1. The Witch of Agnesi curve is known by the parametric equation
 \[x = at, \quad y = \frac{a}{1 + t^2}, \quad t \in (-\infty, \infty), \quad a \text{ is a fixed constant.} \]
 Find a point where the tangent line is horizontal.

 SOLUTION We should have \(\frac{dy}{dx} = 0 \) at some \(t \). The derivatives are
 \[\frac{dy}{dt} = -2at(1 + t^2)^{-3}, \quad \text{and} \quad \frac{dx}{dt} = a, \]
 and hence
 \[\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-2t}{(1 + t^2)^3} = 0 \quad \text{when} \quad t = 0. \]
 Thus from the parametric equation, the point at \(t = 0 \) is \((0, a)\).

2. The cardioid curve is given by
 \[x = 2a \cos t - a \cos 2t, \quad y = 2a \sin t - a \sin 2t, \quad t \in [0, 2\pi], \quad a \text{ is a fixed constant.} \]
 Find the parametric form of the tangent line at \(t = \pi/2 \).

 SOLUTION Recall that the parametric line equation at a point \(p \) is
 \[x = x(p) + x'(p)t \quad y = y(p) + y'(p)t. \]
 At \(p = \pi/2 \) we the coordinates of
 \[x = 2a \cos \pi/2 - a \cos \pi = a, \quad y = 2a \sin \pi/2 - a \sin \pi = 2a \]
 The derivatives are
 \[x'(t) = \frac{dx}{dt} = -2a \sin t + 2a \sin 2t \bigg|_{t=\pi/2} = -2a, \quad y'(t) = \frac{dy}{dt} = 2a \cos t - 2a \cos 2t \bigg|_{t=\pi/2} = 2a. \]
 Thus the parametric equation of a line passing thorough the point \((a, 2a)\), having the above derivatives is
 \[x = a - 2at \quad y = 2a + 2at. \]

3. Find the slope of the curve at \(t = 1 \),
 \[xt = \sqrt{5 - \sqrt{t}}, \quad y(t - 1) = \ln y \]
 if \(x \) and \(y \) are implicitly differentiable functions of \(t \).

 SOLUTION Differentiating both sides with respect to \(t \) gives
 \[\frac{d}{dt}(xt) = \frac{d}{dt}(\sqrt{5 - \sqrt{t}}) \quad \text{and} \quad \frac{dx}{dt} + x = \frac{1}{2\sqrt{5 - \sqrt{t}} \cdot 2\sqrt{t}} \]
 and at \(t = 1 \implies x = 2, \frac{dx}{dt} = -17/8 \). Differentiating both sides of the second implicit function with respect to \(t \) gives
 \[\frac{d}{dt}(y(t - 1)) = \frac{d}{dt}(\ln y) \quad \text{and} \quad \frac{dy}{dt} + y - \frac{dy}{dt} = \frac{1}{y} \frac{dy}{dt} \]
 and at \(t = 1 \implies y = 1, \frac{dy}{dt} = 1 \). Thus \(\frac{dy}{dx} = -8/17 \).