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Abstract

This work deduces the lower and the upper triangular factors of the inverse of the Vander-

monde matrix using symmetric functions and combinatorial identities. The L and U matrices

are in turn factored as bidiagonal matrices. The elements of the upper triangular matrices in

both the Vandermonde matrix and its inverse are obtained recursively. The particular value

xi = 1 + q + · · · + qi−1 in the indeterminates of the Vandermonde matrix is investigated and

it leads to q-binomial and q-Stirling matrices. It is also shown that q-Stirling matrices may be

obtained from the Pascal matrix.
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1. Introduction

The Vandermonde matrix appears in interpolation problems. Given the values of a

function f(x) at n + 1 distinct points x0, . . . , xn, to find the interpolating polynomial in

the form

pn(x) = a0 + a1x + · · ·+ anxn

of degree at most n which assumes pn(xi) = f(xi), i = 0, 1, . . . , n requires that the linear

system 


1 x0 x2
0 . . . xn

0

1 x1 x2
1 . . . xn

1

...
...

...
...

1 xn x2
n . . . xn

n







a0

a1

...

an




=




f(x0)

f(x1)
...

f(xn)




(1.1)

has a unique solution. The coefficient matrix denoted by V (x0, . . . , xn) in (1.1) is called

the Vandermonde matrix. Traditional methods to solve a linear system of equations
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Ax = b use triangular factorization of the coefficient matrix which is transformed to an

easy to solve system LUx = b, where L is a lower triangular matrix and U is an upper

triangular matrix. Although the system of equations V a = f obtained above to solve the

interpolation problem may be transformed to LUa = f , there are several constructive

methods. See for example [20, 21]. Instead of using the monomial basis or the Lagrange

functions, L0, L1, . . . , Ln, where

Li(x) =
∏

j 6=i

(
x− xj

xi − xj

)

the Newton form of the interpolating polynomial is more effective due to the recursive

definition. Let λ0(x) = 1 and λi(x) = (x−x0)(x−x1) · · · (x−xi−1) for 1 6 i 6 n. Then

the interpolating polynomial is

pn(x) =
n∑

i=0

f [x0, x1, . . . , xi]λi(x), (1.2)

where the divided differences of f(x) at x0, x1, . . . , xi are defined recursively by

f [x0, x1, . . . , xi] =
f [x1, x2, . . . , xi]− f [x0, x1, . . . , xi−1]

xi − x0
. (1.3)

However triangular factorization of the Vandermonde matrix has gained a consider-

able theoretical interest. The explicit formulas for the triangular factors LU of V and

their inverses U−1L−1 of V −1 at the integer values are well known [11]. The triangu-

lar factorization of Cauchy-Vandermonde matrix and its inverse are given in [6, 14, 15].

The studies [14, 15] investigate bidiagonal factorization of the inverse of the Cauchy-

Vandermonde matrix in order to derive a fast algorithm for solving linear systems whose

coefficient matrix is of the same type. The symmetric functions have been used in

[17] for the explicit formulation of the triangular factors of V . Then, the bidiagonal

products of the triangular factors are obtained to represent V as a product of bidiag-

onal matrices and hence prove the total positivity for any positive increasing sequence

0 < x0 < x1 < · · · < xn. Bidiagonal matrices via total positivity are important for

curves-surface design purposes.

The Pascal and Stirling matrices arising from the triangular factorization of the Van-

dermonde matrix V at the integer values have been worked extensively. The work [4]

obtains the explicit formulas for both LU factors of the Vandermonde matrix and its in-

verse on the integer nodes. The paper [5] generalizes the results of [4] to the rectangular

Vandermonde matrix. Algebraic and combinatorial approach to the Pascal and Stirling

matrices have been investigated in [24, 3]. For further investigation via that approach,

follow the references there in. In this paper, a generalization is done by taking the q-

integer nodes, x0 = 0, xi = 1 + q + · · · + qi−1 := [i], i = 1, 2, . . . , n in the Vandermonde

matrix. This is related to the interpolation problem at the geometrically spaced nodes.

Thus q-binomial and q-Stirling numbers play an important role in decomposing the Van-

dermonde matrix. Section 2 of this paper outlines some properties of the symmetric
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functions and q-Stirling numbers that will be necessary in this study. In Section 3, the

explicit expression for the triangular factors of the inverse of the Vandermonde matrix

are derived. In particular the elements of upper triangular matrices U and U−1 are ob-

tained recursively with the help of symmetric functions in Section 4. We give a different

type of recurrence relation for the q-Stirling numbers leading to connect q-Stirling and

Pascal type matrices. Section 5 yields formulas for the bidiagonal factors of L−1 and

U−1. These formulas cannot be obtained directly by inverting the bidiagonal products

of L and U from [17] since the inverse of a bidiagonal matrix in general is not bidiagonal.

2. Preliminaries

In this study, the main tool in decomposing the Vandermonde matrix and its inverse

is the use of the symmetric functions. So, it is helpful to give the definitions of the

symmetric functions and some of their properties. The books [13, ch.1] and [23, ch.7] are

the guides for this purpose.

Definition 2.1. Let x = (x1, . . . , xn) ∈ Rn, ( n > 1). The rth (1 6 r 6 n) elementary

symmetric function denoted by σr(x1, . . . , xn), is the sum of all products of r distinct

variables chosen from n variables. That is,

σr(x) =
∑

16i1<i2<···<ir6n

xi1 . . . xir .

Definition 2.2. The rth complete symmetric function τr(x), in variables x1, . . . , xn is

defined by

τr(x) =
∑

λ1+···+λn=r

xλ1
1 xλ2

2 . . . xλn
n ,

where the summation extends over all choices of λ1, . . . , λn ∈ {0, 1, . . . , r} satisfying the

condition.

It is convenient to define σr(x) = τr(x) = 0 for r < 0 and σr(x) = τr(x) = 1 when

r = 0. There are other types of symmetric functions see for example [23, ch.7].

The generating function G(x) for the elementary symmetric function is

G(x) =
n∏

i=1

(1− xix) =
n∑

r=0

(−1)rσr(x)xr (2.1)

and
1

G(x)
=

∞∑
r=0

τr(x)xr (2.2)

is the generating function for the complete symmetric function. The function G(x) may

be interpreted as the generating function for the subsets of the set {x1, . . . , xn} and σr(x)

is all r-element subsets. Similarly, 1/G(x) may be viewed as the generating function of

the multiset {∞.x1, . . . ,∞.xn} meaning an element, say x1, is repeated infinitely many

times. Hence the rth complete symmetric function τr(x) represents all r-element subsets
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of the multiset. The recurrence relations of the symmetric functions can be obtained

respectively from (2.1) and (2.2) as

σr(x1, . . . , xn) = σr(x1, . . . , xn−1) + xnσr−1(x1, . . . , xn−1) (2.3)

and

τr(x1, . . . , xn) = τr(x1, . . . , xn−1) + xnτr−1(x1, . . . , xn) (2.4)

for r > 1 and n > 2 number of variables. It follows from G(x) 1
G(x) = 1 that

n∑
r=0

(−1)rσr(x)τn−r(x) = 0, n > 1. (2.5)

Note that many combinatorial identities and counting sequences such as binomial

coefficients, q-binomial coefficients, Stirling numbers, their q-analogues (q-Stirling num-

bers) and their recurrence relations, inverse relations can be deduced from the symmetric

functions by taking particular values in the indeterminates x1, . . . , xn (cf.[13, 12]). Ex-

plicitly, take xi = 1, ∀i in order to derive the binomial coefficients σr(1, . . . , 1) =
(
n
r

)
and

with repetition (allowed) τr(1, . . . , 1) =
(
n+r−1

r

)
.

The Stirling number of the first kind, s(n, k) counts the number of ways to arrange

n objects into k cycles and the Stirling number of the second kind S(n, k) counts the

number of ways to arrange n objects into k nonempty subsets. If we set xi = i then

σr(1, 2, . . . , n) = s(n + 1, n + 1 − r) and τr(1, 2, . . . , n) = S(n + r, n). The recurrence

relations and inverse relations of binomial coefficients and Stirling numbers follow directly

from (2.3), (2.4) and (2.5), see [12].

The generating function of restricted partitions may also be obtained from the sym-

metric functions.

σr(1, q, . . . , qn−1) = qr(r−1)/2

[
n

r

]
and τr(1, q, . . . , qn−1) =

[
n + r − 1

r

]
,

where
[
n

r

]
=





[n][n− 1] · · · [n− r + 1]
[r][r − 1] · · · [1]

, n > r > 0,

0, otherwise,

An extensive treatment of partitions is done in the book [1].

When σr(1, q, . . . , qn−1) is put in (2.3) we deduce the recurrence relation for restricted

partitions [
n

r

]
=

[
n− 1

r

]
+ qn−r

[
n− 1
r − 1

]
(2.6)

We recall (see [10]) the q-analogue of the Stirling numbers of the first kind sq(n,m) and

of the second kind Sq(n,m) given by the generating functions

λn(x) =
n∑

m=0

sq(n, m)xm (2.7)
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and

xn =
n∑

m=0

Sq(n, m)λm(x), (2.8)

where xi = [i] for all i in the polynomial λn(x). When q is replaced by 1, the q-Stirling

numbers reduce to the classical Stirling numbers. It may be proved by induction on n

that sq(n,m) is a polynomial in q of degree 1
2 (n − 1)(n − 2) − 1

2 (m − 1)(m − 2) and

Sq(n,m) is a polynomial in q of degree (m− 1)(n−m).

On comparing the coefficients of xm in the equation λn+1(x) = (x − [n])λn(x) we

obtain the recurrence relation

sq(n + 1,m) = sq(n,m− 1)− [n]sq(n,m), (2.9)

for n > 0 and m > 1. Similarly, from (2.8) we deduce the recurrence relation

Sq(n + 1,m) = Sq(n,m− 1) + [m]Sq(n,m). (2.10)

The Sq(n,m) can be written explicitly in the form

Sq(n,m) =
1

qm(m−1)/2[m]!

n∑
r=0

(−1)rqr(r−1)/2

[
n

r

]
[n− r]m

and is obtained in [9] in connection with the q-Bernstein polynomials of monomials. The

notation [m]! means the product [m][m− 1] · · · [1] and [0]! = 1.

Substitute xi = [i], i = 1, 2, . . . , n. Inductively, one may see that

(1− x)(1− [2]x) · · · (1− [n]x) =
n∑

r=0

sq(n + 1, n + 1− r)xr, (2.11)

giving (−1)rσr([1], [2], . . . , [n]) = sq(n + 1, n + 1− r), also

1
(1− x)(1− [2]x) · · · (1− [n]x)

=
∞∑

r=0

Sq(n + r, n)xr, (2.12)

giving τr([1], [2], . . . , [n]) = Sq(n + r, n). Now, the recurrence relations for the q-Stirling

numbers, (2.9) and (2.10) may be verified from (2.3) and (2.4) respectively.

3. Triangular factors

In this section, we deduce the triangular factors of V −1. Not only the computation of U

and of U−1 but also the computation of their bidiagonal factors use the recurrence rela-

tions of the symmetric functions. The formulas for the elements of the upper triangular

matrix U and for U−1 involve the symmetric functions. Let us introduce the notation

λj
i (x) = (x− xi)(x− xi+1) · · · (x− xj)

for nonnegative integers j > i which may be obtained G(x). Clearly, the coefficient of xr

in the expansion of λj
i (x) may be expressed in terms of elementary symmetric functions
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and equals (−1)rσi+j−r(xi, . . . , xj). We write (λj
i )
′(x) for the derivative of λj

i (x) with

respect to x. Then for an integer k,

(λj
i )
′(xk) =

j∏
t=i
t 6=k

(xk − xt), i 6 k 6 j.

The following formulas for the triangular decomposition LDU of the Vandermonde ma-

trix V may simply be obtained using [17, Theorem 2.1] from its LU factors.

Theorem 3.1. Let V = (xj
i )

n
i,j=0 be a Vandermonde matrix such that V = LDU , where

L is a lower triangular matrix with units on its main diagonal, D is a diagonal matrix

and U is an upper triangular matrix with units on its main diagonal. Then the elements

of L, D and U satisfy, respectively,

Li,j =
λj−1

0 (xi)
λj−1

0 (xj)
, 0 6 j 6 i 6 n, (3.1)

Di,j = λi−1
0 (xi), i = j, (3.2)

Ui,j = τj−i(x0, . . . , xi), 0 6 i 6 j 6 n, (3.3)

where λ−1
0 (x) denotes 1.

Recently, Phillips [21] has scaled the elements of L,U in [17, Theorem 2.1] to give L∗

and U∗ whose elements are

L∗i,j =
j−1∏
t=0

(xi − xj−t−1), 0 6 j 6 i 6 n, U∗
i,j = τj−i(x0, . . . , xi), 0 6 i 6 j 6 n. (3.4)

Before deriving the formulas of the inverses of the matrices L,D and U , we give the

following result which is obtained by using (2.3) repeatedly. This will be needed in the

proof of a theorem for the triangular factorization of V −1.

Lemma 3.1. The ith iterate of the recurrence relation (2.3) satisfies

σr(x1, . . . , xn) =
i∑

j=0

σr−j(x1, . . . , xn−i)σj(xn−i+1, . . . , xn). (3.5)

Proof. When i = 1 we write σr(xn) in the place of σr(xn, . . . , xn) in (3.5). Applying

(3.5) to σr−j(x1, . . . , xn−i) and combining the summations appropriately verifies the

Lemma.

Theorem 3.2. Let V −1 = U−1D−1L−1 be the inverse of the Vandermonde matrix.
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Then the (i, j) element of U−1, D−1 and L−1 satisfy respectively,

(U−1)i,j = (−1)i+jσj−i(x0, . . . , xj−1), 0 6 i 6 j 6 n, (3.6)

(D−1)i,j =





1
λi−1

0 (xi)
, i = j,

0, otherwise,
(3.7)

(L−1)i,j =





− (λi−1
0 )′(xi)

(λi−1
0 )′(xj)

, i > j,

1, i = j,

0, otherwise.

(3.8)

Proof. In order to verify (3.6) we need to show that

n∑

k=0

Ui,k(U−1)k,j =
j∑

k=i

Ui,k(U−1)k,j = δi,j ,

since U and U−1 are upper triangular matrices and δi,j denotes the Kronecker delta

function. Using (3.3) and (3.6), the last equation equals

j∑

k=i

(−1)k+jτk−i(x0, . . . , xi)σj−k(x0, . . . , xj−1) = wi,j . (3.9)

From the identity (3.5) of the above Lemma 3.1, we may write

σj−k(x0, . . . , xj−1) =
j−i−1∑

t=0

σj−k−t(x0, . . . , xi)σt(xi+1, . . . , xj−1).

Substituting the last formula in (3.9) gives

wi,j =
j−i∑

k=0

(−1)i+j+kτk(x0, . . . , xi)
j−i−1∑

t=0

σj−i−k−t(x0, . . . , xi)σt(xi+1, . . . , xj−1).

Rearranging the latter summations we obtain

wi,j =
j−i−1∑

t=0

(−1)i+jσt(xi+1, . . . , xj−1)
j−i−t∑

k=0

(−1)kτk(x0, . . . , xi)σj−i−t−k(x0, . . . , xi).

It follows from (2.5) that the second sum in the last equation vanishes. Thus wi,j = 0

for i 6= j. It is obvious that (3.6) is equal to 1 for i = j and hence wi,j = δi,j .

For the proof of (3.8) we will show that LL−1 = I. Since both matrices are lower

triangular and from the fact that (xj − xk)(λk−1
0 )′(xj) = (λk

0)′(xj), we have

n∑

k=0

Li,k(L−1)k,j =
i∑

k=j

λk−1
0 (xi)

(λk
0)′(xj)

= ωi,j .
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Multiplying and dividing the last equation by λi
k+1(xj) we get

ωi,j =
1

(λi
0)′(xj)

i∑

k=j

λk−1
0 (xi)λi

k+1(xj). (3.10)

Next we show that the sum in (3.10) vanishes for i 6= j. For this purpose we first prove

the following identity by induction on m.
m∑

k=1

λk+j−2
0 (xi)λi

k+j(xj) =
λm+j−1

0 (xi)
(xi − xj)

λi
m+j(xj). (3.11)

In order to verify the above identity for m + 1 we write
m+1∑

k=1

λk+j−2
0 (xi)λi

k+j(xj) = λm+j−1
0 (xi)λi

m+j+1(xj) +
m∑

k=1

λk+j−2
0 (xi)λi

k+j(xj).

Using the induction hypothesis (3.11) we obtain

m+1∑

k=1

λk+j−2
0 (xi)λi

k+j(xj) = (xi − xj)
λm+j−1

0 (xi)
(xi − xj)

λi
m+j+1(xj)

+ (xj − xm+j)
λm+j−1

0 (xi)
(xi − xj)

λi
m+j+1(xj)

=
λm+j

0 (xi)
(xi − xj)

λi
m+j+1(xj)

and this completes the induction. Substituting m = i − j + 1 in (3.11) causes the sum

to vanish since λi
0(xi) = 0 on the right side. Thus ωi,j = 0 for i 6= j. It is easy to check

ωi,j = 1 for i = j. This completes the proof.

Since deriving the elements of U and U−1 involves the complete symmetric func-

tions and elementary symmetric functions respectively, and the fact that they satisfy

a three term recurrence relation, we deduce the following consequence from the above

factorization.

Theorem 3.3. For 1 6 i 6 j 6 n, the elements of U and U−1 can be obtained recursively

in the form

Ui,j = Ui−1,j−1 + xiUi,j−1, (3.12)

(U−1)i,j = (U−1)i−1,j−1 − xj−1(U−1)i,j−1. (3.13)

Proof. The proof of (3.12) follows from (3.3) using (2.4) and that of (3.13) follows from

(3.6) using (2.3).

4. Pascal and Stirling matrices

In this section we are concerned with the particular values xi = [i], i = 0, 1, . . . , n in

the Vandermonde matrix V (x0, x1, . . . , xn) and its triangular factors. We will see how

q-binomial coefficients and q-Stirling numbers are related from the Vandermonde matrix

and the interpolation problem at geometrically spaced nodes.
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Theorem 4.1. The elements of the matrices L, D, U and L−1, D−1, U−1 of V and of

V −1 on q-integer nodes xi = [i], i = 0, 1, . . . , n are respectively

Li,j =
[

i

j

]
, (4.1)

Di,i = [i]! (4.2)

Ui,j = Sq(j, i), (4.3)

(L−1)i,j = (−1)i−jq(i−j−1)(i−j)/2

[
i

j

]
, (4.4)

(D−1)i,i =
1

[i]!
(4.5)

(U−1)i,j = sq(j, i). (4.6)

Proof. Substituting xi = [i] in (3.1) gives

Li,j =
j−1∏
t=0

[i]− [t]
[j]− [t]

and using the relation

[i]− [t] =

{
qt[i− t], t 6 i,

−qi[t− i], t > i,
(4.7)

in the latter equation yields

Li,j =
[i][i− 1] · · · [i− (j − 1)]

[j][j − 1] · · · [1]
=

[
i

j

]
.

To verify (4.3) let us take f(x) = xj in (1.2) at the q-integer points [0], [1], . . . , [j]. Since

the interpolation operator reproduces polynomials we have

xj =
j∑

i=0

f [[0], [1], . . . , [i]] λi(x).

The relation

τj−i(x0, x1, . . . , xi) = f [x0, x1, . . . , xi], f(x) = xj (4.8)

between complete symmetric function and divided differences is deduced in [17]. (This

identity is well known, see the book [22, p.47].) Thus we see that

τj−i([0], [1], . . . , [i]) = f [[0], [1], . . . , [i]].

Comparing this and (3.3), we obtain the q-Stirling matrix whose elements are q-Stirling

numbers of the second kind Ui,j = Sq(j, i). For the proof of (4.4), multiply and divide it

by ([j]− [i]) and use (4.7). In the next proof we consider the generating function of the

q-Stirling numbers (2.7) and (2.8). In a way they are inverse relations as in (2.5) and the

following is deduced
n∑

k=0

Sq(i, k)sq(k, j) =
n∑

k=0

sq(i, k)Sq(k, j) = δi,j , 0 6 i, j 6 n.

The relations (4.2) and (4.5) are obvious and this completes the proof.
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On taking (1.3) and (4.8) into account we deduce the complete symmetric functions

in the form

τj−i(x0, x1, . . . , xi) =
τj−i+1(x1, x2, . . . , xi)− τj−i+1(x0, x1, . . . , xi−1)

xi − x0
. (4.9)

For further investigation on interpolation at geometrically spaced nodes see [21, 20].

Since the q-binomial coefficients and the q-Stirling numbers satisfy a three term recur-

rence relation, the above elements of the factors of V may also be evaluated recursively.

Corollary 4.1. The elements of L, L−1, U , U−1 on q-integer nodes satisfy the following

recurrence relations

Li,j = qi−jLi−1,j−1 + Li−1,j ,

(L−1)i,j = qi−j(L−1)i−1,j−1 − qi−j−1(L−1)i−1,j ,

Ui,j = Ui−1,j−1 + [i]Ui,j−1,

(U−1)i,j = (U−1)i−1,j−1 − [j − 1](U−1)i,j−1.

Proof. This result is a consequence of the recurrence relations (2.6), (2.9), (2.10) and the

formulas in the Theorem 4.1.

The Neumann series of q-Stirling matrices of the first and the second kind are used

in [18] in order to prove certain convergence and iteration properties of the q-Bernstein

polynomials.

The above theorem is a generalization of the result of [4], since q = 1 reduces q-integers

to integers and q-Stirling numbers to Stirling numbers. Gould in [10] defines the q-Stirling

numbers of the first kind, denoted by S1(n,m), as the sum of
(

n
m

)
possible products of m

distinct factors chosen from the set {[1], [2], . . . , [n]}. This definition should not be con-

fused with Sq(n,m) at the value q = 1. Thus, S1(n,m) corresponds to the coefficient of

xm in the expansion of (1+x)(1+[2]x) · · · (1+[n]x) and so S1(n,m) = σm([1], [2], . . . , [n]).

It is interesting that the matrix whose elements are S1(n,m) appeared in [16, 19] as the

transition matrix between the Bernstein-Bézier basis and q-Bernstein basis which are

used for geometric design purposes. In [10] the q-Stirling numbers of the second kind

denoted by S2(n,m), is defined by the sum of
(
n+m−1

m

)
possible products with repetition

of at most m factors chosen from the set {[1], [2], . . . , [n]}. Comparing this definition and

the complete symmetric functions we see that S2(n,m) = τm([1], [2], . . . , [n]).

Before giving the next theorem we will introduce the Pascal matrix which has been

studied quite extensively, see for example [24, 3].

Definition 4.3. The n× n Pascal matrix Pn is defined by

(Pn)i,j =





(
i−1
j−1

)
, i > j,

0, otherwise,

where 1 6 i, j 6 n.
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It can be easily derived from (4.4) by taking q = 1 that the inverse of Pascal matrix

has the form

(P−1
n )i,j =





(−1)i−j
(

i−1
j−1

)
, i > j,

0, otherwise.

Definition 4.4. Let sn
q and Sn

q denote respectively the n × n q-Stirling matrices of the

first and second kind such that

(sn
q )i,j =

{
sq(i, j), i > j,

0, otherwise,
(4.10)

and

(Sn
q )i,j =

{
Sq(i, j), i > j,

0, otherwise.
(4.11)

We see from Theorem 4.1 that Sn+1
q = UT and sn+1

q = (U−1)T and sn
1 , Sn

1 are the

Stirling matrices with q replaced by 1. Before deriving sn
q and Sn

q from the Pascal matrix

we give the following lemma.

Lemma 4.2. q-Stirling numbers of the first and second kind satisfy the following iden-

tities

sq(n + 1, m + 1) =
n∑

k=m

(−1)k−mqn−k

(
k

m

)
sq(n, k), (4.12)

Sq(n + 1, m + 1) =
n∑

k=m

qk−m
(n

k

)
Sq(k, m), (4.13)

for n > 1 and 0 6 m 6 n.

Proof. We only give the proof of (4.12) since (4.13) may be seen in [16] or be proved

analogously. The proof is by induction on n. For n = 1, (4.12) gives sq(2, 2) = sq(1, 1) =

1. Now assume

sq(n,m + 1) =
n−1∑

k=m

(−1)k−mqn−k−1

(
k

m

)
sq(n− 1, k)

is true for any n > 2 and all m 6 n. From (2.9) we obtain

sq(n + 1,m + 1) =
n−1∑

k=m−1

(−1)k−m+1qn−k−1

(
k

m− 1

)
sq(n− 1, k)

−[n]
n−1∑

k=m

(−1)k−mqn−k−1

(
k

m

)
sq(n− 1, k).

Write [n] = 1 + q[n − 1] in the last equation, combine the first and second summation

using the Pascal identity and then shift the index of summations, and finally use (2.9)

to obtain

sq(n + 1,m + 1) =
( n

m

)
(−1)n−m +

n−1∑

k=m

(−1)k−mqn−k

(
k

m

)
sq(n, k)

=
n∑

k=m

(−1)k−mqn−k

(
k

m

)
sq(n, k),
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which completes the induction.

Notice that the above lemma evaluates the q-Stirling numbers recursively in a different

way given in Section 2. The relation (4.12) obtains sq(n+1,m+1) from the previous row

using all sq(n,m), . . . , sq(n, n). However (4.13) may be considered as the column-wise

version of (4.12).

Theorem 4.2. Let ⊕ denote the direct sum of matrices. For the n × n Pascal matrix

we have

sn
q = ([1]⊕ s̃n−1

q )P−1
n , (4.14)

Sn
q = Pn([1]⊕ S̃n−1

q ), (4.15)

where

(s̃q)n−1
i,j =

{
qi−jsq(i, j), i > j,

0, otherwise,

(S̃q)n−1
i,j =

{
qi−jSq(i, j), i > j,

0, otherwise,

and [1] (here only) is the n×n matrix such that the first entry is 1 and the other entries

are 0.

Proof. Noting that the (i, j) element of the matrix ([1]⊕ s̃n−1
q ) is qi−j s̃n−1

q (i− 1, j − 1)

we write the matrix product

(([1]⊕ s̃n−1
q )P−1

n )i,j =
i∑

k=j

(−1)k−jqi−k

(
k − 1
j − 1

)
sq(i− 1, k − 1).

It follows from (4.12) that the sum on the right is equal to (sn
q )i,j .

To prove (4.15), we write the product

(Pn([1]⊕ S̃n−1
q ))i,j =

i∑

k=j

qk−j

(
i− 1
k − 1

)
Sq(k − 1, j − 1).

From (4.13), we see that the latter equation is identical to (Sn
q )i,j .

This theorem is more general since q = 1 reduces to the result in [24, 3].

5. Bidiagonal factors

Bidiagonal (1-banded) factorization of a matrix is directly related to its total positivity.

A matrix is called totally positive if all its minors are nonnegative (all square submatrices

have a nonnegative determinant). It is shown in [8] that a finite matrix is totally positive

if and only if it is a product of bidiagonal matrices with nonnegative elements. Using this

result, it is proved in [17] by finding bidiagonal products of the Vandermonde matrix that

the matrix V (x0, x1, . . . , xn) is totally positive whenever 0 < x0 < x1 < · · · < xn. Next
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we give bidiagonal products of U−1 and L−1 and hence expressing V −1 as a product of

bidiagonal matrices. It is also worth noting that bidiagonal products of V −1 are closely

related to the algorithm in [2] (Björck-Pereyra algorithm) in solving the linear system

V a = f efficiently. We note that the matrices denoted by U (k)’s and L(n)’s are not the

same matrices as those in Section 3.

Theorem 5.1. For integers n > 1 and distinct real numbers x0, . . . , xn the inverse of

the (n + 1)× (n + 1) Vandermonde matrix can be factorized into 2n bidiagonal matrices

such that

V −1 = U (n)U (n−1) · · ·U (1)D−1L(1)L(2) · · ·L(n), (5.1)

where, for 1 6 k 6 n the elements of U (k) and L(k) are

U
(k)
i,j =





1, i = j,

−xn−k, i = j − 1, i > n− k,

0, otherwise,

(5.2)

L
(k)
i,j =





1, i = j,

−
i−1∏

t=i−n+k

xi−xt

xi−1−xt−1
, i = j + 1, i > n− k + 1,

0, else,

(5.3)

respectively and D−1 is the same as (3.7).

Proof. We use induction on n and apply a similar notation and block matrices technique

as in [17]. When n = 1, it is easily seen that U−1 and L−1 are 2× 2 bidiagonal matrices

giving U−1D−1L−1 = V −1. We give the rest of the proof in two parts, the factorization

of U−1 and L−1.

First we will show by induction on k that, for 1 6 k 6 n

U (k) · · ·U (1) =

[
In−k 0

0 Ũ (k)

]
, (5.4)

where each 0 denotes the appropriate zero matrix, In−k denotes the (n − k) × (n − k)

identity matrix, Ũ (k) is a (k + 1)× (k + 1) upper triangular matrix whose elements are

Ũ
(k)
i,j = (−1)i+jσj−i(xn−k, . . . , xn−k+j−1), 0 6 i 6 j 6 k. (5.5)

For k = 1 , we see from (5.2) , (5.4) and (5.5) that
[

In−1 0

0 Ũ (1)

]
= U (1).

Assume that (5.4) is true for some k > 1. It is necessary to verify the following identity
[

In−k−1 0

0 Ũ (k+1)

]
= U (k+1)

[
In−k 0

0 Ũ (k)

]
.
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Let us represent U (k+1) in block form as

U (k+1) =

[
In−k−1 0

0 C(k+1)

]
,

where C(k+1) is the (k + 2)× (k + 2) upper bidiagonal matrix defined by

C
(k+1)
i,j =





1, i = j,

−xn−k−1, i = j − 1, 0 6 i 6 k + 1,

0, otherwise.

(5.6)

We also rewrite Ũ (k) by adding a column and a row to give

Û (k) =

[
1 0T

0 Ũ (k)

]
,

where 0 is an appropriate zero column vector and

Û
(k)
i,j =





1, i = j,

(−1)i+jσj−i(xn−k, . . . , xn−k+j−2), 1 6 i 6 j 6 k + 1,

0, otherwise.

(5.7)

Thus [
In−k−1 0

0 Ũ (k+1)

]
=

[
In−k−1 0

0 C(k+1)

] [
In−k−1 0

0 Û (k)

]
,

which gives Ũ (k+1) = C(k+1)Û (k). The (i, j) element of C(k+1)Û (k) is, say,

Ni,j =
k+1∑
m=0

C
(k+1)
i,m Û

(k)
m,j , 0 6 i 6 j 6 k + 1.

Since C(k+1) is upper bidiagonal, its only non-zero entries are C
(k+1)
i,i and C

(k+1)
i,i+1 . Thus

Ni,j = C
(k+1)
i,i Û

(k)
i,j + C

(k+1)
i,i+1 Û

(k)
i+1,j .

Using (5.6), (5.7), and the recurrence relation (2.3) we obtain

Ni,j = (−1)i+j(σj−i(xn−k, . . . , xn−k+j−2) + xn−k−1 σj−i−1(xn−k, . . . , xn−k+j−2))

= (−1)i+jσj−i(xn−k−1, . . . , xn−k+j−2) = Ũ
(k+1)
i,j .

Thus when k = n, we have from (5.4) and (5.5) that

U (n)U (n−1) · · ·U (1) = Ũ (n) = U−1.

One may prove (5.3) in a similar way, but it needs more careful calculation. Briefly, first

write the elements in the product B = L(k)L(k+1) · · ·L(n). Then evaluate L(k−1)B so

that the product L(k) · · ·L(n) gives the desired result when k = 1.
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The special structure of the Vandermonde matrix allows us to solve n × n linear

system V a = f efficiently with computational complexity O(n2) obtaining

a = U (n−1)U (n−2) · · ·U (1)D−1L(1)L(2) · · ·L(n−1)f

since each matrix is bidiagonal. The Björck-Pereyra algorithm in [2] uses Newton’s

divided difference process and bidiagonal products reaching 5
2n2 flops to solve the system.

We discovered that the algorithm is essentially connected to the last expression. The

Björck-Pereyra algorithm in [15] is generalized to find a fast solution of a linear system

whose coefficient matrix is the Cauchy-Vandermonde matrix. The work [7] compares the

numerical properties of the well known fast O(n2) Traub and Björck-Pereyra algorithms.
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[19] H. Oruç and G.M. Phillips, q-Bernstein polynomials and Bézier curves, J. Comp.
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