
http://www.cecm.sfu.ca/personal/jborwein/pi_cover.html

discovered ??? convergent iteration, later found even higher order iterations. Their 1984 iteration is

\[
\alpha_0 = \sqrt{2}, \quad \beta_0 = 0, \quad \pi_0 = 2 + \sqrt{2}
\]

\[
\alpha_{n+1} = \frac{1}{2}(\alpha_n^{1/2} + \alpha_n^{-1/2}), \quad \beta_{n+1} = \alpha_n^{1/2} \left(\frac{\beta_n + 1}{\beta_n + \alpha_n} \right)
\]

\[
\pi_{n+1} = \pi_n \beta_{n+1} \left(\frac{1 + \alpha_{n+1}}{1 + \beta_{n+1}} \right) \quad \text{for which} \quad |\pi_n - \pi| \leq 10^{-2^n}.
\]

Determine the order of convergence of this iteration. What is the value of \(n \) to have at least 10 decimal digits correct for \(\pi \)?

2. Explain the formulas of a convergent Newton’s method and a fixed point iteration from geometric point of view.
3. Prove that the eigenvalues $\lambda_i, i = 1, 2, \ldots, n$ of $n \times n$ matrix A lie within the union of n disks D_i

$$|z - a_{ii}| \leq \sum_{j=1, j \neq i}^{n} |a_{ij}|, \quad i = 1, 2, \ldots, n$$

in the complex plane, with center a_{ii} and radius λ_i given by the above summation.

4. Prove that rotation matrix is orthogonal.
5. Let \(v = (1, 2, 2)^T \) be the first column of a matrix. Apply one step of Householder transformation \(Q \) to find \(Qv \).

6. Prove the following theorem.

Suppose \(b \in \mathbb{R}^n \) and \(A = M - N \in \mathbb{R}^{n \times n} \) is nonsingular matrix. If \(M \) is nonsingular and the spectral radius of \(M^{-1}N \) satisfies the inequality \(\rho(M^{-1}N) < 1 \), then the iterates \(x^{(k)} \) defined by

\[
Mx^{(k+1)} = Nx^{(k)} + b
\]

converge to \(x = A^{-1}b \) for any starting vector \(x^{(0)} \).
7. Find the eigenvalues of the following matrix by Krylov’s method,

\[
\begin{pmatrix}
1 & 1 & 1 & 1 \\
2 & 0 & 1 & 1 \\
0 & -1 & -2 & -2 \\
0 & 0 & 2 & 2 \\
\end{pmatrix}
\]