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Convexity and generalized Bernstein polynomials
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In a recent generalization of the Bernstein polynomials, the approximated function f
is evaluated at points spaced at intervals which are in geometric progression on [0,1],
instead of at equally spaced points. For each positive integer n, this replaces the single
polynomial B, f by a one-parameter family of polynomials BZf, where 0 < ¢ < 1.
This paper summarizes briefly the previously known results concerning these generalized
Bernstein polynomials and gives new results concerning BY f when f is a monomial. The
main results of the paper are obtained by using the concept of total positivity. It is
shown that if f is increasing then BYf is increasing, and if f is convex then BIf is
convex, generalizing well known results when ¢ = 1. It is also shown that if f is convex
then, for any positive integer n, B;, f < Bif for 0 < ¢ < r < 1. This supplements the
well known classical result that f < B, f when f is convex.

1991 Mathematics subject classification: 41A10.

1. Introduction

In this paper we discuss further properties of the generalized Bernstein polynomials defined
by

n n—r—1
Bn(f;x)ZZfrmxr I] (-aa), (1.1)
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where an empty product denotes 1 and f, = f([r]/[n]). It is necessary to explain the notation.
The function f is evaluated at the ratios of the g-integers [r] and [n], where ¢ is a positive
real number and

1—-4qg" 1— , 17
] = {7{7 0 =aa £,
We then define the g-factorial [r]! by
[r]! {[17“’]‘[7“ —1]...11], "= (1)2 ,

and the g-binomial coefficient [7:] by

m B [r]![[:]i ]!

for integers n > r > 0. These g-binomial coefficients satisfy the recurrence relations
Pl 1
r r—1 r
SRRy
r r—1 r

We note from the above recurrence relations that [ } is positive for n > r > 0 and all q.
T

It is then clear from (1.1) that if f is positive on [0,1] then, for all ¢ such that 0 < ¢ < 1,
B, f is positive on [0,1]. It is also easily verified that B, (f;0) = f(0), Bn(f;1) = f(1) and
B, (f;z) = f(z),0 < x <1, when f(x) is a polynomial of degree 1 or less.

In [4] there is a discussion of convergence and a Voronovskaya theorem on the rate of conver-
gence, and a de Casteljau algorithm is given in [5] for computing B, (f;x) recursively. In [3]
it is shown that, if f if convex,

and

Bu(f;z) < Bp-a1(f;2), 0<2 <1,

forn>1and 0 <qg< 1.

This paper is concerned with the behaviour of the generalized Bernstein polynomials as ¢
varies. When we need to emphasize the dependence on ¢ we will write Bi(f;z) in place of
B, (f;x). In section 2 we discuss the Bernstein polynomials for the monomials, which have a
particularly simple form. In section 3 we quote some results on the theory of total positivity
which are used in the following sections. In section 4 we discuss a change of basis, in order
to show later how B, (f;x) varies with the parameter ¢. Finally it is proved for all n > 1 and
0 < ¢ < 1 that if f is increasing, B f is increasing, and if f is convex then By f is convex.
We also show that if f is convex on [0,1] then B! f < Bif for 0 < ¢ <r < 1.
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2. The monomials

We require some preliminaries. For any real function f we define AYf; = f; for i = 0,1,...n
and, recursively,

AL = A fipr = d° AR

for k = 0,1,...,mn —i — 1, where f; denotes f([7]/[n]). It is easily shown by induction on k
that g-differences satisfy the relation

k
Affi=) (-1)7q m fitkor, (21)

r=0

see Schoenberg [6], Lee and Phillips [2]. The generalized Bernstein polynomial (1.1) may also
be written in the g-difference form (see [4])

n

Bu(f;z) =) m A fo 2. (2.2)
j=o 1/
We now express the g-binomial coefficients as
n| _ [ n ,
5] = g = 0<a 2

where

-3 £)

and an empty product denotes 1. It follows from (2.2) that B, (2% z) is a polynomial of
degree less or equal to min(i,n) and, using (2.2), (2.1) and (2.3), we obtain

Zw 19718, (i, j)ad (2.4)

where .
1 J
SN - _rr(rl)/Q o
We may verify by induction on ¢ that
Sqli+1,7) = Sq(i, g — 1) + [4]54(4, ) (2.6)

for i > 0 and j > 1 with S;(0,0) = 1, S,4(4,0) = 0 for i > 0 and we define S,(7,j) = 0 for
Jj > 1. We call S,(7,7) the Stirling polynomials of the second kind since when ¢ = 1 they are
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the Stirling numbers of the second kind. The recurrence relation (2.6) shows that, for ¢ > 0,
the Stirling polynomials are polynomials in ¢ with non-negative integer coefficients and so
are positive monotonic increasing functions of ¢. Thus B, (z%;x) and all its derivatives are
non-negative on [0,1]. In particular, B, (z%;x) is convex. In section 4, we will find that, more
generally, B, (f;z) is convex when f is convex.

3. Total positivity

In this section we will cite some results concerning totally positive matrices, which we require
later to verify the shape-preserving properties of the generalized Bernstein polynomials.

Definition 3.1 For any real sequence v, finite or infinite, we denote by S~ (v) the number
of strict sign changes in v.

We use the same notation to denote sign changes in a function, as follows.

Definition 3.2 For a real-valued function f on an interval I, we define S~ (f) to be the
number of sign changes of f, that is

S7(f) =sup S~ (f(@o),---, f(xm))
where the supremum is taken over all increasing sequences (xg, ..., Tm) n I for all m.

Definition 3.3 We say that a matriz A = (a;;) is m-banded if , for some l, a;; # 0 implies
I<j—i<l+m.

Definition 3.4 A matriz is said to be totally positive if all its minors are non-negative.

It is easily verified that, with o < z1 < ... < 2, the (n +1) x (n + 1) Vandermonde matrix
whose (4, j)th element is 2}, 0 <4,j < n, is totally positive.

Theorem 3.1 A finite matrix is totally positive if and only if it is a product of 1-banded
matrices with non-negative elements.

Theorem 3.2 (Variation diminishing property.) If T is a totally positive matriz and v is
any vector for which Tv is defined, then S™(Tv) < S7(v).

Definition 3.5 We say that a sequence (¢o, ..., dn) of real-valued functions on an interval
I is totally positive if, for any points xo < ... < x, in I, the collocation matriz ((ﬁj(xi))i’szo
1s totally positive.

Theorem 3.3 If (¢o, ..., dn) is totally positive on I then, for any numbers ag, ..., an,

ST (aopn + ...+ andn) < S (ag,...,an).
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For the proofs of these theorems see [1].

Thus, from the total positivity of the Vandermonde matrix, we see that (1,x,...,z") is totally
positive in any interval. On making the change of variable ¢ = x/(1 — x), noting that ¢ is
increasing function of z, we see that

(1,z/(1—2),22/(1 —x)%,...,2" /(1 —z)")
is totally positive on [0,1] and thus
(1—2)"z(1—2)" 2?1 —2)" %, .. 2"
is totally positive on [0,1]. For some 0 < ¢<1, n>1, j=0,...,n,let

n—j—1

Pf’q(m) = o’ H (1-¢°z), 0<x
s=0

N
\.H

(3.1)

denote the functions which appear in the generalized Bernstein polynomials (1.1). We have
seen above that
(P, P P

is totally positive on [0,1] and we will see in section 4 that the same is true of
(P, P, .. P?) for any ¢, 0 < ¢ < 1.

4. Change of Basis

In this section we present results which will be used to show how B, (f;z) varies with the
value of the parameter q.

Since the functions defined in (3.1) are a basis for the subspace of the polynomials of degree
at most n then, for any ¢,7, 0 < ¢,r < 1, there exists a non-singular matrix T™%" such that

Pyi(x) By ()
: = T™4" :
Py(x) Py (x)

Theorem 4.1 For 0 < g < r all elements of the matriz T™%" are non-negative.

Proof We use induction on n. The result holds for n = 1 since TH%" is the 2 x 2 identity
matrix. Let us assume the result holds for some n > 1. Then, since

n+1,q o n,q .
P (a) = 2PMi(2), 0<j<n,

Jj+1
we have " —
n 5 n 5T
P () P ()
E g TTL,q,T’ E . (4.1)
+1, +1,
P () P (2)
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Also, we have
Py H(z) = (1-a).. (=g )1 =)

1_q T ZanrPnr

On substituting

(1= q"a) P} (x) = P} (@) + (" = ") PR (@)
and simplifying, we obtain

Py (z) = T&““P”*“(@ + (1= ¢T3 2 P ()

n Z ( ntl—j _ )T&q_’q + T&}q’r) P;HLT(@’)- (4.2)

Combining (4.1) and (4.2), we have

] [ ] [
Y23 5 % )T
P | PP ) ",
= . , .
) I O § e
where the elements of the row vector v. ; are the coefficients of P (), Pgillr(x)

given by (4.2). Thus T"T14" is the matrix in block form in (4.3) Wthh together with (4.2),
shows that all elements of T"+1:%" are non-negative. This completes the proof. O

We now show that T™%" can be factorized as a product of 1-banded matrices. First we
require the following lemma.

Lemma 4.1 Form > 1 and r,a € R, let A(m,a) denote the m x (m + 1) matriz

1 r—aq
1 rm—1l _ g
1. r—a
Then
A(m,a)A(m+1,b) = A(m,b)A(m + 1,a). (4.4)

Proof Fori=0,...,m—1 the ith row of each side of (4.4) is

[0,...,0,1, 7m0 L pm=t g _p (r™F —a)(r™" —b),0,...,0]. O



Proceedings of the Edinburgh Mathematical Society (1999) 42, 179-190 185

Theorem 4.2 Forn > 2 and any q,r the matrix T™?" is given by the product

1 T_qnfl — _1 r2_qn—2 T M1 Tnfl_q
1 1 T_qan 1 Tn_2—q

1 r—gq
1
L 1] 1 1

Proof We use induction on n. The result holds for n = 2. Denote the above product by
S™4" and assume that, for some n > 2, T™9" = S™4%", Then we can express S"t14" as the
product, in block form,

T T T T
gntlar _ b Loa L e Lcu
0 I 0 B, 0 B 0 B,
where cOT, R c:,f_l are row vectors, 0 denotes the zero vector, I the unit matrix and

B1B2 e anl = Sn’Q7T — Tna‘L""‘

Also, the first column of 8”197 has 1 in the first row and zeros below. Thus it remains only
to verify that the first rows of T"+14" and S"T197" are equal. We have

n+1,q,r n+1,q,77 T
[SO’O R | =1[w",0],
where, in the notation defined in the above Lemma,

wl = A(1,¢"A(2,¢" V) ... A(n —1,¢°)A(n,q). (4.5)

In view of the Lemma, we may permute the quantities ¢”,¢" ',...,q in (4.5), leaving w

unchanged. In particular, we may write

T

wl = A(1, q"_l)A(2, q"_z) . An—=1,9)A(n,q"). (4.6)

Now the product of the first n — 1 matrices in (4.6) is simply the first row of S™%" and thus

(17" —q" )
T _ [ongr n,q,r
w *[0,0 IERRE O,n—l] -
i L r—q"]
(17" —q" 7]
—_ n7q7r n?q”r .
= [To,o . "TO,nfl] .
L L r—q"]
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This gives
n+17q7’r — n?q7,r
50,0 =Too

and

S&jl,q,T — (Tn+1—j _ qn)ngq_,r‘l + ngq,r7 j=1,....n,
noting that 7" = 0. Then from (4.2)

Sn+17qu — T(;’Lii»l’q’r
5]

()J‘ ) jzov"‘7n7

and since Sg’;i’f’r =0= Tg:i’f’r, the result is true for n + 1 and the proof is complete. O

The following is a consequence of Theorem 4.2 and Theorem 3.1.
Theorem 4.3 For 0 < q < "' the matriz T™9" is totally positive.
We note that if 0 < ¢ < "~ ! and
p=alPy "+ ... +alPP =aq P + ... +a, P (4.7)
then Theorem 3.2 shows that
S™(ag,--..ap) < S (ad,...,al),

see [1], p. 166. Since (P(;L’l, .. ,Pﬁf’l) is totally positive it follows from Theorem 3.3 that, for
0<qg<r"!<1andpasin (4.7),

S™(p) < S (af,....a") < S (al,....al). (4.8)

5. Convexity

From (4.8) we see that, for 0 < ¢ < 1, S™(BLf) < S™(f). Since Bj reproduces linear
polynomials, this has the following consequence.

Theorem 5.1 For any function f and any linear polynomial p,
ST(Buf —p) =5 (Bi(f —p) <5 (f —p),
for0<qg<1.

This is illustrated by Figure 1. The function f(x) is sin27z and the generalized Bernstein
polynomials are of degree n = 20 with ¢ = 0.8 and ¢ = 0.9.

The next result follows from Theorem 5.1.

Theorem 5.2 If f is increasing (decreasing) on [0,1], then Bl f is also increasing (decreas-
ing) on [0,1], for 0 < g < 1.
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11 f
By
B
0 1
1]

Figure 1: Sign changes of generalized Bernstein polynomials for f(z) = sin2wz. The polynomials
are BYS f and B9 f.

Proof Let f be increasing on [0,1]. Then, for any constant c,
STBif-o< S (f-o<1
and thus By f is monotonic. Since
Bi(f:0) = f(0) < f(1) = Bi(f;1),

B{ f is monotonic increasing. (If f is decreasing we may replace f by —f.) O
Next we recall the definition of a convex function.

Definition 5.1 A function f is said to be conver on [0,1] if, for any to,t; such that
0<tg<ti<landany A\, 0<X<1, f(Mg+ (1 —N)t1) < Af(to) + (1 — N f(t1).

Geometrically, this definition states that no chord of f lies below the graph of f.
We now state a result on convexity.

Theorem 5.3 If f is convex on [0,1], then B f is also convex on [0,1], for 0 < q < 1.
Proof Let p denote any linear polynomial. Then if f is convex we have
ST(Bif —p) =5 (Bi(f—p) <S5 (f-p) <2

Thus if p(a) = BL(f;a) and p(b) = BL(f;b) for 0 < a < b < 1 then B f — p cannot change
sign in (a,b). As we vary a and b, a continuity argument shows that the sign of BLf — p on
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(a,b)
a=0and b=1,0<p— f, so that

0< Bilp—1)

for 0 < ¢ < 1 and thus By is convex.
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is the same for all ¢ and b, 0 < a < b < 1. From the convexity of f we see that, when

=p—Bif

a

We conclude this section by proving that, if f is convex, the generalized Bernstein polynomials

Bl f, for n fixed, are monotonic in g.

Theorem 5.4 For0 < g<r <

1 and for f convex on [0,1], then

B < BLf.

]

and a

] g

Proof Let us write (;"! =

Q—Zg nq annq
7=0

= [n] Then, for any function g on [0,1],
J

n q n7q n7q7r n,""
Z Z 9(G )y T By,

7=0 k=0
and thus
ng:ZPn’“Z T3 g(¢)al . (5.1)
k=0 7=0
With g = 1, this gives
n
_ nq n,q __ 7,7 nq,r nq
1=2 a"'F; ZP Z g
j=0
and hence
Z T = ap”, k=0,...,n (5.2)
On putting g(z) = z in (5.1), we obtain
n
1':2(;“1 nqpnq ZPTLTZT :45T nq nq
j=0
Since
n
S GraE =
j=0
we have
ZT"‘” Pt = e, k=0,...,n. (5.3)
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Now if f is convex, it follows from (5.2) and (5.3) that

J J

n

f( I?J“) — f (QZ7T)—1T@I;q,Tcﬂ7qa7},q
]7

7=0

n

N

(azﬂ,) 711’?7"?];Q7ra;"7qf (C;L7q) .
7=0

Then (5.1) gives

M=

Bif =
J

[e=]

n

k) ) bl 71 b= ) ) )
ap" P Y (eI F(G e
5=0

=) a " PUUf(GT) = BLf. O

M T

=

=0

Figure 2 illustrates the monotonicity in ¢ of the generalized Bernstein polynomials B (f;x)
for the convex function f(z) =1 — sinnzx.
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0

Figure 2: Monotonicity of generalized Bernstein polynomials in the parameter ¢, for f(z) = 1—sin7z.
The polynomials are BYy> f, BY™f and Bi,f.
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