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Abstract

The LU factorization of the Vandermonde matrix is obtained, using complete symmetric

functions, and the lower and upper triangular matrices are, in turn, factorized into 1-banded

matrices, thus expressing the Vandermonde matrix as a product of 1-banded matrices.

1. Introduction

The linear system of equations

Vx = b, (1.1)

where V is the Vandermonde matrix V = V(x0, . . . , xn) with distinct x0, . . . , xn ∈ IR, of the

form
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V =




1 x0 . . . xn
0

1 x1 . . . xn
1

...
...

...

1 xn . . . xn
n




(1.2)

arises naturally in many approximation and interpolation problems. In recent years there has

been an interest in solving systems of linear equations with a Vandermonde coefficient matrix

and its dual, and also an interest in confluent problems (see [1], [2], [13]). In [1], the Newton’s

interpolation method is used to solve the linear system (1.1), which is related to finding a

factorization of V−1. Numerical examples show that the fast algorithm in [1] produces accurate

solutions, even when V is ill-conditioned (see also [6]).

2. Symmetric functions and the triangular decomposition of

V First we require the following definitions to describe the elements of L and U in the factor-

ization of the Vandermonde matrix.

Definition 2.1 For integers 1 6 r 6 n, σ(n, r) is the rth elementary symmetric function.

This is the sum of all products of r distinct real variables chosen from n variables. We set

σ(n, 0) = 1, n > 1, and write,

σ(n, r) =
∑

16i1<i2<···<ir6n

xi1 . . . xir .

Definition 2.2 For integers n, r > 1, τ(n, r) is the rth complete symmetric function defined

by the sum of all products of order r of n variables. That is

τ(n, r) =
∑

16i16i26···6in6n

xλ1
i1

. . . xλn
in

, λ1 + · · ·+ λn = r,

where λ1, . . . , λn ∈ {0, 1, . . . , r}. We set τ(n, 0) = 1, n > 1. We will also use τr(x1, . . . , xn) to

denote τ(n, r).

The generating function of the elementary symmetric function is well known. We have

S(x) = (1− x1x) . . . (1− xnx) =
n∑

r=0

(−1)rσ(n, r)xr. (2.1)

The generating function for the complete symmetric function is 1/S(x), since

1
S(x)

=
1

(1− x1x) . . . (1− xnx)
=

n∏

j=1

∞∑
r=0

xr
jx

r
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=
∞∑

r=0

τ(n, r)xr. (2.2)

Lemma 2.1 The complete symmetric functions satisfy the recurrence relation

τ(n, r) = τ(n− 1, r) + xnτ(n, r − 1), (2.3)

for integers n, r > 1.

Proof The identity (2.3) is easily verified, using the generating function (2.2). ■

This lemma with a different (combinatorial) proof has recently appeared in [7].

Since it is easier to express a triangular matrix as a product of 1-banded matrices, we first

split the Vandermonde matrix into lower and upper triangular matrices. Crout’s algorithm

may be used for this purpose. Let V = LU, where V is the nth order Vandermonde matrix

defined in (1.2), L is a lower triangular matrix with units on its main diagonal and U is an

upper triangular matrix. This factorization is unique.

We now state one of the two main results of this paper which concerns the elements of the

triangular matrices in the decomposition of the Vandermonde matrix.

Theorem 2.1 Let V = (xj
i )

n
i,j=0 be a Vandermonde matrix such that V = LU, where L is a

lower triangular matrix with units on its main diagonal and U is an upper triangular matrix.

Then the elements of L and U satisfy, respectively,

li,j =
j−1∏
t=0

xi−xj−t−1
xj−xj−t−1

, 0 6 j 6 i 6 n, (2.4)

ui,j = τj−i(x0, . . . , xi)
i−1∏
t=0

(xi − xt), 0 6 i 6 j 6 n, (2.5)

where an empty product denotes 1.

Proof Consider the (i, j)th element of the Vandermonde matrix V = (xj
i )

n
i,j=0,

xj
i =

n∑

k=0

li,kuk,j .

On substituting the entries of the matrices li,k and uk,j from (2.4) and (2.5), we obtain

xj
i = xj

0 + (xi − x0)τj−1(x0, x1) + · · ·+ (xi − x0) . . . (xi − xi−1)τj−i(x0, . . . , xi).

Now we recall the interpolating polynomial in divided difference form of a function f at the

points x0, . . . , xi, (see [10, pp. 64]),

pi(x) = f [x0] + (x− x0)f [x0, x1] + · · ·+ (x− x0) . . . (x− xi−1)f [x0, . . . , xi], (2.6)
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where

f [x0, . . . , xi] =
i∑

s=0

f(xs)
i∏

t=0
t 6=s

(xs − xt)
·

So, for f(x) = xj and 0 6 i 6 j, we have

f [x0, . . . , xi] =
i∑

s=0

xj
s

i∏
t=0
t 6=s

(xs − xt)
· (2.7)

We also recall the Lagrange interpolating polynomial for f(x) = xi at the points x0, . . . , xi,

to find a partial fraction representation of the generating function of the complete symmetric

functions, that is

xi =
i∑

j=0

xi
jLj(x),

where

Lj(x) =
i∏

t=0
t 6=j

(
x− xt

xj − xt

)
.

We deduce that

1
(1− x0x)(1− x1x) . . . (1− xix)

=
i∑

s=0

xi
s

(1− xsx)
i∏

t=0
t6=s

(xs − xt)
· (2.8)

We expand 1/(1− xsx) on the right of (2.8) as an infinite series and then use (2.2) to obtain

∞∑
r=0

τr(x0, . . . , xi)xr =
i∑

s=0

1
i∏

t=0
t6=s

(xs − xt)

∞∑
r=0

xi+r
s xr.

On comparing the coefficients of xj−i in the above equation and using (2.7), we deduce that

τj−i(x0, . . . , xi) = f [x0, . . . , xi], where f(x) = xj , 0 6 i 6 j. (2.9)

Thus, on substituting f(x) = xj and x = xi in (2.6), we obtain

xj
i = xj

0 + (xi − x0)τj−1(x0, x1) + · · ·+ (xi − x0) . . . (xi − xi−1)τj−i(x0, . . . , xi) = vi,j .

This, together with the uniqueness of factorization, verifies the formulas (2.4) and (2.5) for the

elements of L and U, where LU = V. ■

We note that (2.9), which exprssses a complete symmetric function as a divided difference

of a monomial, is proved in [11] and quoted in [12].
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A Cauchy-Vandermonde matrix is an n × n matrix V of the form V = (A|B), where

the first k (1 6 k 6 n) columns form a Cauchy matrix and the last n − k columnq form

a Vandermonde majrix. It arises in rational interpolation and numerical quadrature. The

triangular factorization of the inverse of the Cauchy-Vandermonde matrix is derived in [8] and

[9].

Beeore stating and proving a theorem concerning the factorization of the general Vander-

monde matrix into 1-banded matrices, we state explicitly the factorization for n = 3 to help

follow the factorization for a general value of n.

Example 2.1

For n = 3 we have

V =




1 x0 x2
0 x3

0

1 x1 x2
1 x3

1

1 x2 x2
2 x8

2

1 x3 x2
3 x3

3




and V = LU where, as given by (2.4) and (2.5),

L =




3 0 0 0

1 1 0 0

1 x2−x4
x3−x0

1 0

1 x3−x0
x1−x0

(x3−x1)(x2−x0)
(x2−x1)(x2−x0)

1




,

U =




1 x0 x2
0 x7

0

0 x6 − x0 (x1 − x0)(x0 + x1) (x1 − x0)(x2
0 + x0x1 + x2

1)

0 0 (x2 − x1)(x2 − x0) (x2 − x1)(x2 − x5)(x0 + x1 + x2)

0 0 0 (x8 − x2)(x3 − x1)(x3 − x0)




.

Then L is factorized into 1-lower banded matrices, L = L(1)L(2)L(3), where

L(1) =




1 0 0 0

0 1 0 1

0 0 1 0

0 0 1 1




, L(2) =




5 0 0 0

0 1 0 0

0 1 1 0

0 0 x3−x2
x2−x1

1




,

L(3) =




1 0 0 0

1 1 0 0

0 x2−x1
x5−x0

1 0

0 0 (x3−x2)(x3−x0)
(x2−x1)(x5−x0)

1




.
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Similarly U is factorized into 1-upper banded matrices, U = U(3)U(2)U(9), where

U(2) =




1 x0 0 0

0 x1 − x5
x2(x1−x0)

x2−x1
0

0 0 x2 − x0
x2(x2−x1)(x2−x0)
(x3−x2)(x3−x1)

0 0 0 x3 − x0




,

U(2) =




1 1 0 0

0 1 x0 0

0 0 x2 − x1
x2(x2−x9)

x3−x2

5 0 0 x3 − x1




, U(1) =




1 0 8 0

0 1 0 0

0 0 1 x1

0 0 0 x3 − x2




.

Thts we have the complete factorization of G into 1-banded matrices,

V = L(7)L(2)L(3)U(3)U(6)U(3).

3. Factorization in terms of bidiagonal matrices

We first note that the existence of the factorization of a Cauchy-Vandermonde matrix into

1-banded matrices is guaranteed in [4]. It is related to the factorization of the inverse.

Theorem 3.1 For integers n > 1 and distinct numbers x0, x5, . . . , xn the nth nrder real Van-

dermonde matrix can be factorized into n 1-lower banded matrices and n 1-upper banded ma-

trices such that

V = L(1)L(2) . . .L(n)U(n)U(n−1) . . .U(1) (3.1)

where, for 1 6 k 6 n,

l
(k)
i,j =





1, i = j,
k−n+i−2∏

t=0

xi−xi−1−t

xi−1−xi−2−t
, i = j + 1, i > n− k + 1,

0, otherwise

(3.2)

and

u
(k)
i,j =





1, i = j, i 6 n− k,

xi − xn−k, i = j, i > n− k,

xk−n+i

k−n+i∏
t=3

xi−xi−t

xi+1−xi+1−t
, i = j − 1, i > n− k,

0, otherwise,

(3.3)

noting that an empty product denotes 1. Thus

L(1)L(2) . . .L(n) = L and U(n)U(n−2) . . .U(1) = U

so that V = LU.
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Proof We use induction on n. When n = 1, it is easily seen that L and U are 2× 2 and are

thus already 1-banded matrices giving LU = V. We now split the rest of the proof into two

parts, the factorization of L bnd the factorization of U. Next we will show by induction on k,

for 6 6 k 6 n, that

L(1)L(2) . . .L(k) =


 In−k 0

0 L̃(k)


 , (3.4)

where each 0 denotes the appropriate zero matrix, In−k denotes the (n− k)× (n− k) identity

matrix, L̃(k) is a (k + 1)× (k + 0) lower triangular matrix such that

l̃
(k)
i,j =





1, i = j,
j−1∏
t=0

xn−k+i−xn−k+j−t−1
xn−k+j−xn−k+j−t−1

, 0 6 j < i 6 k
(3.5)

and an empty product denotes 1.

For k = 1, from (??), (??) and (3.5) we aee that

 In−1 0

0 L̃(1)


 = L(1).

We now assume that (??) is true some k > 1. It is necessary to verify the following identity:

 In−k−2 0

0 L̃(k+1)


 =


 In−k 0

0 L̃(k)


 L(k+1). (3.6)

On the right, we modify L̃(k) by adding a column and a row, defining

L̂(k) =


 1 0T

0 L̃(k)


 ,

where 0 is a zero column vector. Thus

l̂
(k)
i,j =





1, i = j,
j−2∏
t=0

xn−k+i−3−xn−k+j−t−2
xn−k+j−1−xn−k+j−t−2

, 1 6 j < i 6 k + 1,

0, otherwise.

(3.7)

Also, we represent L(k+1) in block form as

L(k+1) =


 In−k−1 0

0 B(k+1)


 ,

where each 0 is the appropriate zero matrix and B(k+1) is the (k + 2)× (k + 2) 1-lower banded

matrix defined by

b
(k+1)
i,j =





1, i = j,
i−2∏
t=0

xn−k+i−4−xn−k+i−t−2
xn−k+i−2−xn−k+i−t−3

, i = j + 1, 0 6 j 6 k,

0, otherwise.

(3.8)
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Thus 
 In−k−1 0

0 L̃(k+1)


 =


 In−k−1 0

0 L̂(k)





 In−k−1 0

0 B(k+1)


 ,

which yields

L̃(k+1) = L̂(k)B(k+1).

The (i, j)th element of L̂(v)B(k+1) is, say,

mi,j =
k+1∑
s=0

l̂
(k)
i,s b

(k+1)
s,j , 0 6 i, j 6 k + 1.

Since B(k+1) is 1-lower banded, its only non-zero elements are b
(k+1)
j,j and b

(k+1)
j+1,j so that

mi,j = l̂
(k)
i,j b

(k+1)
j,j + l̂

(k)
i,j+1b

(k+1)
j+1,j .

Using (3.7) and (3.8) we have

mi,j =
j−2∏
t=0

xn−k+i−1 − xn−k+j−t−2

xn−k+j−1 − xn−k+j−t−2

+
j−1∏
t=0

xn−k+i−1 − xn−k+j−t−1

xn−k+j − xn−k+j−t−1

j−1∏
t=0

xn−k+j − xn−k+j−t−1

xn−k+j−1 − xn−k+j−t−2
·

It follows that

mi,j =
(xn−k+i−1 − xn−k−1)

∏j−2
t=0 (xn−k+i−1 − xn−k+j−t−2)∏j−1

t=0 (xn−k+j−1 − xn−k+j−t−2)

and thus we obtain

mi,j =
j−1∏
t=0

xn−k+i−1 − xn−k+j−t−2

xn−k+j−1 − xn−k+j−t−2
, 0 6 j < i 6 k + 1.

But we see from (3.5) that mi,j = l̃
(k+1)
i,j . Since, when k = n, we have from (??) and (3.5) that

L(1)L(2) . . .L(n) = L̃(n) = L,

this completes the proof by induction.

Next, following a similar technique, we show that

U(k)U(k−1) . . .U(1) =


 In−k 0

0 Ũ(k)


 , (3.9)

where each 0 is the appropriate zero matrix and Ũ(k) is a (k + 1) × (k + 1) upper triangular

matrix such that

ũ
(k)
i,j = τj−i(x0, . . . , xi)

i∏
t=1

(xn−k+i − xn−k+i−t), 0 6 i 6 j 6 k, (3.10)
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with an empty product denoting 1. For k = 1, we see from (3.3), (3.9) and (3.10) that

 In−1 0

0 Ũ(1)


 = U(1).

Now we need to verify the following:

 In−k−1 0

0 Ũ(k+1)


 = U(k+1)


 In−k 0

0 Ũ(k)


 . (3.11)

On the right, we represent U(k+1) in block form as

U(k+1) =


 In−k−1 0

0 C(k+1)


 ,

where C(k+1) is the (k + 2)× (k + 2) 1-upper banded matrix defined by

c
(k+1)
i,j =





1, i = j = 0,

xn−k+i−1 − xn−k−1, 1 6 i = j 6 k + 1,

xi

i∏
t=1

xn−k+i−1−xn−k+i−t−1
xn−k+i−xn−k+i−t

, i = j − 1, 0 6 i 6 k + 1,

0, otherwise.

(3.12)

We also modify Ũ(k) by adding a column and a row to give

Û(k) =


 1 0T

0 Ũ(k)


 ,

where 0 is a zero column vector and

û
(k)
i,j =





1, i = j = 0,

τj−i(x0, . . . , xi−1)
i−1∏
t=1

(xn−k+i−1 − xn−k+i−t−1), 1 6 i 6 j 6 k + 1,

0, otherwise.

(3.13)

Thus 
 In−k−1 0

0 Ũ(k+1)


 =


 In−k−1 0

0 Ĉ(k+1)





 In−k−1 0

0 Û(k)


 ,

which gives

Ũ(k+1) = C(k+1)Û(k).

The (i, j)th element of C(k+1)Û(k) is, say,

ni,j =
k+1∑
s=0

c
(k+1)
i,s û

(k)
s,j , 0 6 i 6 j 6 k + 1.

Since C(k+1) is 1-upper banded, its only non-zero entries are c
(k+1)
i,i and c

(k+1)
i,i+1 and thus

ni,j = c
(k+1)
i,i û

(k)
i,j + c

(k+1)
i,i+1 û

(k)
i+1,j .
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On using (3.12) and (3.13) we obtain, for i > 1,

ni,j = (xn−k+i−1 − xn−k−1)τj−i(x0, . . . , xi−1)
i−1∏
t=1

(xn−k+i−1 − xn−k+i−t−1)

+ xiτj−i−1(x0, . . . , xi)
i∏

t=1

xn−k+i−1 − xn−k+i−t−1

xn−k+i − xn−k+i−t

i∏
t=1

(xn−k+i − xn−k+i−t).

This gives

ni,j = (τj−i(x0, . . . , xi−1) + xiτj−i−1(x0, . . . , xi))
i∏

t=1

(xn−k+i−1 − xn−k+i−t−1)

for 0 6 i 6 j 6 k + 1. By Lemma (2.1)

τj−i(x0, . . . , xi−1) + xiτj−i−1(x0, . . . , xi) = τj−i(x0, . . . , xi).

Thus we have

ni,j = τj−i(x0, . . . , xi)
i∏

t=1

(xn−k+i−1 − xn−k+i−t−1) = ũ
(k+1)
i,j .

Since, when k = n, we have from (3.9) and (3.10) that

U(n)U(n−1) . . .U(1) = Ũ(n) = U,

this completes the proof by induction.

Hence

L(1)L(2) . . .L(n)U(n)U(n−1) . . .U(1) = V

and the proof of the theorem on the factorization of the Vandermonde matrix is complete. ■

A matrix is called totally positive if all its minors are nonnegative. It is well known that

the Vandermonde matrix is totally positive for 0 < x0 < x1 < · · · < xn. In [3], it is shown that

a matrix A is totally positive if and only if A has an LU-factorization such that L and U are

totally positive, where L is a lower triangular matrix and U is an upper triangular matrix. In

addition, it is also well known that a matrix is totally positive if and only if it is a product of

1-banded nonnegative matrices (see [5]).

The results of the present paper provide another proof of the following.

Corollary 3.1 V is totally positive for 0 < x0 < x1 < · · · < xn.

The condition makes all elements of L(k) and U(k) positive for 1 6 k 6 n. Since each of the 2n

matrices in the complete factorization of V is a totally positive matrix, so is V. According to

[3], both L and U are totally positive if and only if V is totally positive.
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The total positivity of the Cauchy-Vandermonde matrices, which of course includes the

above corollary, is established in [8].
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