non-negative.

It is easily verified that, with x0 < x1 < . . . < xn the (n + 1)× (n + 1) Vandermonde matrix
whose (i, j)th element is xj

i , 0 6 i, j 6 n, is totally positive.

Theorem 3.1 A finite matrix is totally positive if and only if it is a product of 1-banded
matrices with non-negative elements.

Theorem 3.2 (Variation diminishing property.) If T is a totally positive matrix and v is
any vector for which Tv is defined, then S−(Tv) 6 S−(v).

Definition 3.5 We say that a sequence (φ0, . . . , φn) of real-valued functions on an interval
I is totally positive if, for any points x0 < . . . < xn in I, the collocation matrix (φj(xi)) n

i,j=0

is totally positive.

Theorem 3.3 If (φ0, . . . , φn) is totally positive on I then, for any numbers a0, . . . , an,

S−(a0φn + . . . + anφn) 6 S−(a0, . . . , an).
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For the proofs of these theorems see [1].
Thus, from the total positivity of the Vandermonde matrix, we see that (1, x, . . . , xn) is totally
positive in any interval. On making the change of variable t = x/(1 − x), noting that t is
increasing function of x, we see that

(1, x/(1− x), x2/(1− x)2, . . . , xn/(1− x)n)

is totally positive on [0,1] and thus
(
(1− x)n, x(1− x)n−1, x2(1− x)n−2, . . . , xn

)

is totally positive on [0,1]. For some 0 < q 6 1, n > 1, j = 0, . . . , n, let

Pn,q
j (x) = xj

n−j−1∏

s=0

(1− qsx), 0 6 x 6 1, (3.1)

denote the functions which appear in the generalized Bernstein polynomials (1.1). We have
seen above that

(Pn,1
0 , Pn,1

1 , . . . , Pn,1
n )

is totally positive on [0,1] and we will see in section 4 that the same is true of
(Pn,q

0 , Pn,q
1 , . . . , Pn,q

n ) for any q, 0 < q 6 1.

4. Change of Basis

In this section we present results which will be used to show how Bn(f ; x) varies with the
value of the parameter q.
Since the functions defined in (3.1) are a basis for the subspace of the polynomials of degree
at most n then, for any q, r, 0 < q, r 6 1, there exists a non-singular matrix Tn,q,r such that




Pn,q
0 (x)

...
Pn,q

n (x)


 = Tn,q,r




Pn,r
0 (x)

...
Pn,r

n (x)


 .

Theorem 4.1 For 0 < q 6 r all elements of the matrix Tn,q,r are non-negative.

Proof We use induction on n. The result holds for n = 1 since T1,q,r is the 2 × 2 identity
matrix. Let us assume the result holds for some n > 1. Then, since

Pn+1,q
j+1 (x) = xPn,q

j (x), 0 6 j 6 n,

we have 


Pn+1,q
1 (x)

...
Pn+1,q

n+1 (x)


 = Tn,q,r




Pn+1,r
1 (x)

...
Pn+1,r

n+1 (x)


 . (4.1)
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Also, we have

Pn+1,q
0 (x) = (1− x) . . . (1− qn−1x)(1− qnx)

= (1− qnx)
n∑

j=0

T n,q,r
0,j Pn,r

j (x).

On substituting

(1− qnx)Pn,r
j (x) = Pn+1,r

j (x) + (rn−j − qn)Pn+1,r
j+1 (x)

and simplifying, we obtain

Pn+1,q
0 (x) = Tn,q,r

0,0 Pn+1,r
0 (x) + (1− qn)Tn,q,r

0,n Pn+1,r
n+1 (x)

+
n∑

j=1

(
(rn+1−j − qn)Tn,q,r

0,j−1 + Tn,q,r
0,j

)
Pn+1,r

j (x). (4.2)

Combining (4.1) and (4.2), we have



Pn+1,q
0 (x)

Pn+1,q
1 (x)

...
Pn+1,q

n+1 (x)


 =




Tn,q,r
0,0 vT

n+1

0 Tn,q,r







Pn+1,r
0 (x)

Pn+1,r
1 (x)

...
Pn+1,r

n+1 (x)


 , (4.3)

where the elements of the row vector vT
n+1 are the coefficients of Pn+1,r

1 (x), . . . , Pn+1,r
n+1 (x)

given by (4.2). Thus Tn+1,q,r is the matrix in block form in (4.3) which, together with (4.2),
shows that all elements of Tn+1,q,r are non-negative. This completes the proof. 2

We now show that Tn,q,r can be factorized as a product of 1-banded matrices. First we
require the following lemma.

Lemma 4.1 For m > 1 and r, a ∈ RI , let A(m, a) denote the m× (m + 1) matrix



1 rm − a
1 rm−1 − a

. . . . . .
1 r − a


 .

Then
A(m, a)A(m + 1, b) = A(m, b)A(m + 1, a). (4.4)

Proof For i = 0, . . . , m− 1 the ith row of each side of (4.4) is

[0, . . . , 0, 1, rm+1−i + rm−i − a− b, (rm−i − a)(rm−i − b), 0, . . . , 0]. 2
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Theorem 4.2 For n > 2 and any q, r the matrix Tn,q,r is given by the product




1 r − qn−1

1
1

. . .

1







1 r2 − qn−2

1 r − qn−2

1

. . .

1




. . .




1 rn−1 − q
1 rn−2 − q

. . . . . .
1 r − q

1
1




.

Proof We use induction on n. The result holds for n = 2. Denote the above product by
Sn,q,r and assume that, for some n > 2, Tn,q,r = Sn,q,r. Then we can express Sn+1,q,r as the
product, in block form,

Sn+1,q,r =

[
1 cT

0

0 I

][
1 cT

1

0 B1

][
1 cT

2

0 B2

]
. . .

[
1 cT

n−1

0 Bn−1

]

where cT
0 , . . . , cT

n−1 are row vectors, 0 denotes the zero vector, I the unit matrix and

B1B2 . . .Bn−1 = Sn,q,r = Tn,q,r.

Also, the first column of Sn+1,q,r has 1 in the first row and zeros below. Thus it remains only
to verify that the first rows of Tn+1,q,r and Sn+1,q,r are equal. We have

[Sn+1,q,r
0,0 , . . . , Sn+1,q,r

0,n+1 ] = [wT , 0],

where, in the notation defined in the above Lemma,

wT = A(1, qn)A(2, qn−1) . . .A(n− 1, q2)A(n, q). (4.5)

In view of the Lemma, we may permute the quantities qn, qn−1, . . . , q in (4.5), leaving wT

unchanged. In particular, we may write

wT = A(1, qn−1)A(2, qn−2) . . .A(n− 1, q)A(n, qn). (4.6)

Now the product of the first n− 1 matrices in (4.6) is simply the first row of Sn,q,r and thus

wT = [Sn,q,r
0,0 , . . . , Sn,q,r

0,n−1]




1 rn − qn

. . . . . .
1 r − qn




= [Tn,q,r
0,0 , . . . , Tn,q,r

0,n−1]




1 rn − qn

. . . . . .
1 r − qn


 .
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This gives
Sn+1,q,r

0,0 = Tn,q,r
0,0

and
Sn+1,q,r

0,j = (rn+1−j − qn)Tn,q,r
0,j−1 + Tn,q,r

0,j , j = 1, . . . , n ,

noting that Tn,q,r
0,n = 0. Then from (4.2)

Sn+1,q,r
0,j = Tn+1,q,r

0,j , j = 0, . . . , n ,

and since Sn+1,q,r
0,n+1 = 0 = Tn+1,q,r

0,n+1 , the result is true for n + 1 and the proof is complete. 2

The following is a consequence of Theorem 4.2 and Theorem 3.1.

Theorem 4.3 For 0 < q 6 rn−1 the matrix Tn,q,r is totally positive.

We note that if 0 < q 6 rn−1 and

p = aq
0P

n,q
0 + . . . + aq

nPn,q
n = ar

0P
n,r
0 + . . . + ar

nPn,r
n (4.7)

then Theorem 3.2 shows that

S− (ar
0, . . . , a

r
n) 6 S− (aq

0, . . . , a
q
n) ,

see [1], p. 166. Since (Pn,1
0 , . . . , Pn,1

n ) is totally positive it follows from Theorem 3.3 that, for
0 < q 6 rn−1 6 1 and p as in (4.7),

S−(p) 6 S− (ar
0, . . . , a

r
n) 6 S− (aq

0, . . . , a
q
n) . (4.8)

5. Convexity

From (4.8) we see that, for 0 < q 6 1, S−(Bq
nf) 6 S−(f). Since Bq

n reproduces linear
polynomials, this has the following consequence.

Theorem 5.1 For any function f and any linear polynomial p,

S−(Bq
nf − p) = S−(Bq

n(f − p)) 6 S−(f − p),

for 0 < q 6 1.

This is illustrated by Figure 1. The function f(x) is sin 2πx and the generalized Bernstein
polynomials are of degree n = 20 with q = 0.8 and q = 0.9.

The next result follows from Theorem 5.1.

Theorem 5.2 If f is increasing (decreasing) on [0,1], then Bq
nf is also increasing (decreas-

ing) on [0,1], for 0 < q 6 1.
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1

1

1

0

f

B20
0.9

0.8
20B

Figure 1: Sign changes of generalized Bernstein polynomials for f(x) = sin 2πx. The polynomials
are B0.8

20 f and B0.9
20 f .

Proof Let f be increasing on [0,1]. Then, for any constant c,

S−(Bq
nf − c) 6 S−(f − c) 6 1

and thus Bq
nf is monotonic. Since

Bq
n(f ; 0) = f(0) 6 f(1) = Bq

n(f ; 1),

Bq
nf is monotonic increasing. (If f is decreasing we may replace f by −f .) 2

Next we recall the definition of a convex function.

Definition 5.1 A function f is said to be convex on [0,1] if, for any t0, t1 such that
0 6 t0 < t1 6 1 and any λ, 0 < λ < 1, f(λt0 + (1− λ)t1) 6 λf(t0) + (1− λ)f(t1).

Geometrically, this definition states that no chord of f lies below the graph of f .
We now state a result on convexity.

Theorem 5.3 If f is convex on [0,1], then Bq
nf is also convex on [0,1], for 0 < q 6 1.

Proof Let p denote any linear polynomial. Then if f is convex we have

S−(Bq
nf − p) = S−(Bq

n(f − p)) 6 S−(f − p) 6 2.

Thus if p(a) = Bq
n(f ; a) and p(b) = Bq

n(f ; b) for 0 < a < b < 1 then Bq
nf − p cannot change

sign in (a, b). As we vary a and b, a continuity argument shows that the sign of Bq
nf − p on
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(a, b) is the same for all a and b, 0 < a < b < 1. From the convexity of f we see that, when
a = 0 and b = 1, 0 6 p− f , so that

0 6 Bq
n(p− f) = p−Bq

nf

for 0 < q 6 1 and thus Bq
n is convex. 2

We conclude this section by proving that, if f is convex, the generalized Bernstein polynomials
Bq

nf , for n fixed, are monotonic in q.

Theorem 5.4 For 0 < q 6 r 6 1 and for f convex on [0,1], then

Br
nf 6 Bq

nf.

Proof Let us write ζn,q
j =

[j]
[n]

and an,q
j =

[
n

j

]
. Then, for any function g on [0,1],

Bq
ng =

n∑

j=0

g(ζn,q
j )an,q

j Pn,q
j =

n∑

j=0

n∑

k=0

g(ζn,q
j )an,q

j Tn,q,r
j,k Pn,r

k

and thus

Bq
ng =

n∑

k=0

Pn,r
k

n∑

j=0

Tn,q,r
j,k g(ζn,q

j )an,q
j . (5.1)

With g = 1, this gives

1 =
n∑

j=0

an,q
j Pn,q

j =
n∑

k=0

Pn,r
k

n∑

j=0

Tn,q,r
j,k an,q

j

and hence
n∑

j=0

Tn,q,r
j,k an,q

j = an,r
k , k = 0, . . . , n. (5.2)

On putting g(x) = x in (5.1), we obtain

x =
n∑

j=0

ζn,q
j an,q

j Pn,q
j =

n∑

k=0

Pn,r
k

n∑

j=0

Tn,q,r
j,k ζn,q

j an,q
j .

Since
n∑

j=0

ζn,r
j an,r

j Pn,r
j = x

we have
n∑

j=0

Tn,q,r
j,k ζn,q

j an,q
j = ζn,r

k an,r
k , k = 0, . . . , n. (5.3)
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Now if f is convex, it follows from (5.2) and (5.3) that

f(ζn,r
k ) = f




n∑

j=0

(an,r
k )−1Tn,q,r

j,k ζn,q
j an,q

j




6
n∑

j=0

(an,r
k )−1Tn,q,r

j,k an,q
j f(ζn,q

j ).

Then (5.1) gives

Bq
nf =

n∑

j=0

f(ζn,q
j )an,q

j Pn,q
j

=
n∑

k=0

an,r
k Pn,r

k

n∑

j=0

(an,r
k )−1Tn,q,r

j,k f(ζn,q
j )an,q

j

>
n∑

k=0

an,r
k Pn,r

k f(ζn,r
k ) = Br

nf. 2

Figure 2 illustrates the monotonicity in q of the generalized Bernstein polynomials Bq
n(f ;x)

for the convex function f(x) = 1− sinπx.
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1

10

B
0.5

10

B
0.75

10

B
1

10

f

Figure 2: Monotonicity of generalized Bernstein polynomials in the parameter q, for f(x) = 1−sinπx.
The polynomials are B0.5

10 f , B0.75
10 f and B1

10f .
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