
Oracle� Workflow
API Reference

Release 2.6.3.5

Part No. B12163–02

November 2004

Oracle Workflow API Reference, Release 2.6.3.5

Part No. B12163–02

Copyright � 2003, 2004, Oracle. All rights reserved.

Authors: Siu Chang, Clara Jaeckel

Contributors: Varsha Bhatia, George Buzsaki, John Cordes, Mark Craig, Avinash Dabholkar, Mark Fisher,
Yongran Huang, Kevin Hudson, George Kellner, Sai Kilaru, Angela Kung, David Lam, Janet Lee, Jin Liu,
Kenneth Ma, Steve Mayze, Santhana Natarajan, Rajesh Raheja, Varadarajan Rajaram, Tim Roveda, Robin
Seiden, Vijay Shanmugam, Sachin Sharma, Sheryl Sheh, Allison Sparshott, Susan Stratton, Roshin Thomas

The Programs (which include both the software and documentation) contain proprietary information; they are
provided under a license agreement containing restrictions on use and disclosure and are also protected by
copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or
decompilation of the Programs, except to the extent required to obtain interoperability with other independently
created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. This document is not warranted to be error–free. Except as
may be expressly permitted in your license agreement for these Programs, no part of these Programs may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are ”commercial computer software” or ”commercial technical data”
pursuant to the applicable Federal Acquisition Regulation and agency–specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and,
to the extent applicable, the additional rights set forth in FAR 52.227–19, Commercial Computer
Software––Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee’s responsibility to take all appropriate fail–safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third–party Web sites. You bear all
risks associated with the use of such content. If you choose to purchase any products or services from a third
party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of
third–party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including
delivery of products or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of
their respective owners.

 iiiContents

Contents

Preface xiii.

Chapter 1 Overview of Oracle Workflow 1 – 1.
Overview of Oracle Workflow 1 – 2.

Major Features and Definitions 1 – 3.
Workflow Processes 1 – 6.

Oracle Workflow Procedures and Functions 1 – 8.

Chapter 2 Workflow Engine APIs 2 – 1.
Overview of the Workflow Engine 2 – 2.

Oracle Workflow Java Interface 2 – 4.
Additional Workflow Engine Features 2 – 7.

Workflow Engine APIs 2 – 21.
CreateProcess 2 – 23.
SetItemUserKey 2 – 25.
GetItemUserKey 2 – 26.
GetActivityLabel 2 – 27.
SetItemOwner 2 – 28.
StartProcess 2 – 30.
LaunchProcess 2 – 32.
SuspendProcess 2 – 34.
ResumeProcess 2 – 36.
AbortProcess 2 – 38.
CreateForkProcess 2 – 40.

 iv Oracle Workflow API Reference

StartForkProcess 2 – 42.
Background 2 – 43.
AddItemAttribute 2 – 45.
AddItemAttributeArray 2 – 48.
SetItemAttribute 2 – 50.
setItemAttrFormattedDate 2 – 53.
SetItemAttrDocument 2 – 54.
SetItemAttributeArray 2 – 56.
getItemTypes 2 – 59.
GetItemAttribute 2 – 60.
GetItemAttrDocument 2 – 62.
GetItemAttrClob 2 – 64.
getItemAttributes 2 – 65.
GetItemAttrInfo 2 – 66.
GetActivityAttrInfo 2 – 67.
GetActivityAttribute 2 – 68.
GetActivityAttrClob 2 – 70.
getActivityAttributes 2 – 71.
BeginActivity 2 – 72.
CompleteActivity 2 – 74.
CompleteActivityInternalName 2 – 77.
AssignActivity 2 – 79.
Event 2 – 80.
HandleError 2 – 82.
SetItemParent 2 – 85.
ItemStatus 2 – 87.
getProcessStatus 2 – 88.

Workflow Function APIs 2 – 89.
loadItemAttributes 2 – 90.
loadActivityAttributes 2 – 91.
getActivityAttr 2 – 92.
getItemAttr 2 – 94.
setItemAttrValue 2 – 95.
execute 2 – 96.

Workflow Attribute APIs 2 – 97.
WFAttribute 2 – 99.
value 2 – 100.
getName 2 – 101.
getValue 2 – 102.
getType 2 – 103.
getFormat 2 – 104.
getValueType 2 – 105.

 vContents

toString 2 – 106.
compareTo 2 – 107.

Workflow Core APIs 2 – 108.
CLEAR 2 – 109.
GET_ERROR 2 – 110.
TOKEN 2 – 111.
RAISE 2 – 112.
CONTEXT 2 – 116.
TRANSLATE 2 – 118.

Workflow Purge APIs 2 – 119.
Items 2 – 121.
Activities 2 – 122.
Notifications 2 – 123.
Total 2 – 124.
TotalPERM 2 – 126.
Directory 2 – 128.
Purge Obsolete Workflow Runtime Data Concurrent
Program 2 – 129.

Workflow Monitor APIs 2 – 131.
GetAccessKey 2 – 132.
GetDiagramURL 2 – 133.
GetEnvelopeURL 2 – 136.
GetAdvancedEnvelopeURL 2 – 138.

Workflow Status Monitor APIs 2 – 141.
GetEncryptedAccessKey 2 – 142.
GetEncryptedAdminMode 2 – 143.
IsMonitorAdministrator 2 – 144.

Oracle Workflow Views 2 – 145.
WF_ITEM_ACTIVITY_STATUSES_V 2 – 145.
WF_NOTIFICATION_ATTR_RESP_V 2 – 147.
WF_RUNNABLE_PROCESSES_V 2 – 148.
WF_ITEMS_V 2 – 149.

Chapter 3 Directory Service APIs 3 – 1.
Workflow Directory Service APIs 3 – 2.

GetRoleUsers 3 – 4.
GetUserRoles 3 – 5.
GetRoleInfo 3 – 6.
GetRoleInfo2 3 – 7.
IsPerformer 3 – 9.
UserActive 3 – 10.

 vi Oracle Workflow API Reference

GetUserName 3 – 11.
GetRoleName 3 – 12.
GetRoleDisplayName 3 – 13.
CreateAdHocUser 3 – 14.
CreateAdHocRole 3 – 17.
CreateAdHocRole2 3 – 20.
AddUsersToAdHocRole 3 – 23.
AddUsersToAdHocRole2 3 – 24.
RemoveUsersFromAdHocRole 3 – 25.
SetAdHocUserStatus 3 – 26.
SetAdHocRoleStatus 3 – 27.
SetAdHocUserExpiration 3 – 28.
SetAdHocRoleExpiration 3 – 29.
SetAdHocUserAttr 3 – 30.
SetAdHocRoleAttr 3 – 32.
ChangeLocalUserName 3 – 34.
IsMLSEnabled 3 – 35.

Workflow LDAP APIs 3 – 36.
Synch_changes 3 – 37.
Synch_all 3 – 38.
Schedule_changes 3 – 39.

Workflow Local Synchronization APIs 3 – 40.
Propagate_User 3 – 41.
Propagate_Role 3 – 46.
PropagateUserRole 3 – 51.

Workflow Role Hierarchy APIs 3 – 53.
AddRelationship 3 – 54.
ExpireRelationship 3 – 55.
GetRelationships 3 – 56.
GetAllRelationships 3 – 57.

Workflow Preferences API 3 – 58.
get_pref 3 – 58.

Chapter 4 Notification System APIs 4 – 1.
Overview of the Oracle Workflow Notification System 4 – 2.

Notification Model 4 – 2.
Notification Document Type Definition 4 – 8.

Notification APIs 4 – 14.
Send 4 – 16.
Custom Callback Function 4 – 17.
SendGroup 4 – 21.

 viiContents

Forward 4 – 23.
Transfer 4 – 25.
Cancel 4 – 27.
CancelGroup 4 – 28.
Respond 4 – 29.
Responder 4 – 31.
NtfSignRequirementsMet 4 – 32.
VoteCount 4 – 33.
OpenNotificationsExist 4 – 34.
Close 4 – 35.
AddAttr 4 – 36.
SetAttribute 4 – 37.
GetAttrInfo 4 – 39.
GetInfo 4 – 40.
GetText 4 – 41.
GetShortText 4 – 42.
GetAttribute 4 – 43.
GetAttrDoc 4 – 45.
GetSubject 4 – 46.
GetBody 4 – 47.
GetShortBody 4 – 48.
TestContext 4 – 49.
AccessCheck 4 – 50.
WorkCount 4 – 51.
getNotifications 4 – 52.
getNotificationAttributes 4 – 53.
WriteToClob 4 – 54.
Denormalize_Notification 4 – 55.
SubstituteSpecialChars 4 – 57.

Notification Mailer Utility API 4 – 58.
EncodeBLOB 4 – 58.

Chapter 5 Business Event System APIs 5 – 1.
Overview of the Oracle Workflow Business Event System 5 – 2.
Business Event System Datatypes 5 – 3.

Agent Structure 5 – 4.
getName 5 – 4.
getSystem 5 – 4.
setName 5 – 5.
setSystem 5 – 5.
Parameter Structure 5 – 6.

 viii Oracle Workflow API Reference

getName 5 – 6.
getValue 5 – 6.
setName 5 – 7.
setValue 5 – 7.
Parameter List Structure 5 – 8.
Event Message Structure 5 – 9.
Initialize 5 – 12.
getPriority 5 – 12.
getSendDate 5 – 12.
getReceiveDate 5 – 13.
getCorrelationID 5 – 13.
getParameterList 5 – 13.
getEventName 5 – 13.
getEventKey 5 – 14.
getEventData 5 – 14.
getFromAgent 5 – 14.
getToAgent 5 – 14.
getErrorSubscription 5 – 15.
getErrorMessage 5 – 15.
getErrorStack 5 – 15.
setPriority 5 – 15.
setSendDate 5 – 16.
setReceiveDate 5 – 16.
setCorrelationID 5 – 16.
setParameterList 5 – 16.
setEventName 5 – 17.
setEventKey 5 – 17.
setEventData 5 – 17.
setFromAgent 5 – 18.
setToAgent 5 – 18.
setErrorSubscription 5 – 18.
setErrorMessage 5 – 18.
setErrorStack 5 – 19.
Content 5 – 19.
Address 5 – 20.
AddParameterToList 5 – 20.
GetValueForParameter 5 – 20.
Example for Using Abstract Datatypes 5 – 22.
Mapping Between WF_EVENT_T and
SYS.AQ$_JMS_TEXT_MESSAGE 5 – 24.

Event APIs 5 – 27.
Raise 5 – 28.

 ixContents

Raise3 5 – 32.
Send 5 – 34.
NewAgent 5 – 36.
Test 5 – 37.
Enqueue 5 – 38.
Listen 5 – 39.
SetErrorInfo 5 – 42.
SetDispatchMode 5 – 43.
AddParameterToList 5 – 44.
AddParameterToListPos 5 – 45.
GetValueForParameter 5 – 46.
GetValueForParameterPos 5 – 47.
SetMaxNestedRaise 5 – 48.
GetMaxNestedRaise 5 – 49.

Event Subscription Rule Function APIs 5 – 50.
Default_Rule 5 – 52.
Log 5 – 54.
Error 5 – 55.
Warning 5 – 56.
Success 5 – 57.
Workflow_Protocol 5 – 58.
Error_Rule 5 – 59.
SetParametersIntoParameterList 5 – 60.
Default_Rule2 5 – 61.
Default_Rule3 5 – 62.
SendNotification 5 – 63.
Instance_Default_Rule 5 – 65.

Event Function APIs 5 – 67.
Parameters 5 – 68.
SubscriptionParameters 5 – 70.
AddCorrelation 5 – 71.
Generate 5 – 73.
Receive 5 – 75.

Business Event System Replication APIs 5 – 77.
WF_EVENTS Document Type Definition 5 – 79.
WF_EVENTS_PKG.Generate 5 – 80.
WF_EVENTS_PKG.Receive 5 – 81.
WF_EVENT_GROUPS Document Type Definition 5 – 82.
WF_EVENT_GROUPS_PKG.Generate 5 – 83.
WF_EVENT_GROUPS_PKG.Receive 5 – 84.
WF_SYSTEMS Document Type Definition 5 – 85.
WF_SYSTEMS_PKG.Generate 5 – 86.

 x Oracle Workflow API Reference

WF_SYSTEMS_PKG.Receive 5 – 87.
WF_AGENTS Document Type Definition 5 – 88.
WF_AGENTS_PKG.Generate 5 – 89.
WF_AGENTS_PKG.Receive 5 – 90.
WF_AGENT_GROUPS Document Type Definition 5 – 91.
WF_AGENT_GROUPS_PKG.Generate 5 – 92.
WF_AGENT_GROUPS_PKG.Receive 5 – 93.
WF_EVENT_SUBSCRIPTIONS Document Type
Definition 5 – 94.
WF_EVENT_SUBSCRIPTIONS_PKG.Generate 5 – 95.
WF_EVENT_SUBSCRIPTIONS_PKG.Receive 5 – 96.

Business Event System Cleanup API 5 – 97.
Cleanup_Subscribers 5 – 97.

Chapter 6 Workflow Queue APIs 6 – 1.
Workflow Queue APIs 6 – 2.

EnqueueInbound 6 – 5.
DequeueOutbound 6 – 7.
DequeueEventDetail 6 – 10.
PurgeEvent 6 – 12.
PurgeItemType 6 – 13.
ProcessInboundQueue 6 – 14.
GetMessageHandle 6 – 15.
DequeueException 6 – 16.
DeferredQueue 6 – 17.
InboundQueue 6 – 18.
OutboundQueue 6 – 19.
ClearMsgStack 6 – 20.
CreateMsg 6 – 21.
WriteMsg 6 – 22.
SetMsgAttr 6 – 23.
SetMsgResult 6 – 24.

Chapter 7 Document Management APIs 7 – 1.
Document Management APIs 7 – 2.

get_launch_document_url 7 – 3.
get_launch_attach_url 7 – 4.
get_open_dm_display_window 7 – 5.
get_open_dm_attach_window 7 – 6.
set_document_id_html 7 – 7.

 xiContents

Glossary

Index

 xii Oracle Workflow API Reference

 xiiiPreface

Preface

Welcome to Release 2.6.3.5 of the Oracle Workflow API Reference.

This guide contains the information you need to use APIs in Oracle
Workflow.

• Chapter 1 provides an overview of Oracle Workflow.

• Chapter 2 describes the Workflow Engine APIs.

• Chapter 3 describes the directory service APIs.

• Chapter 4 describes the Notification System APIs.

• Chapter 5 describes the Business Event System APIs.

• Chapter 6 describes the Workflow queue APIs.

• Chapter 7 describes the document management APIs.

At the end of this guide, we include a glossary of Oracle Workflow
terms.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting
documentation accessible, with good usability, to the disabled
community. To that end, our documentation includes features that
make information available to users of assistive technology. This
documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other

 xiv Oracle Workflow API Reference

market–leading technology vendors to address technical obstacles so
that our documentation can be accessible to all of our customers. For
additional information, visit the Oracle Accessibility Program Web site
at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

JAWS, a Windows screen reader, may not always correctly read the
code examples in this document. The conventions for writing code
require that closing braces should appear on an otherwise empty line;
however, JAWS may not always read a line of text that consists solely
of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies
or organizations that Oracle does not own or control. Oracle neither
evaluates nor makes any representations regarding the accessibility of
these Web sites.

Other Information Sources

You can choose from many sources of information, including online
documentation, training, and support services, to increase your
knowledge and understanding of Oracle Workflow.

If this guide refers you to other Oracle Applications documentation,
use only the Release 11i versions of those guides.

Online Documentation

If you are using the version of Oracle Workflow embedded in Oracle
Applications, note that all Oracle Applications documentation is
available online (HTML or PDF).

• Online Help – Online help patches (HTML) are available on
OracleMetaLink.

• About Documents – Refer to the About Document for the
mini–pack or family pack that you have installed to learn about
new documentation or documentation patches that you can
download. About Documents are available on OracleMetaLink.

 xvPreface

If you are using the standalone version of Oracle Workflow, note that
this guide is available online in HTML format. The HTML
documentation is available from a URL provided by your system
administrator or from the help icon in the Oracle Workflow web pages.

Guides Related to All Products

Oracle Applications User’s Guide

This guide explains how to enter data, query, run reports, and navigate
using the graphical user interface (GUI) available with this release of
Oracle Workflow (and any other Oracle Applications products). This
guide also includes information on setting user profiles, as well as
running and reviewing reports and concurrent processes.

You can access this user’s guide online by choosing ”Getting Started
with Oracle Applications” from any Oracle Applications help file.

Oracle Workflow Documentation Set

Oracle Workflow Administrator’s Guide

This guide explains how to complete the setup steps necessary for any
Oracle Applications product that includes workflow–enabled
processes, as well as how to monitor the progress of runtime workflow
processes.

Oracle Workflow Developer’s Guide

This guide explains how to define new workflow business processes
and customize existing Oracle Applications–embedded workflow
processes. It also describes how to define and customize business
events and event subscriptions.

Oracle Workflow User’s Guide

This guide describes how Oracle Applications users can view and
respond to workflow notifications and monitor the progress of their
workflow processes.

 xvi Oracle Workflow API Reference

User Guides Related to This Product

Oracle Workflow is used by other Oracle Applications products to
provide embedded workflows and business events. Therefore, if you
are using the version of Oracle Workflow embedded in Oracle
Applications, you may want to refer to other user’s guides when you
set up and use Oracle Workflow to learn more about the embedded
workflows and business events.

Oracle Assets User Guide

In Oracle Assets, you can post capital project costs to become
depreciable fixed assets. Refer to this guide to learn how to query mass
additions imported from Oracle Workflow to Oracle Assets and to
review asset information.

Oracle General Ledger User Guide

Use this manual when you plan and define your chart of accounts,
accounting period types and accounting calendar, functional currency,
and set of books. The manual also describes how to define journal
entry sources and categories so you can create journal entries for your
general ledger. If you use multiple currencies, use this manual when
you define additional rate types, and enter daily rates. This manual
also includes complete information on implementing Budgetary
Control.

Oracle HRMS Documentation Set

This set of guides explains how to define your employees, so you can
give them operating unit and job assignments. It also explains how to
set up an organization (operating unit). Even if you do not install
Oracle HRMS, you can set up employees and organizations using
Oracle HRMS windows. Specifically, the following manuals will help
you set up employees and operating units:

• Using Oracle HRMS – The Fundamentals

This user guide explains how to set up and use enterprise
modeling, organization management, and cost analysis.

• Managing People Using Oracle HRMS

Use this guide to find out about entering employees.

 xviiPreface

Oracle Payables User Guide

Refer to this manual to learn how to use Invoice Import to create
invoices in Oracle Payables from Oracle Workflow expense reports data
in the Oracle Payables interface tables. This manual also explains how
to define suppliers, and how to specify supplier and employee
numbering schemes for invoices created using Oracle Workflow.

Oracle Projects Implementation Guide

Use this manual as a guide for implementing Oracle Projects. This
manual also includes appendixes covering function security, menus
and responsibilities, and profile options.

Oracle Purchasing User Guide

If you install Oracle Purchasing, refer to this user guide to read about
entering and managing the requisitions and purchase orders that relate
to your projects. This manual also explains how to create purchase
orders from project–related requisitions in the AutoCreate Documents
window.

Oracle Receivables User Guide

Use this manual to learn more about Oracle Receivables invoice
processing and invoice formatting, defining customers, importing
transactions using AutoInvoice, and Defining Automatic Accounting in
Oracle Receivables.

Oracle Business Intelligence System Implementation Guide

This guide provides information about implementing Oracle Business
Intelligence (BIS) in your environment.

BIS 11i User Guide Online Help

This guide is provided as online help only from the BIS application and
includes information about intelligence reports, Discoverer workbooks,
and the Performance Management Framework.

Using Oracle Time Management

This guide provides information about capturing work patterns such as
shift hours so that this information can be used by other applications
such as General Ledger.

 xviii Oracle Workflow API Reference

Installation and System Administration

Oracle Applications Concepts

This guide provides an introduction to the concepts, features,
technology stack, architecture, and terminology for Oracle Applications
Release 11i. It provides a useful first book to read before installing
Oracle Applications.

Installing Oracle Applications

This guide provides instructions for managing the installation of Oracle
Applications products. In Release 11i, much of the installation process
is handled using Oracle Rapid Install, which minimizes the time to
install Oracle Applications and the technology stack by automating
many of the required steps. This guide contains instructions for using
Oracle Rapid Install and lists the tasks you need to perform to finish
your installation. You should use this guide in conjunction with
individual product user’s guides and implementation guides.

Upgrading Oracle Applications

Refer to this guide if you are upgrading your Oracle Applications
Release 10.7 or Release 11.0 products to Release 11i. This guide
describes the upgrade process and lists database and product–specific
upgrade tasks. You must be either at Release 10.7 (NCA, SmartClient,
or character mode) or Release 11.0, to upgrade to Release 11i. You
cannot upgrade to Release 11i directly from releases prior to 10.7.

Maintaining Oracle Applications

Use this guide to help you run the various AD utilities, such as
AutoUpgrade, AutoPatch, AD Administration, AD Controller, AD
Relink, License Manager, and others. It contains how–to steps,
screenshots, and other information that you need to run the AD
utilities. This guide also provides information on maintaining the
Oracle Applications file system and database.

Oracle Applications System Administrator’s Guide

This guide provides planning and reference information for the Oracle
Applications System Administrator. It contains information on how to
define security, customize menus and online help, and manage
concurrent processing.

 xixPreface

Oracle Alert User’s Guide

This guide explains how to define periodic and event alerts to monitor
the status of your Oracle Applications data.

Oracle Applications Developer’s Guide

This guide contains the coding standards followed by the Oracle
Applications development staff. It describes the Oracle Application
Object Library components needed to implement the Oracle
Applications user interface described in the Oracle Applications User
Interface Standards for Forms–Based Products. It also provides
information to help you build your custom Oracle Forms Developer
forms so that they integrate with Oracle Applications.

Other Implementation Documentation

Oracle Applications Product Update Notes

Use this guide as a reference for upgrading an installation of Oracle
Applications. It provides a history of the changes to individual Oracle
Applications products between Release 11.0 and Release 11i. It
includes new features, enhancements, and changes made to database
objects, profile options, and seed data for this interval.

Multiple Reporting Currencies in Oracle Applications

If you use the Multiple Reporting Currencies feature to record
transactions in more than one currency, use this manual before you
implement Oracle Workflow. This manual details additional steps and
setup considerations for implementing Oracle Workflow with Multiple
Reporting Currencies.

Multiple Organizations in Oracle Applications

This guide describes how to set up and use Oracle Workflow with
Oracle Applications’ Multiple Organization support feature, so you can
define and support different organization structures when running a
single installation of Oracle Workflow.

Oracle Applications Flexfields Guide

This guide provides flexfields planning, setup and reference
information for the Oracle Workflow implementation team, as well as
for users responsible for the ongoing maintenance of Oracle

 xx Oracle Workflow API Reference

Applications product data. This manual also provides information on
creating custom reports on flexfields data.

Oracle eTechnical Reference Manuals

Each eTechnical Reference Manual (eTRM) contains database diagrams
and a detailed description of database tables, forms, reports, and
programs for a specific Oracle Applications product. This information
helps you convert data from your existing applications and integrate
Oracle Applications data with non–Oracle applications, and write
custom reports for Oracle Applications products. Oracle eTRM is
available on OracleMetaLink.

Oracle Applications User Interface Standards
for Forms–Based Products

This guide contains the user interface (UI) standards followed by the
Oracle Applications development staff. It describes the UI for the
Oracle Applications products and tells you how to apply this UI to the
design of an application built by using Oracle Forms.

Oracle Manufacturing APIs and Open Interfaces Manual

This manual contains up–to–date information about integrating with
other Oracle Manufacturing applications and with your other systems.
This documentation includes APIs and open interfaces found in Oracle
Manufacturing.

Oracle Order Management Suite APIs and Open Interfaces Manual

This manual contains up–to–date information about integrating with
other Oracle Manufacturing applications and with your other systems.
This documentation includes APIs and open interfaces found in Oracle
Order Management Suite.

Oracle Applications Message Reference Manual

This manual describes all Oracle Applications messages. This manual
is available in HTML format on the documentation CD–ROM for
Release 11i.

 xxiPreface

Training and Support

Training

Oracle offers a complete set of training courses to help you and your
staff master Oracle Workflow and reach full productivity quickly.
These courses are organized into functional learning paths, so you take
only those courses appropriate to your job or area of responsibility.

You have a choice of educational environments. You can attend
courses offered by Oracle University at any of our many Education
Centers, you can arrange for our trainers to teach at your facility, or
you can use Oracle Learning Network (OLN), Oracle University’s
online education utility. In addition, Oracle training professionals can
tailor standard courses or develop custom courses to meet your needs.
For example, you may want to use your organization structure,
terminology, and data as examples in a customized training session
delivered at your own facility.

Support

From on–site support to central support, our team of experienced
professionals provides the help and information you need to keep
Oracle Workflow working for you. This team includes your Technical
Representative, Account Manager, and Oracle’s large staff of
consultants and support specialists with expertise in your business
area, managing an Oracle Database, and your hardware and software
environment.

Do Not Use Database Tools to Modify Oracle Applications Data

Oracle STRONGLY RECOMMENDS that you never use SQL*Plus,
database triggers, or any other tool to modify Oracle Applications
data unless otherwise instructed.

Oracle provides powerful tools you can use to create, store, change,
retrieve, and maintain information in an Oracle database. But if you
use Oracle tools such as SQL*Plus to modify Oracle Applications data,
you risk destroying the integrity of your data and you lose the ability to
audit changes to your data.

Because Oracle Applications tables are interrelated, any change you
make using Oracle Applications can update many tables at once. But
when you modify Oracle Applications data using anything other than

 xxii Oracle Workflow API Reference

Oracle Applications, you may change a row in one table without
making corresponding changes in related tables. If your tables get out
of synchronization with each other, you risk retrieving erroneous
information and you risk unpredictable results throughout Oracle
Applications.

When you use Oracle Applications to modify your data, Oracle
Applications automatically checks that your changes are valid. Oracle
Applications also keeps track of who changes information. If you enter
information into database tables using database tools, you may store
invalid information. You also lose the ability to track who has changed
your information because SQL*Plus and other database tools do not
keep a record of changes.

About Oracle

Oracle provides an integrated line of software products for database
management, applications development, decision support, and office
automation, as well as Oracle Applications, an integrated suite of
software modules for financial management, supply chain
management, manufacturing, project systems, human resources
management and customer relationship management.

Oracle products are available for mainframes, minicomputers, personal
computers, network computers and personal digital assistants,
allowing organizations to integrate different computers, different
operating systems, different networks, and even different database
management systems, into a single, unified computing and information
resource.

Oracle is the world’s leading supplier of software for information
management, and the world’s second largest software company. Oracle
offers its database, tools, and applications products, along with related
consulting, education, and support services, in over 145 countries
around the world.

Your Feedback

Thank you for using Oracle Workflow and this implementation guide.

Oracle values your comments and feedback. At the end of this guide is
a Reader’s Comment Form you can use to explain what you like or
dislike about Oracle Workflow or this implementation guide. Mail

 xxiiiPreface

your comments to the following address or contact your Support
representative.

Oracle Applications Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

 xxiv Oracle Workflow API Reference

C H A P T E R

1
T

1 – 1Overview of Oracle Workflow

Overview of Oracle
Workflow

his chapter introduces you to the concept of a workflow process
and to the major features of Oracle Workflow.

1 – 2 Oracle Workflow API Reference

Overview of Oracle Workflow

Oracle Workflow delivers a complete workflow management system
that supports business process based integration. Its technology enables
modeling, automation, and continuous improvement of business
processes, routing information of any type according to user–defined
business rules.

E–business is accelerating the demand for integration of applications
within the enterprise as well as integration of a company’s systems with
trading partners and business–to–business exchanges. Oracle Workflow
automates and streamlines business processes both within and beyond
your enterprise, supporting traditional applications based workflow as
well as e–business integration workflow. Oracle Workflow is unique in
providing a workflow solution for both internal processes and business
process coordination between applications.

Routing Information

Business processes today involve getting many types of information to
multiple people according to rules that are constantly changing. With so
much information available, and in so many different forms, how do
you get the right information to the right people? Oracle Workflow lets
you provide each person with all the information they need to take
action. Oracle Workflow can route supporting information to each
decision maker in a business process, including people both inside and
outside your enterprise.

Defining and Modifying Business Rules

Oracle Workflow lets you define and continuously improve your
business processes using a drag–and–drop process designer.

Unlike workflow systems that simply route documents from one user to
another with some approval steps, Oracle Workflow lets you model
sophisticated business processes. You can define processes that loop,
branch into parallel flows and then rendezvous, decompose into
subflows, and more. Because Oracle Workflow can decide which path
to take based on the result of a stored procedure, you can use the power
of Java and of PL/SQL, the language of the Oracle Database, to express
any business rule that affects a workflow process. See: Workflow
Processes: page 1 – 6.

1 – 3Overview of Oracle Workflow

Delivering Electronic Notifications

Oracle Workflow extends the reach of business process automation
throughout the enterprise and beyond to include any e–mail or Internet
user. Oracle Workflow lets people receive notifications of items
awaiting their attention via e–mail, and act based on their e–mail
responses. You can even view your list of things to do, including
necessary supporting information, and take action using a standard Web
browser.

Integrating Systems

Oracle Workflow lets you set up subscriptions to business events which
can launch workflows or enable messages to be propagated from one
system to another when business events occur. You can communicate
events among systems within your own enterprise and with external
systems as well. In this way, you can implement point–to–point
messaging integration or use Oracle Workflow as a messaging hub for
more complex system integration scenarios. You can model business
processes that include complex routing and processing rules to handle
events powerfully and flexibly.

Major Features and Definitions

Oracle Workflow Builder

Oracle Workflow Builder is a graphical tool that lets you create, view, or
modify a business process with simple drag and drop operations. Using
the Workflow Builder, you can create and modify all workflow objects,
including activities, item types, and messages. See: Workflow Processes:
page 1 – 6.

At any time you can add, remove, or change workflow activities, or set
up new prerequisite relationships among activities. You can easily work
with a summary–level model of your workflow, expanding activities
within the workflow as needed to greater levels of detail. And, you can
operate Oracle Workflow Builder from a desktop PC or from a
disconnected laptop PC.

Workflow Engine

The Workflow Engine embedded in the Oracle Database implements
process definitions at runtime. The Workflow Engine monitors
workflow states and coordinates the routing of activities for a process.

1 – 4 Oracle Workflow API Reference

Changes in workflow state, such as the completion of workflow
activities, are signaled to the engine via a PL/SQL API or a Java API.
Based on flexibly–defined workflow rules, the engine determines which
activities are eligible to run, and then runs them. The Workflow Engine
supports sophisticated workflow rules, including looping, branching,
parallel flows, and subflows.

Business Event System

The Business Event System is an application service that uses the Oracle
Advanced Queuing (AQ) infrastructure to communicate business events
between systems. The Business Event System consists of the Event
Manager, which lets you register subscriptions to significant events, and
event activities, which let you model business events within workflow
processes.

When a local event occurs, the subscribing code is executed in the same
transaction as the code that raised the event. Subscription processing can
include executing custom code on the event information, sending event
information to a workflow process, and sending event information to
other queues or systems.

Workflow Definitions Loader

The Workflow Definitions Loader is a utility program that moves
workflow definitions between database and corresponding flat file
representations. You can use it to move workflow definitions from a
development to a production database, or to apply upgrades to existing
definitions. In addition to being a standalone server program, the
Workflow Definitions Loader is also integrated into Oracle Workflow
Builder, allowing you to open and save workflow definitions in both a
database and file.

Complete Programmatic Extensibility

Oracle Workflow lets you include your own PL/SQL procedures or
external functions as activities in your workflows. Without modifying
your application code, you can have your own program run whenever
the Workflow Engine detects that your program’s prerequisites are
satisfied.

Electronic Notifications

Oracle Workflow lets you include users in your workflows to handle
activities that cannot be automated, such as approvals for requisitions or

1 – 5Overview of Oracle Workflow

sales orders. The Notification System sends notifications to and
processes responses from users in a workflow. Electronic notifications
are routed to a role, which can be an individual user or a group of users.
Any user associated with that role can act on the notification.

Each notification includes a message that contains all the information a
user needs to make a decision. The information may be embedded in
the message body or attached as a separate document. Oracle Workflow
interprets each notification activity response to decide how to move on
to the next workflow activity.

Electronic Mail Integration

Electronic mail (e–mail) users can receive notifications of outstanding
work items and can respond to those notifications using their e–mail
application of choice. An e–mail notification can include an attachment
that provides another means of responding to the notification.

Internet–Enabled Workflow

Any user with access to a standard Web browser can be included in a
workflow. Web users can access a Notification Web page to see their
outstanding work items, then navigate to additional pages to see more
details or provide a response.

Monitoring and Administration

Workflow administrators and users can view the progress of a work
item in a workflow process by connecting to the Workflow Monitor
using a standard Web browser that supports Java. The Workflow
Monitor displays an annotated view of the process diagram for a
particular instance of a workflow process, so that users can get a
graphical depiction of their work item status. The Workflow Monitor
also displays a separate status summary for the work item, the process,
and each activity in the process.

If you are using the version of Oracle Workflow embedded in Oracle
Applications and you have implemented Oracle Applications Manager,
you can also use the Oracle Workflow Manager component of Oracle
Applications Manager as an additional administration tool for Oracle
Workflow. Oracle Applications Manager is a tool that provides
administrative and diagnostic capabilities for concurrent processing,
Oracle Workflow, and other functionality in Oracle Applications. For
more information, please refer to the Oracle Applications Manager
online help.

1 – 6 Oracle Workflow API Reference

Also, if you are using the standalone version of Oracle Workflow, you
can use the standalone Oracle Workflow Manager component available
through Oracle Enterprise Manager as an additional administration tool
for Oracle Workflow. For more information, please refer to the Oracle
Workflow Manager online help.

Workflow Processes

Oracle Workflow manages business processes according to rules that
you define. The rules, which we call a workflow process definition,
include the activities that occur in the process and the relationship
between those activities. An activity in a process definition can be an
automated function defined by a PL/SQL stored procedure or an
external function, a notification to a user or role that may optionally
request a response, a business event, or a subflow that itself is made up
of a more granular set of activities.

A workflow process is initiated when an application calls a set of Oracle
Workflow Engine APIs. The Workflow Engine takes over by driving
the relevant work item defined by the application, through a specific
workflow process definition. According to the workflow process
definition, the Workflow Engine performs automated steps and invokes
appropriate agents when external processing is required.

The following diagram depicts a simplified workflow process definition
that routes a requisition to a manager or set of managers for approval.

1 – 7Overview of Oracle Workflow

We refer to the whole drawing as a process or process diagram. The
icons represent activities, and the arrows represent the transitions
between the activities. In the above example, new items are created for
the process when a user creates and submits a requisition in the
appropriate application.

This process contains several workflow activities implemented as
PL/SQL stored procedures, including:

• Select Approver—to select, according to your business rules, who
should approve the requisition.

• Verify Authority—to verify that a selected approver has the
spending authority to approve the requisition.

1 – 8 Oracle Workflow API Reference

Oracle Workflow Procedures and Functions

Oracle Workflow supplies a list of public PL/SQL and Java procedures
and functions that you can use to set up a workflow process. They are
grouped within the following packages and classes:

• WF_ENGINE: page 2 – 21

• WFFunctionAPI: page 2 – 89

• WFAttribute: page 2 – 97

• WF_CORE: page 2 – 108

• WF_PURGE: page 2 – 119

• WF_MONITOR: page 2 – 131

• WF_FWKMON: page 2 – 141

• Oracle Workflow Views: page 2 – 145

• WF_DIRECTORY: page 3 – 2

• WF_LDAP: page 3 – 36

• WF_LOCAL_SYNCH: page 3 – 40

• WF_ROLE_HIERARCHY: page 3 – 53

• WF_PREF: page 3 – 58

• WF_NOTIFICATIONS: page 4 – 14

• WF_EVENT: page 5 – 27

• WF_RULE: page 5 – 50

• WF_EVENT_FUNCTIONS_PKG: page 5 – 67

• WF_EVENTS_PKG: page 5 – 77

• WF_EVENT_GROUPS_PKG: page 5 – 77

• WF_SYSTEMS_PKG: page 5 – 77

• WF_AGENTS_PKG: page 5 – 77

• WF_AGENT_GROUPS_PKG: page 5 – 77

• WF_EVENT_SUBSCRIPTIONS_PKG: page 5 – 77

• WF_BES_CLEANUP: page 5 – 97

• WF_QUEUE: page 6 – 2

• FND_DOCUMENT_MANAGEMENT: page 7 – 2

C H A P T E R

2
T

2 – 1Workflow Engine APIs

Workflow Engine APIs

his chapter describes the APIs for the Workflow Engine. The APIs
consist of views and PL/SQL and Java functions and procedures that
you can use to access the Workflow Engine, the Workflow Monitor, and
workflow data.

2 – 2 Oracle Workflow API Reference

Overview of the Workflow Engine

The Workflow Engine manages all automated aspects of a workflow
process for each item. The engine is implemented in server–side
PL/SQL and is activated whenever a call to a workflow procedure or
function is made. Since the engine is embedded inside the Oracle
Database, if the Workflow server goes down for any reason, the Oracle
Database is able to manage the recovery and transactional integrity of
any workflow transactions that were running at the time of the failure.

Additionally, Workflow Engines can be set up as background tasks to
perform activities that are too costly to execute in real time.

The Workflow Engine performs the following services for a client
application:

• It manages the state of all activities for an item, and in particular,
determines which new activity to transition to whenever a
prerequisite activity completes.

• It automatically executes function activities (execution is either
immediate or deferred to a background engine) and sends
notifications.

• It maintains a history of an activity’s status.

• It detects error conditions and executes error processes.

The state of a workflow item is defined by the various states of all
activities that are part of the process for that item. The engine changes
activity states in response to an API call to update the activity. The API
calls that update activity states are:

• CreateProcess: page 2 – 23

• StartProcess: page 2 – 30

• CompleteActivity: page 2 – 74

• CompleteActivityInternalName: page 2 – 77

• AssignActivity: page 2 – 79

• HandleError: page 2 – 82

• SuspendProcess: page 2 – 34

• ResumeProcess: page 2 – 36

• AbortProcess: page 2 – 38

Based on the result of a previous activity, the engine attempts to
execute the next activity directly. An activity may have the following
status:

☞

2 – 3Workflow Engine APIs

• Active—activity is running.

• Complete—activity completed normally.

• Waiting—activity is waiting to run.

• Notified—notification activity is delivered and open.

• Deferred—activity is deferred.

• Error—activity completed with error.

• Suspended—activity is suspended.

Attention: The Workflow Engine traps errors produced by
function activities by setting a savepoint before each function
activity. If an activity produces an unhandled exception, the
engine performs a rollback to the savepoint, and sets the
activity to the ERROR status. For this reason, you should
never commit within the PL/SQL procedure of a function
activity. The Workflow Engine never issues a commit as it is
the responsibility of the calling application to commit.

For environments such as database triggers or distributed
transactions that do not allow savepoints, the Workflow Engine
automatically traps ”Savepoint not allowed” errors and defers
the execution of the activity to the background engine.

Note: The Oracle Database supports autonomous transactions.
By embedding the pragma AUTONOMOUS_TRANSACTION
in your procedure, you can perform commits and rollbacks
independently of the main transaction. Oracle treats this as a
separate session; as such, you will not have access to any
database changes that were made in the main session but are
not yet committed. Consequently, you are restricted from
updating workflow–specific data in an autonomous
transaction; for instance, you cannot set item attributes. You
cannot access this data because the item itself has not yet been
committed, and because you may have lock contentions with
the main session.

Oracle Workflow will not support autonomous commits in any
procedure it calls directly. If you need to perform commits,
then embed your SQL in a subprocedure and declare it as an
autonomous block. This subprocedure must be capable of being
rerun. Additionally, note that Oracle Workflow handles errors
by rolling back the entire procedure and setting its status to
ERROR. Database updates performed by autonomous commits
cannot be rolled back, so you will need to write your own
compensatory logic for error handling. For more information,
see: Autonomous Transactions, Oracle Database Concepts.

2 – 4 Oracle Workflow API Reference

Oracle Workflow Java Interface

The Oracle Workflow Java interface provides a means for any Java
program to integrate with Oracle Workflow. The Oracle Workflow
Engine and Notification APIs are accessible through public server
PL/SQL packages and published views. The Oracle Workflow Java
interface exposes those APIs as Java methods that can be called by any
Java program to communicate with Oracle Workflow. The Java
methods directly reference the WF_ENGINE and WF_NOTIFICATION
PL/SQL package procedures and views and communicate with the
Oracle Workflow database through JDBC.

The methods are defined within the WFEngineAPI class and the
WFNotificationAPI class, in the Java package
’oracle.apps.fnd.wf.engine’. If a Workflow Engine or Notification API
has a corresponding Java method, its Java method syntax is displayed
immediately after its PL/SQL syntax in the documentation. See:
Workflow Engine APIs: page 2 – 21 and Notification APIs: page 4 – 14.

Additionally, Java functions can be incorporated within Workflow
processes as external Java function activities. This functionality is
currently only available for the standalone version of Oracle Workflow.
The custom Java classes for these activities are implemented as classes
that extend the WFFunctionAPI class. The custom classes must follow a
standard API format so that they can be properly executed by the
Oracle Workflow Java Function Activity Agent. See: Standard API for
Java Procedures Called by Function Activities, Oracle Workflow
Developer’s Guide and Function Activity, Oracle Workflow Developer’s
Guide.

The WFFunctionAPI class and the WFAttribute class also contain
methods that can be called to communicate with Oracle Workflow.
These classes are defined in the Java package ’oracle.apps.fnd.wf’. See:
Workflow Function APIs: page 2 – 89 and Workflow Attribute APIs:
page 2 – 97.

Java programs that integrate with Oracle Workflow should include the
following import statements to provide access to classes required by
Oracle Workflow:

import java.io.*;

import java.sql.*;

import java.math.BigDecimal;

import oracle.sql.*;

import oracle.jdbc.driver.*;

2 – 5Workflow Engine APIs

import oracle.apps.fnd.common.*;

import oracle.apps.fnd.wf.engine.*;

import oracle.apps.fnd.wf.*;

Oracle Workflow Context

Each Oracle Workflow Java method that accesses the database requires
an input of a WFContext object. The WFContext object consists of
database connectivity information which you instantiate and resource
context information that the WFContext class instantiates. To call one
of these Workflow Java APIs in your Java program, you must first
instantiate a database variable of class WFDB with your database
username, password and alias. You can also optionally supply a JDBC
string. Then you must instantiate the WFContext object with the
database variable. You can retrieve the system property CHARSET to
specify the character set for the database session. The following code
excerpt shows an example of how to instantiate these objects.

WFDB myDB;

WFContext ctx;

myDB = new WFDB(m_user, m_pwd, m_jdbcStr, m_conStr);

m_charSet = System.getProperty(”CHARSET”);

if (m_charSet == null) { // cannot be null

 m_charSet = ”UTF8”;

}

try {

 ctx = new WFContext(myDB, m_charSet);

 // m_charSet is ’UTF8’ by default

 if (ctx.getDB().getConnection() == null) {

 // connection failed

 return;

 }

 // We now have a connection to the database.

}

catch (Exception e) {

// exit Message for this exception

}

2 – 6 Oracle Workflow API Reference

If you have already established a JDBC connection, you can simply set
that connection into the WFContext object, as shown in the following
example:

WFContext ctx;

m_charSet = System.getProperty(”CHARSET”);

if (m_charSet == null) { // cannot be null

 m_charSet = ”UTF8”;

}

ctx = new WFContext(m_charSet);

// m_charSet is ’UTF8’ by default

ctx.setJDBCConnection(m_conn);

// m_conn is a pre–established JDBC connection

The Oracle Workflow Java APIs can be used safely in a thread, with
certain restrictions:

• Each thread should have its own WFContext object, meaning
you should not instantiate WFContext before starting threads.
Because each context keeps track of an error stack, contexts
cannot be shared.

• You should not use the same JDBC connection for different
workflows, because using the same connection may cause
problems with commits and rollbacks for unrelated transactions.

There is no synchronized code inside the Oracle Workflow Java APIs,
but there are no shared resources, either.

There is also no connection pooling in the Oracle Workflow Java APIs.
For Oracle Applications, connection pooling is implemented at the
AOL/J level; after you get the JDBC connection, you use the
WFContext.setJDBCConnection() API to set the connection. This
approach lets you manage your JDBC connection outside of the Oracle
Workflow APIs.

Sample Java Program

Oracle Workflow provides an example Java program that illustrates
how to call most of the Workflow Engine and Notification Java APIs.
The Java program is named WFTest. It calls the various Java APIs to
launch the WFDEMO process, set and get attributes and suspend,
resume and abort the process, as well as the APIs to send a notification,
set and get notification attributes, and delegate and transfer the
notification. Before running the WFTest Java program, make sure you

2 – 7Workflow Engine APIs

define CLASSPATH and LD_LIBRARY_PATH for the Oracle JDBC
implementation and a supported version of Oracle. For example, on
UNIX, use the following commands:

setenv CLASSPATH

<Workflow_JAR_file_directory>/wfapi.jar:${ORACLE_HOME}/jdbc/

lib/classes111.zip

setenv LD_LIBRARY_PATH ${ORACLE_HOME}/lib:${LD_LIBRARY_PATH}

Note: If you are using the standalone version of Oracle
Workflow, the Workflow JAR files are located in the
<ORACLE_HOME>/jlib directory. If you are using the version of
Oracle Workflow embedded in Oracle Applications, the
Workflow JAR files are located in the
<ORACLE_HOME>/wf/java/oracle/apps/fnd/wf/jar/
directory.

To initiate the WFTest program, run Java against
oracle.apps.fnd.wf.WFTest. For example, on UNIX, enter the
following statement on the command line:

$java oracle.apps.fnd.wf.WFTest

The source file for this program is also included in your Oracle
Workflow installation so that you can view the sample code. The source
file is named WFTest.java and is located in the
<ORACLE_HOME>/wf/java/oracle/apps/fnd/wf/ directory.

Additional Workflow Engine Features

In addition to managing a process, the Workflow Engine also supports
the following features:

• Completion Processing: page 2 – 8

• Deferred Processing: page 2 – 8

• Error Processing: page 2 – 9

• Looping: page 2 – 10

• Version/Effective Date: page 2 – 11

• Item Type Attributes: page 2 – 12

• Post–notification functions: page 2 – 12

2 – 8 Oracle Workflow API Reference

• Synchronous, Asynchronous, and Forced Synchronous Processes:
page 2 – 16

• Business Events: page 2 – 19

Completion Processing

Engine processing is triggered whenever a process activity completes
and calls the Workflow Engine API. The engine then attempts to
execute (or mark for deferred execution) all activities that are
dependent on the completed activity.

Note: A process as a whole can complete but still contain
activities that were visited but not yet completed. For example,
a completed process may contain a standard Wait activity that
is not complete because the designated length of time to wait
has not yet elapsed. When the process as a whole completes,
the Workflow Engine marks these incomplete activities as
having a status of COMPLETE and a result of #FORCE. This
distinction is important when you review your process status
through the Workflow Monitor.

Deferred Processing

The engine has a deferred processing feature that allows long–running
tasks to be handled by background engines instead of in real time.
Deferring the execution of activity functions to background engines
allows the Workflow Engine to move forward to process other
activities that are currently active. The engine can be set up to operate
anywhere on a continuum between processing all eligible work
immediately, to processing nothing and marking all transitions as
deferred.

Each activity has a user–defined processing cost. You can set this cost
to be small if the activity merely sets an item attribute, or you may set it
to be very high if the activity performs a resource–intensive operation.
If the result of a completed activity triggers the execution of a costly
function, you might want to defer the execution of that costly function
to a background engine.

The Workflow Engine integrates with Oracle Advanced Queues to
carry out deferred processing. If a function activity has a cost that
exceeds the main threshold cost, the Workflow Engine marks that
activity with a status of ’DEFERRED’ in the workflow status tables and
enqueues the deferred activity to a special queue for deferred activities.
A special queue processor called the background engine checks and
processes the activities in the ’deferred’ queue. The order in which the

2 – 9Workflow Engine APIs

deferred activities are processed are based on the first in, first out
ordering of an activity’s enqueue time. At least one background engine
must be set up to run at all times. Some sites may have multiple
background engines operating at different thresholds or item type
specifications, to avoid tying up all background processing with
long–running operations.

See Also

Activity Cost, Oracle Workflow Developer’s Guide

Deferring Activities, Oracle Workflow Administrator’s Guide

Error Processing

Errors that occur during workflow execution cannot be directly
returned to the caller, since the caller generally does not know how to
respond to the error (in fact, the caller may be a background engine
with no human operator). You can use Oracle Workflow Builder to
define the processing you want to occur in case of an error. Use Oracle
Workflow Builder to assign the Default Error Process associated with
the System:Error item type or create your own custom error process.
See: Error Handling for Workflow Processes, Oracle Workflow
Developer’s Guide.

The error process can include branches based on error codes, send
notifications, and attempt to deal with the error using automated rules
for resetting, retrying, or skipping the failed activity. Once you define
an error process, you can associate it with any activity. The error
process is then initiated whenever an error occurs for that activity. See:
To Define Optional Activity Details, Oracle Workflow Developer’s Guide.

The Workflow Engine traps errors produced by function activities by
setting a savepoint before each function activity. If an activity produces
an unhandled exception, the engine performs a rollback to the
savepoint, and sets the activity to the ERROR status.

Note: For this reason, you should never commit within the
PL/SQL procedure of a function activity. The Workflow
Engine never issues a commit as it is the responsibility of the
calling application to commit.

The Workflow Engine then attempts to locate an error process to run by
starting with the activity which caused the error, and then checking
each parent process activity until an associated error process is located.

2 – 10 Oracle Workflow API Reference

Looping

Looping occurs when the completion of an activity causes a transition
to another activity that has already been completed. The first activity
that gets detected as a revisited activity is also called a loop point or
pivot activity. The Workflow Engine can handle a revisited activity in
one of three ways:

• Ignore the activity, and stop further processing of the thread, so
in effect, the activity can only run once.

• Reset the loop to the loop point before reexecuting by first
running logic to undo the activities within the loop.

• Reexecute the loop point and all activities within the loop
without running any logic.

Every activity has an On Revisit poplist field in its Oracle Workflow
Builder Details property page. The On Revisit poplist lets you specify
the behavior of the Workflow Engine when it revisits the activity in a
workflow process. You can set the field to Ignore, Reset, or Loop.

Setting On Revisit to Ignore is useful for implementing activities that
should only run once, even though they can be transitioned to from
multiple sources. For example, this mode allows you to implement a
”logical OR”–type of activity which is transitioned to multiple times,
but completes after the first transition only.

Setting On Revisit to Reset for an activity is useful when you want to
reexecute activities in a loop, but you want to first reset the status of
the activities in the loop. Reset causes the Workflow Engine to do the
following:

• Build a list of all activities visited following the pivot activity.

• Traverse the list of activities, cancelling each activity and
resetting its status.

Cancelling an activity is similar to executing the activity, except that the
activity is executed in ”CANCEL” mode rather than ”RUN” mode.
You can include compensatory logic in ”CANCEL” mode that reverses
any operation performed earlier in ”RUN” mode.

If you set On Revisit to Reset for the pivot activity of a loop that
includes an FYI notification activity, the Workflow Engine cancels the
previous notification before reexecuting the loop and sending a new
notification to the current performer of the notification activity.

Setting On Revisit to Loop for an activity is useful when you want to
simply reexecute activities in a loop without resetting the status of the
activities in the loop. Loop causes the Workflow Engine to reexecute

2 – 11Workflow Engine APIs

the activity in ”RUN” mode without executing any ”CANCEL” mode
logic for the activity.

If you set On Revisit to Loop for the pivot activity of a loop that
includes an FYI notification activity, previous notifications remain open
when the Workflow Engine reexecutes the loop and sends a new
notification to the current performer of the notification activity.

Version / Effective Date

Certain workflow objects in a process definition are marked with a
version number so that more than one version of the object can be in
use at any one time. These objects are:

• Activities—notifications, functions, and processes

Note: Although function activities support versioning, the
underlying PL/SQL code does not, unless implemented by
your developer. You should avoid adding references to new
activity attributes or returning result lookup codes not
modelled by existing activities in your PL/SQL code.

• Activity attributes

• Process activity nodes

• Activity attribute values

• Activity transitions

If you edit and save any of the above objects in Oracle Workflow
Builder to the database, Oracle Workflow automatically creates a new
version of that object or the owning object by incrementing the version
number by one. If you save edits to any of the above objects to an
existing file, then the original objects are overwritten. If you have a
process instance that is still running and you upgrade the underlying
workflow definition in your Workflow server, the process instance
continues to run using the version of the workflow object definitions
with which it was originally initiated.

An effective date controls which version of a definition the engine uses
when executing a process. When you edit a process, you can save it
with an immediate or future effective date. Any new process instance
that is initiated always uses the version that is specified to be effective
at that point in time. See: Opening and Saving Item Types, Oracle
Workflow Developer’s Guide.

Note that Oracle Workflow does not maintain versions for other
workflow objects. Any modifications that you save to the following
objects overwrites the existing definition of the object:

2 – 12 Oracle Workflow API Reference

• Item attributes

• Messages

• Lookup types

Item Type Attributes

A set of item type attributes is defined at both design–time and runtime
for each item. These attributes provide information to the function and
notification activities used in the processes associated with the item
type.

When you define item type attributes at runtime, you can add either
individual attributes or arrays containing several attributes of the same
type, using the appropriate Workflow Engine APIs. Similarly, you can
set the values of existing attributes either individually or in arrays
containing several attributes of the same type.

Use the array APIs whenever you need to add or set the values of large
numbers of item type attributes at once. These APIs improve
performance by using the bulk binding feature in the Oracle Database
to reduce the number of database operations. See:
AddItemAttributeArray: page 2 – 48 and SetItemAttributeArray: page
2 – 56.

Note: These array APIs handle arrays that are composed of
multiple item type attributes grouped together by type. Oracle
Workflow does not support individual item type attributes that
consist of arrays themselves.

Post–Notification Functions

You can associate a post–notification function with a notification
activity. The Workflow Engine executes the post–notification function
in response to an update of the notification’s state after the notification
is delivered. For example, you can specify a post–notification function
that executes when the notification recipient forwards or transfers the
notification. The post–notification function could perform back–end
logic to either validate the legitimacy of the forward or transfer or
execute some other supporting logic.

The post–notification function should be a PL/SQL procedure written
to the same API standards required for function activities. See:
Standard API for PL/SQL Procedures Called by Function Activities,
Oracle Workflow Developer’s Guide.

2 – 13Workflow Engine APIs

When you specify a post–notification function, the Workflow Engine
first sets the context information to use with the function through the
following global engine variables. In some cases the values of the
variables differ depending on the mode in which the post–notification
function is called.

• WF_ENGINE.context_nid – The notification ID. For RUN or
TIMEOUT mode, if the Expand Roles property is checked for the
notification activity, then this variable contains the notification
group ID for the notifications sent to the individual members of
the role.

• WF_ENGINE.context_user – The user who is responsible for
taking the action that updated the notification’s state.

– For RESPOND, FORWARD, TRANSFER, QUESTION, or
ANSWER mode, if the user was acting on his or her own
behalf, then the value of WF_ENGINE.context_user varies
depending on the notification interface. If the user acted
through the Notification Details web page, then
WF_ENGINE.context_user is set to the user name of the
logged in user. If the recipient acted through e–mail, then
this variable is set to ’email:’<email_address>.

– For RESPOND, FORWARD, TRANSFER, QUESTION, or
ANSWER mode, if the user was acting on behalf of another
user by accessing that user’s Worklist web page through the
worklist access feature, then WF_ENGINE.context_user is
set to the user name of that other user, to whom that
worklist belongs.

– For RUN or TIMEOUT mode, WF_ENGINE.context_user is
set to the role assigned as the performer of the notification
activity.

• WF_ENGINE.context_user_comment – Comments appended to
the notification.

– For RESPOND mode, this variable is set to any comments
entered in the special WF_NOTE Respond message
attribute, if that attribute is defined for the notification.

– For FORWARD or TRANSFER mode, this variable is set to
any comments entered when the notification was
reassigned.

– For QUESTION mode, this variable is set to the request
details entered when the request for more information was
submitted.

2 – 14 Oracle Workflow API Reference

– For ANSWER mode, this variable is set to the answering
information provided in response to the request for more
information.

• WF_ENGINE.context_recipient_role – The role currently
designated as the recipient of the notification. This value may be
the same as the value of the WF_ENGINE.context_user variable,
or it may be a group role of which the context user is a member.

• WF_ENGINE.context_original_recipient – The role that has
ownership of and responsibility for the notification. This value
may differ from the value of the
WF_ENGINE.context_recipient_role variable if the notification
has previously been reassigned.

• WF_ENGINE.context_from_role – The role currently specified as
the From role for the notification. This variable may be null if no
From role is specified.

– For RESPOND mode, the From role may be null or may be
set by special logic in the workflow process. See:
#FROM_ROLE Attribute, Oracle Workflow Developer’s Guide.

– For FORWARD or TRANSFER mode, the From role is the
role that reassigned the notification.

– For QUESTION mode, the From role is the role that sent the
request for more information.

– For ANSWER mode, the From role is the role that sent the
answering information.

• WF_ENGINE.context_new_role – The new role to which the
action on the notification is directed.

– For RESPOND mode, this variable is null.

– For FORWARD or TRANSFER mode, this variable is set to
the new recipient role to which the notification is being
reassigned.

– For QUESTION mode, this variable is set to the role to
which the request for more information is being sent.

– For ANSWER mode, this variable is set to the role that sent
the request for more information and is receiving the
answer.

• WF_ENGINE.context_more_info_role – The role to which the
most recent previous request for more information was sent.
This variable may be null if no such request has previously been
submitted for this notification.

2 – 15Workflow Engine APIs

• WF_ENGINE.context_user_key – If the notification was sent as
part of a workflow process, and a user key is set for this process
instance, then WF_ENGINE.context_user_key is set to that user
key. Otherwise, this variable is null.

• WF_ENGINE.context_proxy – For RESPOND, FORWARD,
TRANSFER, QUESTION, or ANSWER mode, if the user who
took that action was acting on behalf of another user through the
worklist access feature, then the value of
WF_ENGINE.context_proxy is the user name of the logged in
user who took the action. Otherwise, this variable is null.

You can reference these global engine variables in your PL/SQL
function.

Note: For RUN mode and TIMEOUT mode, only the
WF_ENGINE.context_nid and WF_ENGINE.context_user
variables are set.

Note: The WF_ENGINE.context_text variable from earlier
versions of Oracle Workflow is replaced by the
WF_ENGINE.context_user and
WF_ENGINE.context_new_role variables. The current version
of Oracle Workflow still recognizes the
WF_ENGINE.context_text variable for backward compatibility,
but moving forward, you should only use the new
WF_ENGINE.context_user and
WF_ENGINE.context_new_role variables where appropriate.

Then when the notification’s state changes, a notification callback
function executes the post–notification function in the mode that
matches the notification’s state: RESPOND, FORWARD, TRANSFER,
QUESTION, or ANSWER.

When a recipient responds, the Workflow Engine initially runs the
post–notification function in VALIDATE mode which allows you to
validate the response values before accepting the response. Then the
Workflow Engine runs the post–notification function in RESPOND
mode to record the response. Finally, when the Notification System
completes execution of the post–notification function in RESPOND
mode, the Workflow Engine automatically runs the post–notification
function again in RUN mode. In this mode, the post–notification
function can perform additional processing such as vote tallying.

If a notification activity times out, the Workflow Engine runs the
post–notification function for the activity in TIMEOUT mode. For a
Voting activity, the TIMEOUT mode logic should identify how to tally
the votes received up until the timeout.

☞

2 – 16 Oracle Workflow API Reference

When the post–notification function completes, the Workflow Engine
erases the global engine variables.

As a final step, if the post–notification function is run in TRANSFER
mode and Expand Roles is not checked for the notification activity, the
Workflow Engine sets the assigned user for the notification to the new
role name specified.

Attention: If the post–notification function returns
ERROR:<errcode> as a result or raises an exception, the
Workflow Engine aborts the operation. For example, if the
post–notification function is executed in FORWARD mode and
it raises an exception because the role being forwarded to is
invalid, an error is displayed to the user and the Forward
operation is not executed. The notification recipient is then
prompted again to take some type of action.

See Also

Notification Model: page 4 – 2

Synchronous, Asynchronous, and Forced Synchronous Processes

A workflow process can be either synchronous or asynchronous. A
synchronous process is a process that can be executed without
interruption from start to finish. The Workflow Engine executes a
process synchronously when the process includes activities that can be
completed immediately, such as function activities that are not deferred
to the background engine. The Workflow Engine does not return
control to the calling application that initiated the workflow until it
completes the process. With a synchronous process, you can
immediately check for process results that were written to item
attributes or directly to the database. However, the user must wait for
the process to complete.

An asynchronous process is a process that the Workflow Engine cannot
complete immediately because it contains activities that interrupt the
flow. Examples of activities that force an asynchronous process include
deferred activities, notifications with responses, blocking activities, and
wait activities. Rather than waiting indefinitely when it encounters one
of these activities, the Workflow Engine sets the audit tables
appropriately and returns control to the calling application. The
workflow process is left in an unfinished state until it is started again.
The process can be restarted by the Notification System, such as when a
user responds to a notification; by the background engine, such as
when a deferred activity is executed; or by the Business Event System,

2 – 17Workflow Engine APIs

such as when an event message is dequeued from an inbound queue
and sent to the workflow process. With an asynchronous process, the
user does not have to wait for the process to complete to continue
using the application. However, the results of the process are not
available until the process is completed at a later time.

In addition to regular synchronous and asynchronous processes, the
Workflow Engine also supports a special class of synchronous
processes called forced synchronous processes. A forced synchronous
process completes in a single SQL session from start to finish and never
inserts into or updates any database tables. As a result, the execution
speed of a forced synchronous process is significantly faster than a
typical synchronous process. The process results are available
immediately upon completion. However, no audit trail is recorded.

There may be cases when your application requires a forced
synchronous process to generate a specific result quickly when
recording an audit trail is not a concern. For example, in Oracle
Applications, several products require Account Generator workflows
to generate a meaningful flexfield code derived from a series of
concatenated segments pulled from various tables. The Account
Generator workflows are forced synchronous processes that compute
and pass back completed flexfield codes to the calling applications
instantaneously.

To create a forced synchronous process, you need to set the item key of
your process to #SYNCH or to wf_engine.eng_synch, which returns the
#SYNCH constant, when you call the necessary WF_ENGINE APIs.
Since a forced synchronous process never writes to the database, using
a non–unique item key such as #SYNCH is not an issue. Your process
definition, however, must adhere to the following set of restrictions:

• No notification activities are allowed.

• Limited blocking–type activities are allowed. A process can
block and restart with a call to WF_ENGINE.CompleteActivity
only if the blocking and restarting activities:

– Occur in the same database session.

– Contain no intervening calls to Oracle Workflow.

– Contain no intervening commits.

• No Error Processes can be assigned to the process or the process’
activities.

• Each function activity behaves as if On Revisit is set to Loop, and
is run in non–cancelling mode, regardless of its actual On Revisit
setting. Loops are allowed in the process.

2 – 18 Oracle Workflow API Reference

• No Master/Detail coordination activities are allowed.

• No parallel flows are allowed in the process, as transitions from
each activity must have a distinct result. This also means that no
<Any> transitions are allowed since they cause parallel flows.

• None of the following Standard activities are allowed:

– And

– Block (restricted by the conditions stated in the Limited
Blocking bullet point above.)

– Defer Thread

– Wait

– Continue Flow/Wait for Flow

– Role Resolution

– Voting

– Compare Execution Time

– Notify

• No use of the background engine, that is, activities are never
deferred.

• No data is ever written to the Oracle Workflow tables and as a
result:

– The process cannot be viewed from the Workflow Monitor.

– No auditing is available for the process.

• Only the following WF_ENGINE API calls are allowed to be
made, and in all cases, the item key supplied to these APIs must
be specified as #SYNCH or wf_engine.eng_synch:

– WF_ENGINE.CreateProcess

– WF_ENGINE.StartProcess

– WF_ENGINE.GetItemAttribute

– WF_ENGINE.SetItemAttribute

– WF_ENGINE.GetActivityAttribute

– WF_ENGINE.CompleteActivity (for the limited usage of
blocking–type activities)

• WF_ENGINE API calls for any item besides the item for the
current synchronous item are not allowed.

☞

2 – 19Workflow Engine APIs

Attention: If you encounter an error from a forced
synchronous process, you should rerun the process with a
unique item key in asynchronous mode and check the error
stack using the Workflow Monitor or the script wfstat.sql. If
the synchronous process completes successfully, the error you
encountered in the forced synchronous process is probably due
to a violation of one of the above listed restrictions. See:
Wfstat.sql, Oracle Workflow Administrator’s Guide.

Note: The item key for a process instance can only contain
single–byte characters. It cannot contain a multibyte value.

See Also

Synchronous, Asynchronous, and Forced Synchronous Workflows,
Oracle Workflow Administrator’s Guide

Business Events

Events from the Business Event System are represented within
workflow processes as event activities. An event activity can either
raise, send, or receive a business event.

A Raise event activity raises an event to the Event Manager, triggering
any subscriptions to that event. The Workflow Engine calls the
WF_EVENT.Raise API to raise the event. See: Raise: page 5 – 28.

A Send event activity sends an event directly to a Business Event
System agent without raising the event to the Event Manager. The
Workflow Engine calls the WF_EVENT.Send API to send the event. See:
Send: page 5 – 34.

A Receive event activity receives an event from the Event Manager into
a workflow process, which then continues the thread of execution from
that activity. The Workflow Engine can receive an event into an activity
in an existing process instance that is waiting for the event, using the
correlation ID in the event message to match the event with the process
to which it belongs. The Workflow Engine can also receive an event
into a Receive event activity that is marked as a Start activity to launch
a new workflow process. The WF_ENGINE.Event API is used to
receive an event into a workflow process. See: Event: page 2 – 80.

See Also

Managing Business Events, Oracle Workflow Developer’s Guide

2 – 20 Oracle Workflow API Reference

Event Activities, Oracle Workflow Developer’s Guide

☞

2 – 21Workflow Engine APIs

Workflow Engine APIs

The Workflow Engine APIs can be called by an application program or
a workflow function in the runtime phase to communicate with the
engine and to change the status of each of the activities. These APIs are
defined in a PL/SQL package called WF_ENGINE.

Many of these Workflow Engine APIs also have corresponding Java
methods that you can call from any Java program to integrate with
Oracle Workflow. The following list indicates whether the Workflow
Engine APIs are available as PL/SQL functions/procedures, as Java
methods, or both.

Attention: Java is case–sensitive and all Java method names
begin with a lower case letter to follow Java naming
conventions.

• CreateProcess: page 2 – 23—PL/SQL and Java

• SetItemUserKey: page 2 – 25—PL/SQL and Java

• GetItemUserKey: page 2 – 26—PL/SQL and Java

• GetActivityLabel: page 2 – 27—PL/SQL

• SetItemOwner: page 2 – 28—PL/SQL and Java

• StartProcess: page 2 – 30—PL/SQL and Java

• LaunchProcess: page 2 – 32—PL/SQL and Java

• SuspendProcess: page 2 – 34—PL/SQL and Java

• ResumeProcess: page 2 – 36—PL/SQL and Java

• AbortProcess: page 2 – 38—PL/SQL and Java

• CreateForkProcess: page 2 – 40—PL/SQL

• StartForkProcess: page 2 – 42—PL/SQL

• Background: page 2 – 43—PL/SQL

• AddItemAttribute: page 2 – 45—PL/SQL and Java

• AddItemAttributeArray: page 2 – 48—PL/SQL

• SetItemAttribute: page 2 – 50—PL/SQL and Java

• setItemAttrFormattedDate: page 2 – 53—Java

• SetItemAttrDocument: page 2 – 54—PL/SQL and Java

• SetItemAttributeArray: page 2 – 56—PL/SQL

• getItemTypes: page 2 – 59—Java

2 – 22 Oracle Workflow API Reference

• GetItemAttribute: page 2 – 60—PL/SQL

• GetItemAttrDocument: page 2 – 62—PL/SQL

• GetItemAttrClob: page 2 – 64—PL/SQL

• getItemAttributes: page 2 – 65—Java

• GetItemAttrInfo: page 2 – 66—PL/SQL

• GetActivityAttrInfo: page 2 – 67—PL/SQL

• GetActivityAttribute: page 2 – 68—PL/SQL

• GetActivityAttrClob: page 2 – 70—PL/SQL

• getActivityAttributes: page 2 – 71—Java

• BeginActivity: page 2 – 72—PL/SQL

• CompleteActivity: page 2 – 74—PL/SQL and Java

• CompleteActivityInternalName: page 2 – 77—PL/SQL

• AssignActivity: page 2 – 79—PL/SQL

• Event: page 2 – 80—PL/SQL

• HandleError: page 2 – 82—PL/SQL and Java

• SetItemParent: page 2 – 85—PL/SQL and Java

• ItemStatus: page 2 – 87—PL/SQL and Java

• getProcessStatus: page 2 – 88—Java

See Also

Standard API for PL/SQL Procedures Called by Function Activities,
Oracle Workflow Developer’s Guide

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

2 – 23Workflow Engine APIs

CreateProcess

procedure CreateProcess

 (itemtype in varchar2,

 itemkey in varchar2,

 process in varchar2 default ’’,

 user_key in varchar2 default null,

 owner_role in varchar2 default null);

public static boolean createProcess

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String process)

Creates a new runtime process for an application item.

For example, a Requisition item type may have a Requisition Approval
Process as a top level process. When a particular requisition is created,
an application calls CreateProcess to set up the information needed to
start the defined process.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type. Item types are defined in the
Workflow Builder.

A string derived usually from the application
object’s primary key. The string uniquely identifies
the item within an item type. The item type and
key together identify the new process and must be
passed to all subsequent API calls for that process.

Note: The item key for a process instance can only contain
single–byte characters. It cannot contain a multibyte value.

Note: You can pass #SYNCH as the itemkey to create a forced
synchronous process. See: Synchronous, Asynchronous, and
Forced Synchronous Processes: page 2 – 16.

An optional argument that allows the selection of a
particular process for that item. Provide the
process internal name. If process is null, the item
type’s selector function is used to determine the

wCtx

itemtype

itemkey

process

☞

Example

2 – 24 Oracle Workflow API Reference

top level process to run. If you do not specify a
selector function and this argument is null, an error
will be raised.

A user–friendly key to assign to the item identified
by the specified item type and item key. This
argument is optional.

A valid role to set as the owner of the item. This
argument is optional.

Caution: Although you can make a call to CreateProcess() and
StartProcess() from a database trigger to initiate a workflow
process, you should avoid doing so in certain circumstances.
For example, if a database entity has headers, lines and details,
and you initiate a workflow process from an AFTER INSERT
trigger at the header–level of that entity, your workflow
process may fail because some subsequent activity in the
process may require information from the entity’s lines or
details level that is not yet populated.

Attention: The Workflow Engine always issues a savepoint
before executing each activity in a process so that it can
rollback to the previous activity in case an error occurs. For
environments such as database triggers or distributed
transactions that do not allow savepoints, the Workflow Engine
automatically traps ”Savepoint not allowed” errors and defers
the execution of the activity. If you initiate a workflow process
from a database trigger, the Workflow Engine immediately
defers the initial start activities to a background engine, so that
they are no longer executing from a database trigger.

The following code excerpt shows an example of how to call
createProcess() in a Java program. The example code is from the
WFTest.java program.

// create an item

if (WFEngineAPI.createProcess(ctx, iType, iKey, pr))

 System.out.println(”Created Item”);

 else

{

 System.out.println(”createProcess failed”);

 WFEngineAPI.showError(ctx);

}

user_key

owner_role

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

2 – 25Workflow Engine APIs

SetItemUserKey

procedure SetItemUserKey

 (itemtype in varchar2,

 itemkey in varchar2,

 userkey in varchar2);

public static boolean setItemUserKey

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String userKey)

Lets you set a user–friendly identifier for an item in a process, which is
initially identified by an item type and item key. The user key is
intended to be a user–friendly identifier to locate items in the Workflow
Monitor and other user interface components of Oracle Workflow.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type.

A string generated usually from the application
object’s primary key. The string uniquely identifies
the item within an item type. The item type and
key together identify the process. See:
CreateProcess: page 2 – 23.

The user key to assign to the item identified by the
specified item type and item key.

wCtx

itemtype or
itemType

itemkey or
itemKey

userkey or
userKey

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

2 – 26 Oracle Workflow API Reference

GetItemUserKey

function GetItemUserKey

 (itemtype in varchar2,

 itemkey in varchar2)

 return varchar2;

public static String getItemUserKey

 (WFContext wCtx,

 String itemType,

 String itemKey)

Returns the user–friendly key assigned to an item in a process,
identified by an item type and item key. The user key is a user–friendly
identifier to locate items in the Workflow Monitor and other user
interface components of Oracle Workflow.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type.

A string generated usually from the application
object’s primary key. The string uniquely identifies
the item within an item type. The item type and
key together identify the process. See:
CreateProcess: page 2 – 23.

wCtx

itemtype or
itemType

itemkey or
itemKey

PL/SQL Syntax

Description

Arguments (input)

2 – 27Workflow Engine APIs

GetActivityLabel

function GetActivityLabel

 (actid in number)

return varchar2;

Returns the instance label of an activity, given the internal activity
instance ID. The label returned has the following format, which is
suitable for passing to other Workflow Engine APIs, such as
CompleteActivity and HandleError, that accept activity labels as
arguments:

<process_name>:<instance_label>

An activity instance ID.actid

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

Example

2 – 28 Oracle Workflow API Reference

SetItemOwner

procedure SetItemOwner

 (itemtype in varchar2,

 itemkey in varchar2,

 owner in varchar2);

public static boolean setItemOwner

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String owner)

A procedure to set the owner of existing items. The owner must be a
valid role. Typically, the role that initiates a transaction is assigned as
the process owner, so that any participant in that role can find and view
the status of that process instance in the Workflow Monitor.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type. Item types are defined in the
Workflow Builder.

A string derived from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the new process and must be
passed to all subsequent API calls for that process.

A valid role.

The following code excerpt shows an example of how to call
setItemOwner() in a Java program. The example code is from the
WFTest.java program.

// set item owner

if (WFEngineAPI.setItemOwner(ctx, iType, iKey, owner))

 System.out.println(”Set Item Owner: ”+owner);

else

{

 System.out.println(”Cannot set owner.”);

wCtx

itemtype

itemkey

owner

2 – 29Workflow Engine APIs

 WFEngineAPI.showError(ctx);

}

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

2 – 30 Oracle Workflow API Reference

StartProcess

procedure StartProcess

 (itemtype in varchar2,

 itemkey in varchar2);

public static boolean startProcess

 (WFContext wCtx,

 String itemType,

 String itemKey)

Begins execution of the specified process. The engine locates the
activity marked as START and then executes it. CreateProcess() must
first be called to define the itemtype and itemkey before calling
StartProcess().

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type.

A string derived from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

Caution: Although you can make a call to CreateProcess() and
StartProcess() from a trigger to initiate a workflow process, you
should avoid doing so in certain circumstances. For example,
if a database entity has headers, lines and details, and you
initiate a workflow process from an AFTER INSERT trigger at
the header–level of that entity, your workflow process may fail
because some subsequent activity in the process may require
information from the entity’s lines or details level that is not yet
populated.

Caution: The Workflow Engine always issues a savepoint
before executing each activity so that it can rollback to the
previous activity in case an error occurs. Because of this
feature, you should avoid initiating a workflow process from a
database trigger because savepoints and rollbacks are not
allowed in a database trigger.

wCtx

itemtype

itemkey

Example

2 – 31Workflow Engine APIs

If you must initiate a workflow process from a database trigger,
you must immediately defer the initial start activities to a
background engine, so that they are no longer executing from a
database trigger. To accomplish this:

– Set the cost of the process start activities to a value greater
than the Workflow Engine threshold (default value is 0.5).

or

– Set the Workflow Engine threshold to be less than 0 before
initiating the process:

begin

save_threshold := WF_ENGINE.threshold;

WF_ENGINE.threshold := –1;

WF_ENGINE.CreateProcess(...);

WF_ENGINE.StartProcess(...);

––Always reset threshold or all activities in this

––session will be deferred.

WF_ENGINE.threshold := save_threshold;

end

(This method has the same effect as the previous method,
but is more secure as the initial start activities are always
deferred even if the activities’ costs change.

Note: You can pass #SYNCH as the itemkey to create a forced
synchronous process. See: Synchronous, Asynchronous, and
Forced Synchronous Processes: page 2 – 16.

Note: The item key for a process instance can only contain
single–byte characters. It cannot contain a multibyte value.

The following code excerpt shows an example of how to call
startProcess() in a Java program. The example code is from the
WFTest.java program.

// start a process

if (WFEngineAPI.startProcess(ctx, iType, iKey))

 System.out.println(”Process Started successfully”);

 else

{

 System.out.println(”launch failed”);

 WFEngineAPI.showError(ctx);

}

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

2 – 32 Oracle Workflow API Reference

LaunchProcess

procedure LaunchProcess

 (itemtype in varchar2,

 itemkey in varchar2,

 process in varchar2 default ’’,

 userkey in varchar2 default ’’,

 owner in varchar2 default ’’);

public static boolean launchProcess

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String process,

 String userKey,

 String owner)

Launches a specified process by creating the new runtime process and
beginning its execution. This is a wrapper that combines CreateProcess
and StartProcess.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type.

A string derived from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the new process and must be
passed to all subsequent API calls for that process.

Note: The item key for a process instance can only contain
single–byte characters. It cannot contain a multibyte value.

Note: You can pass #SYNCH as the itemkey to create a forced
synchronous process. See: Synchronous, Asynchronous, and
Forced Synchronous Processes: page 2 – 16.

An optional argument that allows the selection of a
particular process for that item. Provide the
process internal name. If process is null, the item
type’s selector function is used to determine the

wCtx

itemtype

itemkey

process

☞

2 – 33Workflow Engine APIs

top level process to run. This argument defaults to
null.

The user key to assign to the item identified by the
specified item type and item key. If userkey is null,
then no userkey is assigned to the item instance.

A valid role designated as the owner of the item. If
owner is null, then no owner is assigned to the
process and only the workflow administrator role
can monitor the process.

Caution: Although you can make a call to CreateProcess() and
StartProcess() from a database trigger to initiate a workflow
process, you should avoid doing so in certain circumstances.
For example, if a database entity has headers, lines and details,
and you initiate a workflow process from an AFTER INSERT
trigger at the header–level of that entity, your workflow
process may fail because some subsequent activity in the
process may require information from the entity’s lines or
details level that is not yet populated.

Attention: The Workflow Engine always issues a savepoint
before executing each activity in a process so that it can
rollback to the previous activity in case an error occurs. For
environments such as database triggers or distributed
transactions that do not allow savepoints, the Workflow Engine
automatically traps ”Savepoint not allowed” errors and defers
the execution of the activity. If you initiate a workflow process
from a database trigger, the Workflow Engine immediately
defers the initial start activities to a background engine, so that
they are no longer executing from a database trigger.

userkey

owner

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

Example

2 – 34 Oracle Workflow API Reference

SuspendProcess

procedure SuspendProcess

 (itemtype in varchar2,

 itemkey in varchar2,

 process in varchar2 default ’’);

public static boolean suspendProcess

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String process)

Suspends process execution so that no new transitions occur.
Outstanding notifications can complete by calling CompleteActivity(),
but the workflow does not transition to the next activity. Restart
suspended processes by calling ResumeProcess().

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

An optional argument that allows the selection of a
particular subprocess for that item. Provide the
process activity’s label name. If the process
activity label name does not uniquely identify the
subprocess you can precede the label name with
the internal name of its parent process. For
example,
<parent_process_internal_name>:<label_name>. If this
argument is null, the top level process for the item
is suspended. This argument defaults to null.

The following code excerpt shows an example of how to call
suspendProcess() in a Java program. The example code is from the
WFTest.java program.

wCtx

itemtype

itemkey

process

2 – 35Workflow Engine APIs

// suspend, status should become SUSPEND

System.out.println(”Suspend Process ” + iType +”/”+ iKey +

 ” ...”);

if (WFEngineAPI.suspendProcess(ctx, iType, iKey, null))

 System.out.println(”Seems to suspend successfully”);

else

{

 System.out.println(”suspend failed”);

 WFEngineAPI.showError(ctx);

}

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

Example

2 – 36 Oracle Workflow API Reference

ResumeProcess

procedure ResumeProcess

 (itemtype in varchar2,

 itemkey in varchar2,

 process in varchar2 default ’’);

public static boolean resumeProcess

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String process)

Returns a suspended process to normal execution status. Any activities
that were transitioned to while the process was suspended are now
executed.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

An optional argument that allows the selection of a
particular subprocess for that item type. Provide
the process activity’s label name. If the process
activity label name does not uniquely identify the
subprocess you can precede the label name with
the internal name of its parent process. For
example,
<parent_process_internal_name>:<label_name>. If this
argument is null, the top level process for the item
is resumed. This argument defaults to null.

The following code excerpt shows an example of how to call
resumeProcess() in a Java program. The example code is from the
WFTest.java program.

wCtx

itemtype

itemkey

process

2 – 37Workflow Engine APIs

// resume process and status should be ACTIVE

System.out.println(”Resume Process ” + iType +”/”+ iKey +

 ” ...”);

if (WFEngineAPI.resumeProcess(ctx, iType, iKey, null))

 System.out.println(”Seems to resume successfully”);

else

{

 System.out.println(”resume failed”);

 WFEngineAPI.showError(ctx);

}

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

2 – 38 Oracle Workflow API Reference

AbortProcess

procedure AbortProcess

 (itemtype in varchar2,

 itemkey in varchar2,

 process in varchar2 default ’’,

 result in varchar2 default eng_force);

public static boolean abortProcess

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String process,

 String result)

Aborts process execution and cancels outstanding notifications. The
process status is considered COMPLETE, with a result specified by the
result argument. Also, any outstanding notifications or subprocesses
are set to a status of COMPLETE with a result of force, regardless of
the result argument.

This API also raises the oracle.apps.wf.engine.abort event. Although
Oracle Workflow does not include any predefined subscriptions to this
event, you can optionally define your own subscriptions to this event if
you want to perform custom processing when it occurs. See: Workflow
Engine Events, Oracle Workflow Developer’s Guide and To Define an
Event Subscription (for standalone Oracle Workflow), Oracle Workflow
Developer’s Guide or To Create or Update an Event Subscription (for
Oracle Applications), Oracle Workflow Developer’s Guide.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

An optional argument that allows the selection of a
particular subprocess for that item type. Provide

wCtx

itemtype

itemkey

process

Example

2 – 39Workflow Engine APIs

the process activity’s label name. If the process
activity label name does not uniquely identify the
subprocess you can precede the label name with
the internal name of its parent process. For
example,
<parent_process_internal_name>:<label_name>. If this
argument is null, the top level process for the item
is aborted. This argument defaults to null.

A status assigned to the aborted process. The
result must be one of the values defined in the
process Result Type, or one of the following
standard engine values:

eng_exception

eng_timeout

eng_force

eng_mail

eng_null

This argument defaults to ”eng_force”.

The following code excerpt shows an example of how to call
abortProcess() in a Java program. The example code is from the
WFTest.java program.

// abort process, should see status COMPLETE with result

// code force

System.out.println(”Abort Process ...” + iType + ”/” +

 iKey);

if (!WFEngineAPI.abortProcess(ctx, iType, iKey, pr, null))

{

 System.out.println(”Seemed to have problem aborting...”);

 WFEngineAPI.showError(ctx);

}

result

PL/SQL Syntax

Description

Arguments (input)

2 – 40 Oracle Workflow API Reference

CreateForkProcess

procedure CreateForkProcess

 (copy_itemtype in varchar2,

 copy_itemkey in varchar2,

 new_itemkey in varchar2,

 same_version in boolean default TRUE);

Forks a runtime process by creating a new process that is a copy of the
original. After calling CreateForkProcess(), you can call APIs such as
SetItemOwner(), SetItemUserKey(), or the SetItemAttribute APIs to reset
any item properties or modify any item attributes that you want for the
new process. Then you must call StartForkProcess() to start the new
process.

Use CreateForkProcess() when you need to change item specific
attributes during the course of a process. For example, if an order
cannot be met due to insufficient inventory stock, you can use
CreateForkProcess() to fork a new transaction for the backorder quantity.
Note that any approval notification will be copied. The result is as if
two items were created for this transaction.

A valid item type for the original process to be
copied. The new process will have the same item
type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The copy item type and
key together identify the original process to be
copied.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and new
item key together identify the new process.

Note: The item key for a process instance can only contain
single–byte characters. It cannot contain a multibyte value.

Specify TRUE or FALSE to indicate whether the
new runtime process uses the same version as the
original or the latest version. If you specify TRUE,
CreateForkProcess() copies the item attributes and
status of the original process to the new process. If

copy_itemtype

copy_itemkey

new_itemkey

same_version

2 – 41Workflow Engine APIs

you specify FALSE, CreateForkProcess() copies the
item attributes of the original process to the new
process but does not not copy the status. Defaults
to TRUE.

Caution: Do not call CreateForkProcess() and StartForkProcess()
from within a parallel branch in a process. These APIs do not
copy any branches parallel to their own branch that are not
active.

Note: When you fork an item, Oracle Workflow automatically
creates an item attribute called #FORKED_FROM for the new
item and sets the attribute to the item key of the original item.
This attribute provides an audit trail for the forked item.

PL/SQL Syntax

Description

Arguments (input)

2 – 42 Oracle Workflow API Reference

StartForkProcess

procedure StartForkProcess

 (itemtype in varchar2,

 itemkey in varchar2);

Begins execution of the new forked process that you specify. Before
you call StartForkProcess(), you must first call CreateForkProcess() to
create the new process. You can modify the item attributes of the new
process before calling StartForkProcess().

If the new process uses the same version as the original,
StartForkProcess() copies the status and history of each activity in the
forked process, activity by activity. If the new process uses the latest
version, then StartForkProcess() executes StartProcess().

If you call StartForkProcess() from within a process, any function
activity in the process that had a status of ’Active’ is updated to have a
status of ’Notified.’ You must call CompleteActivity() afterwards to
continue the process.

StartForkProcess() automatically refreshes any notification attributes that
are based on item attributes. Any open notifications in the original
process are copied and sent again in the new process. Closed
notifications are copied but not resent; their status remains remains
’Complete.’

Any Wait activities in the new process are activated at the same time as
the original activities. For example, if a 24 hour Wait activity in the
original process is due to be eligible in two hours, the new Wait activity
is also eligible in two hours.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process.

Note: The item key for a process instance can only contain
single–byte characters. It cannot contain a multibyte value.

Caution: Do not call CreateForkProcess() and StartForkProcess()
from within a parallel branch in a process. These APIs do not
copy any branches parallel to their own branch that are not
active.

itemtype

itemkey

PL/SQL Syntax

Description

Arguments (input)

2 – 43Workflow Engine APIs

Background

procedure Background

 (itemtype in varchar2,

 minthreshold in number default null,

 maxthreshold in number default null,

 process_deferred in boolean default TRUE,

 process_timeout in boolean default FALSE,

 process_stuck in boolean default FALSE);

Runs a background engine for processing deferred activities, timed out
activities, and stuck processes using the parameters specified. The
background engine executes all activities that satisfy the given
arguments at the time that the background engine is invoked. This
procedure does not remain running long term, so you must restart this
procedure periodically. Any activities that are newly deferred or timed
out or processes that become stuck after the current background engine
starts are processed by the next background engine that is invoked.
You may run a script called wfbkgchk.sql to get a list of the activities
waiting to be processed by the next background engine run. See:
Wfbkgchk.sql, Oracle Workflow Administrator’s Guide.

You must not call Background() from within application code. If you
want to call this procedure directly, you can run it from SQL*Plus.
Otherwise, if you are using the standalone version of Oracle Workflow,
you can use one of the sample background engine looping scripts
described below, create your own script to make the background
engine procedure loop indefinitely, or use the Oracle Workflow
Manager component of Oracle Enterprise Manager to schedule a
background engine. If you are using the version of Oracle Workflow
embedded in Oracle Applications, you can use the concurrent program
version of this procedure and take advantage of the concurrent
manager to schedule the background engine to run periodically. You
can also use the Workflow Manager component of Oracle Applications
Manager to submit the background engine concurrent program. See: To
Schedule Background Engines, Oracle Workflow Administrator’s Guide.

A valid item type. If the item type is null the
Workflow engine will run for all item types.

Optional minimum cost threshold for an activity
that this background engine processes, in
hundredths of a second. There is no minimum cost
threshold if this parameter is null.

itemtype

minthreshold

Example Background
Engine Looping

Scripts

2 – 44 Oracle Workflow API Reference

Optional maximum cost threshold for an activity
that this background engine processes in
hundredths of a second. There is no maximum
cost threshold if this parameter is null.

Specify TRUE or FALSE to indicate whether to run
deferred processes. Defaults to TRUE.

Specify TRUE or FALSE to indicate whether to run
timed out processes. Defaults to FALSE.

Specify TRUE or FALSE to indicate whether to run
stuck processes. Defaults to FALSE.

For the standalone version of Oracle Workflow you can use one of two
example scripts to repeatedly run the background engine regularly.

The first example is a sql script stored in a file called wfbkg.sql and is
available on your server in the Oracle Workflow admin/sql subdirectory.
To run this script, go to the directory where the file is located and type
the following command at your operating system prompt:

sqlplus <username/password> @wfbkg <min> <sec>

Replace <username/password> with the Oracle Database account
username and password where you want to run the background
engine. Replace <min> with the number of minutes you want the
background engine to run and replace <sec> with the number of
seconds you want the background engine to sleep between calls.

The second example is a shell script stored in a file called wfbkg.csh and
is available on your server in the Oracle Home bin subdirectory. To run
this script, go to the directory where the file is located and type the
following command at your operating system prompt:

wfbkg.csh <username/password>

Replace <username/password> with the Oracle Database account
username and password where you want to run the background
engine.

maxthreshold

process_deferred

process_timeout

process_stuck

PL/SQL Syntax

Java Syntax

Description

2 – 45Workflow Engine APIs

AddItemAttribute

procedure AddItemAttr

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2,

 text_value in varchar2 default null,

 number_value in number default null,

 date_value in date default null);

public static boolean addItemAttr

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String aName)

public static boolean addItemAttrText

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String aName,

 String aValue)

public static boolean addItemAttrNumber

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String aName,

 BigDecimal numberVal)

public static boolean addItemAttrDate

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String aName,

 String aValue)

Adds a new item type attribute variable to the process. Although most
item type attributes are defined at design time, you can create new
attributes at runtime for a specific process. You can optionally set a
default text, number, or date value for a new item type attribute when
the attribute is created.

Arguments (input)

Example

2 – 46 Oracle Workflow API Reference

If you are using Java, choose the correct method for your attribute type.
To add an empty item type attribute, use addItemAttr(). When adding
an item type attribute with a default value, use addItemAttrText() for all
attribute types except number and date.

Note: If you need to add large numbers of item type attributes
at once, use the AddItemAttributeArray APIs rather than the
AddItemAttribute APIs for improved performance. See:
AddItemAttributeArray: page 2 – 48

Workflow context information. Required for the
Java methods only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

The internal name of the item type attribute.

The default text value for the item type attribute.
Required for the PL/SQL procedure only. Defaults
to null.

The default number value for the item type
attribute. Required for the PL/SQL procedure and
addItemAttrNumber() Java method only. Defaults to
null.

The default date value for the item type attribute.
Required for the PL/SQL procedure only. Defaults
to null.

The default value for the item type attribute.
Required for the addItemAttrText() and
addItemAttrDate() Java methods only.

The following example shows how API calls can be simplified by using
AddItemAttr() to set the default value of a new item type attribute at the
time of creation.

Using AddItemAttr() to create the new attribute and SetItemAttrText() to
set the value of the attribute, the following calls are required:

wCtx

itemtype

itemkey

aname

text_value

number_value or
numberVal

date_value

aValue

2 – 47Workflow Engine APIs

AddItemAttr(’ITYPE’, ’IKEY’, ’NEWCHAR_VAR’);

SetItemAttrText(’ITYPE’, ’IKEY’, ’NEWCHAR_VAR’,

 ’new text values’);

Using AddItemAttr() both to create the new attribute and to set its
value, only the following call is required:

AddItemAttr(’ITYPE’, ’IKEY’, ’NEWCHAR_VAR’,

 ’new text values’);

PL/SQL Syntax

Description

2 – 48 Oracle Workflow API Reference

AddItemAttributeArray

procedure AddItemAttrTextArray

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in Wf_Engine.NameTabTyp,

 avalue in Wf_Engine.TextTabTyp);

procedure AddItemAttrNumberArray

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in Wf_Engine.NameTabTyp,

 avalue in Wf_Engine.NumTabTyp);

procedure AddItemAttrDateArray

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in Wf_Engine.NameTabTyp,

 avalue in Wf_Engine.DateTabTyp);

Adds an array of new item type attributes to the process. Although
most item type attributes are defined at design time, you can create
new attributes at runtime for a specific process. Use the
AddItemAttributeArray APIs rather than the AddItemAttribute APIs for
improved performance when you need to add large numbers of item
type attributes at once.

Use the correct procedure for your attribute type. All attribute types
except number and date use AddItemAttrTextArray.

Note: The AddItemAttributeArray APIs use PL/SQL table
composite datatypes defined in the WF_ENGINE package. The
following table shows the column datatype definition for each
PL/SQL table type.

PL/SQL Table Type Column Datatype Definition

NameTabTyp Wf_Item_Attribute_Values.NAME%TYPE

TextTabTyp Wf_Item_Attribute_Values.TEXT_VALUE%TYPE

Table 2 – 1 (Page 1 of 2)

Arguments (input)

2 – 49Workflow Engine APIs

Column Datatype DefinitionPL/SQL Table Type

NumTabTyp Wf_Item_Attribute_Values.NUMBER_VALUE%TYPE

DateTabTyp Wf_Item_Attribute_Values.DATE_VALUE%TYPE

Table 2 – 1 (Page 2 of 2)

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

An array of the internal names of the new item
type attributes.

An array of the values for the new item type
attributes.

itemtype

itemkey

aname

avalue

PL/SQL Syntax

Java Syntax

2 – 50 Oracle Workflow API Reference

SetItemAttribute

procedure SetItemAttrText

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2,

 avalue in varchar2);

procedure SetItemAttrNumber

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2,

 avalue in number);

procedure SetItemAttrDate

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2,

 avalue in date);

procedure SetItemAttrEvent

 (itemtype in varchar2,

 itemkey in varchar2,

 name in varchar2,

 event in wf_event_t);

public static boolean setItemAttrText

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String aName,

 String aValue)

public static boolean setItemAttrNumber

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String aName,

 BigDecimal aValue)

public static boolean setItemAttrDate

Description

Arguments (input)

2 – 51Workflow Engine APIs

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String aName,

 String aValue)

public static boolean setItemAttrDate

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String attributeName,

 java.util.Date attributeValue)

Sets the value of an item type attribute in a process. Use the correct
procedure for your attribute type. All attribute types except number,
date, and event use SetItemAttrText.

In Java, there are two implementations of setItemAttrDate(). One lets
you provide the date value as a Java String object, while the other lets
you provide the date value as a Java Date object.

Note: If you need to set the values of large numbers of item
type attributes at once, use the SetItemAttributeArray APIs
rather than the SetItemAttribute APIs for improved
performance. See: SetItemAttributeArray: page 2 – 56

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

Note: You can pass #SYNCH as the itemkey to create a forced
synchronous process. See: Synchronous, Asynchronous, and
Forced Synchronous Processes: page 2 – 16.

The internal name of the item type attribute.

The value for the item type attribute.

wCtx

itemtype

itemkey

aname, name, or
attributeName

avalue, event, or
attributeValue

Example 1

Example 2

2 – 52 Oracle Workflow API Reference

The following code excerpt shows an example of how to call
setItemAttrText() in a Java program. The example code is from the
WFTest.java program.

if (WFEngineAPI.setItemAttrText(ctx, iType, iKey,

 ”REQUESTOR_USERNAME”, owner))

 System.out.println(”Requestor: ”+owner);

 else

{

 WFEngineAPI.showError(ctx);

}

If an event message is stored within an item attribute of type event, you
can access the event data CLOB within that event message by creating
an item attribute of type URL for the event data. The following sample
PL/SQL code shows how to set the value of the URL attribute in the
standalone version of Oracle Workflow to reference the event data.

l_eventdataurl := Wfa_html.base_url||’Wf_Event_Html.

EventDataContents?P_EventAttribute=EVENT_MESSAGE’||’&’||

’P_ItemType=’||itemtype||’&’||’P_ItemKey=’||itemkey||’&’||

’p_mime_type=text/xml’;

WF_ENGINE.SetItemAttrText(’<item_type>’, ’<item_key>’,

 ’EVENTDATAURL’, l_eventdataurl);

If you have applied a stylesheet to the event data XML document to
create HTML, set the p_mime_type parameter in the URL to text/html
instead.

If you omit the p_mime_type parameter from the URL, the MIME type
defaults to text/xml.

See Also

Event Message Structure: page 5 – 9

Java Syntax

Description

Arguments (input)

2 – 53Workflow Engine APIs

setItemAttrFormattedDate

public static boolean setItemAttrFormattedDate

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String attributeName,

 String attributeValue

 String dateFormat)

Sets the value of an item type attribute of type date in a process with a
date value provided as a formatted string.

Workflow context information. See: Oracle
Workflow Context: page 2 – 5.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

The internal name of the item type attribute.

The date value for the item type attribute.

The format of the date value. The format must be a
date format mask that is supported by the Oracle
Database. If no format is provided, the default
value is the canonical date format for the database.
See: Date Formats, Oracle Database Globalization
Support Guide.

wCtx

itemtype

itemkey

attributeName

attributeValue

dateFormat

☞

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

2 – 54 Oracle Workflow API Reference

SetItemAttrDocument

Attention: Document management functionality is reserved
for future use. This description of the SetItemAttrDocument
API is provided for reference only.

procedure SetItemAttrDocument

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2,

 documentid in varchar2);

public static boolean setItemAttrDocument

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String aName,

 String documentId)

Sets the value of an item attribute of type document, to a document
identifier.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

Note: You can pass #SYNCH as the itemkey to create a forced
synchronous process. See: Synchronous, Asynchronous, and
Forced Synchronous Processes: page 2 – 16.

The internal name of the item type attribute.

The value for the item type attribute as a fully
concatenated string of the following values:

DM:<node_id>:<doc_id>:<version>

wCtx

itemtype

itemkey

aname

documentid

2 – 55Workflow Engine APIs

<node_id> is the node ID assigned to the document
management system node as defined in the
Document Management Nodes web page.

<doc_id> is the document ID of the document, as
assigned by the document management system
where the document resides.

<version> is the version of the document. If a
version is not specified, the latest version is
assumed.

PL/SQL Syntax

Description

2 – 56 Oracle Workflow API Reference

SetItemAttributeArray

procedure SetItemAttrTextArray

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in Wf_Engine.NameTabTyp,

 avalue in Wf_Engine.TextTabTyp);

procedure SetItemAttrNumberArray

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in Wf_Engine.NameTabTyp,

 avalue in Wf_Engine.NumTabTyp);

procedure SetItemAttrDateArray

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in Wf_Engine.NameTabTyp,

 avalue in Wf_Engine.DateTabTyp);

Sets the values of an array of item type attributes in a process. Use the
SetItemAttributeArray APIs rather than the SetItemAttribute APIs for
improved performance when you need to set the values of large
numbers of item type attributes at once.

Use the correct procedure for your attribute type. All attribute types
except number and date use SetItemAttrTextArray.

Note: The SetItemAttributeArray APIs use PL/SQL table
composite datatypes defined in the WF_ENGINE package. The
following table shows the column datatype definition for each
PL/SQL table type.

PL/SQL Table Type Column Datatype Definition

NameTabTyp Wf_Item_Attribute_Values.NAME%TYPE

TextTabTyp Wf_Item_Attribute_Values.TEXT_VALUE%TYPE

NumTabTyp Wf_Item_Attribute_Values.NUMBER_VALUE%TYPE

DateTabTyp Wf_Item_Attribute_Values.DATE_VALUE%TYPE

Table 2 – 2 (Page 1 of 1)

Arguments (input)

Example

2 – 57Workflow Engine APIs

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

An array of the internal names of the item type
attributes.

An array of the values for the item type attributes.

The following example shows how using the SetItemAttributeArray APIs
rather than the SetItemAttribute APIs can help reduce the number of
calls to the database.

Using SetItemAttrText():

SetItemAttrText(’ITYPE’, ’IKEY’, ’VAR1’, ’value1’);

SetItemAttrText(’ITYPE’, ’IKEY’, ’VAR2’, ’value2’);

SetItemAttrText(’ITYPE’, ’IKEY’, ’VAR3’, ’value3’);

// Multiple calls to update the database.

Using SetItemAttrTextArray():

declare

 varname Wf_Engine.NameTabTyp;

 varval Wf_Engine.TextTabTyp;

begin

 varname(1) := ’VAR1’;

 varval(1) := ’value1’;

 varname(2) := ’VAR2’;

 varval(2) := ’value2’;

 varname(3) := ’VAR3’;

 varval(3) := ’value3’;

Wf_Engine.SetItemAttrTextArray(’ITYPE’, ’IKEY’, varname,

 varval);

exception

 when OTHERS then

 // handle your errors here

 raise;

end;

itemtype

itemkey

aname

avalue

2 – 58 Oracle Workflow API Reference

// Only one call to update the database.

Java Syntax

Description

Arguments (input)

2 – 59Workflow Engine APIs

getItemTypes

public static WFTwoDArray getItemTypes

 (WFContext wCtx)

Returns a list of all the item types defined in the Oracle Workflow
database as a two dimensional data object.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

wCtx

PL/SQL Syntax

Description

Arguments (input)

2 – 60 Oracle Workflow API Reference

GetItemAttribute

function GetItemAttrText

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2,

 ignore_notfound in boolean default FALSE)

 return varchar2;

function GetItemAttrNumber

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2,

 ignore_notfound in boolean default FALSE)

 return number;

function GetItemAttrDate

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2,

 ignore_notfound in boolean default FALSE) return date;

function GetItemAttrEvent

 (itemtype in varchar2,

 itemkey in varchar2,

 name in varchar2) return wf_event_t;

Returns the value of an item type attribute in a process. Use the correct
function for your attribute type. All attribute types except number,
date, and event use GetItemAttrText.

For GetItemAttrText(), GetItemAttrNumber(), and GetItemAttrDate(), you
can specify TRUE for the ignore_notfound parameter to ignore the
exception encountered if the specified item type attribute does not
exist. In this case the function returns a null value but does not raise an
exception. For example, you can use this parameter if a new item type
attribute is added to an item type, and your code needs to handle both
the earlier version and the upgraded version of the item type.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the

itemtype

itemkey

2 – 61Workflow Engine APIs

item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

Note: Pass #SYNCH as the itemkey to create a forced
synchronous process. See: Synchronous, Asynchronous, and
Forced Synchronous Processes: page 2 – 16.

The internal name of an item type attribute, for
GetItemAttrText(), GetItemAttrNumber(), and
GetItemAttrDate().

The internal name of an item type attribute, for
GetItemAttrEvent().

Specify TRUE or FALSE to indicate whether to
ignore the exception if the specified item type
attribute does not exist, for GetItemAttrText(),
GetItemAttrNumber(), and GetItemAttrDate(). If you
specify TRUE and the item type attribute you
specify does not exist, the function returns a null
value but does not raise an exception. Defaults to
FALSE.

See Also

Event Message Structure: page 5 – 9

aname

name

ignore_notfound

☞

PL/SQL Syntax

Description

Arguments (input)

2 – 62 Oracle Workflow API Reference

GetItemAttrDocument

Attention: Document management functionality is reserved
for future use. This description of the GetItemAttrDocument
API is provided for reference only.

function GetItemAttrDocument

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2,

 ignore_notfound in boolean default FALSE)

 return varchar2;

Returns the document identifier for a DM document–type item
attribute. The document identifier is a concatenated string of the
following values:

DM:<nodeid>:<documentid>:<version>

<nodeid> is the node ID assigned to the document management system
node as defined in the Document Management Nodes web page.

<documentid> is the document ID of the document, as assigned by the
document management system where the document resides.

<version> is the version of the document. If a version is not specified,
the latest version is assumed.

You can specify TRUE for the ignore_notfound parameter to ignore
the exception encountered if the specified item type attribute does not
exist. In this case the function returns a null value but does not raise an
exception. For example, you can use this parameter if a new item type
attribute is added to an item type, and your code needs to handle both
the earlier version and the upgraded version of the item type.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

Note: Pass #SYNCH as the itemkey to create a forced
synchronous process. See: Synchronous, Asynchronous, and
Forced Synchronous Processes: page 2 – 16.

itemtype

itemkey

2 – 63Workflow Engine APIs

The internal name of the item type attribute.

Specify TRUE or FALSE to indicate whether to
ignore the exception if the specified item type
attribute does not exist. If you specify TRUE and
the item type attribute you specify does not exist,
the function returns a null value but does not raise
an exception. Defaults to FALSE.

aname

ignore_notfound

PL/SQL Syntax

Description

Arguments (input)

2 – 64 Oracle Workflow API Reference

GetItemAttrClob

function GetItemAttrClob

 (itemtype in varchar2,

 itemkey in varchar2,

 aname in varchar2) return clob;

Returns the value of an item type attribute in a process as a character
large object (CLOB).

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

The internal name of an item type attribute.

itemtype

itemkey

aname

Java Syntax

Description

Arguments (input)

2 – 65Workflow Engine APIs

getItemAttributes

public static WFTwoDArray getItemAttributes

 (WFContext wCtx,

 String itemType,

 String itemKey)

Returns a list of all the item attributes, their types, and their values for
the specified item type instance as a two dimensional data object.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

wCtx

itemtype

itemkey

PL/SQL Syntax

Description

Arguments (input)

2 – 66 Oracle Workflow API Reference

GetItemAttrInfo

procedure GetItemAttrInfo

 (itemtype in varchar2,

 aname in varchar2,

 atype out varchar2,

 subtype out varchar2,

 format out varchar2);

Returns information about an item type attribute, such as its type and
format, if any is specified. Currently, subtype information is not
available for item type attributes

A valid item type.

The internal name of a item type attribute.

itemtype

aname

PL/SQL Syntax

Description

Arguments (input)

2 – 67Workflow Engine APIs

GetActivityAttrInfo

procedure GetActivityAttrInfo

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 aname in varchar2,

 atype out varchar2,

 subtype out varchar2,

 format out varchar2);

Returns information about an activity attribute, such as its type and
format, if any is specified. This procedure currently does not return
any subtype information for activity attributes.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

The activity ID for a particular usage of an activity
in a process definition. Also referred to as the
activity ID of the node

The internal name of an activity attribute.

itemtype

itemkey

actid

aname

PL/SQL Syntax

Description

2 – 68 Oracle Workflow API Reference

GetActivityAttribute

function GetActivityAttrText

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 aname in varchar2,

 ignore_notfound in boolean default FALSE)

 return varchar2;

function GetActivityAttrNumber

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 aname in varchar2,

 ignore_notfound in boolean default FALSE)

 return number;

function GetActivityAttrDate

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 aname in varchar2,

 ignore_notfound in boolean default FALSE) return date;

function GetActivityAttrEvent

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 name in varchar2) return wf_event_t;

Returns the value of an activity attribute in a process. Use the correct
function for your attribute type. If the attribute is a Number or Date
type, then the appropriate function translates the number/date value to
a text–string representation using the attribute format.

Note: Use GetActivityAttrText() for Form, URLs, lookups and
document attribute types.

For GetActivityAttrText(), GetActivityAttrNumber(), and
GetActivityAttrDate(), you can specify TRUE for the ignore_notfound
parameter to ignore the exception encountered if the specified activity
attribute does not exist. In this case the function returns a null value
but does not raise an exception. For example, you can use this
parameter if a new activity attribute is added to an activity, and your

Arguments (input)

2 – 69Workflow Engine APIs

code needs to handle both the earlier version and the upgraded version
of the activity.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

Note: Pass #SYNCH as the itemkey to create a forced
synchronous process. See: Synchronous, Asynchronous, and
Forced Synchronous Processes: page 2 – 16.

The activity ID for a particular usage of an activity
in a process definition. Also referred to as the
activity ID of the node.

The internal name of an activity attribute, for
GetActivityAttrText(), GetActivityAttrNumber(), and
GetActivityAttrDate().

The internal name of an activity attribute, for
GetActivityAttrEvent().

Specify TRUE or FALSE to indicate whether to
ignore the exception if the specified activity
attribute does not exist, for GetActivityAttrText(),
GetActivityAttrNumber(), and GetActivityAttrDate().
If you specify TRUE and the activity attribute you
specify does not exist, the function returns a null
value but does not raise an exception. Defaults to
FALSE.

See Also

Event Message Structure: page 5 – 9

itemtype

itemkey

actid

aname

name

ignore_notfound

PL/SQL Syntax

Description

Arguments (input)

2 – 70 Oracle Workflow API Reference

GetActivityAttrClob

function GetActivityAttrClob

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 aname in varchar2) return clob;

Returns the value of an activity attribute in a process as a character
large object (CLOB).

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

The activity ID for a particular usage of an activity
in a process definition. Also referred to as the
activity ID of the node.

The internal name of an activity attribute.

itemtype

itemkey

actid

aname

Java Syntax

Description

Arguments (input)

2 – 71Workflow Engine APIs

getActivityAttributes

public static WFTwoDArray getActivityAttributes

 (WFContext wCtx,

 String itemType,

 String itemKey,

 BigDecimal actID)

Returns a list of all the activity attributes, their types, and their values
for the specified activity as a two dimensional data object.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

The activity ID for a particular usage of an activity
in a process definition. Also referred to as the
activity ID of the node.

wCtx

itemtype

itemkey

actID

PL/SQL Syntax

Description

Arguments (input)

Example

2 – 72 Oracle Workflow API Reference

BeginActivity

procedure BeginActivity

 (itemtype in varchar2,

 itemkey in varchar2,

 activity in varchar2);

Determines if the specified activity can currently be performed on the
process item and raises an exception if it cannot.

The CompleteActivity() procedure automatically performs this function
as part of its validation. However, you can use BeginActivity to verify
that the activity you intend to perform is currently allowed before
actually calling it. See: CompleteActivity: page 2 – 74.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process.

The activity node to perform on the process.
Provide the activity node’s label name. If the
activity node label name does not uniquely identify
the activity node you can precede the label name
with the internal name of its parent process. For
example,
<parent_process_internal_name>:<label_name>.

/*Verify that a credit check can be performed on an order.

If it is allowed, perform the credit check, then notify the

Workflow Engine when the credit check completes.*/

begin

wf_engine.BeginActivity(’ORDER’,

to_char(order_id),’CREDIT_CHECK’);

OK := TRUE;

exception

when others then

WF_CORE.Clear;

OK := FALSE;

end;

if OK then

–– perform activity ––

itemtype

itemkey

activity

2 – 73Workflow Engine APIs

 wf_engine.CompleteActivity(’ORDER’, to_char(order_id),

’CREDIT_CHECK’ :result_code);

end if;

PL/SQL Syntax

Java Syntax

Description

2 – 74 Oracle Workflow API Reference

CompleteActivity

procedure CompleteActivity

 (itemtype in varchar2,

 itemkey in varchar2,

 activity in varchar2,

 result in varchar2);

public static boolean completeActivity

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String activity,

 String result)

Notifies the Workflow Engine that the specified activity has been
completed for a particular item. This procedure can be called for the
following situations:

• To indicate a completed activity with an optional result—This
signals the Workflow Engine that an asynchronous activity has
been completed. This procedure requires that the activity
currently has a status of ’Notified’. An optional activity
completion result can also be passed. The result can determine
what transition the process takes next.

• To create and start an item—You can call CompleteActivity() for a
’Start’ activity to implicitly create and start a new item. ’Start’
activities are designated as the beginning of a process in the
Workflow Builder. The item type and key specified in this call
must be passed to all subsequent calls that operate on this item.

Use CompleteActivity() if you cannot use CreateProcess() and
StartProcess() to start your process. For example, call
CompleteActivity() if you need to start a process with an activity
node that is mid–stream in a process thread and not at the
beginning of a process thread. The activity node you specify as
the beginning of the process must be set to ’Start’ in the Node tab
of its property page or else an error will be raised.

Note: Starting a process using CompleteActivity() differs from
starting a process using CreateProcess() and StartProcess() in
these ways:

– The ’Start’ activity called with CompleteActivity() may or
may not have incoming transitions. StartProcess() executes

Arguments (input)

2 – 75Workflow Engine APIs

only ’Start’ activities that do not have any incoming
transitions.

– CompleteActivity() only completes the single ’Start’ activity
with which it is called. Other ’Start’ activities in the process
are not completed. StartProcess(), however, executes every
activity in the process that is marked as a ’Start’ activity and
does not have any incoming transitions.

– CompleteActivity() does not execute the activity with which
it is called; it simply marks the activity as complete.
StartProcess() does execute the ’Start’ activities with which it
starts a process.

– When you use CompleteActivity() to start a new process, the
item type of the activity being completed must either have a
selector function defined to choose a root process, or have
exactly one runnable process with the activity being
completed marked as a ’Start’ activity. You cannot explicitly
specify a root process as you can with StartProcess().

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process.

The name of the activity node that is completed.
Provide the activity node’s label name. If the
activity node label name does not uniquely identify
the subprocess you can precede the label name
with the internal name of its parent process. For
example,
<parent_process_internal_name>:<label_name>. This
activity node must be marked as a ’Start’ activity.

An optional activity completion result. Possible
values are determined by the process activity’s
Result Type, or one of the engine standard results.
See: AbortProcess: page 2 – 38.

wCtx

itemtype or
itemType

itemkey or
itemKey

activity

result

Example 1

Example 2

Example 3

2 – 76 Oracle Workflow API Reference

/*Complete the ’ENTER ORDER’ activity for the ’ORDER’ item

type. The ’ENTER ORDER’ activity allows creation of new

items since it is the start of a workflow, so the item is

created by this call as well.*/

wf_engine.CompleteActivity(’ORDER’, to_char(order.order_id),

 ’ENTER_ORDER’, NULL);

/*Complete the ’LEGAL REVIEW’ activity with status

’APPROVED’. The item must already exist.*/

wf_engine.CompleteActivity(’ORDER’, ’1003’, ’LEGAL_REVIEW’,

 ’APPROVED’);

/*Complete the BLOCK activity which is used in multiple

subprocesses in parallel splits.*/

wf_engine.CompleteActivity(’ORDER’, ’1003’,

’ORDER_PROCESS:BLOCK–3’,

 ’null’);

PL/SQL Syntax

Description

Arguments (input)

2 – 77Workflow Engine APIs

CompleteActivityInternalName

procedure CompleteActivityInternalName

 (itemtype in varchar2,

 itemkey in varchar2,

 activity in varchar2,

 result in varchar2);

Notifies the Workflow Engine that the specified activity has been
completed for a particular item. This procedure requires that the
activity currently has a status of ’Notified’. An optional activity
completion result can also be passed. The result can determine what
transition the process takes next.

CompleteActivityInternalName() is similar to CompleteActivity() except
that CompleteActivityInternalName() identifies the activity to be
completed by the activity’s internal name, while CompleteActivity()
identifies the activity by the activity node label name. You should only
use CompleteActivityInternalName() when you do not know the activity
node label name. If you do know the activity node label name, use
CompleteActivity() instead. See: CompleteActivity: page 2 – 74.

Note: Unlike CompleteActivity(), you cannot use
CompleteActivityInternalName() to start a process. Also, you
cannot use CompleteActivityInternalName() with a synchronous
process.

When CompleteActivityInternalName() is executed, there must be exactly
one instance of the specified activity with a status of ’Notified’. If there
are multiple instances of the activity with ’Notified’ statuses, the
process enters an ’ERROR’ state.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process.

The internal name of the activity that is completed.
If the activity internal name does not uniquely
identify the subprocess you can precede the
activity internal name with the internal name of its
parent process. For example,
<parent_process_internal_name>:<activity_internal_
name>.

itemtype

itemkey

activity

2 – 78 Oracle Workflow API Reference

An optional activity completion result. Possible
values are determined by the process activity’s
Result Type, or one of the engine standard results.
See: AbortProcess: page 2 – 38.

result

PL/SQL Syntax

Description

Arguments (input)

2 – 79Workflow Engine APIs

AssignActivity

procedure AssignActivity

 (itemtype in varchar2,

 itemkey in varchar2,

 activity in varchar2,

 performer in varchar2);

Assigns or reassigns an activity to another performer. This procedure
may be called before the activity is transitioned to. For example, a
function activity earlier in the process may determine the performer of
a later activity.

If a new user is assigned to a notification activity that already has an
outstanding notification, the outstanding notification is canceled and a
new notification is generated for the new user by calling
WF_Notification.Transfer.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process.

The label name of the activity node. If the activity
node label name does not uniquely identify the
activity node you can precede the label name with
the internal name of its parent process. For
example,
<parent_process_internal_name>:<label_name>.

The name of the user who will perform the activity
(the user who receives the notification). The name
should be a role name from the Oracle Workflow
directory services.

itemtype

itemkey

activity

performer

PL/SQL Syntax

Description

2 – 80 Oracle Workflow API Reference

Event

procedure Event

 (itemtype in varchar2,

 itemkey in varchar2,

 process_name in varchar2 default null,

 event_message in wf_event_t);

Receives an event from the Business Event System into a workflow
process.

If the specified item key already exists, the event is received into that
item. If the item key does not already exist, but the specified process
includes an eligible Receive event activity marked as a Start activity, the
Workflow Engine creates a new item running that process.

Within the workflow process that receives the event, the procedure
searches for eligible Receive event activities. For an activity to be
eligible to receive an event, its event filter must either be set to that
particular event, set to an event group of which that event is a member,
or left blank to accept any event. Additionally, the activity must either
be marked as a Start activity, or it must have an activity status of
NOTIFIED, meaning the process has transitioned to that activity and is
waiting to receive the event.

For each eligible Receive event activity, Event() stores the event name,
event key, and event message in the item type attributes specified in the
event activity node, if they have been defined. Additionally, the
procedure sets any parameters in the event message parameter list as
item type attributes for the process, creating new item type attributes if
a corresponding attribute does not already exist for any parameter. It
also sets the subscription’s globally unique identifier (GUID) as a
dynamic item attribute so that the workflow process can reference
other information in the subscription definition. Then the Workflow
Engine begins a thread of execution from the event activity.

If no eligible Receive event activity exists for a received event, the
procedure returns an exception and an error message.

Note: If an event arrives at a Start activity to launch a new
process instance, the Workflow Engine also searches for all
other receive event activities that are marked as Start activities
and that do not have any incoming transitions, regardless of
their event filter. For these activities, the Workflow Engine sets
the activity status to ’NOTIFIED’ so that they will be ready to
receive an event if any more events are sent to this process.
This feature lets you design a workflow process that requires

Arguments (input)

2 – 81Workflow Engine APIs

multiple events to be received when you do not know in
advance the order in which the events will arrive.

Note: If the event received by a Receive event activity was
originally raised by a Raise event activity in another workflow
process, the item type and item key for that process are
included in the parameter list within the event message. In this
case, the Workflow Engine automatically sets the specified
process as the parent for the process that receives the event,
overriding any existing parent setting. See: SetItemParent: page
2 – 85.

A valid item type.

A string that uniquely identifies the item within an
item type. The item type and key together identify
the process.

Note: The item key for a process instance can only contain
single–byte characters. It cannot contain a multibyte value.

An optional argument that allows the selection of a
particular subprocess for that item type. Provide
the process activity’s label name. If the process
activity label name does not uniquely identify the
subprocess you can precede the label name with
the internal name of its parent process. For
example,
<parent_process_internal_name>:<label_name>. If this
argument is null, the top level process for the item
is started. This argument defaults to null.

The event message containing the details of the
event.

itemtype

itemkey

process_name

event_message

PL/SQL Syntax

Java Syntax

Description

2 – 82 Oracle Workflow API Reference

HandleError

procedure HandleError

 (itemtype in varchar2,

 itemkey in varchar2,

 activity in varchar2,

 command in varchar2,

 result in varchar2);

public static boolean handleError

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String activity,

 String command,

 String result)

This procedure is generally called from an activity in an ERROR
process to handle any process activity that has encountered an error.

You can also call this procedure for any arbitrary activity in a process,
to rollback part of your process to that activity. The activity that you
call this procedure with can have any status and does not need to have
been executed. The activity can also be in a subprocess. If the activity
node label is not unique within the process you may precede the
activity node label name with the internal name of its parent process.
For example, <parent_process_internal_name>:<label_name>.

This procedure clears the activity specified and all activities following
it that have already been transitioned to by reexecuting each activity in
’Cancel’ mode. For an activity in the ’Error’ state, there are no other
executed activities following it, so the procedure simply clears the
errored activity.

Once the activities are cleared, this procedure resets any parent
processes of the specified activity to a status of ’Active’, if they are not
already active.

The procedure then handles the specified activity based on the
command you provide: SKIP or RETRY.

This API also raises the oracle.apps.wf.engine.skip event or the
oracle.apps.wf.engine.retry event, depending on the command you
provide. Although Oracle Workflow does not include any predefined
subscriptions to these events, you can optionally define your own
subscriptions to these events if you want to perform custom processing

Arguments (input)

2 – 83Workflow Engine APIs

when they occur. See: Workflow Engine Events, Oracle Workflow
Developer’s Guide and To Define an Event Subscription (for standalone
Oracle Workflow), Oracle Workflow Developer’s Guide or To Create or
Update an Event Subscription (for Oracle Applications), Oracle
Workflow Developer’s Guide.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process.

The activity node that encountered the error or that
you want to undo. Provide the label name of the
activity node. If the activity node label name does
not uniquely identify the subprocess you can
precede the label name with the internal name of
its parent process. For example,
<parent_process_internal_name>:<label_name>.

One of two commands that determine how to
handle the process activity:

SKIP—do not reexecute the activity, but mark the
activity as complete with the supplied result and
continue execution of the process from that activity.

RETRY—reexecute the activity and continue
execution of the process from that activity.

The result you wish to supply if the command is
SKIP.

Note: An item’s active date and the version number of the
process that the item is transitioning through can never change
once an item is created. Occasionally, however, you may want
to use HandleError to manually make changes to your process
for an existing item.

If the changes you make to a process are minor, you can use
HandleError to manually push an item through activities that

wCtx

item_type or
itemType

item_key or
itemKey

activity

command

result

2 – 84 Oracle Workflow API Reference

will error or redirect the item to take different transitions in the
process.

If the changes you want to make to a process are extensive,
then you need to perform at least the following steps:

– Abort the process by calling WF_ENGINE.AbortProcess().

– Purge the existing item by calling WF_PURGE.Items().

– Revise the process.

– Recreate the item by calling WF_ENGINE.CreateProcess().

– Restart the revised process at the appropriate activity by
calling WF_ENGINE.HandleError().

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

2 – 85Workflow Engine APIs

SetItemParent

procedure SetItemParent

 (itemtype in varchar2,

 itemkey in varchar2,

 parent_itemtype in varchar2,

 parent_itemkey in varchar2,

 parent_context in varchar2);

public static boolean setItemParent

 (WFContext wCtx,

 String itemType,

 String itemKey,

 String parentItemType,

 String parentItemKey,

 String parentContext)

Defines the parent/child relationship for a master process and a detail
process. This API must be called by any detail process spawned from a
master process to define the parent/child relationship between the two
processes. You make a call to this API after you call the CreateProcess
API, but before you call the StartProcess API for the detail process.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the child process.

Note: The item key for a process instance can only contain
single–byte characters. It cannot contain a multibyte value.

A valid item type for the parent process.

A string generated from the application object’s
primary key to uniquely identify the item within

wCtx

itemtype or
itemType

itemkey or
itemKey

parent_itemtype
or
parentItemType

parent_itemkey
or parentItemKey

2 – 86 Oracle Workflow API Reference

the parent item type. The parent item type and key
together identify the parent process.

Note: The item key for a process instance can only contain
single–byte characters. It cannot contain a multibyte value.

If the parent process contains more than one Wait
for Flow activity, set this parameter to the activity
label name for the Wait for Flow activity node that
corresponds to this detail process. If the parent
process contains only one Wait for Flow activity,
you can leave the parent context null.

parent_context or
parentContext

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

Example

2 – 87Workflow Engine APIs

ItemStatus

procedure ItemStatus

 (itemtype in varchar2,

 itemkey in varchar2,

 status out varchar2,

 result out varchar2);

public static WFTwoDArray itemStatus

 (WFContext wCtx,

 String itemType,

 String itemKey)

Returns the status and result for the root process of the specified item
instance. Possible values returned for the status are: ACTIVE,
COMPLETE, ERROR, or SUSPENDED. If the root process does not
exist, then the item key does not exist and will thus cause the
procedure to raise an exception.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the item instance.

The following code excerpt shows an example of how to call
itemStatus() in a Java program. The example code is from the
WFTest.java program.

// get status and result for this item

dataSource = WFEngineAPI.itemStatus(ctx, iType, iKey);

System.out.print(”Status and result for ” + iType + ”/” +

 iKey + ” = ”);

displayDataSource(ctx, dataSource);

wCtx

itemtype

itemkey

Java Syntax

Description

Arguments (input)

2 – 88 Oracle Workflow API Reference

getProcessStatus

public static WFTwoDArray getProcessStatus

 (WFContext wCtx,

 String itemType,

 String itemKey,

 BigDecimal process)

Returns the process status for the given item type instance as a two
dimensional data object.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

A process instance ID for the item type. If the
instance ID is unknown, you can simply provide
any negative number and the method will return
the process status for the root process.

wCtx

itemType

itemKey

process

☞

2 – 89Workflow Engine APIs

Workflow Function APIs

The WFFunctionAPI Java class is the abstract class from which the Java
procedures for all external Java function activities are derived. This
class contains methods for accessing item type and activity attributes,
as well as the execute() method which forms the main entry point
function of the external Java function activity being implemented.

The WFFunctionAPI class is stored in the oracle.apps.fnd.wf Java
package. The following list shows the APIs available in this class.

Attention: Java is case–sensitive and all Java method names
begin with a lower case letter to follow Java naming
conventions.

• loadItemAttributes: page 2 – 90

• loadActivityAttributes: page 2 – 91

• getActivityAttr: page 2 – 92

• getItemAttr: page 2 – 94

• setItemAttrValue: page 2 – 95

• execute: page 2 – 96

See Also

Standard API for Java Procedures Called by Function Activities, Oracle
Workflow Developer’s Guide

Function Activity, Oracle Workflow Developer’s Guide

Java Syntax

Description

Arguments (input)

2 – 90 Oracle Workflow API Reference

loadItemAttributes

public void loadItemAttributes

 (WFContext pWCtx) throws SQLException

Retrieves the item attributes from the database for the item type from
which the external Java function was called. The item attributes are not
loaded by default due to the performance impact that could occur if the
item type contains a large number of item attributes. You can use this
method to load the item attributes explicitly before accessing them in
your function.

If a database access error occurs, this method throws a SQLException.

Workflow context information. See: Oracle
Workflow Context: page 2 – 5.

pWCtx

Java Syntax

Description

Arguments (input)

2 – 91Workflow Engine APIs

loadActivityAttributes

public void loadActivityAttributes

 (WFContext pWCtx,

 String iType,

 String iKey,

 BigDecimal actid) throws SQLException

Retrieves the activity attributes from the database for the specified
activity. This method is called by default when the function activity is
instantiated and before the execute() function is called.

If a database access error occurs, this method throws a SQLException.

Workflow context information. See: Oracle
Workflow Context: page 2 – 5.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process. See: CreateProcess:
page 2 – 23.

An activity instance ID.

pWCtx

iType

iKey

actid

Java Syntax

Java Syntax

Description

2 – 92 Oracle Workflow API Reference

getActivityAttr

public WFAttribute getActivityAttr

 (String aName)

public WFAttribute getActivityAttr

 (WFContext pWCtx,

 String aName) throws SQLException

There are two implementations of getActivityAttr(). These methods
return the activity attribute information for the specified activity
attribute.

• If you call getActivityAttr(String aName) with only the activity
attribute name, this method returns the activity attribute value
but does not attempt to resolve any reference to an item
attribute. If an activity attribute does point to an item attribute,
this method returns the internal name of the item attribute. With
the item attribute name, you can then perform additional
processing based on the item attribute.

For example, if you want to write information back to the item
attribute, you can first use getActivityAttr(String aName) to
retrieve the item attribute name. Then use
setItemAttrValue(WFContext pWCtx, WFAttribute pAttr) to set the
item attribute value, which also becomes the activity attribute
value. See: setItemAttrValue: page 2 – 95.

• If you call getActivityAttr(WFContext pWCtx, String aName) with
both the Workflow context and the activity attribute name, this
method returns the activity attribute, and if the activity attribute
points to an item attribute, the method attempts to resolve the
reference by retrieving the value of that item attribute. You can
use getActivityAttr(WFContext pWCtx, String aName) when you
want to obtain the actual activity attribute value, and you do not
need to know which item attribute it references. This method
attempts to resolve the reference within the previously loaded
item attributes, or if the item attributes have not been loaded, the
method calls loadItemAttributes(WFContext pWCtx) to load them.
See: loadItemAttributes: page 2 – 90.

If a database access error occurs, this method throws a
SQLException.

Arguments (input)

2 – 93Workflow Engine APIs

Workflow context information. Required for the
second method only. See: Oracle Workflow
Context: page 2 – 5.

The internal name of an activity attribute.

pWCtx

aName

Java Syntax

Description

Arguments (input)

2 – 94 Oracle Workflow API Reference

getItemAttr

public WFAttribute getItemAttr

 (String aName)

Returns the item attribute information for the specified item attribute.

The internal name of an item attribute.aName

Java Syntax

Description

Arguments (input)

2 – 95Workflow Engine APIs

setItemAttrValue

public void setItemAttrValue

 (WFContext pWCtx,

 WFAttribute pAttr)

 throws NumberFormatException, WFException

Sets the value of the specified item attribute in the database.

This method throws a NumberFormatException if it cannot convert the
value to the appropriate format for an attribute of type number or date.
The method throws a WFException if it encounters an error while
setting an attribute of type document or text.

Workflow context information. See: Oracle
Workflow Context: page 2 – 5.

The attribute information for an item attribute.

pWCtx

pAttr

Java Syntax

Description

Arguments (input)

2 – 96 Oracle Workflow API Reference

execute

public abstract boolean execute

 (WFContext pWCtx)

This abstract method is implemented by the extending class and forms
the main entry point function of the external Java function activity
being implemented. See: Standard API for Java Procedures Called by
Function Activities, Oracle Workflow Developer’s Guide.

Workflow context information. See: Oracle
Workflow Context: page 2 – 5.

pWCtx

☞

2 – 97Workflow Engine APIs

Workflow Attribute APIs

The WFAttribute Java class contains descriptive information for an
item or activity attribute, including the internal name of the attribute,
attribute value, attribute data type, format information, and default
value type. The attribute value is stored as an Object type. This class
also contains methods for accessing the attribute information, which
can be called by a Java application or the Java procedure for an external
Java function activity.

The WFAttribute class is stored in the oracle.apps.fnd.wf Java package.
The following list shows the APIs available in this class.

Attention: Java is case–sensitive and all Java method names,
except the constructor method names, begin with a lower case
letter to follow Java naming conventions.

• WFAttribute: page 2 – 99

• value: page 2 – 100

• getName: page 2 – 101

• getValue: page 2 – 102

• getType: page 2 – 103

• getFormat: page 2 – 104

• getValueType: page 2 – 105

• toString: page 2 – 106

• compareTo: page 2 – 107

See Also

Standard API for Java Procedures Called by Function Activities, Oracle
Workflow Developer’s Guide

WFAttribute Class Constants

The WFAttribute class contains several constants. The following table
shows the constants that can be used to represent the data type of an
attribute.

2 – 98 Oracle Workflow API Reference

Constant Variable Declaration Constant Value

public static final String TEXT ”TEXT”

public static final String NUMBER ”NUMBER”

public static final String DATE ”DATE”

public static final String LOOKUP ”LOOKUP”

public static final String FORM ”FORM”

public static final String URL ”URL”

public static final String DOCUMENT ”DOCUMENT”

public static final String ROLE ”ROLE”

public static final String EVENT ”EVENT”

Table 2 – 3 (Page 1 of 1)

The following table shows the constants that can be used to represent
the type of the default value for an attribute. The default value can be
either a constant or, for an activity attribute, a reference to an item type
attribute.

Constant Variable Declaration Constant Value

public static final String CONSTANT ”CONSTANT”

public static final String ITEMATTR ”ITEMATTR”

Table 2 – 4 (Page 1 of 1)

Java Syntax

Java Syntax

Description

Arguments (input)

2 – 99Workflow Engine APIs

WFAttribute

public WFAttribute()

public WFAttribute

 (String pName

 String pType,

 Object pValue,

 String pValueType)

There are two constructor methods for the WFAttribute class. The first
constructor creates a new WFAttribute object. The second constructor
creates a new WFAttribute object and initializes it with the specified
attribute name, attribute type, value, and value type.

The internal name of an item or activity attribute.
Required for the second method only.

The data type of the attribute. Required for the
second method only.

The attribute value. Required for the second
method only.

The type of the default value for the attribute. The
default value can be either a constant or, for an
activity attribute, a reference to an item type
attribute. Required for the second method only.

pName

pType

pValue

pValueType

Java Syntax

Description

☞

Arguments (input)

2 – 100 Oracle Workflow API Reference

value

public void value

 (Object pValue)

Sets the value of the item or activity attribute within a WFAttribute
object. The value must be cast to the Object type.

Attention: Using value() to set the attribute value within a
WFAttribute object does not set the attribute value in the
database. To set the value of an item attribute in the database,
use WFFunctionAPI.setItemAttrValue(). See: setItemAttrValue:
page 2 – 95.

The attribute value.pValue

Java Syntax

Description

2 – 101Workflow Engine APIs

getName

public String getName()

Returns the internal name of the item or activity attribute.

Java Syntax

Description

2 – 102 Oracle Workflow API Reference

getValue

public Object getValue()

Returns the value of the item or activity attribute as type Object.

Java Syntax

Description

2 – 103Workflow Engine APIs

getType

public String getType()

Returns the data type of the item or activity attribute. See: Attribute
Types, Oracle Workflow Developer’s Guide.

Java Syntax

Description

2 – 104 Oracle Workflow API Reference

getFormat

public String getFormat()

Returns the format string for the item or activity attribute, such as the
length for an attribute of type text or the format mask for an attribute
of type number or date. See: To Define an Item Type or Activity
Attribute, Oracle Workflow Developer’s Guide.

Java Syntax

Description

2 – 105Workflow Engine APIs

getValueType

public String getValueType()

Returns the type of the default value for the item or activity attribute.
The default value can be either a constant or, for an activity attribute, a
reference to an item type attribute. See: To Define an Item Type or
Activity Attribute, Oracle Workflow Developer’s Guide.

Java Syntax

Description

2 – 106 Oracle Workflow API Reference

toString

public String toString()

Returns the internal name and the value of the item or activity attribute
as a string in the following format:

<name>=<value>

This method overrides the toString() method in the Object class.

Java Syntax

Description

Arguments (input)

2 – 107Workflow Engine APIs

compareTo

public int compareTo

 (String pValue) throws Exception

Compares the value of the item or activity attribute with the specified
value. compareTo() returns 0 if the two values are equal, –1 if the
attribute value is less than the specified value, or 1 if the attribute value
is greater than the specified value.

This method throws an Exception if it cannot convert the specified
value to the appropriate format for an attribute of type number or date.

The test value to compare to the attribute value.pValue

2 – 108 Oracle Workflow API Reference

Workflow Core APIs

PL/SQL procedures called by function activities can use a set of core
Oracle Workflow APIs to raise and catch errors.

When a PL/SQL procedure called by a function activity either raises an
unhandled exception, or returns a result beginning with ’ERROR:’, the
Workflow Engine sets the function activity’s status to ERROR and sets
the columns ERROR_NAME, ERROR_MESSAGE, and ERROR_STACK
in the table WF_ITEM_ACTIVITY_STATUSES to reflect the error.

The columns ERROR_NAME and ERROR_MESSAGE get set to either
the values returned by a call to WF_CORE.RAISE(), or to the SQL error
name and message if no call to RAISE() is found. The column
ERROR_STACK gets set to the contents set by a call to
WF_CORE.CONTEXT(), regardless of the error source.

Note: The columns ERROR_NAME, ERROR_MESSAGE, and
ERROR_STACK are also defined as item type attributes for the
System: Error predefined item type. You can reference the
information in these columns from the error process that you
associate with an activity. See: Error Handling for Workflow
Processes, Oracle Workflow Developer’s Guide.

The following APIs can be called by an application program or
workflow function in the runtime phase to handle error processing.
These APIs are stored in the PL/SQL package called WF_CORE.

• CLEAR: page 2 – 109

• GET_ERROR: page 2 – 110

• TOKEN: page 2 – 111

• RAISE: page 2 – 112

• CONTEXT: page 2 – 116

• TRANSLATE: page 2 – 118

See Also

Standard API for PL/SQL Procedures Called by Function Activities,
Oracle Workflow Developer’s Guide

Syntax

Description

2 – 109Workflow Engine APIs

CLEAR

procedure CLEAR;

Clears the error buffers.

See Also

GET_ERROR: page 2 – 110

Syntax

Description

Example 1

2 – 110 Oracle Workflow API Reference

GET_ERROR

procedure GET_ERROR

 (err_name out varchar2,

 err_message out varchar2

 err_stack out varchar2);

Returns the name of a current error message and the token substituted
error message. Also clears the error stack. Returns null if there is no
current error.

/*Handle unexpected errors in your workflow code by raising

WF_CORE exceptions. When calling any public Workflow API,

include an exception handler to deal with unexpected

errors.*/

declare

 errname varchar2(30);

 errmsg varchar2(2000);

 errstack varchar2(32000);

begin

 ...

 Wf_Engine.CompleteActivity(itemtype, itemkey, activity,

result_code);

 ...

exception

 when others then

 wf_core.get_error(err_name, err_msg, err_stack);

 if (err_name is not null) then

 wf_core.clear;

 –– Wf error occurred. Signal error as appropriate.

 else

 –– Not a wf error. Handle otherwise.

 end if;

end;

See Also

CLEAR: page 2 – 109

Syntax

Description

Arguments (input)

2 – 111Workflow Engine APIs

TOKEN

procedure TOKEN

 (token_name in varchar2,

 token_value in varchar2);

Defines an error token and substitutes it with a value. Calls to
TOKEN() and RAISE() raise predefined errors for Oracle Workflow
that are stored in the WF_RESOURCES table. The error messages
contain tokens that need to be replaced with relevant values when the
error message is raised. This is an alternative to raising PL/SQL
standard exceptions or custom–defined exceptions.

Name of the token.

Value to substitute for the token.

See Also

RAISE: page 2 – 112

CONTEXT: page 2 – 116

token_name

token_value

Syntax

Description

Arguments (input)

2 – 112 Oracle Workflow API Reference

RAISE

procedure RAISE

 (name in varchar2);

Raises an exception to the caller by supplying a correct error number
and token substituted message for the name of the error message
provided.

Calls to TOKEN() and RAISE() raise predefined errors for Oracle
Workflow that are stored in the WF_RESOURCES table. The error
messages contain tokens that need to be replaced with relevant values
when the error message is raised. This is an alternative to raising
PL/SQL standard exceptions or custom–defined exceptions.

Error messages for Oracle Workflow are initially defined in message
files (.msg). The message files are located in the res/<language>
subdirectory of the Oracle Workflow server directory structure for the
standalone version of Oracle Workflow or on your server in the
import/<language> subdirectory under $FND_TOP for the Oracle
Applications–embedded version of Oracle Workflow. During the
installation of the Oracle Workflow server, a program called Workflow
Resource Generator takes the designated message files and imports the
messages into the WF_RESOURCES table.

Note: If you want to use custom error messages, you can
define your messages in .msg files, load them to the
WF_RESOURCES table, and then raise them using RAISE(). A
custom error message must have an error number of 90000 or
higher.

Internal name of the error message as stored in the
table WF_RESOURCES.

See Also

TOKEN: page 2 – 111

CONTEXT: page 2 – 116

� To run the Workflow Resource Generator

For the standalone version of Oracle Workflow:

name

2 – 113Workflow Engine APIs

1. The Workflow Resource Generator program is located in the bin
subdirectory of the Oracle Home directory structure.

2. Run the program from your operating system prompt as follows:

• To generate a binary resource file from a source file (.msg), type:

wfresgen [–v] –f <resourcefile> <source_file>

Replace <resourcefile> with the full path and name of the
resource file you want to generate, and <source_file> with the
full path and name of your source file. The optional –v flag
causes the program to validate the source file against the binary
resource file.

• To upload seed data from a source file (.msg) to the database
table WF_RESOURCES, type:

wfresgen [–v] –u <username/password@database>

<lang> <source_file>

Replace <username/password@database> with the username,
password and Oracle Net connect string or alias to your
database and <source_file> with the full path and name of the
source file you want to upload. The optional –v flag causes the
program to validate the source file against the database.

Note: To determine the language to load, the Workflow
Resource Generator accepts a language parameter. If you do
not specify a language parameter, the Workflow Resource
Generator defaults to the current setting of the NLS_LANG
environment variable.

To set NLS_LANG in UNIX, use the command:

setenv NLS_LANG = ’language_territory.characterset’

For Windows NT, run the regedit32 command and locate the
NLS_LANG setting under the
HKEY_LOCAL_MACHINE/SOFTWARE/ORACLE hierarchy.
Double click on NLS_LANG, and then set the variable to the
new value and save your work.

For Oracle Workflow embedded in Oracle Applications:

1. The Workflow Resource Generator program is registered as a
concurrent program. You can run the Workflow Resource
Generator concurrent program from the Submit Requests form or
from the command line.

2. To run the concurrent program from the Submit Requests form,
navigate to the Submit Requests form.

2 – 114 Oracle Workflow API Reference

Note: Your system administrator needs to add this concurrent
program to a request security group for the responsibility that
you want to run this program from. See: Overview of
Concurrent Programs and Requests, Oracle Applications System
Administrator’s Guide.

3. Submit the Workflow Resource Generator concurrent program as a
request. See: Running Reports and Programs, Oracle Applications
User’s Guide.

4. In the Parameters window, enter values for the following
parameters:

Specify ”Database”, to upload seed data to the
database table WF_RESOURCES from a source file
(.msg), or ”File”, to generate a resource file from a
source file.

If you specify ”File” for Destination Type, then
enter the full path and name of the resource file
you wish to generate. If you specify ”Database”
for Destination Type, then the program
automatically uses the current database account as
its destination.

Specify the full path and name of your source file.

5. Choose OK to close the Parameters window.

6. When you finish modifying the print and run options for this
request, choose Submit to submit the request.

7. Rather than use the Submit Requests form, you can also run the
Workflow Resource Generator concurrent program from the
command line using one of two commands. To generate a resource
file from a source file, type:

WFRESGEN apps/pwd 0 Y FILE res_file source_file

To upload seed data to the database table WF_RESOURCES from a
source file, type:

WFRESGEN apps/pwd 0 Y DATABASE source_file

Replace apps/pwd with the username and password to the APPS
schema, replace res_file with the file specification of a
resource file, and replace source_file with the file specification
of a source file (.msg). A file specification is specified as:

@<application_short_name>:[<dir>/.../]file.ext

or

Destination Type

Destination

Source

2 – 115Workflow Engine APIs

<native path>

Syntax

Description

Arguments (input)

Example 1

2 – 116 Oracle Workflow API Reference

CONTEXT

procedure CONTEXT

 (pkg_name IN VARCHAR2,

 proc_name IN VARCHAR2,

 arg1 IN VARCHAR2 DEFAULT ’*none*’,

 arg2 IN VARCHAR2 DEFAULT ’*none*’,

 arg3 IN VARCHAR2 DEFAULT ’*none*’,

 arg4 IN VARCHAR2 DEFAULT ’*none*’,

 arg5 IN VARCHAR2 DEFAULT ’*none*’);

Adds an entry to the error stack to provide context information that
helps locate the source of an error. Use this procedure with predefined
errors raised by calls to TOKEN() and RAISE(), with custom–defined
exceptions, or even without exceptions whenever an error condition is
detected.

Name of the procedure package.

Procedure or function name.

First IN argument.

nth IN argument.

/*PL/SQL procedures called by function activities can use

the WF_CORE APIs to raise and catch errors the same way the

Workflow Engine does.*/

package My_Package is

procedure MySubFunction(

 arg1 in varchar2,

 arg2 in varchar2)

is

...

begin

 if (<error condition>) then

 Wf_Core.Token(’ARG1’, arg1);

 Wf_Core.Token(’ARG2’, arg2);

 Wf_Core.Raise(’ERROR_NAME’);

 end if;

 ...

exception

 when others then

pkg_name

proc_name

arg1

argn

2 – 117Workflow Engine APIs

 Wf_Core.Context(’My_Package’, ’MySubFunction’, arg1,

arg2);

 raise;

end MySubFunction;

procedure MyFunction(

 itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 funcmode in varchar2,

 result out varchar2)

is

...

begin

 ...

 begin

 MySubFunction(arg1, arg2);

 exception

 when others then

 if (Wf_Core.Error_Name = ’ERROR_NAME’) then

 –– This is an error I wish to ignore.

 Wf_Core.Clear;

 else

 raise;

 end if;

 end;

 ...

exception

 when others then

 Wf_Core.Context(’My_Package’, ’MyFunction’, itemtype,

itemkey, to_char(actid), funmode);

 raise;

end MyFunction;

See Also

TOKEN: page 2 – 111

RAISE: page 2 – 112

Syntax

Description

Arguments (input)

2 – 118 Oracle Workflow API Reference

TRANSLATE

function TRANSLATE

 (tkn_name IN VARCHAR2)

 return VARCHAR2;

Translates the string value of a token by returning the value for the
token as defined in WF_RESOURCES for your language setting.

Token name.tkn_name

☞

2 – 119Workflow Engine APIs

Workflow Purge APIs

The following APIs can be called by an application program or
workflow function in the runtime phase to purge obsolete runtime and
design data. These APIs are defined in the PL/SQL package called
WF_PURGE.

WF_PURGE can be used to purge obsolete runtime data for completed
items and processes, and to purge design information for obsolete
activity versions that are no longer in use and expired users and roles.
You may want to periodically purge this obsolete data from your
system to increase performance.

A PL/SQL variable called ”persistence_type”in the WF_PURGE
package defines how most of the WF_PURGE APIs behave, with the
exception of TotalPerm(). When the variable is set to TEMP, the
WF_Purge APIs only purge data associated with Temporary item types,
whose persistence, in days, has expired. Persistence_type is set to
TEMP by default and should not be changed. If you need to purge
runtime data for item types with Permanent persistence, you should
use the procedure TotalPerm(). See: Persistence Type, Oracle Workflow
Developer’s Guide.

Attention: You cannot run any WF_PURGE API for a future
end date. By entering a future end date, you may
inadvertently violate the persistence period for Temporary item
types. The WF_PURGE APIs will display an error message if
you enter a future end date.

The three most commonly used procedures are:

WF_PURGE.ITEMS – purge all runtime data associated with
completed items, their processes, and notifications sent by them

WF_PURGE.ACTIVITIES – purge obsolete design versions of
activities that are no longer in use by any item.

WF_PURGE.TOTAL – purge both item data and activity design data

The other auxiliary routines purge only certain tables or classes of data,
and can be used in circumstances where a full purge is not desired.

The complete list of purge APIs are as follows:

• Items: page 2 – 121

• Activities: page 2 – 122

• Notifications: page 2 – 123

2 – 120 Oracle Workflow API Reference

• Total: page 2 – 124

• TotalPERM: page 2 – 126

• Directory: page 2 – 128

Note: The AdHocDirectory() API from earlier versions of Oracle
Workflow is replaced by the Directory() API. The current
version of Oracle Workflow still recognizes the
AdHocDirectory() API for backward compatibility, but moving
forward, you should only use the new Directory() API where
appropriate.

Note: In Oracle Applications, you can also use the ”Purge
Obsolete Workflow Runtime Data” concurrent program to
purge obsolete item type runtime status information. See:
Purge Obsolete Workflow Runtime Data: page 2 – 129.

Note: In standalone Oracle Workflow, you can use the
standalone Oracle Workflow Manager component available
through Oracle Enterprise Manager to submit and manage
Workflow purge database jobs. For more information, please
refer to the Oracle Workflow Manager online help.

See Also

Standard API for PL/SQL Procedures Called by Function Activities,
Oracle Workflow Developer’s Guide

Purging for Performance, Oracle Workflow Administrator’s Guide

Syntax

Description

Arguments (input)

2 – 121Workflow Engine APIs

Items

procedure Items

 (itemtype in varchar2 default null,

 itemkey in varchar2 default null,

 enddate in date default sysdate,

 docommit in boolean default TRUE,

 force in boolean default FALSE);

Deletes all items for the specified item type, and/or item key, and end
date, including process status information, notifications, and any
comments associated with these notifications. In Oracle Applications,
any electronic signature information associated with these notifications
is deleted as well. Deletes from the tables WF_NOTIFICATIONS,
WF_COMMENTS, WF_DIG_SIGS, WF_ITEM_ACTIVITY_STATUSES,
WF_ITEM_ATTRIBUTE_VALUES and WF_ITEMS.

Item type to delete. Leave this argument null to
delete all item types.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. If null, the procedure
purges all items in the specified itemtype.

Specified date to delete up to.

Specify TRUE or FALSE to indicate whether to
commit data while purging. If you want Items() to
commit data as it purges to reduce rollback size
and improve performance, specify TRUE. If you
do not want to perform automatic commits, specify
FALSE. Defaults to TRUE.

Specify TRUE or FALSE to indicate whether to
delete records for child items that have ended,
even if the corresponding parent item does not yet
have an end date. Defaults to FALSE.

itemtype

itemkey

enddate

docommit

force

Syntax

Description

Arguments (input)

2 – 122 Oracle Workflow API Reference

Activities

procedure Activities

 (itemtype in varchar2 default null,

 name in varchar2 default null,

 enddate in date default sysdate);

Deletes old design versions of eligible activities from the tables
WF_ACTIVITY_ATTR_VALUES, WF_ACTIVITY_TRANSITIONS,
WF_PROCESS_ACTIVITIES, WF_ACTIVITY_ATTRIBUTES_TL,
WF_ACTIVITY_ATTRIBUTES, WF_ACTIVITIES_TL, and
WF_ACTIVITIES that are associated with the specified item type, have
an END_DATE less than or equal to the specified end date and are not
referenced by an existing item as either a process or activity.

Note: You should call Items() before calling Activities() to
avoid having obsolete item references prevent obsolete
activities from being deleted.

Item type associated with the activities you want to
delete. Leave this argument null to delete activities
for all item types.

Internal name of activity to delete. Leave this
argument null to delete all activities for the
specified item type.

Specified date to delete up to.

itemtype

name

enddate

Syntax

Description

Arguments (input)

2 – 123Workflow Engine APIs

Notifications

procedure Notifications

 (itemtype in varchar2 default null,

 enddate in date default sysdate,

 docommit in boolean default TRUE);

Deletes old eligible notifications from the tables
WF_NOTIFICATION_ATTRIBUTES and WF_NOTIFICATIONS that
are associated with the specified item type, have an END_DATE less
than or equal to the specified end date, and are not referenced by an
existing item. Also, any comments associated with these notifications
are deleted from the WF_COMMENTS table. In Oracle Applications,
any electronic signature information associated with these notifications
is deleted from the WF_DIG_SIGS table as well. You can use this
procedure to delete notifications that are not associated with any work
item, such as notifications that were sent by calling
WF_NOTIFICATION.Send() rather than through a workflow process.

Note: You should call Items() before calling Notifications() to
avoid having obsolete item references prevent obsolete
notifications from being deleted.

Item type associated with the notifications you
want to delete. Leave this argument null to delete
notifications for all item types.

Specified date to delete up to.

Specify TRUE or FALSE to indicate whether to
commit data while purging. If you want
Notifications() to commit data as it purges to reduce
rollback size and improve performance, specify
TRUE. If you do not want to perform automatic
commits, specify FALSE. Defaults to TRUE.

itemtype

enddate

docommit

Syntax

Description

2 – 124 Oracle Workflow API Reference

Total

procedure Total

 (itemtype in varchar2 default null,

 itemkey in varchar2 default null,

 enddate in date default sysdate,

 docommit in boolean default TRUE,

 runtimeonly in boolean default FALSE.

 transactiontype in varchar2 default null,

 transactionsubtype in varchar2 default null);

Deletes all eligible obsolete runtime item type data that is associated
with the specified item type and has an END_DATE less than or equal
to the specified end date. In Oracle Applications, this procedure also
deletes any Oracle XML Gateway transaction information associated
with the items being purged.

If the RUNTIME ONLY parameter is set to TRUE, Total() deletes only
runtime data associated with work items. However, if the
RUNTIMEONLY parameter is set to FALSE, Total() also deletes these
types of data:

• All eligible obsolete activity design data that is associated with
the specified item type and has an END_DATE less than or equal
to the specified end date. See: Activities: page 2 – 122.

• Expired users and roles in the Workflow local tables that are no
longer in use. See: Directory: page 2 – 128.

• All eligible notifications that are associated with the specified
item type, have an END_DATE less than or equal to the specified
end date, and are not referenced by an existing item. See:
Notifications: page 2 – 123.

• For Oracle Applications only, Oracle XML Gateway transaction
information that is not associated with any existing work item.
This information is purged using the ECX_PURGE.Purge_Items
API. See: Oracle XML Gateway User’s Guide.

Because Total() purges additional design data and runtime data not
associated with work items when you set the RUNTIMEONLY
parameter to FALSE, it is more costly in performance than Items(). If
you want to purge a specific item key, use Items(), or set the
RUNTIMEONLY parameter to TRUE when you run Total() to enhance
performance. Run Total() with the RUNTIMEONLY parameter set to
FALSE as part of your routine maintenance during periods of low
activity. See: Items: page 2 – 121.

Arguments (input)

2 – 125Workflow Engine APIs

Item type associated with the obsolete data you
want to delete. Leave this argument null to delete
obsolete data for all item types.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. If null, the procedure
purges all items in the specified itemtype.

Specified date to delete up to.

Specify TRUE or FALSE to indicate whether to
commit data while purging. If you want Total() to
commit data as it purges to reduce rollback size
and improve performance, specify TRUE. If you
do not want to perform automatic commits, specify
FALSE. Defaults to TRUE.

Specify TRUE to purge only obsolete runtime data
associated with work items, or FALSE to purge all
obsolete runtime data as well obsolete design data.
Defaults to FALSE.

The Oracle XML Gateway transaction type to
purge. Leave this argument null to purge the
runtime data for all transaction types.

The Oracle XML Gateway transaction subtype to
purge. The transaction subtype is a code for a
particular transaction within the application
specified by the transaction type. Leave this
argument null to purge the runtime data for all
transactions of the specified transaction type.

itemtype

itemkey

enddate

docommit

runtimeonly

transactiontype

transactionsub
type

Syntax

Description

Arguments (input)

2 – 126 Oracle Workflow API Reference

TotalPERM

procedure TotalPERM

 (itemtype in varchar2 default null,

 itemkey in varchar2 default null,

 enddate in date default sysdate,

 docommit in boolean default TRUE,

 runtimeonly in boolean default FALSE);

Deletes all eligible obsolete runtime data that is of persistence type
’PERM’ (Permanent) and that is associated with the specified item type
and has an END_DATE less than or equal to the specified end date. In
Oracle Applications, this procedure also deletes any Oracle XML
Gateway transaction information associated with the items being
purged.

If the RUNTIME ONLY parameter is set to TRUE, TotalPERM() deletes
only runtime data associated with work items. However, if the
RUNTIMEONLY parameter is set to FALSE, TotalPERM() also deletes
these types of data:

• All eligible obsolete activity design data that is associated with
the specified item type and has an END_DATE less than or equal
to the specified end date. See: Activities: page 2 – 122.

• Expired users and roles in the Workflow local tables that are no
longer in use. See: Directory: page 2 – 128.

• All eligible notifications that are associated with the specified
item type, have an END_DATE less than or equal to the specified
end date, and are not referenced by an existing item. See:
Notifications: page 2 – 123.

• For Oracle Applications only, Oracle XML Gateway transaction
information that is not associated with any existing work item.
This information is purged using the ECX_PURGE.Purge_Items
API. See: Oracle XML Gateway User’s Guide.

TotalPERM() is similar to Total() except that TotalPERM() deletes only
items with a persistence type of ’PERM’. See: Total: page 2 – 124.

Item type associated with the obsolete runtime
data you want to delete. Leave this argument null
to delete obsolete runtime data for all item types.

itemtype

2 – 127Workflow Engine APIs

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. If null, the procedure
purges all items in the specified itemtype.

Specified date to delete up to.

Specify TRUE or FALSE to indicate whether to
commit data while purging. If you want
TotalPERM() to commit data as it purges to reduce
rollback size and improve performance, specify
TRUE. If you do not want to perform automatic
commits, specify FALSE. Defaults to TRUE.

Specify TRUE to purge only obsolete runtime data
associated with work items, or FALSE to purge all
obsolete runtime data as well obsolete design data.
Defaults to FALSE.

itemkey

enddate

docommit

runtimeonly

Syntax

Description

Arguments (input)

2 – 128 Oracle Workflow API Reference

Directory

procedure Directory

 (end_date in date default sysdate);

Purges all users and roles in the WF_LOCAL_ROLES and
WF_LOCAL_USER_ROLES tables whose expiration date is less than or
equal to the specified end date and that are not referenced in any
notification.

Note that although users and roles whose expiration date has passed
do not appear in the seeded WF_USERS, WF_ROLES, and
WF_USER_ROLES views, they are not removed from the Workflow
local tables until you purge them using Directory(). You should
periodically purge expired users and roles in order to improve
performance.

Date to purge to.end_date

2 – 129Workflow Engine APIs

Purge Obsolete Workflow Runtime Data Concurrent Program

If you are using the version of Oracle Workflow embedded in Oracle
Applications, you can submit the Purge Obsolete Workflow Runtime
Data concurrent program to purge obsolete runtime work item
information, including status information and any associated
notifications and Oracle XML Gateway transactions. Use the Submit
Requests form in Oracle Applications to submit this concurrent
program.

By default, this program purges obsolete runtime information
associated with work items as well as obsolete design information,
such as activities that are no longer in use and expired users and roles,
and obsolete runtime information not associated with work items, such
as notifications or Oracle XML Gateway transactions that were not
handled through a workflow process. You can optionally choose to
purge only core runtime information associated with work items for
performance gain during periods of high activity, and purge all
obsolete information as part of your routine maintenance during
periods of low activity.

Note: If you are using the version of Oracle Workflow
embedded in Oracle Applications and you have implemented
Oracle Applications Manager, you can use Oracle Workflow
Manager to submit and manage the Purge Obsolete Workflow
Runtime Data concurrent program. For more information,
please refer to the Oracle Applications Manager online help.

� To Purge Obsolete Workflow Runtime Data

1. Navigate to the Submit Requests form in Oracle Applications to
submit the Purge Obsolete Workflow Runtime Data concurrent
program. When you install and set up Oracle Applications and
Oracle Workflow, your system administrator needs to add this
concurrent program to a request security group for the
responsibility that you want to run this program from. The
executable name for this concurrent program is ”Oracle Workflow
Purge Obsolete Data” and its short name is FNDWFPR. See:
Overview of Concurrent Programs and Requests, Oracle
Applications System Administrator’s Guide.

2. Submit the Purge Obsolete Workflow Runtime Data concurrent
program as a request. See: Running Reports and Programs, Oracle
Applications User’s Guide.

3. In the Parameters window, enter values for the following
parameters:

2 – 130 Oracle Workflow API Reference

Item type associated with the obsolete runtime
data you want to delete. Leave this argument null
to delete obsolete runtime data for all item types.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. If null, the program
purges all items in the specified itemtype.

Minimum age of data to purge, in days, if the
persistence type is set to ’TEMP’. The default is 0.

Persistence type to be purged, either ’TEMP’ for
Temporary or ’PERM’ for Permanent. The default
is ’TEMP’.

Enter ’Y’ to purge only obsolete runtime data
associated with work items, or ’N’ to purge all
obsolete runtime data as well obsolete design data.
The default is ’N’.

The Oracle XML Gateway transaction type to
purge. Leave this argument null to purge the
runtime data for all transaction types.

The Oracle XML Gateway transaction subtype to
purge. The transaction subtype is a code for a
particular transaction within the application
specified by the transaction type. Leave this
argument null to purge the runtime data for all
transactions of the specified transaction type.

4. Choose OK to close the Parameters window.

5. When you finish modifying the print and run options for this
request, choose Submit to submit the request.

Item Type

Item Key

Age

Persistence
Type

Core Workflow
Only

Transaction Type

Transaction
Subtype

☞

2 – 131Workflow Engine APIs

Workflow Monitor APIs

Call the following APIs to retrieve an access key or to generate a
complete URL to access various pages of the Workflow Monitor in
standalone Oracle Workflow, or to access various pages of the
administrator version of the Status Monitor in Oracle Applications
with guest access. The Workflow Monitor APIs are defined in the
PL/SQL package called WF_MONITOR.

• GetAccessKey: page 2 – 132

• GetDiagramURL: page 2 – 133

• GetEnvelopeURL: page 2 – 136

• GetAdvancedEnvelopeURL: page 2 – 138

Attention: The GetURL API from earlier versions of Oracle
Workflow is replaced by the GetEnvelopeURL and
GetDiagramURL APIs. The functionality of the previous
GetURL API correlates directly with the new GetDiagramURL.
API. The current version of Oracle Workflow still recognizes
the GetURL API, but moving forward, you should only use the
two new APIs where appropriate.

Note: Oracle Workflow also provides Java methods for
accessing the Status Monitor in Oracle Applications, which are
defined in the Java class called
oracle.apps.fnd.wf.monitor.webui.Monitor. For more
information about these methods, refer to the Javadoc for the
oracle.apps.fnd.wf.monitor.webui.Monitor class, available
on OracleMetaLink.

See Also

Syntax

Description

Arguments (input)

2 – 132 Oracle Workflow API Reference

GetAccessKey

function GetAccessKey

 (x_item_type varchar2,

 x_item_key varchar2,

 x_admin_mode varchar2)

 return varchar2;

Retrieves the access key password that controls access to the Workflow
Monitor. Each process instance has separate access keys for running the
Workflow Monitor in ’ADMIN’ mode or ’USER’ mode.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process to report on.

A value of YES or NO. YES directs the function to
retrieve the access key password that runs the
monitor in ’ADMIN’ mode. NO retrieves the
access key password that runs the monitor in
’USER’ mode.

x_item_type

x_item_key

x_admin_mode

Syntax

Description

2 – 133Workflow Engine APIs

GetDiagramURL

function GetDiagramURL

 (x_agent in varchar2,

 x_item_type in varchar2,

 x_item_key in varchar2,

 x_admin_mode in varchar2 default ’NO’)

 return varchar2;

Can be called by an application to return a URL that allows access to a
status diagram in the Workflow Monitor in standalone Oracle
Workflow with an attached access key password, or to the Status
Diagram page in the Status Monitor in Oracle Applications with guest
access.

• In standalone Oracle Workflow, the URL displays the diagram
for a specific instance of a workflow process in the Workflow
Monitor operating in either ’ADMIN’ or ’USER’ mode.

The URL returned by the function
WF_MONITOR.GetDiagramURL() looks as follows:

<webagent>/wf_monitor.html?x_item_type=<item_type>&x_it

em_key=<item_key>&x_admin_mode=<YES or

NO>&x_access_key=<access_key>

<webagent> represents the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences, Oracle Workflow Administrator’s Guide.

wf_monitor.html represents the name of the PL/SQL package
procedure that generates the Workflow Monitor diagram of the
process instance.

The wf_monitor.html procedure requires four arguments.
<item_type> and <item_key> represent the internal name of the
item type and the item key that uniquely identify an instance of a
process. If <YES or NO> is YES, the monitor runs in ’ADMIN’
mode and if NO, the monitor runs in ’USER’ mode.
<access_key> represents the access key password that
determines whether the monitor is run in ’ADMIN’ or ’USER’
mode.

• In Oracle Applications, the URL displays the Status Diagram
page for a specific instance of a workflow process in the
administrator version of the Status Monitor, operating either
with or without administrator privileges.

Arguments (input)

Example

2 – 134 Oracle Workflow API Reference

The base web agent string defined for Oracle
Workflow or Oracle Self–Service Web Applications
in your Web server. The base web agent string
should be stored in the WF_RESOURCES table,
and looks something like:
http://<server.com:portID>/<PLSQL_agent_path>

When calling this function, your application must
first retrieve the web agent string from the
WF_RESOURCES token WF_WEB_AGENT by
calling WF_CORE.TRANSLATE(). See: Setting
Global User Preferences, Oracle Workflow
Administrator’s Guide or Applications Web Agent,
Oracle Applications System Administrator’s Guide.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process to report on.

A value of YES or NO. YES directs the function to
retrieve the access key password that runs the
monitor in ’ADMIN’ mode in standalone Oracle
Workflow, or to grant administrator privileges to
the user accessing the Status Monitor in Oracle
Applications. NO directs the function to retrieve
the access key password that runs the monitor in
’USER’ mode in standalone Oracle Workflow, or to
withhold administrator privileges from the user
accessing the Status Monitor in Oracle
Applications.

Following is an example of how you can call GetDiagramUrl(). This
example returns a URL that displays the diagram page for a process
instance identified by the item type WFDEMO and item key 10022, in
’USER’ mode or without administrator privileges:

URL := WF_MONITOR.GetDiagramURL

(WF_CORE.Translate(’WF_WEB_AGENT’),

’WFDEMO’,

’10022’,

’NO’);

x_agent

x_item_type

x_item_key

x_admin_mode

2 – 135Workflow Engine APIs

See Also

TRANSLATE: page 2 – 118

Syntax

Description

Arguments (input)

2 – 136 Oracle Workflow API Reference

GetEnvelopeURL

function GetEnvelopeURL

 (x_agent in varchar2,

 x_item_type in varchar2,

 x_item_key in varchar2,

 x_admin_mode in varchar2 default ’NO’)

 return varchar2;

Can be called by an application to return a URL that allows access to
the Workflow Monitor Notifications List in standalone Oracle
Workflow with an attached access key password, or to the Participant
Responses page in the Status Monitor in Oracle Applications with guest
access.

• In standalone Oracle Workflow, the URL displays the
Notifications List for a specific instance of a workflow process in
the Workflow Monitor.

The URL returned by the function
WF_MONITOR.GetEnvelopeURL() looks as follows:

<webagent>/wf_monitor.envelope?x_item_type=<item_type>&

x_item_key=<item_key>&x_admin_mode=<YES or

NO>&x_access_key=<access_key>

<webagent> represents the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences, Oracle Workflow Administrator’s Guide.

wf_monitor.envelope represents the name of the PL/SQL
package procedure that generates the Workflow Monitor
Notifications List for the process instance.

• In Oracle Applications, the URL displays the Participant
Responses page for a specific instance of a workflow process in
the administrator version of the Status Monitor, operating either
with or without administrator privileges.

The base web agent string defined for Oracle
Workflow or Oracle Self–Service Web Applications
in your Web server. The base web agent string
should be stored in the WF_RESOURCES table,
and looks something like:
http://<server.com:portID>/<PLSQL_agent_path>

x_agent

2 – 137Workflow Engine APIs

When calling this function, your application must
first retrieve the web agent string from the
WF_RESOURCES token WF_WEB_AGENT by
calling WF_CORE.TRANSLATE(). See: Setting
Global User Preferences, Oracle Workflow
Administrator’s Guide or Applications Web Agent,
Oracle Applications System Administrator’s Guide.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process to report on.

A value of YES or NO. YES directs the function to
retrieve the access key password that runs the
monitor in ’ADMIN’ mode in standalone Oracle
Workflow, or to grant administrator privileges to
the user accessing the Status Monitor in Oracle
Applications. NO directs the function to retrieve
the access key password that runs the monitor in
’USER’ mode in standalone Oracle Workflow, or to
withhold administrator privileges from the user
accessing the Status Monitor in Oracle
Applications.

See Also

TRANSLATE: page 2 – 118

x_item_type

x_item_key

x_admin_mode

Syntax

Description

Arguments (input)

2 – 138 Oracle Workflow API Reference

GetAdvancedEnvelopeURL

function GetAdvancedEnvelopeURL

 (x_agent in varchar2,

 x_item_type in varchar2,

 x_item_key in varchar2,

 x_admin_mode in varchar2 default ’NO’,

 x_options in varchar2 default null)

 return varchar2;

Can be called by an application to return a URL that displays the
Workflow Monitor Activities List in standalone Oracle Workflow with
an attached access key password, or to the Activity History page in the
Status Monitor in Oracle Applications with guest access.

• In standalone Oracle Workflow, the URL displays the Activities
List for a specific instance of a workflow process in the Workflow
Monitor. The Activities List allows you to apply advanced
filtering options in displaying the list of activities for a process
instance.

The URL returned by the function
WF_MONITOR.GetAdvancedEnvelopeURL() looks as follows if
the x_options argument is null:

<webagent>/wf_monitor.envelope?x_item_type=<item_type>&

x_item_key=<item_key>&x_admin_mode=<YES or

NO>&x_access_key=<access_key>&x_advanced=TRUE

<webagent> represents the base URL of the web agent
configured for Oracle Workflow in your Web server. See: Setting
Global User Preferences, Oracle Workflow Administrator’s Guide.

wf_monitor.envelope represents the name of the PL/SQL
package procedure that generates the Workflow Monitor
Notifications List for the process instance.

• In Oracle Applications, the URL displays the Activity History
page for a specific instance of a workflow process in the
administrator version of the Status Monitor, operating either
with or without administrator privileges. All activity type and
activity status filtering options are automatically selected by
default.

The base web agent string defined for Oracle
Workflow or Oracle Self–Service Web Applications

x_agent

2 – 139Workflow Engine APIs

in your Web server. The base web agent string
should be stored in the WF_RESOURCES table,
and looks something like:
http://<server.com:portID>/<PLSQL_agent_path>

When calling this function, your application must
first retrieve the web agent string from the
WF_RESOURCES token WF_WEB_AGENT by
calling WF_CORE.TRANSLATE(). See: Setting
Global User Preferences, Oracle Workflow
Administrator’s Guide or Applications Web Agent,
Oracle Applications System Administrator’s Guide.

A valid item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process to report on.

A value of YES or NO. YES directs the function to
retrieve the access key password that runs the
monitor in ’ADMIN’ mode in standalone Oracle
Workflow, or to grant administrator privileges to
the user accessing the Status Monitor in Oracle
Applications. NO directs the function to retrieve
the access key password that runs the monitor in
’USER’ mode in standalone Oracle Workflow, or to
withhold administrator privileges from the user
accessing the Status Monitor in Oracle
Applications.

In standalone Oracle Workflow only, specify ’All’ if
you wish to return a URL that displays the
Activities List with all filtering options checked. If
you leave this argument null, then a URL that
displays the Activities List with no filtering options
checked, is returned. This allows you to append
any specific options if you wish. The default is
null.

Note: The x_options parameter does not apply for the Status
Monitor in Oracle Applications. When you access the Status
Monitor with a URL from GetAdvancedEnvelopeURL(), all
filtering options are always selected by default.

x_item_type

x_item_key

x_admin_mode

x_options

2 – 140 Oracle Workflow API Reference

See Also

TRANSLATE: page 2 – 118

2 – 141Workflow Engine APIs

Workflow Status Monitor APIs

Call the following APIs to retrieve parameters for use with the
self–service functions that provide access to the Status Monitor from
Oracle Applications forms. You can use these APIs to help integrate
other applications with the Status Monitor.

The Workflow Status Monitor PL/SQL APIs are defined in the PL/SQL
package called WF_FWKMON.

• GetEncryptedAccessKey: page 2 – 142

• GetEncryptedAdminMode: page 2 – 143

• IsMonitorAdministrator: page 2 – 144

See Also

PL/SQL Syntax

Description

Arguments (input)

2 – 142 Oracle Workflow API Reference

GetEncryptedAccessKey

function GetEncryptedAccessKey

 (itemType in varchar2,

 itemKey in varchar2,

 adminMode in varchar2 default ’N’)

 return varchar2;

Returns an encrypted access key password that controls access to the
specified workflow process instance in the Status Monitor with the
specified administrator mode. The administrator mode lets you
determine whether the user who accesses the Status Monitor with this
access key should have privileges to perform administrative operations
in the Status Monitor.

A valid workflow item type.

A string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the workflow process.

Specify ’Y’ to grant administrator privileges to the
user accessing the Status Monitor, or ’N’ to
withhold administrator privileges from the user.
The default is ’N’.

itemType

itemKey

adminMode

PL/SQL Syntax

Description

Arguments (input)

2 – 143Workflow Engine APIs

GetEncryptedAdminMode

function GetEncryptedAdminMode

 (adminMode in varchar2)

 return varchar2;

Returns an encrypted value for the specified administrator mode. The
administrator mode lets you determine whether a user accessing the
Status Monitor should have privileges to perform administrative
operations in the Status Monitor.

Specify ’Y’ to grant administrator privileges to the
user accessing the Status Monitor, or ’N’ to
withhold administrator privileges from the user.
The default is ’N’.

adminMode

PL/SQL Syntax

Description

Arguments (input)

2 – 144 Oracle Workflow API Reference

IsMonitorAdministrator

function IsMonitorAdministrator

 (userName in varchar2)

 return varchar2;

Returns ’Y’ if the specified user has workflow administrator
privileges, or ’N’ if the specified user does not have workflow
administrator privileges. Workflow administrator privileges are
assigned in the Workflow Configuration page. See: Setting Global User
Preferences, Oracle Workflow Administrator’s Guide.

For example, you can use this function to help determine what
administrator mode to choose when calling GetEncryptedAccesKey() or
GetEncryptedAdminMode() to retrieve parameters for use with the
Status Monitor form functions.

A valid user name.userName

2 – 145Workflow Engine APIs

Oracle Workflow Views

Public views are available for accessing workflow data. If you are
using the version of Oracle Workflow embedded in Oracle
Applications, these views are installed in the APPS account. If you are
using the standalone version of Oracle Workflow, these views are
installed in the same account as the Oracle Workflow server.

• WF_ITEM_ACTIVITY_STATUSES_V: page 2 – 145

• WF_NOTIFICATION_ATTR_RESP_V: page 2 – 147

• WF_RUNNABLE_PROCESSES_V: page 2 – 148

• WF_ITEMS_V: page 2 – 149

Note: These database views are public, meaning they are
available for you to use for your custom data requirements.
This description does not mean that any privileges for these
views have been granted to PUBLIC.

WF_ITEM_ACTIVITY_STATUSES_V

This view contains denormalized information about a workflow
process and its activities’ statuses. Use this view to create custom
queries and reports on the status of a particular item or process.

The following table describes the columns of the view.

Name Null? Type

ROWID ROWID

SOURCE CHAR(1)

ITEM_TYPE VARCHAR2(8)

ITEM_TYPE_DISPLAY_NAME VARCHAR2(80)

ITEM_TYPE_DESCRIPTION VARCHAR2(240)

ITEM_KEY VARCHAR2(240)

USER_KEY VARCHAR2(240)

ITEM_BEGIN_DATE DATE

ITEM_END_DATE DATE

Table 2 – 5 (Page 1 of 2)

2 – 146 Oracle Workflow API Reference

TypeNull?Name

ACTIVITY_ID NUMBER

ACTIVITY_LABEL VARCHAR2(30)

ACTIVITY_NAME VARCHAR2(30)

ACTIVITY_DISPLAY_NAME VARCHAR2(80)

ACTIVITY_DESCRIPTION VARCHAR2(240)

ACTIVITY_TYPE_CODE VARCHAR2(8)

ACTIVITY_TYPE_DISPLAY_NAME VARCHAR2(80)

EXECUTION_TIME NUMBER

ACTIVITY_BEGIN_DATE DATE

ACTIVITY_END_DATE DATE

ACTIVITY_STATUS_CODE VARCHAR2(8)

ACTIVITY_STATUS_DISPLAY_NAME VARCHAR2(80)

ACTIVITY_RESULT_CODE VARCHAR2(30)

ACTIVITY_RESULT_DISPLAY_NAME VARCHAR2(4000)

ASSIGNED_USER VARCHAR2(30)

ASSIGNED_USER_DISPLAY_NAME VARCHAR2(4000)

NOTIFICATION_ID NUMBER

OUTBOUND_QUEUE_ID RAW(16)

ERROR_NAME VARCHAR2(30)

ERROR_MESSAGE VARCHAR2(2000)

ERROR_STACK VARCHAR2(4000)

Table 2 – 5 (Page 2 of 2)

Note: The item key for a process instance can only contain
single–byte characters. It cannot contain a multibyte value.

2 – 147Workflow Engine APIs

WF_NOTIFICATION_ATTR_RESP_V

This view contains information about the Respond message attributes
for a notification group. If you plan to create a custom ”voting”
activity, use this view to create the function that tallies the responses
from the users in the notification group. See: Voting Activity, Oracle
Workflow Developer’s Guide.

The following table describes the columns of the view.

Name Null? Type

GROUP_ID NOT NULL NUMBER

RECIPIENT_ROLE NOT NULL VARCHAR2(30)

RECIPIENT_ROLE_DISPLAY_NAME VARCHAR2(4000)

ATTRIBUTE_NAME NOT NULL VARCHAR2(30)

ATTRIBUTE_DISPLAY_NAME NOT NULL VARCHAR2(80)

ATTRIBUTE_VALUE VARCHAR2(2000)

ATTRIBUTE_DISPLAY_VALUE VARCHAR2(4000)

MESSAGE_TYPE NOT NULL VARCHAR2(8)

MESSAGE_NAME NOT NULL VARCHAR2(30)

Table 2 – 6 (Page 1 of 1)

2 – 148 Oracle Workflow API Reference

WF_RUNNABLE_PROCESSES_V

This view contains a list of all runnable workflow processes in the
ACTIVITIES table.

The following table describes the columns of the view.

Name Null? Type

ITEM_TYPE NOT NULL VARCHAR2(8)

PROCESS_NAME NOT NULL VARCHAR2(30)

DISPLAY_NAME NOT NULL VARCHAR2(80)

Table 2 – 7 (Page 1 of 1)

2 – 149Workflow Engine APIs

WF_ITEMS_V

This view is a select only version of the WF_ITEMS table.

The following table describes the columns of the view.

Name Null? Type

ITEM_TYPE NOT NULL VARCHAR2(8)

ITEM_KEY NOT NULL VARCHAR2(240)

USER_KEY VARCHAR2(240)

ROOT_ACTIVITY NOT NULL VARCHAR2(30)

ROOT_ACTIVITY_VERSION NOT NULL NUMBER

OWNER_ROLE VARCHAR2(30)

PARENT_ITEM_TYPE VARCHAR2(8)

PARENT_ITEM_KEY VARCHAR2(240)

PARENT_CONTEXT VARCHAR2(2000)

BEGIN_DATE NOT NULL DATE

END_DATE DATE

Table 2 – 8 (Page 1 of 1)

Note: The item key for a process instance can only contain
single–byte characters. It cannot contain a multibyte value.

2 – 150 Oracle Workflow API Reference

C H A P T E R

3
T

3 – 1Directory Service APIs

Directory Service APIs

his chapter describes the APIs for the Oracle Workflow directory
service. The APIs consist of PL/SQL functions and procedures that
you can use to access the directory service.

☞

3 – 2 Oracle Workflow API Reference

Workflow Directory Service APIs

The following APIs can be called by an application program or a
workflow function in the runtime phase to retrieve information about
existing users and roles, as well as create and manage new ad hoc users
and roles in the directory service. These APIs are defined in a PL/SQL
package called WF_DIRECTORY.

• GetRoleUsers: page 3 – 4

• GetUserRoles: page 3 – 5

• GetRoleInfo: page 3 – 6

• GetRoleInfo2: page 3 – 7

• IsPerformer: page 3 – 9

• UserActive: page 3 – 10

• GetUserName: page 3 – 11

• GetRoleName: page 3 – 12

• GetRoleDisplayName: page 3 – 13

• CreateAdHocUser: page 3 – 14

• CreateAdHocRole: page 3 – 17

• CreateAdHocRole2: page 3 – 20

• AddUsersToAdHocRole: page 3 – 23

• AddUsersToAdHocRole2: page 3 – 24

• RemoveUsersFromAdHocRole: page 3 – 25

• SetAdHocUserStatus: page 3 – 26

• SetAdHocRoleStatus: page 3 – 27

• SetAdHocUserExpiration: page 3 – 28

• SetAdHocRoleExpiration: page 3 – 29

• SetAdHocUserAttr: page 3 – 30

• SetAdHocRoleAttr: page 3 – 32

• ChangeLocalUserName: page 3 – 34

• IsMLSEnabled: page 3 – 35

Attention: If you implement OID integration, you must
maintain your users only through OID. You must not create ad
hoc users in the WF_LOCAL_ROLES table, because you risk

3 – 3Directory Service APIs

discrepancies in your user information and unpredictable
results if you use any tool other than OID to maintain users
after integrating with OID. Consequently, if you implement
OID integration, you must not use the CreateAdHocUser(),
SetAdHocUserStatus(), SetAdHocUserExpiration(), or
SetAdHocUserAttr() APIs in the WF_DIRECTORY package.

You can still use ad hoc roles, however, since Workflow roles
are not maintained through OID.

Note: Some directory service APIs use PL/SQL table
composite datatypes defined in the WF_DIRECTORY package.
The following table shows the column datatype definition for
each PL/SQL table type.

PL/SQL Table Type Column Datatype Definition

UserTable varchar2(320)

RoleTable varchar2(320)

Table 3 – 1 (Page 1 of 1)

See Also

Standard API for PL/SQL Procedures Called by Function Activities,
Oracle Workflow Developer’s Guide

Syntax

Description

Arguments (input)

3 – 4 Oracle Workflow API Reference

GetRoleUsers

procedure GetRoleUsers

 (role in varchar2,

 users out wF_DIRECTORY.UserTable);

Returns a table of users for a given role.

Note: A role can contain only individual users as its members.
It cannot contain another role.

A valid role name.role

Syntax

Description

Arguments (input)

3 – 5Directory Service APIs

GetUserRoles

procedure GetUserRoles

 (user in varchar2,

 roles out WF_DIRECTORY.RoleTable);

Returns a table of roles that a given user is assigned to.

A valid username.user

Syntax

Description

Arguments (input)

3 – 6 Oracle Workflow API Reference

GetRoleInfo

procedure GetRoleInfo

 (Role in varchar2,

 Display_Name out varchar2,

 Email_Address out varchar2,

 Notification_Preference out varchar2,

 Language out varchar2,

 Territory out varchar2);

Returns the following information about a role:

• Display name

• E–mail address

• Notification Preference (’QUERY’, ’MAILTEXT’, ’MAILHTML’,
’MAILATTH’, ’MAILHTM2’, ’SUMMARY’, or, for Oracle
Applications only, ’SUMHTML’)

• Language

• Territory

Note: In Oracle Applications, for roles that are Oracle
Applications users marked with an originating system of
FND_USR or PER, the GetRoleInfo() procedure by default
retrieves the language and territory values from the ICX:
Language and ICX: Territory profile options for that Oracle
Applications user.

However, if the WF_PREFERENCE resource token is defined
and set to FND, then the GetRoleInfo() procedure obtains the
language and territory values from the Oracle Workflow
preferences table instead.

The WF_PREFERENCE resource token is not used in the
standalone version of Oracle Workflow.

A valid role name.role

Syntax

Description

3 – 7Directory Service APIs

GetRoleInfo2

procedure GetRoleInfo2

 (Role in varchar2,

 Role_Info_Tbl out wf_directory.wf_local_roles_tbl_type);

Returns the following information about a role in a PL/SQL table:

• Name

• Display name

• Description

• Notification preference (’QUERY’, ’MAILTEXT’, ’MAILHTML’,
’MAILATTH’, ’MAILHTM2’, ’SUMMARY’, or, for Oracle
Applications only, ’SUMHTML’)

• Language

• Territory

• E–mail address

• Fax

• Status

• Expiration date

• Originating system

• Originating system ID

• Parent originating system

• Parent originating system ID

• Owner tag

• Standard Who columns

Note: In Oracle Applications, for roles that are Oracle
Applications users marked with an originating system of
FND_USR or PER, the GetRoleInfo2() procedure by default
retrieves the language and territory values from the ICX:
Language and ICX: Territory profile options for that Oracle
Applications user.

However, if the WF_PREFERENCE resource token is defined
and set to FND, then the GetRoleInfo2() procedure obtains the
language and territory values from the Oracle Workflow
preferences table instead.

Arguments (input)

3 – 8 Oracle Workflow API Reference

The WF_PREFERENCE resource token is not used in the
standalone version of Oracle Workflow.

A valid role name.role

Syntax

Description

Arguments (input)

3 – 9Directory Service APIs

IsPerformer

function IsPerformer

 (user in varchar2,

 role in varchar2)

 return boolean;

Returns true or false to identify whether a user is a performer, also
known as a member, of a role.

A valid username.

A valid role name.

user

role

Syntax

Description

Arguments (input)

3 – 10 Oracle Workflow API Reference

UserActive

function UserActive

(username in varchar2)

 return boolean;

Determines if a user currently has a status of ’ACTIVE’ and is available
to participate in a workflow. Returns TRUE if the user has a status of
’ACTIVE’, otherwise it returns FALSE.

A valid username.username

Syntax

Description

Arguments (input)

3 – 11Directory Service APIs

GetUserName

procedure GetUserName

 (p_orig_system in varchar2,

 p_orig_system_id in varchar2,

 p_name out varchar2,

 p_display_name out varchar2);

Returns a Workflow display name and username for a user given the
system information from the original user and roles repository.

Code that identifies the original repository table.

ID of a row in the original repository table.

p_orig_system

p_orig_system_id

Syntax

Description

Arguments (input)

3 – 12 Oracle Workflow API Reference

GetRoleName

procedure GetRoleName

 (p_orig_system in varchar2,

 p_orig_system_id in varchar2,

 p_name out varchar2,

 p_display_name out varchar2);

Returns a Workflow display name and role name for a role given the
system information from the original user and roles repository.

Code that identifies the original repository table.

ID of a row in the original repository table.

p_orig_system

p_orig_system_id

Syntax

Description

Arguments (input)

3 – 13Directory Service APIs

GetRoleDisplayName

function GetRoleDisplayName

 (p_role_name in varchar2)

 return varchar2;

 pragma restrict_references(GetRoleDisplayName, WNDS,

 WNPS);

Returns a Workflow role’s display name given the role’s internal name.

The internal name of the role.p_role_name

Syntax

Description

☞

Arguments (input)

3 – 14 Oracle Workflow API Reference

CreateAdHocUser

procedure CreateAdHocUser

 (name in out varchar2,

 display_name in out varchar2,

 language in varchar2 default null,

 territory in varchar2 default null,

 description in varchar2 default null,

 notification_preference in varchar2 default

 ’MAILHTML’,

 email_address in varchar2 default null,

 fax in varchar2 default null,

 status in varchar2 default ’ACTIVE’,

 expiration_date in date default null,

 parent_orig_system in varchar2 default null,

 parent_orig_system_id in number default null);

Creates a user at runtime by creating a value in the
WF_LOCAL_ROLES table with the user flag set to Y. This is referred to
as an ad hoc user.

Attention: If you implement Oracle Internet Directory
integration for standalone Oracle Workflow, you must maintain
your users only through OID. You must not use the
CreateAdHocUser() API to create new users in the
WF_LOCAL_ROLES table, because you risk discrepancies in
your user information and unpredictable results if you use any
tool other than OID to maintain users after integrating with
OID.

An internal name for the user. The internal name
must be no longer than 320 characters. It is
recommended that the internal name be all
uppercase. This procedure checks that the name
provided does not already exist in WF_USERS and
returns an error if the name already exists. If you
do not provide an internal name, the system
generates an internal name for you where the name
contains a prefix of ’~WF_ADHOC–’ followed by a
sequence number.

The display name of the user. This procedure
checks that the display name provided does not
already exist in WF_USERS and returns an error if

name

display_name

3 – 15Directory Service APIs

the display name already exists. If you do not
provide a display name, the system generates one
for you where the display name contains a prefix of
’~WF_ADHOC–’ followed by a sequence number.

The value of the database NLS_LANGUAGE
initialization parameter that specifies the default
language–dependent behavior of the user’s
notification session. If null, the procedure resolves
this to the language setting of your current session.

The value of the database NLS_TERRITORY
initialization parameter that specifies the default
territory–dependent date and numeric formatting
used in the user’s notification session. If null, the
procedure resolves this to the territory setting of
your current session.

An optional description for the user.

Indicate how this user prefers to receive
notifications: ’MAILTEXT’, ’MAILHTML’,
’MAILATTH’, ’MAILHTM2’, ’QUERY’,
’SUMMARY’, or, for Oracle Applications only,
’SUMHTML’. If null, the procedure sets the
notification preference to ’MAILHTML’.

A optional electronic mail address for this user.

An optional fax number for the user.

The availability of the user to participate in a
workflow process. The possible statuses are
’ACTIVE’, ’EXTLEAVE’, ’INACTIVE’, and
’TMPLEAVE’. If null, the procedure sets the status
to ’ACTIVE’.

The date at which the user is no longer valid in the
directory service.

An optional code for the originating system of an
entity that you want to mark as being related to
this user.

The primary key that identifies the parent entity in
the parent originating system.

language

territory

description

notification_
preference

email_address

fax

status

expiration_date

parent_orig_
system

parent_orig_
system_id

3 – 16 Oracle Workflow API Reference

See Also

Setting Up an Oracle Workflow Directory Service, Oracle Workflow
Administrator’s Guide

Syntax

Description

Arguments (input)

3 – 17Directory Service APIs

CreateAdHocRole

procedure CreateAdHocRole

 (role_name in out varchar2,

 role_display_name in out varchar2,

 language in varchar2 default null,

 territory in varchar2 default null,

 role_description in varchar2 default null,

 notification_preference in varchar2 default

 ’MAILHTML’,

 role_users in varchar2 default null,

 email_address in varchar2 default null,

 fax in varchar2 default null,

 status in varchar2 default ’ACTIVE’,

 expiration_date in date default null,

 parent_orig_system in varchar2 default null,

 parent_orig_system_id in number default null,

 owner_tag in varchar2 default null);

Creates a role at runtime by creating a value in the
WF_LOCAL_ROLES table with the user flag set to N. This is referred to
as an ad hoc role.

Note: A role can contain only individual users as its members.
It cannot contain another role.

An internal name for the role. The internal name
must be no longer than 320 characters. It is
recommended that the internal name be all
uppercase. This procedure checks that the name
provided does not already exist in WF_ROLES and
returns an error if the name already exists. If you
do not provide an internal name, the system
generates an internal name for you where the name
contains a prefix of ’~WF_ADHOC–’ followed by a
sequence number.

The display name of the role. This procedure
checks that the display name provided does not
already exist in WF_ROLES and returns an error if
the display name already exists. If you do not
provide a display name, the system generates one
for you where the display name contains a prefix of
’~WF_ADHOC–’ followed by a sequence number.

role_name

role_display_
name

3 – 18 Oracle Workflow API Reference

The value of the database NLS_LANGUAGE
initialization parameter that specifies the default
language–dependent behavior of the user’s
notification session. If null, the procedure resolves
this to the language setting of your current session.

The value of the database NLS_TERRITORY
initialization parameter that specifies the default
territory–dependent date and numeric formatting
used in the user’s notification session. If null, the
procedure resolves this to the territory setting of
your current session.

An optional description for the role.

Indicate how this role receives notifications:
’MAILTEXT’, ’MAILHTML’, ’MAILATTH’,
’MAILHTM2’, ’QUERY’, ’SUMMARY’, or, for
Oracle Applications only, ’SUMHTML’. If null, the
procedure sets the notification preference to
’MAILHTML’.

Indicate the names of the users that belong to this
role, using commas or spaces to delimit the list.

A optional electronic mail address for this role or a
mail distribution list defined by your electronic
mail system.

An optional fax number for the role.

The availability of the role to participate in a
workflow process. The possible statuses are
ACTIVE, EXTLEAVE, INACTIVE, and
TMPLEAVE. If null, the procedure sets the status
to ’ACTIVE’.

The date at which the role is no longer valid in the
directory service.

An optional code for the originating system of an
entity that you want to mark as being related to
this role.

The primary key that identifies the parent entity in
the parent originating system.

A code to identify the program or application that
owns the information for this role.

language

territory

role_description

notification_
preference

role_users

email_address

fax

status

expiration_date

parent_orig_
system

parent_orig_
system_id

owner_tag

3 – 19Directory Service APIs

See Also

Setting Up an Oracle Workflow Directory Service, Oracle Workflow
Administrator’s Guide

Syntax

Description

Arguments (input)

3 – 20 Oracle Workflow API Reference

CreateAdHocRole2

procedure CreateAdHocRole2

 (role_name in out varchar2,

 role_display_name in out varchar2,

 language in varchar2 default null,

 territory in varchar2 default null,

 role_description in varchar2 default null,

 notification_preference in varchar2 default

 ’MAILHTML’,

 role_users in WF_DIRECTORY.UserTable,

 email_address in varchar2 default null,

 fax in varchar2 default null,

 status in varchar2 default ’ACTIVE’,

 expiration_date in date default null,

 parent_orig_system in varchar2 default null,

 parent_orig_system_id in number default null,

 owner_tag in varchar2 default null);

Creates a role at runtime by creating a value in the
WF_LOCAL_ROLES table with the user flag set to N. This is referred to
as an ad hoc role. CreateAdHocRole2() accepts the list of users who
belong to the role in the WF_DIRECTORY.UserTable format, which lets
you include user names that contain spaces or commas.

Note: A role can contain only individual users as its members.
It cannot contain another role.

An internal name for the role. The internal name
must be no longer than 320 characters. It is
recommended that the internal name be all
uppercase. This procedure checks that the name
provided does not already exist in WF_ROLES and
returns an error if the name already exists. If you
do not provide an internal name, the system
generates an internal name for you where the name
contains a prefix of ’~WF_ADHOC–’ followed by a
sequence number.

The display name of the role. This procedure
checks that the display name provided does not
already exist in WF_ROLES and returns an error if
the display name already exists. If you do not
provide a display name, the system generates one

role_name

role_display_
name

3 – 21Directory Service APIs

for you where the display name contains a prefix of
’~WF_ADHOC–’ followed by a sequence number.

The value of the database NLS_LANGUAGE
initialization parameter that specifies the default
language–dependent behavior of the user’s
notification session. If null, the procedure resolves
this to the language setting of your current session.

The value of the database NLS_TERRITORY
initialization parameter that specifies the default
territory–dependent date and numeric formatting
used in the user’s notification session. If null, the
procedure resolves this to the territory setting of
your current session.

An optional description for the role.

Indicate how this role receives notifications:
’MAILTEXT’, ’MAILHTML’, ’MAILATTH’,
’MAILHTM2’, ’QUERY’, ’SUMMARY’, or, for
Oracle Applications only, ’SUMHTML’. If null, the
procedure sets the notification preference to
’MAILHTML’.

The names of the users that belong to this role, as a
table in the WF_DIRECTORY.UserTable format.

A optional electronic mail address for this role or a
mail distribution list defined by your electronic
mail system.

An optional fax number for the role.

The availability of the role to participate in a
workflow process. The possible statuses are
ACTIVE, EXTLEAVE, INACTIVE, and
TMPLEAVE. If null, the procedure sets the status
to ’ACTIVE’.

The date at which the role is no longer valid in the
directory service.

An optional code for the originating system of an
entity that you want to mark as being related to
this role.

The primary key that identifies the parent entity in
the parent originating system.

language

territory

role_description

notification_
preference

role_users

email_address

fax

status

expiration_date

parent_orig_
system

parent_orig_
system_id

3 – 22 Oracle Workflow API Reference

A code to identify the program or application that
owns the information for this role.

See Also

Setting Up an Oracle Workflow Directory Service, Oracle Workflow
Administrator’s Guide

owner_tag

Syntax

Description

Arguments (input)

3 – 23Directory Service APIs

AddUsersToAdHocRole

procedure AddUsersToAdHocRole

 (role_name in varchar2,

 role_users in varchar2);

Adds users to a existing ad hoc role.

Note: A role can contain only individual users as its members.
It cannot contain another role.

The internal name of the ad hoc role.

The list of users, delimited by spaces or commas.
Users can be ad hoc users or users defined in an
application, but they must already be defined in
the Oracle Workflow directory service.

role_name

role_users

Syntax

Description

Arguments (input)

3 – 24 Oracle Workflow API Reference

AddUsersToAdHocRole2

procedure AddUsersToAdHocRole2

 (role_name in varchar2,

 role_users in WF_DIRECTORY.UserTable);

Adds users to a existing ad hoc role. AddUsersToAdHocRole2() accepts
the list of users in the WF_DIRECTORY.UserTable format, which lets
you include user names that contain spaces or commas.

Note: A role can contain only individual users as its members.
It cannot contain another role.

The internal name of the ad hoc role.

The list of users, as a table in the
WF_DIRECTORY.UserTable format. Users can be
ad hoc users or users defined in an application, but
they must already be defined in the Oracle
Workflow directory service.

role_name

role_users

Syntax

Description

Arguments (input)

3 – 25Directory Service APIs

RemoveUsersFromAdHocRole

procedure RemoveUsersFromAdHocRole

 (role_name in varchar2,

 role_users in varchar2 default null);

Removes users from an existing ad hoc role.

The internal name of the ad hoc role.

List of users to remove from the ad hoc role. The
users are delimited by commas or spaces. If null,
all users are removed from the role.

role_name

role_users

Syntax

Description

☞

Arguments (input)

3 – 26 Oracle Workflow API Reference

SetAdHocUserStatus

procedure SetAdHocUserStatus

 (user_name in varchar2,

 status in varchar2 default ’ACTIVE’);

Sets the status of an ad hoc user as ’ACTIVE’ or ’INACTIVE’.

Attention: If you implement Oracle Internet Directory
integration, you must maintain your users only through OID.
You must not use the SetAdHocUserStatus() API to update user
information in the WF_LOCAL_ROLES table, because you risk
discrepancies in your user information and unpredictable
results if you use any tool other than OID to maintain users
after integrating with OID.

The internal name of the user.

A status of ’ACTIVE’ or ’INACTIVE’ to set for the
user. If null, the status is ’ACTIVE’.

user_name

status

Syntax

Description

Arguments (input)

3 – 27Directory Service APIs

SetAdHocRoleStatus

procedure SetAdHocRoleStatus

 (role_name in varchar2,

 status in varchar2 default ’ACTIVE’);

Sets the status of an ad hoc role as ’ACTIVE’ or ’INACTIVE’.

The internal name of the role.

A status of ’ACTIVE’ or ’INACTIVE’ to set for the
role. If null, the status is ’ACTIVE’.

role_name

status

Syntax

Description

☞

Arguments (input)

3 – 28 Oracle Workflow API Reference

SetAdHocUserExpiration

procedure SetAdHocUserExpiration

 (user_name in varchar2,

 expiration_date in date default sysdate);

Updates the expiration date for an ad hoc user.

Note that although users and roles whose expiration date has passed
do not appear in the seeded WF_USERS, WF_ROLES, and
WF_USER_ROLES views, they are not removed from the Workflow
local tables until you purge them using Directory(). You should
periodically purge expired users and roles in order to improve
performance. See: Directory: page 2 – 128.

Attention: If you implement Oracle Internet Directory
integration, you must maintain your users only through OID.
You must not use the SetAdHocUserExpiration() API to update
user information in the WF_LOCAL_ROLES table, because you
risk discrepancies in your user information and unpredictable
results if you use any tool other than OID to maintain users
after integrating with OID.

The internal name of the ad hoc user.

New expiration date. If null, the procedure
defaults the expiration date to sysdate.

user_name

expiration_date

Syntax

Description

Arguments (input)

3 – 29Directory Service APIs

SetAdHocRoleExpiration

procedure SetAdHocRoleExpiration

 (role_name in varchar2,

 expiration_date in date default sysdate);

Updates the expiration date for an ad hoc role.

Note that although users and roles whose expiration date has passed
do not appear in the seeded WF_USERS, WF_ROLES, and
WF_USER_ROLES views, they are not removed from the Workflow
local tables until you purge them using Directory(). You should
periodically purge expired users and roles in order to improve
performance. See: Directory: page 2 – 128.

The internal name of the ad hoc role.

New expiration date. If null, the procedure
defaults the expiration date to sysdate.

role_name

expiration_date

Syntax

Description

☞

Arguments (input)

3 – 30 Oracle Workflow API Reference

SetAdHocUserAttr

procedure SetAdHocUserAttr

 (user_name in varchar2,

 display_name in varchar2 default null,

 notification_preference in varchar2 default null,

 language in varchar2 default null,

 territory in varchar2 default null,

 email_address in varchar2 default null,

 fax in varchar2 default null,

 parent_orig_system in varchar2 default null,

 parent_orig_system_id in number default null,

 owner_tag in varchar2 default null);

Updates the attributes for an ad hoc user.

Attention: If you implement Oracle Internet Directory
integration, you must maintain your users only through OID.
You must not use the SetAdHocUserAttr() API to update user
information in the WF_LOCAL_ROLES table, because you risk
discrepancies in your user information and unpredictable
results if you use any tool other than OID to maintain users
after integrating with OID.

The internal name of the ad hoc user to update.

A new display name for the ad hoc user. If null,
the display name is not updated.

A new notification preference of ’MAILTEXT’,
’MAILHTML’, ’MAILATTH’, ’MAILHTM2’,
’QUERY’, ’SUMMARY’, or, for Oracle Applications
only, ’SUMHTML’. If null, the notification
preference is not updated.

A new value of the database NLS_LANGUAGE
initialization parameter for the ad hoc user. If null,
the language setting is not updated.

A new value of the database NLS_TERRITORY
initialization parameter for the ad hoc user. If null,
the territory setting is not updated.

A new valid electronic mail address for the ad hoc
user. If null, the electronic mail address is not
updated.

user_name

display_name

notification_
preference

language

territory

email_address

3 – 31Directory Service APIs

A new fax number for the ad hoc user. If null, the
fax number is not updated.

An optional code for the originating system of an
entity that you want to mark as being related to
this user.

The primary key that identifies the parent entity in
the parent originating system.

A code to identify the program or application that
owns the information for this user.

fax

parent_orig_
system

parent_orig_
system_id

owner_tag

Syntax

Description

Arguments (input)

3 – 32 Oracle Workflow API Reference

SetAdHocRoleAttr

procedure SetAdHocRoleAttr

 (role_name in varchar2,

 display_name in varchar2 default null,

 notification_preference in varchar2 default null,

 language in varchar2 default null,

 territory in varchar2 default null,

 email_address in varchar2 default null,

 fax in varchar2 default null,

 parent_orig_system in varchar2 default null,

 parent_orig_system_id in number default null,

 owner_tag in varchar2 default null);

Updates the attributes for an ad hoc role.

The internal name of the ad hoc role to update.

A new display name for the ad hoc role. If null, the
display name is not updated.

A new notification preference of ’MAILTEXT’,
’MAILHTML’, ’MAILATTH’, ’MAILHTM2’,
’QUERY’, ’SUMMARY’, or, for Oracle Applications
only, ’SUMHTML’. If null, the notification
preference is not updated.

A new value of the database NLS_LANGUAGE
initialization parameter for the ad hoc role. If null,
the language setting is not updated.

A new value of the database NLS_TERRITORY
initialization parameter for the ad hoc role. If null,
the territory setting is not updated.

A new valid electronic mail address for the ad hoc
role. If null, the electronic mail address is not
updated.

A new fax number for the ad hoc role. If null, the
fax number is not updated.

An optional code for the originating system of an
entity that you want to mark as being related to
this role.

role_name

display_name

notification_
preference

language

territory

email_address

fax

parent_orig_
system

3 – 33Directory Service APIs

The primary key that identifies the parent entity in
the parent originating system.

A code to identify the program or application that
owns the information for this role.

parent_orig_
system_id

owner_tag

Syntax

Description

Arguments (input)

3 – 34 Oracle Workflow API Reference

ChangeLocalUserName

function ChangeLocalUserName

 (OldName in varchar2,

 NewName in varchar2,

 Propagate in boolean default TRUE)

 return boolean;

Changes a user’s name in the WF_LOCAL_ROLES table. Returns
TRUE if the name change completes successfully; otherwise, the API
returns FALSE.

The current name of the user.

The new name for the user.

Specify TRUE to change all occurrences of the old
user name to the new user name.

OldName

NewName

Propagate

Syntax

Description

Arguments (input)

3 – 35Directory Service APIs

IsMLSEnabled

function IsMLSEnabled

 (p_orig_system in varchar2)

 return boolean;

Determines whether Multilingual Support (MLS) is enabled for the
specified originating system. Returns TRUE if MLS is enabled;
otherwise the API returns FALSE.

A system from which directory service information
originates.

p_orig_system

3 – 36 Oracle Workflow API Reference

Workflow LDAP APIs

Call the following APIs to synchronize local user information in your
Workflow directory service with the users in an LDAP directory such
as Oracle Internet Directory (OID). These APIs are defined in a
PL/SQL package called WF_LDAP.

• Synch_changes: page 3 – 37

• Synch_all: page 3 – 38

• Schedule_changes: page 3 – 39

See Also

Synchronizing Workflow Directory Services with Oracle Internet
Directory, Oracle Workflow Administrator’s Guide

Syntax

Description

3 – 37Directory Service APIs

Synch_changes

function synch_changes

 return boolean;

Determines whether there have been any user changes to an LDAP
directory since the last synchronization by querying the LDAP change
log records; if there are any changes, including creation, modification,
and deletion, Synch_changes() stores the user attribute information in
an attribute cache and raises the oracle.apps.global.user.change event
to alert interested parties. The function connects to the LDAP directory
specified in the global workflow preferences. One event is raised for
each changed user.

If the function completes successfully, it returns TRUE; otherwise, if it
encounters an exception, it returns FALSE.

See Also

Synchronizing Workflow Directory Services with Oracle Internet
Directory, Oracle Workflow Administrator’s Guide

Setting Global User Preferences, Oracle Workflow Administrator’s Guide

User Entry Has Changed Event, Oracle Workflow Developer’s Guide

Syntax

Description

3 – 38 Oracle Workflow API Reference

Synch_all

function synch_all

 return boolean;

Retrieves all users from an LDAP directory, stores the user attribute
information in an attribute cache, and raises the
oracle.apps.global.user.change event to alert interested parties. The
function connects to the LDAP directory specified in the global
workflow preferences. One event is raised for each user.

Because Synch_all() retrieves information for all users stored in the
LDAP directory, you should use this function only once during setup,
or as required for recovery or cleanup. Subsequently, you can use
Synch_changes() or Schedule_changes() to retrieve only changed user
information.

If the function completes successfully, it returns TRUE; otherwise, if it
encounters an exception, it returns FALSE.

Run Synch_all() to begin your Workflow directory service
synchronization with Oracle Internet Directory if you implement OID
integration.

See Also

Synchronizing Workflow Directory Services with Oracle Internet
Directory, Oracle Workflow Administrator’s Guide

Setting Global User Preferences, Oracle Workflow Administrator’s Guide

User Entry Has Changed Event, Oracle Workflow Developer’s Guide

Synch_changes: page 3 – 37

Schedule_changes: page 3 – 39

Syntax

Description

Arguments (input)

3 – 39Directory Service APIs

Schedule_changes

procedure schedule_changes

 (l_day in pls_integer default 0,

 l_hour in pls_integer default 0,

 l_minute in pls_integer default 10);

Runs the Synch_changes() API repeatedly at the specified time interval
to check for user changes in an LDAP directory and alert interested
parties of any changes. The default interval is ten minutes.
Schedule_changes() submits a database job using the DBMS_JOB utility
to run Synch_changes().

Run Schedule_changes() to maintain your Workflow directory service
synchronization with Oracle Internet Directory if you implement OID
integration.

The number of days in the interval to specify how
often you want to run the Synch_changes() API. The
default value is zero.

The number of hours in the interval to specify how
often you want to run the Synch_changes() API. The
default value is zero.

The number of minutes in the interval to specify
how often you want to run the Synch_changes()
API. The default value is ten.

See Also

Synch_changes: page 3 – 37

Synchronizing Workflow Directory Services with Oracle Internet
Directory, Oracle Workflow Administrator’s Guide

l_day

l_hour

l_minute

3 – 40 Oracle Workflow API Reference

Workflow Local Synchronization APIs

The following APIs can be called by an application program or a
workflow function in the runtime phase to synchronize user and role
information stored in application tables with the information in the
Workflow local tables. These APIs are defined in a PL/SQL package
called WF_LOCAL_SYNCH.

• Propagate_User: page 3 – 41

• Propagate_Role: page 3 – 46

• PropagateUserRole: page 3 – 51

Note: The Propagate_User_Role() API from earlier versions of
Oracle Workflow is replaced by the PropagateUserRole() API.
The current version of Oracle Workflow still recognizes the
Propagate_User_Role() API for backward compatibility, but
moving forward, you should only use the new
PropagateUserRole() API where appropriate.

See Also

Setting Up an Oracle Workflow Directory Service, Oracle Workflow
Administrator’s Guide

Syntax

Description

3 – 41Directory Service APIs

Propagate_User

procedure Propagate_User

 (p_orig_system in varchar2,

 p_orig_system_id in number,

 p_attributes in wf_parameter_list_t,

 p_start_date in date default null,

 p_expiration_date in date default null);

Synchronizes the information for a user from an application table with
the WF_LOCAL_ROLES table and marks this record as an individual
user by setting the user flag to Y. The user is identified by the specified
originating system and originating system ID. The partition ID where
the user’s information is stored is set automatically depending on the
originating system.

Note: For Oracle Applications, only Oracle Applications users
from the FND_USER table, Oracle Trading Community
Architecture (TCA) person parties, and TCA contacts
(relationship parties) should be synchronized using
Propagate_User(). All other Oracle Applications modules should
synchronize their information using Propagate_Role().

The user information to be stored in the WF_LOCAL_ROLES table
must be provided in the WF_PARAMETER_LIST_T format. You can
use the WF_EVENT.AddParameterToList() API to add attributes to the
list. The following table shows the attributes that should be included in
the list to populate the required columns in WF_LOCAL_ROLES. The
standard LDAP attribute names should be used for these attributes.

Database Column Attribute Name

NAME [USER_NAME]

DISPLAY_NAME [DisplayName]

DESCRIPTION [description]

NOTIFICATION_
PREFERENCE

[orclWorkFlowNotificationPref]

LANGUAGE [preferredLanguage]

TERRITORY [orclNLSTerritory]

EMAIL_ADDRESS [mail]

Table 3 – 2 (Page 1 of 2)

3 – 42 Oracle Workflow API Reference

Attribute NameDatabase Column

FAX [FacsimileTelephoneNumber]

STATUS [orclIsEnabled]

EXPIRATION_DATE [ExpirationDate]

ORIG_SYSTEM [orclWFOrigSystem]

ORIG_SYSTEM_ID [orclWFOrigSystemID]

PARENT_ORIG_SYSTEM [orclWFParentOrigSys]

PARENT_ORIG_SYSTEM_
ID

[orclWFParentOrigSysID]

OWNER_TAG [OWNER_TAG]

PERSON_PARTY_ID [PERSON_PARTY_ID]

LAST_UPDATED_BY [LAST_UPDATED_BY]

LAST_UPDATE_DATE [LAST_UPDATE_DATE]

LAST_UPDATE_LOGIN [LAST_UPDATE_LOGIN]

CREATED_BY [CREATED_BY]

CREATION_DATE [CREATION_DATE]

Table 3 – 2 (Page 2 of 2)

In normal operating mode, if any of these attributes except
USER_NAME are not passed in the attribute list or are null, the
existing value in the corresponding field in WF_LOCAL_ROLES
remains the same. For example, if no e–mail address is passed, the
existing e–mail address for the user is retained. However, you must
always pass the USER_NAME attribute, because the Propagate_User()
procedure uses this value in a WHERE condition and will fail if the
USER_NAME is not provided. Also, if the user record does not already
exist, you must pass all of the listed attributes since there are no
existing values to use.

For more robust code, you should always pass all of the listed
attributes when calling Propagate_User(). In this way you can avoid
errors caused by trying to determine dynamically which attributes to
pass.

Note: If a display name is not provided in the attribute list
when the user record is first created in normal operating mode,
this value is set by default to a composite value in the format

3 – 43Directory Service APIs

<orig_system>:<orig_system_ID> in the user record in
WF_LOCAL_ROLES. Additionally, if no notification preference
is provided, the notification preference for the user record is set
by default to MAILHTML, and if no status is provided, the status
for the user record is set by default to ACTIVE. If no TCA
person party ID is provided, Oracle Workflow uses a value
consisting of the originating system and originating system ID
as the person party ID.

You can also call Propagate_User() in overwrite mode by including a
special attribute named WFSYNCH_OVERWRITE with a value of
’TRUE’. In overwrite mode, if one of the following attributes is not
passed or is null, the procedure sets the value of the corresponding
field in WF_LOCAL_ROLES to null, deleting the previous value.

• description

• preferredLanguage

• orclNLSTerritory

• mail

• FacsimileTelephoneNumber

• ExpirationDate

• orclWFParentOrigSys

• orclWFParentOrigSysID

• OWNER_TAG

• LAST_UPDATED_BY

• LAST_UPDATE_DATE

• LAST_UPDATE_LOGIN

Consequently, when you are using overwrite mode, you must pass
values for all the attributes that you do not want to be null. Also, you
must always pass the USER_NAME attribute.

Note: The DISPLAY_NAME, NOTIFICATION_PREFERENCE,
STATUS, ORIG_SYSTEM, and ORIG_SYSTEM_ID columns in
the WF_LOCAL_ROLES table have a NOT NULL constraint,
so these columns retain their existing values if you do not pass
a value for the corresponding attributes, even if you are using
overwrite mode.

The NAME column in WF_LOCAL_ROLES also has a NOT
NULL constraint. and you cannot omit the USER_NAME
attribute in any case because it is required for the API.

3 – 44 Oracle Workflow API Reference

Certain values, including the originating system, originating system ID,
and expiration date, can be passed both as parameters for the
Propagate_User() API and as attributes within the attribute list
parameter. These values are repeated in the attribute list because
Propagate_User() sends only the attribute list to the Entity Manager that
coordinates LDAP integration, and not any of the procedure’s other
parameters.

• The originating system and originating system ID values that are
passed as parameters to the procedure override any originating
system and originating system ID values that are provided as
attributes within the attribute list, if these values differ.

• Likewise, if an expiration date value is passed as a parameter to
the procedure, that value overrides any expiration date value
provided as an attribute within the attribute list. However, if the
p_expiration_date parameter is null, the value of the
ExpirationDate attribute will be used, if one is provided. You
must provide the ExpirationDate attribute value in the following
format:

to_char(<your date variable>, WF_ENGINE.Date_Format)

Oracle Workflow also provides two additional special attributes that
you can use to specify how the user information should be modified.

• DELETE – You can use this attribute when you want to remove a
user from availability to participate in a workflow. If you include
this attribute with a value of ’TRUE’, the expiration date for the
user in WF_LOCAL_ROLES is set to sysdate and the status is set
to INACTIVE.

Note: If you also pass a value for the p_expiration_date
parameter, however, that value will override the DELETE
attribute. Additionally, if the p_expiration_date parameter is
null but you include the ExpirationDate attribute, that attribute
value will override the DELETE attribute. In these cases the
user will remain valid and active until the specified expiration
date.

• UpdateOnly – You can use this attribute for performance gain
when you want to modify information for a user for whom a
record already exists in WF_LOCAL_ROLES. If you include this
attribute with a value of ’TRUE’, the Propagate_User() API
attempts to update the record directly, without first inserting the
record.

If this update attempt fails because a record does not already
exist for that user, the procedure will then insert the record.

Arguments (input)

3 – 45Directory Service APIs

However, the initial unsuccessful attempt will degrade
performance, so you should only use the UpdateOnly attribute
when you are certain that the user record already exists in
WF_LOCAL_ROLES.

A code that you assign to the directory repository
that is the source of the user information.

The primary key that identifies the user in this
repository system.

A list of attribute name and value pairs containing
information about the user.

The date at which the user becomes valid in the
directory service.

The date at which the user is no longer valid in the
directory service.

See Also

AddParameterToList: page 5 – 44

p_orig_system

p_orig_system_id

p_attributes

p_start_date

p_expiration_
date

Syntax

Description

3 – 46 Oracle Workflow API Reference

Propagate_Role

procedure Propagate_Role

 (p_orig_system in varchar2,

 p_orig_system_id in number,

 p_attributes in wf_parameter_list_t,

 p_start_date in date default null,

 p_expiration_date in date default null);

Synchronizes the information for a role from an application table with
the WF_LOCAL_ROLES table and sets the user flag for the role to N.
The role is identified by the specified originating system and
originating system ID. The partition ID where the role’s information is
stored is set automatically depending on the originating system.

The role information to be stored in the WF_LOCAL_ROLES table
must be provided in the WF_PARAMETER_LIST_T format. You can
use the WF_EVENT.AddParameterToList() API to add attributes to the
list. The following table shows the attributes that should be included in
the list to populate the required columns in WF_LOCAL_ROLES. The
standard LDAP attribute names should be used for these attributes.

Database Column Attribute Name

NAME [USER_NAME]

DISPLAY_NAME [DisplayName]

DESCRIPTION [description]

NOTIFICATION_
PREFERENCE

[orclWorkFlowNotificationPref]

LANGUAGE [preferredLanguage]

TERRITORY [orclNLSTerritory]

EMAIL_ADDRESS [mail]

FAX [FacsimileTelephoneNumber]

STATUS [orclIsEnabled]

EXPIRATION_DATE [ExpirationDate]

ORIG_SYSTEM [orclWFOrigSystem]

ORIG_SYSTEM_ID [orclWFOrigSystemID]

Table 3 – 3 (Page 1 of 2)

3 – 47Directory Service APIs

Attribute NameDatabase Column

PARENT_ORIG_SYSTEM [orclWFParentOrigSys]

PARENT_ORIG_SYSTEM_
ID

[orclWFParentOrigSysID]

OWNER_TAG [OWNER_TAG]

LAST_UPDATED_BY [LAST_UPDATED_BY]

LAST_UPDATE_DATE [LAST_UPDATE_DATE]

LAST_UPDATE_LOGIN [LAST_UPDATE_LOGIN]

CREATED_BY [CREATED_BY]

CREATION_DATE [CREATION_DATE]

Table 3 – 3 (Page 2 of 2)

In normal operating mode, if any of these attributes except
USER_NAME are not passed in the attribute list or are null, the
existing value in the corresponding field in WF_LOCAL_ROLES
remains the same. For example, if no e–mail address is passed, the
existing e–mail address for the role is retained. However, you must
always pass the USER_NAME attribute, because the Propagate_Role()
procedure uses this value in a WHERE condition and will fail if the
USER_NAME is not provided. Also, if the user record does not already
exist, you must pass all of the listed attributes since there are no
existing values to use.

For more robust code, you should always pass all of the listed
attributes when calling Propagate_Role(). In this way you can avoid
errors caused by trying to determine dynamically which attributes to
pass.

Note: If a display name is not provided in the attribute list
when the role record is first created in normal operating mode,
this value is set by default to a composite value in the format
<orig_system>:<orig_system_ID> in the role record in
WF_LOCAL_ROLES. Additionally, if no notification preference
is provided, the notification preference for the role record is set
by default to MAILHTML, and if no status is provided, the status
for the role record is set by default to ACTIVE.

You can also call Propagate_Role() in overwrite mode by including a
special attribute named WFSYNCH_OVERWRITE with a value of
’TRUE’. In overwrite mode, if one of the following attributes is not

3 – 48 Oracle Workflow API Reference

passed or is null, the procedure sets the value of the corresponding
field in WF_LOCAL_ROLES to null, deleting the previous value.

• description

• preferredLanguage

• orclNLSTerritory

• mail

• FacsimileTelephoneNumber

• ExpirationDate

• orclWFParentOrigSys

• orclWFParentOrigSysID

• OWNER_TAG

• LAST_UPDATED_BY

• LAST_UPDATE_DATE

• LAST_UPDATE_LOGIN

Consequently, when you are using overwrite mode, you must pass
values for all the attributes that you do not want to be null. Also, you
must always pass the USER_NAME attribute.

Note: The DISPLAY_NAME, NOTIFICATION_PREFERENCE,
STATUS, ORIG_SYSTEM, and ORIG_SYSTEM_ID columns in
the WF_LOCAL_ROLES table have a NOT NULL constraint,
so these columns retain their existing values if you do not pass
a value for the corresponding attributes, even if you are using
overwrite mode.

The NAME column in WF_LOCAL_ROLES also has a NOT
NULL constraint, and you cannot omit the USER_NAME
attribute in any case because it is required for the API.

You can also call Propagate_Role() in overwrite mode by including a
special attribute named WFSYNCH_OVERWRITE with a value of
’TRUE’. In overwrite mode, if any attribute is not passed or is null, the
procedure sets the value of the corresponding field in
WF_LOCAL_ROLES to null, deleting the previous value.
Consequently, when you are using overwrite mode, you must pass
values for all the attributes that you do not want to be null. Also, the
NAME, DISPLAY_NAME, NOTIFICATION_PREFERENCE, STATUS,
ORIG_SYSTEM, and ORIG_SYSTEM_ID columns in the
WF_LOCAL_ROLES table have a NOT NULL constraint, so you must
always pass the corresponding attributes for those columns when you

3 – 49Directory Service APIs

are using overwrite mode. Otherwise, the procedure will fail and no
update will take place.

Certain values, including the originating system, originating system ID,
and expiration date, can be passed both as parameters for the
Propagate_Role() API and as attributes within the attribute list
parameter. These values are repeated in the attribute list because
Propagate_Role() sends only the attribute list to the Entity Manager that
coordinates LDAP integration, and not any of the procedure’s other
parameters.

• The originating system and originating system ID values that are
passed as parameters to the procedure override any originating
system and originating system ID values that are provided as
attributes within the attribute list, if these values differ.

• Likewise, if an expiration date value is passed as a parameter to
the procedure, that value overrides any expiration date value
provided as an attribute within the attribute list. However, if the
p_expiration_date parameter is null, the value of the
ExpirationDate attribute will be used, if one is provided. You
must provide the ExpirationDate attribute value in the following
format:

to_char(<your date variable>, WF_ENGINE.Date_Format)

Oracle Workflow also provides two additional special attributes that
you can use to specify how the role information should be modified.

• DELETE – You can use this attribute when you want to remove a
role from availability to participate in a workflow. If you include
this attribute with a value of ”TRUE”, the expiration date for the
role in WF_LOCAL_ROLES is set to sysdate and the status is set
to INACTIVE.

Note: If you also pass a value for the p_expiration_date
parameter, however, that value will override the DELETE
attribute. Additionally, if the p_expiration_date parameter is
null but you include the ExpirationDate attribute, that attribute
value will override the DELETE attribute. In these cases the
role will remain valid and active until the specified expiration
date.

• UpdateOnly – You can use this attribute for performance gain
when you want to modify information for a role for which a
record already exists in WF_LOCAL_ROLES. If you include this
attribute with a value of ’TRUE’, the Propagate_Role() API
attempts to update the record directly, without first inserting the
record.

Arguments (input)

3 – 50 Oracle Workflow API Reference

If this update attempt fails because a record does not already
exist for that role, the procedure will then insert the record.
However, the initial unsuccessful attempt will degrade
performance, so you should only use the UpdateOnly attribute
when you are certain that the role record already exists in
WF_LOCAL_ROLES.

Note: In Oracle Applications, if an Oracle Human Resources
person role with an originating system of PER_ROLE is
propagated using Propagate_Role(), and that person is linked to
an Oracle Applications user, then the procedure updates the
corresponding user record with an originating system of PER
in WF_LOCAL_ROLES, as well as the person record.

A code that you assign to the directory repository
that is the source of the role information.

The primary key that identifies the role in this
repository system.

A list of attribute name and value pairs containing
information about the role.

The date at which the role becomes valid in the
directory service.

The date at which the role is no longer valid in the
directory service.

See Also

AddParameterToList: page 5 – 44

p_orig_system

p_orig_system_id

p_attributes

p_start_date

p_expiration_
date

Syntax

Description

Arguments (input)

3 – 51Directory Service APIs

PropagateUserRole

procedure PropagateUserRole

 (p_user_name in varchar2,

 p_role_name in varchar2,

 p_user_orig_system in varchar2 default null,

 p_user_orig_system_id in number default null,

 p_role_orig_system in varchar2 default null,

 p_role_orig_system_id in number default null,

 p_start_date in date default null,

 p_expiration_date in date default null,

 p_overwrite in boolean default FALSE,

 p_raiseErrors in boolean default FALSE,

 p_parent_orig_system in varchar2 default null,

 p_parent_orig_system_id in varchar2 default null,

 p_ownerTag in varchar2 default null,

 p_createdBy in number default null,

 p_lastUpdatedBy in number default null,

 p_lastUpdateLogin in number default null,

 p_creationDate in date default null,

 p_lastUpdateDate in date default null);

Synchronizes the information for an association of a user and a role
from an application table with the WF_LOCAL_USER_ROLES table.

The internal name of the user.

The internal name of the role.

A code that you assign to the directory repository
that is the source of the user information.

The primary key that identifies the user in this
repository system.

A code that you assign to the directory repository
that is the source of the role information.

The primary key that identifies the role in this
repository system.

The date at which the association of this user with
this role becomes valid in the directory service.

The date at which the association of this user with
this role is no longer valid in the directory service.

p_user_name

p_role_name

p_user_orig_
system

p_user_orig_
system_id

p_role_orig_
system

p_role_orig_
system_id

p_start_date

p_expiration_
date

3 – 52 Oracle Workflow API Reference

Specify TRUE or FALSE to determine whether to
propagate the information in overwrite mode. In
overwrite mode, if any attribute is not passed or is
null, the procedure sets the value of the
corresponding field in WF_LOCAL_USER_ROLES
to null, deleting the previous value.

Note: Overwrite mode does not affect the user name and role
name attributes. You must pass values for these parameters,
because they are required for this procedure, and because the
USER_NAME and ROLE_NAME columns in the
WF_LOCAL_USER_ROLES table have a NOT NULL
constraint.

Specify TRUE or FALSE to determine whether the
procedure should raise an exception if it
encounters an error.

A code for the originating system of an entity that
you want to mark as being related to the
association of this user with this role.

The primary key that identifies the parent entity in
the parent originating system.

A code to identify the program or application that
owns the information for the association of this
user with this role.

Standard Who column.

Standard Who column.

Standard Who column.

Standard Who column.

Standard Who column.

p_overwrite

p_raiseErrors

p_parent_orig_
system

p_parent_orig_
system_id

p_ownerTag

p_createdBy

p_lastUpdatedBy

p_lastUpdate
Login

p_creationDate

p_lastUpdate
Date

3 – 53Directory Service APIs

Workflow Role Hierarchy APIs

The following APIs can be called by an application program or a
workflow function in the runtime phase to manage role hierarchy
relationships in the Oracle E–Business Suite directory service. These
APIs are defined in a PL/SQL package called
WF_ROLE_HIERARCHY.

• AddRelationship: page 3 – 54

• ExpireRelationship: page 3 – 55

• GetRelationships: page 3 – 56

• GetAllRelationships: page 3 – 57

See Also

Setting Up an Oracle Workflow Directory Service, Oracle Workflow
Administrator’s Guide

Syntax

Description

Arguments (input)

3 – 54 Oracle Workflow API Reference

AddRelationship

function AddRelationship

 (p_sub_name in varchar2,

 p_super_name in varchar2,

 p_deferMode in boolean default FALSE,

 p_enabled in varchar2 default ’Y’)

 return number;

Creates a hierarchical relationship between two roles in the
WF_ROLE_HIERARCHIES table and returns the relationship ID.

The internal name of the subordinate role.

The internal name of the superior role.

Specify TRUE or FALSE to determine whether to
defer propagation of the new relationship. If you
specify FALSE, existing user and role assignments
are updated according to the new relationship,
without deferral.

Specify ’Y’ if the relationship is initially enabled
or ’N’ if the relationship is initially disabled.

p_sub_name

p_super_name

p_deferMode

p_enabled

Syntax

Description

Arguments (input)

3 – 55Directory Service APIs

ExpireRelationship

function ExpireRelationship

 (p_sub_name in varchar2,

 p_super_name in varchar2,

 p_defer_mode in boolean default FALSE)

 return number;

Expires a hierarchical relationship between two roles in the
WF_ROLE_HIERARCHIES table and returns the relationship ID.

The internal name of the subordinate role.

The internal name of the superior role.

Specify TRUE or FALSE to determine whether to
defer propagation of the expired relationship. If
you specify FALSE, existing user and role
assignments are updated according to the expired
relationship, without deferral.

p_sub_name

p_super_name

p_defer_mode

Syntax

Description

Arguments (input)

3 – 56 Oracle Workflow API Reference

GetRelationships

procedure GetRelationships

 (p_name in varchar2,

 p_superiors out WF_ROLE_HIERARCHY.relTAB,

 p_subordinates out WF_ROLE_HIERARCHY.relTAB,

 p_direction in VARCHAR2 default ’BOTH’);

Retrieves the hierarchical relationships for the specified role and
returns a table of superior roles and a table of subordinate roles.
GetRelationships() stops retrieving relationships in a hierarchy when it
encounters a disabled relationship.

The internal name of the role.

Specify ’SUPERIORS’ to retrieve superior roles for
this role, ’SUBORDINATES’ to retrieve subordinate
roles for this role, or ’BOTH’ to retrieve both
superior and subordinate roles.

p_name

p_direction

Syntax

Description

Arguments (input)

3 – 57Directory Service APIs

GetAllRelationships

procedure GetAllRelationships

 (p_name in varchar2,

 p_superiors out WF_ROLE_HIERARCHY.relTAB,

 p_subordinates out WF_ROLE_HIERARCHY.relTAB,

 p_direction in VARCHAR2 default ’BOTH’);

Retrieves the hierarchical relationships for the specified role and
returns a table of superior roles and a table of subordinate roles.
GetAllRelationships() retrieves all hierarchical relationships, whether
they are enabled or disabled.

The internal name of the role.

Specify ’SUPERIORS’ to retrieve superior roles for
this role, ’SUBORDINATES’ to retrieve subordinate
roles for this role, or ’BOTH’ to retrieve both
superior and subordinate roles.

p_name

p_direction

Syntax

Description

Arguments (input)

3 – 58 Oracle Workflow API Reference

Workflow Preferences API

Call the following API to retrieve user preference information. The API
is defined in the PL/SQL package called WF_PREF.

get_pref

function get_pref

 (p_user_name in varchar2,

 p_preference_name in varchar2)

 return varchar2;

Retrieves the value of the specified preference for the specified user.

The internal name of the user. To retrieve the value
for a global preference, specify the user as
–WF_DEFAULT–.

The name of the user preference whose value you
wish to retrieve. Valid preference names are:

LANGUAGE

TERRITORY

MAILTYPE

DMHOME

DATEFORMAT

p_user_name

p_preference_
name

C H A P T E R

4
T

4 – 1Notification System APIs

Notification System
APIs

his chapter describes the APIs for the Oracle Workflow
Notification System. The APIs consist of PL/SQL and Java functions
and procedures that you can use to access the Notification System.

4 – 2 Oracle Workflow API Reference

Overview of the Oracle Workflow Notification System

Oracle Workflow communicates with users by sending notifications.
Notifications contain messages that may request users to take some
type of action and/or provide users with information. You define the
notification activity and the notification message that the notification
activity sends in the Workflow Builder. The messages may have
optional attributes that can specify additional resources and request
responses.

Users can query their notifications online using the Notifications web
page in an HTML browser. A user can also receive notifications in their
e–mail applications. E–mail notifications can contain HTML content or
include other documents as optional attachments. The Notification
System delivers the messages and processes the incoming responses.

Notification Model

A notification activity in a workflow process consists of a design–time
message and a list of message attributes. In addition, there may be a
number of runtime named values called item type attributes from
which the message attributes draw their values.

The Workflow Engine moves through the workflow process, evaluating
each activity in turn. Once it encounters a notification activity, the
engine makes a call to the Notification System Send() or SendGroup()
API to send the notification.

Sending Notification Messages

The Send() API or the SendGroup() API is called by the Workflow
Engine when it encounters a notification activity. These APIs do the
following:

• Check that the performer role of the notification activity is valid.

• Identify the notification preference for of the performer role.

• Look up the message attributes for the message.

– If a message attribute is of source SEND, the Send() or
SendGroup() API retrieves its value from the item type
attribute that the message attribute references. If the
procedure cannot find an item type attribute, it uses the
default value of the message attribute, if available. The
Subject and Body of the message may include message

4 – 3Notification System APIs

attributes of source SEND, which the Send() or SendGroup()
API token replaces with each attribute’s current value when
creating the notification.

– If a message includes a message attribute of source
RESPOND, the Send() or SendGroup() API checks to see if it
has a default value assigned to it. The procedure then uses
these RESPOND attributes to create the default response
section of the notification.

• ’Construct’ the notification content by inserting relevant
information into the Workflow Notification tables.

• Update the notification activity’s status to ’NOTIFIED’ if a
response is required or to ’COMPLETE’ if no response is
required.

Note: If a notification activity sends a message that is for the
performer’s information only (FYI), where there are no
RESPOND message attributes associated with it, the
notification activity gets marked as complete as soon as the
Notification System delivers the message.

Note: In the case of a voting activity, the status is updated to
’WAITING’ instead of ’NOTIFIED’. See: Special Handling of
Voting Activities: page 4 – 7

• Raise the oracle.apps.wf.notification.send event. When this event
is processed, a notification mailer generates an e–mail version of
the notification if the performer role of a notification has a
notification preference of MAILTEXT, MAILHTML,
MAILHTM2, or MAILATTH, and sends the e–mail to the
performer. For roles with a notification preference of SUMMARY,
or, for Oracle Applications only, SUMHTML, a summary e–mail
is sent when the oracle.apps.wf.notification.summary.send event
is raised. See: Implementing Notification Mailers, Oracle
Workflow Administrator’s Guide.

Users who view their notifications from the Notifications Web page,
regardless of their notifications preferences, are simply querying the
Workflow Notification tables from this interface.

A notification recipient can perform the following actions with the
notification:

• Respond to the notification or close the notification if it does not
require a response. See: Processing a Notification Response:
page 4 – 4.

4 – 4 Oracle Workflow API Reference

• Forward the notification to another role. See: Forwarding a
Notification: page 4 – 5.

• Transfer ownership of the notification to another role. See:
Transferring a Notification: page 4 – 5.

• Request more information about the notification from another
role, or respond to such a request with more information. See:
Requesting More Information About a Notification: page 4 – 6.

• Ignore the notification and let it time out. See: Processing a
Timed Out Notification: page 4 – 7.

Note: In Oracle Applications, you can use the WF: Notification
Reassign Mode profile option to determine whether users can
reassign notifications by forwarding (also known as delegating)
the notifications, transferring the notifications, or both. See:
Setting the WF: Notification Reassign Mode Profile Option,
Oracle Workflow Administrator’s Guide.

Processing a Notification Response

After a recipient responds, the Notification Details web page or a
notification mailer assigns the response values to the notification
response attributes and calls the notification Respond() API. The
Respond() API first calls a notification callback function to execute the
notification activity’s post–notification function (if it has one) in
VALIDATE mode. In this mode, the post–notification function can
validate the response values before accepting and recording the
response. For example, if the notification requires an electronic
signature, the post–notification function can run in VALIDATE mode to
verify the response values and inform the user of any errors before
requiring the user to enter a signature. If the post–notification function
raises an exception, the response is aborted. See: Post–notification
Functions: page 2 – 12.

Next, Respond() calls the notification callback function to execute the
post–notification function in RESPOND mode. The post–notification
function may interpret the response and perform tightly–coupled
post–response processing. Again, if the post–notification function raises
an exception, the response is aborted.

If no exception is raised, Respond() marks the notification as closed and
then calls the notification callback function again in SET mode to
update the corresponding item attributes with the RESPOND
notification attributes values. If the notification message prompts for a
response that is specified in the Result tab of the message’s property

4 – 5Notification System APIs

page, that response value is also set as the result of the notification
activity.

Finally, Respond() calls WF_ENGINE.CompleteActivity() to inform the
engine that the notification activity is complete so it can transition to
the next qualified activity.

Forwarding a Notification

If a recipient forwards a notification to another role, the Notification
Details web page calls the Notification System’s Forward() API.

Note: The Notification System is not able to track notifications
that are forwarded via e–mail. It records only the eventual
responder’s e–mail address and any Respond message
attributes values included in the response.

The Forward() API validates the role, then calls a notification callback
function to execute the notification activity’s post–notification function
(if it has one) in FORWARD mode. As an example, the
post–notification function may verify whether the role that the
notification is being forwarded to has appropriate authority to view
and respond to the notification. If it doesn’t, the post–notification
function may return an error and prevent the Forward operation from
proceeding. See: Post–notification Functions: page 2 – 12.

Forward() then forwards the notification to the new role, along with
any appended comments.

Note: Forward() does not update the owner or original
recipient of the notification.

Transferring a Notification

If a recipient transfers the ownership of a notification to another role,
the Notification Details web page calls the Notification System’s
Transfer() API.

Note: Recipients who view notifications from an e–mail
application cannot transfer notifications. To transfer a
notification, the recipient must use the Notifications web page.

The Transfer() API validates the role, then calls a notification callback
function to execute the notification activity’s post–notification function
(if it has one) in TRANSFER mode. As an example, the
post–notification function may verify whether the role that the
notification is being transferred to has appropriate authority. If it
doesn’t, the post–notification function may return an error and prevent

4 – 6 Oracle Workflow API Reference

the Transfer operation from proceeding. See: Post–notification
Functions: page 2 – 12.

Transfer() then assigns ownership of the notification to the new role,
passing along any appended comments. Note that a transfer is also
recorded in the comments of the notification.

Requesting More Information About a Notification

If a recipient requests more information about the notification from
another role, the Notification Details web page calls the Notification
System’s UpdateInfo() API, or a notification mailer calls the Notification
System’s UpdateInfo2() API.

The UpdateInfo() or UpdateInfo2() API calls a notification callback
function to execute the notification activity’s post–notification function
(if it has one) in QUESTION mode. As an example, the
post–notification function may verify that the request is directed to a
role that has appropriate authority to view the notification. If it doesn’t,
the post–notification function may return an error and prevent the
request for more information from being sent. See: Post–notification
Functions: page 2 – 12.

If no error is returned, the API then sends the request for more
information to the designated role. Note that a request for information
is also recorded in the comments of the notification.

If the recipient of a request for more information responds with
answering information, the Notification Details web page calls the
Notification System’s UpdateInfo() API if the responder is logged in
individually or the UpdateInfoGuest() API if the responder is logged in
as the GUEST user, or a notification mailer calls the Notification
System’s UpdateInfo2() API.

The UpdateInfo(), UpdateInfoGuest(), or UpdateInfo2() API calls a
notification callback function to execute the notification activity’s
post–notification function (if it has one) in ANSWER mode. As an
example, the post–notification function may validate the answering
information. If such validation fails, the post–notification function may
return an error and prevent the answer from being sent. See:
Post–notification Functions: page 2 – 12.

If no error is returned, the API then sends the answering information
back to the recipient role of the original notification. Note that an
answer to a request for information is also recorded in the comments of
the notification.

4 – 7Notification System APIs

Processing a Timed Out Notification

Timed out notification or subprocess activities are initially detected by
the background engine. Background engines set up to handle timed
out activities periodically check for activities that have time out values
specified. If an activity does have a time out value, and the current
date and time exceeds that time out value, the background engine
marks that activity’s status as ’TIMEOUT’ and calls the Workflow
Engine. The Workflow Engine then resumes by trying to execute the
activity to which the <Timeout> transition points.

Special Handling of Voting Activities

A voting activity by definition is a notification activity that:

• Has its roles expanded, so that an individual copy of the
notification message is sent to each member of the Performer
role.

• Has a message with a specified Result, that requires recipients to
respond from a list of values.

• Has a post–notification function associated with it that contains
logic in the RUN mode to process the polled responses from the
Performer members to generate a single response that the
Workflow Engine interprets as the result of the notification
activity. See: Voting Activity, Oracle Workflow Developer’s Guide.

Once the Notification System sends the notification for a voting
activity, it marks the voting activity’s status as ’NOTIFIED’. The voting
activity’s status is updated to ’WAITING’ as soon as some responses
are received, but not enough responses are received to satisfy the
voting criteria.

The individual role members that each receive a copy of the notification
message can then respond or forward the notification, or request or
respond with more information, if they use e–mail or the Worklist Web
pages to access the notification. They can also transfer the notification
if they use the Worklist Web pages.

The notification user interface calls the appropriate Respond(),
Forward(), Transfer(), UpdateInfo(), UpdateInfo2(), or UpdateInfoGuest()
API, depending on the action that the performer takes. Each API in
turn calls the notification callback function to execute the
post–notification function in VALIDATE and RESPOND, FORWARD,
TRANSFER, QUESTION, or ANSWER mode, as appropriate. When
the Notification System finishes executing the post–notification
function in FORWARD or TRANSFER mode, it carries out the Forward

4 – 8 Oracle Workflow API Reference

or Transfer operation, respectively. When the Notification System
finishes executing the post–notification function in QUESTION or
ANSWER mode, it sends the request for more information to the
designated role or the answer to the requesting role, respectively.

When the Notification System completes execution of the
post–notification function in RESPOND mode, the Workflow Engine
then runs the post–notification function again in RUN mode. It calls
the function in RUN mode after all responses are received to execute
the vote tallying logic.

Also if the voting activity is reset to be reexecuted as part of a loop, or
if it times out, the Workflow Engine runs the post–notification function
in CANCEL or TIMEOUT mode, respectively. The logic for TIMEOUT
mode in a voting activity’s post–notification function should identify
how to tally the votes received up until the timeout.

Notification Document Type Definition

The following document type definition (DTD) describes the required
structure for the XML document that represents a notification. The
Notification System uses this structure to communicate messages to a
notification mailer. The following table shows the level, tag name, and
description for each element in the DTD.

Level Tag Description

1 <NOTIFICATIONGROUP maxcount=””> The <NOTIFICATIONGROUP> tag is the opening tag for the XML
structure. The maxcount attribute defines the maximum number of
<NOTIFICATION> tags to expect. This number may not be reached,
but will not be exceeded within the <NOTIFICATIONGROUP> tag.

Table 4 – 1 (Page 1 of 6)

4 – 9Notification System APIs

DescriptionTagLevel

2 <NOTIFICATION nid=””
language=””
territory=””
codeset=””
priority=””
accesskey=””
node=””
item_type=””
message_name=””
nidstr=””>

The <NOTIFICATION> element defines a single message entity. A
<NOTIFICATION> is a repeating structure within
<NOTIFICATIONGROUP>, the number of which will not exceed the
specified maxcount value. Each <NOTIFICATION> element for a
notification sent by the Notification System is identified by its unique
nid attribute, which is the notification ID. For messages received from
an external source, such as notification responses from users, the
notification ID should be zero (0).

The language and territory values represent the language and territory
preferences of the notification recipients. The codeset attribute is the
preferred codeset associated with the language in the
WF_LANGUAGES table. The value of the codeset attribute must be in
the Oracle Database codeset notation. If the Reset NLS configuration
parameter is selected for the notification mailer that sends this
notification, then the final e–mail will be encoded to the IANA
(Internet Assigned Numbers Authority) equivalent of the Oracle
Database codeset.

The priority attribute is the relative priority for the message compared
to other messages. A priority of 1 through 33 is high, 34 through 66 is
normal, and 67 through 99 is low.

The accesskey and node attributes store information for inbound
response messages. These attributes are used together with the nid
attribute to validate the response.

The item_type attribute is the internal name of the Oracle Workflow
item type that owns the notification. The message_name attribute is the
internal message name for the notification within that item type. These
two attributes are provided for reference and are not used by a
Java–based notification mailer.

The nidstr attribute is for internal use only. The notification mailer uses
this attribute to send the notification ID in a custom header called
X–oracle–workflow–nid. This header is used during processing of
inbound messages to help identify bounced messages in cases where
the original message may be included, but the notification ID is
encoded in the inbound message body and cannot be recognized there
by the notification mailer.

3 <HEADER> <The HEADER> element defines the envelope information for the
message, which contains the details of the recipients, where the
message was sent from, and the subject for the message.

4 <RECIPIENTLIST> The <RECIPIENTLIST> tag enables the message to be sent to more than
one recipient. The first recipient in the list is treated as the primary
recipient. Subsequent recipients will receive copies of the message. All
recipients in the list will receive the same e–mail in the language and
formatting of the primary recipient’s preferences.

Table 4 – 1 (Page 2 of 6)

4 – 10 Oracle Workflow API Reference

DescriptionTagLevel

5 <RECIPIENT name=”” type=””> The <RECIPIENT> tag defines a recipient for the message. A
<RECIPIENT> is a repeating structure within the <RECIPIENTLIST>.
Each <RECIPIENT> is identified by its name attribute, which is the
internal name of the recipient role.

The type attribute contains the copy type for the recipient. Valid values
for this attribute are to, cc, and bcc. If the type attribute is not
provided, then the recipient is treated as having a copy type of to.

6 <NAME> </NAME> The <NAME> tag defines the display name of the recipient.

6 <ADDRESS> </ADDRESS> The <ADDRESS> tag defines the e–mail address of the recipient.

5 </RECIPIENT> This tag marks the end of a <RECIPIENT> element.

4 </RECIPIENTLIST> This tag marks the end of the <RECIPIENTLIST> element.

4 <FROM> The <FROM> tag shows the sender of the message. For outbound
notifications, the from role can be set using the #FROM_ROLE message
attribute. The from role is also set to the role who reassigned the
notification if this notification has been reassigned, to the requesting
role if this notification is a request for more information, or to the
responding role if this notification is a response to a request for more
information.

For inbound notifications, this information is determined by the From
address of the incoming e–mail message.

5 <NAME> </NAME> The <NAME> tag defines the display name of the sender.

5 <ADDRESS> </ADDRESS> The <ADDRESS> tag defines the e–mail address of the sender.

4 </FROM> This tag marks the end of the <FROM> element.

4 <SUBJECT> </SUBJECT> The <SUBJECT> element holds the subject line of the notification.

3 </HEADER> This tag marks the end of the <HEADER> element.

3 <CONTENT content–type=””> The <CONTENT> element holds the contents of the notification
message. The <CONTENT> element contains one or more
<BODYPART> elements. The content–type attribute contains the valid
MIME type definition for the content within the <CONTENT> element.
Valid values for the content–type attribute include multipart/mixed,
text/plain and text/html. The first <BODYPART> element within the
<CONTENT> tag is treated as the main content of the message, and
will be the first component within a multipart/* message structure.
Subsequent <BODYPART> elements are treated as attachments to the
message.

Table 4 – 1 (Page 3 of 6)

4 – 11Notification System APIs

DescriptionTagLevel

4 <BODYPART content–type=””> The <BODYPART> tag represents a MIME component of the final
message. This element contains a <MESSAGE> tag and optionally one
or more <RESOURCE> tags. If the <RESOURCE> tags are
implemented, then the content–type attribute must be defined for the
<BODYPART> tag to explain the relationship of the <RESOURCE>
elements to the <MESSAGE> element. The only valid value for this
content–type attribute is multipart/related.

The first <BODYPART> element is treated as the main content of the
message. This content will be either text/* or multipart/related. The
subsequent <BODYPART> elements contain any attachments as
required by the notification message definition and the recipient’s
notification preference. Attachments may include an HTML–formatted
version of the notification, a Notification Detail Link, and any message
attributes for which the Attach Content option is selected.

For inbound messages, the <BODYPART> element contains the
message and any attachments where appropriate.

5 <MESSAGE content–type=””
content–transfer–encoding=””
content–disposition=””
src=””>

The content–type attribute contains the media type definition for the
<MESSAGE> element. Valid values for this content–type attribute are
text/plain, text/html, multipart/mixed, or
multipart/related.

The content–transfer–encoding attribute is an optional attribute to
qualify further the encoding of the text/plain or text/html
content.

The content–disposition attribute specifies that the component is an
attachment.

The src attribute can optionally be defined if the content for the
<MESSAGE> element is not readily available when the notification
XML document is generated. The value of the src attribute must be a
URL from which the content can be obtained during final e–mail
message rendering.

– <![CDATA[]]> This structure holds the raw message content.

If the content of a <RESOURCE> element should be merged into the
content of the <MESSAGE> element, then the message content must
include a token prefixed by an ampersand (&) to mark the position at
which the resource content should appear. The token must match the
token attribute value of the corresponding <RESOURCE> element.

5 </MESSAGE> This tag marks the end of a <MESSAGE> element.

Table 4 – 1 (Page 4 of 6)

4 – 12 Oracle Workflow API Reference

DescriptionTagLevel

5 <RESOURCE content–type=””
content–transfer–encoding=””
content–disposition=””
content–id=””
src=””
language=””
territory=””
page–type=””
token=””>

The content–type attribute contains the media type definition for the
<RESOURCE> element. This value should be a media–type/subtype
definition.

The content–transfer–encoding attribute is an optional attribute to
qualify further the encoding of the text/plain or text/html content.

The content–disposition attribute specifies that the component is an
attachment.

The content–id attribute holds the unique content identifier for the
component. This identifier is referenced within the content of the
<MESSAGE> element.

The src attribute can optionally be defined if the content for the
RESOURCE> element is not readily available when the notification
XML document is generated. The value of the src attribute must be a
URL from which the content can be obtained during final e–mail
message rendering.

In Oracle Applications only, if the src attribute is defined to refer to
Oracle Applications Framework content and the message recipient is
not an Oracle Applications user defined in the FND_USER table, then
the language and territory attributes hold the language and territory
preferences of the recipient. Additionally, if the src attribute is defined
to refer to Oracle Applications Framework content, then the page–type
attribute is set to the value fwk to identify Oracle Applications
Framework as the source of the content. The page–type attribute
should be defined only if the src attribute is defined correspondingly.

The token attribute holds the token value used to mark the position at
which the content of the <RESOURCE> element will be merged into
the content of the <MESSAGE> element. Within the <MESSAGE>
element, the token value is prefixed by an ampersand (&).

– <![CDATA[]]> This structure holds the content for the <RESOURCE> element.

5 </RESOURCE> This tag marks the end of a <RESOURCE> element.

4 </BODYPART> This tag marks the end of a <BODYPART> element.

3 </CONTENT> This tag marks the end of the <CONTENT> element.

3 <RESPONSE> The <RESPONSE> tag is implemented only for inbound notifications. It
is not part of the specification for outbound notifications. The
<RESPONSE> element contains one or more <ATTRIBUTE> elements,
which hold the response values found in the incoming e–mail message.
There should be an <ATTRIBUTE> tag for each response attribute
associated with the notfication. However, only the RESULT message
attribute is mandatory. The other respond attributes are optional. If no
value is specified for a respond attribute, Oracle Workflow uses the
default value defined for the message attribute.

Table 4 – 1 (Page 5 of 6)

4 – 13Notification System APIs

DescriptionTagLevel

4 <ATTRIBUTE name=””
type=””
format=””>

The <ATTRIBUTE> tag holds the response value found in the incoming
e–mail message for a particular response attribute. An <ATTRIBUTE>
is a repeating structure within the <RESPONSE>.

The name attribute for this element is the internal name of the response
attribute.

The type attribute of this element is the Oracle Workflow data type of
the reponse attribute, which can be either TEXT, NUMBER, DATE,
DOCUMENT, or LOOKUP.

The format attribute for this element contains the format string for the
response attribute. For response attributes of type LOOKUP, the format
is used to identify the lookup type code according to the value of the
name attribute. For other data types, the format attribute is not used.

– <![CDATA]]> This structure holds the response information to be assigned to the
attribute.

4 </ATTRIBUTE> This tag marks the end of an <ATTRIBUTE> element.

3 </RESPONSE> This tag marks the end of a <RESPONSE> element.

2 </NOTIFICATION> This tag marks the end of a <NOTIFICATION> element.

1 </NOTIFICATIONGROUP> This tag marks the end of the <NOTIFICATIONGROUP> element.

Table 4 – 1 (Page 6 of 6)

☞

4 – 14 Oracle Workflow API Reference

Notification APIs

The following APIs can be called by a notification agent to manage
notifications for a notification activity. The APIs are stored in the
PL./SQL package called WF_NOTIFICATION.

Many of these Notification APIs also have corresponding Java methods
that you can call from any Java program to integrate with Oracle
Workflow. The following list indicates whether the Notification APIs
are available as PL/SQL functions/procedures, as Java methods, or
both. See: Oracle Workflow Java Interface: page 2 – 4.

Attention: Java is case–sensitive and all Java method names
begin with a lower case letter to follow Java naming
conventions.

• Send: page 4 – 16—PL/SQL and Java

• SendGroup: page 4 – 21—PL/SQL

• Forward: page 4 – 23—PL/SQL and Java

• Transfer: page 4 – 25—PL/SQL and Java

• Cancel: page 4 – 27—PL/SQL and Java

• CancelGroup: page 4 – 28—PL/SQL

• Respond: page 4 – 29—PL/SQL and Java

• Responder: page 4 – 31—PL/SQL and Java

• NtfSignRequirementsMet: page 4 – 32—PL/SQL

• VoteCount: page 4 – 33—PL/SQL and Java

• OpenNotificationsExist: page 4 – 34—PL/SQL and Java

• Close: page 4 – 35—PL/SQL and Java

• AddAttr: page 4 – 36—PL/SQL and Java

• SetAttribute: page 4 – 37—PL/SQL and Java

• GetAttrInfo: page 4 – 39—PL/SQL and Java

• GetInfo: page 4 – 40—PL/SQL and Java

• GetText: page 4 – 41—PL/SQL and Java

• GetShortText: page 4 – 42—PL/SQL

• GetAttribute: page 4 – 43—PL/SQL and Java

• GetAttrDoc: page 4 – 45—PL/SQL and Java

• GetSubject: page 4 – 46—PL/SQL and Java

4 – 15Notification System APIs

• GetBody: page 4 – 47—PL/SQL and Java

• GetShortBody: page 4 – 48—PL/SQL

• TestContext: page 4 – 49—PL/SQL

• AccessCheck: page 4 – 50—PL/SQL and Java

• WorkCount: page 4 – 51—PL/SQL and Java

• getNotifications: page 4 – 52—Java

• getNotificationAttributes: page 4 – 53—Java

• WriteToClob: page 4 – 54—PL/SQL

• Denormalize_Notification: page 4 – 55—PL/SQL

• SubstituteSpecialChars: page 4 – 57—PL/SQL

Note: The Notification System raises business events when a
notification is sent, closed, canceled, or reassigned, or when a
user responds to a notification. Although Oracle Workflow
does not include any predefined subscriptions to some of these
events, you can optionally define your own subscriptions to
these events if you want to perform custom processing when
they occur. See: Notification Events, Oracle Workflow Developer’s
Guide and To Define an Event Subscription (for standalone
Oracle Workflow), Oracle Workflow Developer’s Guide or To
Create or Update an Event Subscription (for Oracle
Applications), Oracle Workflow Developer’s Guide.

PL/SQL Syntax

Java Syntax

Description

4 – 16 Oracle Workflow API Reference

Send

function SEND

(role in varchar2,

 msg_type in varchar2,

 msg_name in varchar2,

 due_date in date default null,

 callback in varchar2 default null,

 context in varchar2 default null,

 send_comment in varchar2 default null

 priority in number default null)

return number;

public static BigDecimal send

 (WFContext wCtx,

 String role,

 String messageType,

 String messageName,

 String dueDate,

 String callback,

 String context,

 string sendComment,

 BigDecimal priority)

This function sends the specified message to a role, returning a
notification ID if successful. The notification ID must be used in all
future references to the notification.

If your message has message attributes, the procedure looks up the
values of the attributes from the message attribute table or it can use an
optionally supplied callback interface function to get the value from the
item type attributes table. A callback function can also be used when a
notification is responded to.

Note: If you are using the Oracle Workflow Notification
System and its e–mail–based or web–based notification client,
the Send procedure implicitly calls the WF_ENGINE.CB
callback function. If you are using your own custom
notification system that does not call the Workflow Engine,
then you must define your own callback function following a
standard format and specify its name for the callback
argument. See: Custom Callback Function: page 4 – 17.

Arguments (input)

4 – 17Notification System APIs

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The role name assigned as the performer of the
notification activity.

The item type associated with the message.

The message internal name.

The date that a response is required. This optional
due date is only for the recipient’s information; it
has no effect on processing.

The callback function name used for
communication of SEND and RESPOND source
message attributes.

Context information passed to the callback
function.

A comment presented with the message.

The priority of the message, as derived from the
#PRIORITY notification activity attribute. If
#PRIORITY does not exist or if the value is null,
the Workflow Engine uses the default priority of
the message.

Custom Callback Function

A default callback function can be called at various points by the
actions of the WF_NOTIFICATION APIs. You may provide your own
custom callback function, but it must follow standard specifications.

If you do not need to handle attributes of type event through your
callback function, the procedure must use the following standard API:

procedure <name in callback argument>

 (command in varchar2,

 context in varchar2,

 attr_name in varchar2,

 attr_type in varchar2,

 text_value in out varchar2,

wCtx

role

msg_type or
messageType

msg_name or
messageName

due_date or
dueDate

callback

context

send_comment or
sendComment

priority

4 – 18 Oracle Workflow API Reference

 number_value in out number,

 date_value in out date);

If the callback function does need to handle attributes of type event,
you can overload the procedure name with a second implementation
that includes an additional argument for the event value. In this case
you should also retain the original implementation for backward
compatibility. However, it is recommended that you do not overload
the procedure unless you have a requirement to handle event
attributes.

The implementation of the procedure for event values must use the
following standard API:

procedure <name in callback argument>

 (command in varchar2,

 context in varchar2,

 attr_name in varchar2,

 attr_type in varchar2,

 text_value in out varchar2,

 number_value in out number,

 date_value in out date

 event_value in out nocopy wf_event_t);

For ease of maintenance, you can define the procedure that does not
include the event_value argument to call the procedure that does
include that argument, so that you only need to maintain one version of
your code. The following example shows one way to implement such a
call:

procedure your_callback

 (command in varchar2,

 context in varchar2,

 attr_name in varchar2,

 attr_type in varchar2,

 text_value in out varchar2,

 number_value in out number,

 date_value in out date)

is

 event_value wf_event_t;

begin

 your_package.your_callback(command, context, attr_name,

 attr_type, text_value,

 number_value, date_value,

 event_value);

Arguments (input)

4 – 19Notification System APIs

exception

 when others then

 Wf_Core.Context(’your_package’, ’your_callback’,

 command, context, attr_name, attr_type,

 ’:’||text_value||’:’||to_char(number_value)

 ||’:’||to_char(date_value)||’:’);

 raise;

end your_callback;

Specify GET, SET, COMPLETE, ERROR, TESTCTX,
FORWARD, TRANSFER, QUESTION, ANSWER,
VALIDATE, or RESPOND as the action requested.
Use GET to get the value of an attribute, SET to set
the value of an attribute, COMPLETE to indicate
that the response is complete, ERROR to set the
associated notification activity to a status of
’ERROR’, TESTCTX to test the current context by
calling the item type’s Selector/Callback function,
or FORWARD, TRANSFER, QUESTION,
ANSWER, VALIDATE, or RESPOND to execute
the post–notification function in those modes.

The context passed to SEND() or SendGroup().
The format is <itemtype>:<itemkey>:<activityid>.

An attribute name to set/get if command is GET or
SET.

An attribute type if command is SET or GET.

Value of a text attribute if command is SET or
value of text attribute returned if command is GET.

Value of a number attribute if command is SET or
value of a number attribute returned if command is
GET.

Value of a date attribute if command is SET or
value of a date attribute returned if command GET.

Value of an event attribute if command is SET or
value of an event attribute returned if command is
GET. Required only if the procedure name is
overloaded with a second implementation that
handles event attributes.

command

context

attr_name

attr_type

text_value

number_value

date_value

event_value

Example 1

Example 2

Example 3

Example 4

4 – 20 Oracle Workflow API Reference

Note: The arguments text_value, number_value, and
date_value, as well as event_value if you are using this
argument, are mutually exclusive. That is, you should use only
one of these arguments, depending on the value of the
attr_type argument.

When a notification is sent, the system calls the specified callback
function once for each SEND attribute (to get the attribute value).

For each SEND attribute, call:

your_callback(’GET’, context, ’BUGNO’, ’NUMBER’, textval,

numval, dateval);

When the user responds to the notification, the callback is called again,
once for each RESPOND attribute.

your_callback(’SET’, context, ’STATUS’, ’TEXT’,

’COMPLETE’, numval, dateval);

Then finally the Notification System calls the ’COMPLETE’ command
to indicate the response is complete.

your_callback(’COMPLETE’, context, attrname, attrtype,

textval, numval, dateval);

For a SEND attribute of type event, call the implementation that
includes the event_value argument.

your_callback(’GET’, context, ’RECEIVE_EVENT’, ’EVENT’,

textval, numval, dateval, eventval);

PL/SQL Syntax

Description

Arguments (input)

4 – 21Notification System APIs

SendGroup

function SendGroup

(role in varchar2,

 msg_type in varchar2,

 msg_name in varchar2,

 due_date in date default null,

 callback in varchar2 default null,

 context in varchar2 default null,

 send_comment in varchar2 default null

 priority in number default null)

return number;

This function sends a separate notification to all the users assigned to a
specific role and returns a number called a notification group ID, if
successful. The notification group ID identifies that group of users and
the notification they each received.

If your message has message attributes, the procedure looks up the
values of the attributes from the message attribute table or it can use an
optionally supplied callback interface function to get the value from the
item type attributes table. A callback function can also be used when a
notification is responded to.

Note: If you are using the Oracle Workflow Notification
System and its e–mail–based or web–based notification client,
the Send procedure implicitly calls the WF_ENGINE.CB
callback function. If you are using your own custom
notification system, then you must define your own callback
function following a standard format and specify its name for
the callback argument. See: Custom Callback Function: page
4 – 17.

Generally, this function is called only if a notification activity has
’Expanded Roles’ checked in its properties page. If Expanded Roles is
not checked, then the Send() function is called instead. See: Voting
Activity, Oracle Workflow Developer’s Guide.

The role name assigned as the performer of the
notification activity.

The item type associated with the message.

The message internal name.

role

msg_type

msg_name

4 – 22 Oracle Workflow API Reference

The date that a response is required. This optional
due date is only for the recipient’s information; it
has no effect on processing.

The callback function name used for
communication of SEND source message
attributes.

Context information passed to the callback
function.

A comment presented with the message.

The priority of the message, as derived from the
#PRIORITY notification activity attribute. If
#PRIORITY does not exist or if the value is null,
the Workflow Engine uses the default priority of
the message.

due_date

callback

context

send_comment

priority

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

Example

4 – 23Notification System APIs

Forward

procedure FORWARD

(nid in number,

 new_role in varchar2,

 forward_comment in varchar2 default null);

public static boolean forward

 (WFContext wCtx,

 BigDecimal nid,

 String newRole

 String comment)

This procedure delegates a notification to a new role to perform work,
even though the original role recipient still maintains ownership of the
notification activity. Also implicitly calls the Callback function
specified in the Send or SendGroup function with FORWARD mode. A
comment can be supplied to explain why the forward is taking place.
Existing notification attributes (including due date) are not refreshed or
otherwise changed. The Delegate feature in the Notification System
calls this procedure. Note that when you forward a notification, the
forward is recorded in the USER_COMMENT field of the notification.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The notification ID.

The role name of the person the note is reassigned
to.

An optional forwarding comment.

The following code excerpt shows an example of how to call forward()
in a Java program. The example code is from the WFTest.java program.

// forward to MBEECH

System.out.println(”Delegate Test”);

count = WFNotificationAPI.workCount(ctx, ”MBEECH”);

System.out.println(”There are ” + count +

 ” open notification(s) for” + ” MBEECH”);

System.out.println(”Delegate nid ” + myNid +

wCtx

nid

new_role or
newRole

forward_comment
or comment

4 – 24 Oracle Workflow API Reference

 ” from BLEWIS to MBEECH”);

WFNotificationAPI.forward(ctx, myNid, ”MBEECH”,

 ”Matt, Please handle.”);

count = WFNotificationAPI.workCount(ctx, ”MBEECH”);

System.out.println(”There are ” + count +

 ” open notification(s) for” +

 ” MBEECH after Delegate.”);

PL/SQL Syntax

Java Syntax

Description

☞

Arguments (input)

Example

4 – 25Notification System APIs

Transfer

procedure TRANSFER

(nid in number,

 new_role in varchar2,

 forward_comment in varchar2 default null);

public static boolean transfer

 (WFContext wCtx,

 BigDecimal nid,

 String newRole

 String comment)

This procedure forwards a notification to a new role and transfers
ownership of the notification to the new role. It also implicitly calls the
Callback function specified in the Send or SendGroup function with
TRANSFER mode. A comment can be supplied to explain why the
forward is taking place. The Transfer feature in the Notification System
calls this procedure. Note that when you transfer a notification, the
transfer is recorded in the USER_COMMENT field of the notification.

Attention: Existing notification attributes (including due date)
are not refreshed or otherwise changed except for
ORIGINAL_RECIPIENT, which identifies the owner of the
notification.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The notification ID.

The role name of the person the note is transferred
to.

An optional comment to append to notification.

The following code excerpt shows an example of how to call transfer()
in a Java program. The example code is from the WFTest.java program.

// transfer to MBEECH

System.out.println(”Transfer Test”);

System.out.println(”Transfer nid ” + myNid +

 ” from BLEWIS to MBEECH”);

wCtx

nid

new_role or
newRole

forward_comment
or comment

4 – 26 Oracle Workflow API Reference

WFNotificationAPI.transfer(ctx, myNid, ”MBEECH”,

 ”Matt, You own it now.”);

count = WFNotificationAPI.workCount(ctx, ”MBEECH”);

System.out.println(”There are ” + count +

 ” open notification(s) for” +

 p” MBEECH after Transfer.”);

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

4 – 27Notification System APIs

Cancel

procedure CANCEL

(nid in number,

 cancel_comment in varchar2 default null);

public static boolean cancel

 (WFContext wCtx,

 BigDecimal nid,

 String comment)

This procedure may be invoked by the sender or administrator to
cancel a notification. The notification status is then changed to
’CANCELED’ but the row is not removed from the
WF_NOTIFICATIONS table until a purge operation is performed.

If the notification was delivered via e–mail and expects a response, a
’Canceled’ e–mail is sent to the original recipient as a warning that the
notification is no longer valid.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The notification ID.

An optional comment on the cancellation.

wCtx

nid

cancel_comment
or comment

PL/SQL Syntax

Description

Arguments (input)

4 – 28 Oracle Workflow API Reference

CancelGroup

procedure CancelGroup

(gid in number,

 cancel_comment in varchar2 default null);

This procedure may be invoked by the sender or administrator to
cancel the individual copies of a specific notification sent to all users in
a notification group. The notifications are identified by the notification
group ID (gid). The notification status is then changed to
’CANCELED’ but the rows are not removed from the
WF_NOTIFICATIONS table until a purge operation is performed.

If the notification was delivered via e–mail and expects a response, a
’Canceled’ e–mail is sent to the original recipient as a warning that the
notification is no longer valid.

Generally, this function is called only if a notification activity has
’Expanded Roles’ checked in its properties page. If Expanded Roles is
not checked, then the Cancel() function is called instead. See: Voting
Activity, Oracle Workflow Developer’s Guide.

The notification group ID.

An optional comment on the cancellation.

gid

cancel_comment

PL/SQL Syntax

Java Syntax

Description

4 – 29Notification System APIs

Respond

procedure RESPOND

(nid in number,

 respond_comment in varchar2 default null,

 responder in varchar2 default null);

public static boolean respond

 (WFContext wCtx,

 BigDecimal nid,

 String comment,

 String responder)

This procedure may be invoked by the notification agent (Notification
Web page or e–mail agent) when the performer completes the response
to the notification. The procedure marks the notification as ’CLOSED’
and communicates RESPOND attributes back to the database via the
callback function (if supplied).

This procedure also accepts the name of the individual who actually
responded to the notification. This may be useful to know especially if
the notification is assigned to a multi–user role. The information is
stored in the RESPONDER column of the WF_NOTIFICATIONS table.
The value stored in this column depends on how the user responds to
the notification. The following table shows the value that is stored for
each response mechanism.

Response Mechanism Value Stored

Web Web login username

E–mail E–mail username as displayed in the mail response

Table 4 – 2 (Page 1 of 1)

Additionally, the Respond() procedure calls NtfSignRequirementsMet() to
determine whether the response meets any signature requirements
imposed by the electronic signature policy of the notification. If the
requirements have not been met, Respond() raises an error. See:
#WF_SIG_POLICY Attribute, Oracle Workflow Developer’s Guide and
NtfSignRequirementsMet: page 4 – 32.

Arguments (input)

4 – 30 Oracle Workflow API Reference

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The notification ID.

An optional comment on the response

The user who responded to the notification.

wCtx

nid

comment

responder

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

4 – 31Notification System APIs

Responder

function RESPONDER

(nid in number)

return varchar2;

public static String responder

 (WFContext wCtx,

 BigDecimal nid)

This function returns the responder of a closed notification.

If the notification was closed using the Web Notification interface the
value returned will be a valid role defined in the view WF_ROLES. If
the Notification was closed using the e–mail interface then the value
returned will be an e–mail address. See: Respond: page 4 – 29.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The notification ID.

wCtx

nid

PL/SQL Syntax

Description

Arguments (input)

4 – 32 Oracle Workflow API Reference

NtfSignRequirementsMet

function NtfSignRequirementsMet

(nid in number)

return boolean;

Returns ’TRUE’ if the response to a notification meets the signature
requirements imposed by the electronic signature policy for the
notification. See: #WF_SIG_POLICY Attribute, Oracle Workflow
Developer’s Guide.

• If the notification uses a signature policy that requires an
electronic signature to validate a user’s response, then a valid
signature by a user who has authority to sign the response must
be submitted in order for the response to meet the requirements.
The signature must be of the appropriate type, either
password–based or certificate–based, depending on the
signature policy.

• If the notification uses the default policy, which does not require
a signature, or if no signature policy is defined for the
notification, then a response without a signature meets the
requirements.

However, if the signature policy for the notification requires an
electronic signature, but a valid signature has not been submitted, then
the response does not meet the requirements. In this case
NtfSignRequirementsMet() returns ’FALSE’.

The notification ID.

See Also

Respond: page 4 – 29

nid

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

4 – 33Notification System APIs

VoteCount

procedure VoteCount

 (gid in number,

 ResultCode in varchar2,

 ResultCount out number,

 PercentOfTotalPop out number,

 PercentOfVotes out number);

public static WFTwoDArray voteCount

 (WFContext wCtx,

 BigDecimal gid,

 String resultCode)

Counts the number of responses for a specified result code.

Use this procedure only if you are writing your own custom Voting
activity. See: Voting Activity, Oracle Workflow Developer’s Guide.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The notification group ID.

Result code to be tallied.

wCtx

gid

ResultCode

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

4 – 34 Oracle Workflow API Reference

OpenNotificationsExist

function OpenNotificationsExist

 (gid in number)

 return boolean;

public static boolean openNotificationsExist

 (WFContext wCtx,

 BigDecimal gid)

This function returns ’TRUE’ if any notification associated with the
specified notification group ID is ’OPEN’, otherwise it returns ’FALSE’.

Use this procedure only if you are writing your own custom Voting
activity. See: Voting Activity, Oracle Workflow Developer’s Guide.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The notification group ID.

wCtx

gid

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

4 – 35Notification System APIs

Close

procedure Close

(nid in number,

 responder in varchar2 default null);

public static boolean close

 (WFContext wCtx,

 BigDecimal nid,

 String responder)

This procedure closes a notification.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The notification ID.

The user or role who responded to the notification.

wCtx

nid

responder

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

Example

4 – 36 Oracle Workflow API Reference

AddAttr

procedure AddAttr

 (nid in number,

 aname in varchar2);

public static boolean addAttr

 (WFContext wCtx,

 BigDecimal nid,

 String aName)

Adds a new runtime notification attribute. You should perform
validation and insure consistency in the use of the attribute, as it is
completely unvalidated by Oracle Workflow.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The notification ID.

The attribute name.

The attribute value.

The following code excerpt shows an example of how to call addAttr()
in a Java program. The example code is from the WFTest.java program.

if (WFNotificationAPI.addAttr(ctx, myNid, myAttr) == false)

{

 System.out.println(”Add attribute ” + myAttr + ” failed.”);

}

wCtx

nid

aname

avalue

PL/SQL Syntax

Java Syntax

Description

4 – 37Notification System APIs

SetAttribute

procedure SetAttrText

 (nid in number,

 aname in varchar2,

 avalue in varchar2);

procedure SetAttrNumber

 (nid in number,

 aname in varchar2,

 avalue in number);

procedure SetAttrDate

 (nid in number,

 aname in varchar2,

 avalue in date);

public static boolean setAttrText

 (WFContext wCtx,

 BigDecimal nid,

 String aName,

 String aValue)

public static boolean setAttrNumber

 (WFContext wCtx,

 BigDecimal nid,

 String aName,

 BigDecimal aValue)

public static boolean setAttrDate

 WFContext wCtx,

 BigDecimal nid,

 String aName,

 String aValue)

Used at both send and respond time to set the value of notification
attributes. The notification agent (sender) may set the value of SEND
attributes. The performer (responder) may set the value of RESPOND
attributes.

Arguments (input)

Example

4 – 38 Oracle Workflow API Reference

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The notification ID.

The attribute name.

The attribute value.

The following code excerpt shows an example of how to call a
setAttribute method in a Java program. The example code is from the
WFTest.java program.

if (WFNotificationAPI.setAttrDate(ctx, myNid, myAttr, value)

 == false)

{

 System.out.println(”set attribute ” + myAttr + ” to ” +

 value + ” failed.”);

}

wCtx

nid

aname

avalue

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

Example

4 – 39Notification System APIs

GetAttrInfo

procedure GetAttrInfo

(nid in number,

 aname in varchar2,

 atype out varchar2,

 subtype out varchar2,

 format out varchar2);

public static WFTwoDArray getAttrInfo

 (WFContext wCtx,

 BigDecimal nid,

 String aName)

Returns information about a notification attribute, such as its type,
subtype, and format, if any is specified. The subtype is always SEND
or RESPOND to indicate the attribute’s source.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The notification ID.

The attribute name.

The following code excerpt shows an example of how to call
getAttrInfo() in a Java program. The example code is from the
WFTest.java program.

dataSource = WFNotificationAPI.getAttrInfo(ctx, myNid,

 myAttr);

displayDataSource(ctx, dataSource);

// the first element is the attribute type

myAttrType = (String) dataSource.getData(0,0);

wCtx

nid

aname

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

Example

4 – 40 Oracle Workflow API Reference

GetInfo

procedure GetInfo

(nid in number,

 role out varchar2,

 message_type out varchar2,

 message_name out varchar2,

 priority out number,

 due_date out date,

 status out varchar2);

public static WFTwoDArray getInfo

 (WFContext wCtx,

 BigDecimal nid)

Returns the role that the notification is sent to, the item type of the
message, the name of the message, the notification priority, the due
date and the status for the specified notification.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The notification ID.

The following code excerpt shows an example of how to call getInfo() in
a Java program. The example code is from the WFTest.java program.

// Notification Info

System.out.println(”Notification Info for nid ” + myNid);

dataSource = WFNotificationAPI.getInfo(ctx, myNid);

displayDataSource(ctx, dataSource);

wCtx

nid

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

4 – 41Notification System APIs

GetText

function GetText

 (some_text in varchar2,

 nid in number,

 disptype in varchar2 default ’’)

 return varchar2;

public static String getText

 (WFContext wCtx,

 String someText,

 BigDecimal nid,

 String dispType)

Substitutes tokens in an arbitrary text string using token values from a
particular notification. This function may return up to 32K characters.
You cannot use this function in a view definition or in an Oracle Forms
Developer form. For views and forms, use GetShortText() which
truncates values at 1950 characters.

If an error is detected, this function returns some_text unsubstituted
rather than raise exceptions.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

Text to be substituted.

Notification ID of notification to use for token
values.

The display type of the message body that you are
token substituting the text into. Valid display types
are:

• wf_notification.doc_text, which returns
text/plain

• wf_notification.doc_html, which returns
text/html

• wf_notification.doc_attach, which returns null

The default is null.

wCtx

some_text or
someText

nid

disptype or
dispType

PL/SQL Syntax

Description

Arguments (input)

4 – 42 Oracle Workflow API Reference

GetShortText

function GetShortText

 (some_text in varchar2,

 nid in number)

 return varchar2;

Substitutes tokens in an arbitrary text string using token values from a
particular notification. This function may return up to 1950 characters.
This function is meant for use in view definitions and Oracle Forms
Developer forms, where the field size is limited to 1950 characters. Use
GetText() in other situations where you need to retrieve up to 32K
characters.

If an error is detected, this function returns some_text unsubstituted
rather than raise exceptions.

Text to be substituted.

Notification ID of notification to use for token
values.

some_text

nid

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

4 – 43Notification System APIs

GetAttribute

function GetAttrText

 (nid in number,

 aname in varchar2)

 return varchar2;

function GetAttrNumber

 (nid in number,

 aname in varchar2)

 return number;

function GetAttrDate

 (nid in number,

 aname in varchar2)

 return date;

public static String getAttrText

 (WFContext wCtx,

 BigDecimal nid,

 String aName)

public static BigDecimal getAttrNumber

 (WFContext wCtx,

 BigDecimal nid,

 String aName)

public static String getAttrDate

 WFContext wCtx,

 BigDecimal nid,

 String aName)

Returns the value of the specified message attribute.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The notification ID.

The message attribute name.

wCtx

nid

aname

Example

4 – 44 Oracle Workflow API Reference

The following code excerpt shows an example of how to call the
getAttribute methods in a Java program. The example code is from the
WFTest.java program.

// we get the value according to the type.

if (myAttrType == ”DATE”)

{

 value = WFNotificationAPI.getAttrDate(ctx, myNid, myAttr);

}

else if (myAttrType == ”NUMBER”)

{

 value = (WFNotificationAPI.getAttrNumber(ctx, myNid,

 myAttr)).toString();

}

else if (myAttrType == ”DOCUMENT”)

{

 value = WFNotificationAPI.getAttrDoc(ctx, myNid, myAttr,

 null);

}

else

 value = WFNotificationAPI.getAttrText(ctx, myNid, myAttr);

System.out.println(myAttr.toString() + ” = ’” + value +

 ”’”);

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

4 – 45Notification System APIs

GetAttrDoc

function GetAttrDoc

 (nid in number,

 aname in varchar2,

 disptype in varchar2)

 return varchar2;

public static String getAttrDoc

 (WFContext wCtx,

 BigDecimal nid,

 String aName,

 String dispType)

Returns the displayed value of a Document–type attribute. The
referenced document appears in either plain text or HTML format, as
requested.

If you wish to retrieve the actual attribute value, that is, the document
key string instead of the actual document, use GetAttrText().

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The notification ID.

The message attribute name.

The display type of the document you wish to
return. Valid display types are:

• wf_notification.doc_text, which returns
text/plain

• wf_notification.doc_html, which returns
text/html

• wf_notification.doc_attach, which returns null

wCtx

nid

aname

disptype

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

4 – 46 Oracle Workflow API Reference

GetSubject

function GetSubject

(nid in number)

 return varchar2

public static String getSubject

 (WFContext wCtx,

 BigDecimal nid)

Returns the subject line for the notification message. Any message
attribute in the subject is token substituted with the value of the
corresponding message attribute.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The notification ID.

wCtx

nid

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

4 – 47Notification System APIs

GetBody

function GetBody

(nid in number,

 disptype in varchar2 default ’’)

 return varchar2;

public static String getBody

 (WFContext wCtx,

 BigDecimal nid,

 String dispType)

Returns the HTML or plain text message body for the notification,
depending on the message body type specified. Any message attribute
in the body is token substituted with the value of the corresponding
notification attribute. This function may return up to 32K characters.
You cannot use this function in a view definition or in an Oracle
Applications form. For views and forms, use GetShortBody() which
truncates values at 1950 characters.

Note that the returned plain text message body is not formatted; it
should be wordwrapped as appropriate for the output device. Body
text may contain tabs (which indicate indentation) and newlines (which
indicate paragraph termination).

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The notification ID.

The display type of the message body you wish to
fetch. Valid display types are:

• wf_notification.doc_text, which returns
text/plain

• wf_notification.doc_html, which returns
text/html

• wf_notification.doc_attach, which returns null

The default is null.

wCtx

nid

disptype

PL/SQL Syntax

Description

Arguments (input)

4 – 48 Oracle Workflow API Reference

GetShortBody

function GetShortBody

(nid in number)

 return varchar2;

Returns the message body for the notification. Any message attribute
in the body is token substituted with the value of the corresponding
notification attribute. This function may return up to 1950 characters.
This function is meant for use in view definitions and Oracle Forms
Developer forms, where the field size is limited to 1950 characters. Use
GetBody() in other situations where you need to retrieve up to 32K
characters.

Note that the returned plain text message body is not formatted; it
should be wordwrapped as appropriate for the output device. Body
text may contain tabs (which indicate indentation) and newlines (which
indicate paragraph termination).

If an error is detected, this function returns the body unsubstituted or
null if all else fails, rather than raise exceptions.

Note: This function is intended for displaying messages in
forms or views only.

The notification ID.nid

PL/SQL Syntax

Description

Arguments (input)

4 – 49Notification System APIs

TestContext

function TestContext

(nid in number)

 return boolean;

Tests if the current context is correct by calling the Item Type
Selector/Callback function. This function returns TRUE if the context
check is OK, or if no Selector/Callback function is implemented. It
returns FALSE if the context check fails.

The notification ID.nid

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

4 – 50 Oracle Workflow API Reference

AccessCheck

function AccessCheck

(access_str in varchar2)

 return varchar2;

public static String accessCheck

 (WFContext wCtx,

 String accessString)

Returns a username if the notification access string is valid and the
notification is open, otherwise it returns null. The access string is
automatically generated by the notification mailer that sends the
notification and is used to verify the authenticity of both text and
HTML versions of e–mail notifications.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The access string, in the format: nid/nkey where nid
is the notification ID and nkey is the notification
key.

wCtx

access_str or
accessString

PL/SQL Syntax

Java Syntax

Description

Arguments (input)

4 – 51Notification System APIs

WorkCount

function WorkCount

(username in varchar2)

 return number;

public static BigDecimal workCount

 (WFContext wCtx,

 String userName)

Returns the number of open notifications assigned to a role.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The internal name of a role.

wCtx

username

Java Syntax

Description

Arguments (input)

4 – 52 Oracle Workflow API Reference

getNotifications

public static WFTwoDArray getNotifications

 (WFContext wCtx,

 String itemType,

 String itemKey)

Returns a list of notifications for the specified item type and item key.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The internal name of the item type.

A string derived from the application object’s
primary key. The string uniquely identifies the
item within the item type. The item type and key
together identify the process instance.

wCtx

itemType

itemKey

Java Syntax

Description

Arguments (input)

Example

4 – 53Notification System APIs

getNotificationAttributes

public static WFTwoDArray getNotificationAttributes

 (WFContext wCtx,

 BigDecimal nid)

Returns a list of notification attributes and their corresponding values
for the specified notification ID.

Workflow context information. Required for the
Java method only. See: Oracle Workflow Context:
page 2 – 5.

The notification ID.

The following code excerpt shows an example of how to call
getNotificationAttributes() in a Java program. The example code is from
the WFTest.java program.

// List available Notification Attributes

System.out.println(”List of Attributes for id ” + myNid

 ”:”);

dataSource =

 WFNotificationAPI.getNotificationAttributes(ctx, myNid);

displayDataSource(ctx, dataSource);

wCtx

nid

PL/SQL Syntax

Description

Arguments (input)

4 – 54 Oracle Workflow API Reference

WriteToClob

procedure WriteToClob

(clob_loc in out clob,

 msg_string in varchar2);

Appends a character string to the end of a character large object
(CLOB). You can use this procedure to help build the CLOB for a
PL/SQL CLOB document attribute for a notification.

The CLOB to which the string should be added.

A string of character data.

See Also

To Define a Document Attribute, Oracle Workflow Developer’s Guide

”PL/SQL CLOB” Documents, Oracle Workflow Developer’s Guide

clob_loc

msg_string

PL/SQL Syntax

Description

Arguments (input)

4 – 55Notification System APIs

Denormalize_Notification

procedure Denormalize_Notification

 (nid in number,

 username in varchar2 default null,

 langcode in varchar2 default null);

Stores denormalized values for certain notification fields, including the
notification subject, in the WF_NOTIFICATIONS table. If you are using
the Notification System to send a notification outside of a workflow
process, you must call Denormalize_Notification() after setting the values
for any notification attributes, in order to populate the denormalized
fields.

Denormalize_Notification() tests whether the language in which the
notification should be delivered matches the current session language,
and stores the denormalized information according to this setting only
if the languages match. You can indicate the language for the
notification in a number of ways.

• If you specify a role name when you call the API, the language
setting for that role is used to determine the notification
language.

• If you do not specify a role name, you can specify a language
code for the language you want.

Note: If you specify both a role name and a language code, the
role name is used to determine the notification language, and
the language code is ignored.

• If you specify neither a role name nor a language code, the
notification language defaults to the language setting for the
recipient role of the notification.

If the notification language and the current session language do not
match, the procedure does not store any denormalized information. In
this case, the viewing interface through which the notification
recipients access notifications must check the language and perform the
denormalization. The Oracle Workflow Worklist will perform these
tasks for you if your users access their notifications through the
Worklist web pages.

The notification ID.

An optional internal name of a role used to
determine the notification language.

nid

username

4 – 56 Oracle Workflow API Reference

An optional language code used to determine the
notification language if no role name is provided.

langcode

PL/SQL Syntax

Pragmas

Description

Arguments (input)

4 – 57Notification System APIs

SubstituteSpecialChars

function SubstituteSpecialChars

 (some_text in varchar2)

 return varchar2;

pragma RESTRICT_REFERENCES(SubstituteSpecialChars, WNDS);

Substitutes HTML character entity references for special characters in a
text string and returns the modified text including the substitutions.

You can use this function as a security precaution when creating a
PL/SQL document or a PL/SQL CLOB document that contains HTML,
to ensure that only the HTML code you intend to include is executed. If
you retrieve any data from the database at runtime for inclusion in the
document, use SubstituteSpecialChars() to replace any HTML tag
characters in that data, so that those characters will not be interpreted
as HTML code and executed.

Note that you should not substitute entity references for HTML tags
that you include in the document yourself. Otherwise, the document
will not be displayed with your intended HTML formatting. You only
need to perform this substitution for data that is retrieved from the
database at runtime, which may be entered from an external source.

The following table shows each special character and the entity
reference with which it is replaced.

Character Entity Reference

< <

> >

\ \

& &

” "

’ '

Table 4 – 3 (Page 1 of 1)

The text string in which you want to replace special
characters.

some_text

PL/SQL Syntax

Description

Arguments (input)

4 – 58 Oracle Workflow API Reference

Notification Mailer Utility API

The notification mailer utility API can be used to encode data in a
binary large object (BLOB) to base64. This API is defined in a PL/SQL
package called WF_MAIL_UTIL.

Note: This package is only available if your database version is
Oracle9i Database or higher. The Oracle8i Database does not
support base64 encoding.

EncodeBLOB

procedure EncodeBLOB

 (pIDoc in blob,

 pODoc in out nocopy clob);

Encodes the specified BLOB to base64 and returns the encoded data as
a character large object (CLOB). You can use this procedure to store a
BLOB in a PL/SQL CLOB document to be included in a notification
message.

Note: This API is only available if your database version is
Oracle9i Database or higher. The Oracle8i Database does not
support base64 encoding.

The BLOB to encode.

The CLOB in which the encoded data should be
stored.

See Also

Standard APIs for ”PL/SQL” Documents, Oracle Workflow Developer’s
Guide

pIDoc

pODoc

C H A P T E R

5
T

5 – 1Business Event System APIs

Business Event System
APIs

his chapter describes the APIs for the Oracle Workflow Business
Event System. The APIs consist of datatypes and PL/SQL functions
and procedures that you can use to access the Business Event System.

5 – 2 Oracle Workflow API Reference

Overview of the Oracle Workflow Business Event System

The Oracle Workflow Business Event System leverages the Oracle
Advanced Queuing infrastructure to communicate business events
between systems. When a significant business event occurs in an
internet or intranet application on a system, it triggers event
subscriptions that specify the processing to execute for that event.

Subscriptions can include the following types of processing:

• Sending event information to a workflow process

• Sending event information to named communication points
called agents on the local system or external systems

• Sending a notification to a role

• Receiving an Oracle XML Gateway message from a trading
partner (Oracle E–Business Suite only)

• Sending an Oracle XML Gateway message to a trading partner
(Oracle E–Business Suite only)

• Executing custom code on the event information

The event information communicated by the Business Event System is
called an event message. The event message includes header properties
to identify the event as well as event data describing what occurred.

You define events, systems, agents, and subscriptions in the Event
Manager. You can also define event activities in the Workflow Builder
to include business events in your workflow processes.

See Also

Managing Business Events, Oracle Workflow Developer’s Guide

Event Activities, Oracle Workflow Developer’s Guide

5 – 3Business Event System APIs

Business Event System Datatypes

Oracle Workflow uses a number of abstract datatypes (ADTs) to model
the structure and behavior of Business Event System data. These
datatypes include the following:

• Agent structure: WF_AGENT_T

• Parameter structure: WF_PARAMETER_T

• Parameter list structure: WF_PARAMETER_LIST_T

• Event message structure: WF_EVENT_T

The Business Event System datatypes are created by a script called
wftypes.sql, which is located in the Oracle Workflow sql subdirectory
for the standalone version of Oracle Workflow, or in the sql
subdirectory under $FND_TOP for the version of Oracle Workflow
embedded in Oracle Applications.

See Also

User–Defined Datatypes, Oracle Concepts

PL/SQL Syntax

Description

PL/SQL Syntax

Description

5 – 4 Oracle Workflow API Reference

Agent Structure

Oracle Workflow uses the object type WF_AGENT_T to store
information about an agent in a form that can be referenced by an event
message. The following table lists the attributes of the WF_AGENT_T
datatype.

Attribute Name Datatype Description

NAME VARCHAR2(30) The name of the agent.

SYSTEM VARCHAR2(30) The system where the agent is located.

Table 5 – 1 (Page 1 of 1)

The WF_AGENT_T object type also includes the following methods,
which you can use to retrieve and set the values of its attributes.

• getName

• getSystem

• setName

• setSystem

getName

MEMBER FUNCTION getName

 return varchar2

Returns the value of the NAME attribute in a WF_AGENT_T object.

getSystem

MEMBER FUNCTION getSystem

 return varchar2

Returns the value of the SYSTEM attribute in a WF_AGENT_T object.

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

5 – 5Business Event System APIs

setName

MEMBER PROCEDURE setName

 (pName in varchar2)

Sets the value of the NAME attribute in a WF_AGENT_T object.

The value for the NAME attribute.

setSystem

MEMBER PROCEDURE setSystem

 (pSystem in varchar2)

Sets the value of the SYSTEM attribute in a WF_AGENT_T object.

The value for the SYSTEM attribute.

See Also

Agents, Oracle Workflow Developer’s Guide

pName

pSystem

PL/SQL Syntax

Description

PL/SQL Syntax

5 – 6 Oracle Workflow API Reference

Parameter Structure

Oracle Workflow uses the object type WF_PARAMETER_T to store a
parameter name and value pair in a form that can be included in an
event message parameter list. WF_PARAMETER_T allows custom
values to be added to the WF_EVENT_T event message object. The
following table lists the attributes of the WF_PARAMETER_T datatype.

Attribute Name Datatype Description

NAME VARCHAR2(30) The parameter name.

VALUE VARCHAR2(2000) The parameter value.

Table 5 – 2 (Page 1 of 1)

The WF_PARAMETER_T object type also includes the following
methods, which you can use to retrieve and set the values of its
attributes.

• getName

• getValue

• setName

• setValue

getName

MEMBER FUNCTION getName

 return varchar2

Returns the value of the NAME attribute in a WF_PARAMETER_T
object.

getValue

MEMBER FUNCTION getValue

 return varchar2

Description

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

5 – 7Business Event System APIs

Returns the value of the VALUE attribute in a WF_PARAMETER_T
object.

setName

MEMBER PROCEDURE setName

 (pName in varchar2)

Sets the value of the NAME attribute in a WF_PARAMETER_T object.

The value for the NAME attribute.

setValue

MEMBER PROCEDURE setValue

 (pValue in varchar2)

Sets the value of the VALUE attribute in a WF_PARAMETER_T object.

The value for the VALUE attribute.

pName

pValue

5 – 8 Oracle Workflow API Reference

Parameter List Structure

Oracle Workflow uses the named varying array (varray)
WF_PARAMETER_LIST_T to store a list of parameters in a form that
can be included in an event message. WF_PARAMETER_LIST_T allows
custom values to be added to the WF_EVENT_T event message object.
The WF_PARAMETER_LIST_T datatype can include up to 100
parameter name and value pairs. A description of this datatype is as
follows:

WF_PARAMETER_LIST_T

• Maximum size: 100

• Element datatype: WF_PARAMETER_T

5 – 9Business Event System APIs

Event Message Structure

Oracle Workflow uses the object type WF_EVENT_T to store event
messages. This datatype contains all the header properties of an event
message as well as the event data payload, in a serialized form that is
suitable for transmission outside the system.

WF_EVENT_T defines the event message structure that the Business
Event System and the Workflow Engine use to represent a business
event. Internally, the Business Event System and the Workflow Engine
can only communicate events in this format. Many of the standard
queues that Oracle Workflow provides for the Business Event System
use WF_EVENT_T as their payload type.

Note: If you want to use queues with a custom payload type,
including any existing queues you already have defined on
your system, you must create a queue handler to translate
between the standard Workflow WF_EVENT_T structure and
your custom payload type. See: Setting Up Queues, Oracle
Workflow Administrator’s Guide and Standard APIs for a Queue
Handler, Oracle Workflow Developer’s Guide.

The following table lists the attributes of the WF_EVENT_T datatype.

Attribute Name Datatype Description

PRIORITY NUMBER The priority with which the message recip-
ient should dequeue the message. A small-
er number indicates a higher priority. For
example, 1 represents a high priority, 50
represents a normal priority, and 99 repre-
sents a low priority.

SEND_DATE DATE The date and time when the message is
available for dequeuing. The send date can
be set to the system date to indicate that
the message is immediately available for
dequeuing, or to a future date to indicate
future availability.

If the send date is set to a future date when
an event is raised, the event message is
placed on the WF_DEFERRED queue, and
subscription processing does not begin un-
til the specified date. If the send date is set
to a future date when an event is sent to an
agent, the event message is propagated to
that agent’s queue, but does not become
available for the consumer to dequeue un-
til the specified date.

Table 5 – 3 (Page 1 of 2)

5 – 10 Oracle Workflow API Reference

DescriptionDatatypeAttribute Name

RECEIVE_DATE DATE The date and time when the message is de-
queued by an agent listener.

CORRELATION_ID VARCHAR2(240) A correlation identifier that associates this
message with other messages. This attrib-
ute is initially blank but can be set by a
function. If a value is set for the correlation
ID, then that value is used as the item key
if the event is sent to a workflow process.
Note that the item key for a process
instance can only contain single–byte char-
acters. It cannot contain a multibyte value.

PARAMETER_LIST WF_PARAMETER_
LIST_T

A list of additional parameter name and
value pairs.

EVENT_NAME VARCHAR2(240) The internal name of the event.

EVENT_KEY VARCHAR2(240) The string that uniquely identifies the
instance of the event.

EVENT_DATA CLOB A set of additional details describing what
occurred in the event. The event data can
be structured as an XML document.

FROM_AGENT WF_AGENT_T The agent from which the event is sent. For
locally raised events, this attribute is ini-
tially null.

TO_AGENT WF_AGENT_T The agent to which the event should be
sent (the message recipient).

ERROR_
SUBSCRIPTION

RAW(16) If an error occurs while processing this
event, this is the subscription that was be-
ing executed when the error was encoun-
tered.

ERROR_MESSAGE VARCHAR2(4000) An error message that the Event Manager
generates if an error occurs while proces-
sing this event.

ERROR_STACK VARCHAR2(4000) An error stack of arguments that the Event
Manager generates if an error occurs while
processing this event. The error stack pro-
vides context information to help you lo-
cate the source of an error.

Table 5 – 3 (Page 2 of 2)

The WF_EVENT_T object type also includes the following methods,
which you can use to retrieve and set the values of its attributes.

• Initialize: page 5 – 12

5 – 11Business Event System APIs

• getPriority: page 5 – 12

• getSendDate: page 5 – 12

• getReceiveDate: page 5 – 13

• getCorrelationID: page 5 – 13

• getParameterList: page 5 – 13

• getEventName: page 5 – 13

• getEventKey: page 5 – 14

• getEventData: page 5 – 14

• getFromAgent: page 5 – 14

• getToAgent: page 5 – 14

• getErrorSubscription: page 5 – 15

• getErrorMessage: page 5 – 15

• getErrorStack: page 5 – 15

• setPriority: page 5 – 15

• setSendDate: page 5 – 16

• setReceiveDate: page 5 – 16

• setCorrelationID: page 5 – 16

• setParameterList: page 5 – 16

• setEventName: page 5 – 17

• setEventKey: page 5 – 17

• setEventData: page 5 – 17

• setFromAgent: page 5 – 18

• setToAgent: page 5 – 18

• setErrorSubscription: page 5 – 18

• setErrorMessage: page 5 – 18

• setErrorStack: page 5 – 19

• Content: page 5 – 19

• Address: page 5 – 20

• AddParameterToList: page 5 – 20

• GetValueForParameter: page 5 – 20

PL/SQL Syntax

Description

☞

Arguments (input)

PL/SQL Syntax

Description

PL/SQL Syntax

5 – 12 Oracle Workflow API Reference

Note: You can set the values of the EVENT_NAME,
EVENT_KEY, and EVENT_DATA attributes individually using
the setEventName, setEventKey, and setEventData methods, or
you can use the Content method to set all three event content
attributes at once. See: Content: page 5 – 19.

Similarly, you can set the values of the FROM_AGENT,
TO_AGENT, PRIORITY, and SEND__DATE attributes
individually using the setFromAgent, setToAgent, setPriority,
and setSendDate methods, or you can use the Address method
to set all four address attributes at once. See: Address: page
5 – 20.

Initialize

STATIC PROCEDURE initialize

 (new_wf_event_t in out wf_event_t)

Initializes a new WF_EVENT_T object by setting the PRIORITY
attribute to 0, initializing the EVENT_DATA attribute to EMPTY using
the Empty_CLOB() function, and setting all other attributes to NULL.

Attention: You must call the Initialize method before you can
perform any further manipulation on a new WF_EVENT_T
object.

The WF_EVENT_T object to initialize.

getPriority

MEMBER FUNCTION getPriority

 return number

Returns the value of the PRIORITY attribute in a WF_EVENT_T object.

getSendDate

MEMBER FUNCTION getSendDate

new_wf_event_t

Description

PL/SQL Syntax

Description

PL/SQL Syntax

Description

PL/SQL Syntax

Description

PL/SQL Syntax

5 – 13Business Event System APIs

 return date

Returns the value of the SEND_DATE attribute in a WF_EVENT_T
object.

getReceiveDate

MEMBER FUNCTION getReceiveDate

 return date

Returns the value of the RECEIVE_DATE attribute in a WF_EVENT_T
object.

getCorrelationID

MEMBER FUNCTION getCorrelationID

 return varchar2

Returns the value of the CORRELATION_ID attribute in a
WF_EVENT_T object.

getParameterList

MEMBER FUNCTION getParameterList

 return wf_parameter_list_t

Returns the value of the PARAMETER_LIST attribute in a
WF_EVENT_T object.

getEventName

MEMBER FUNCTION getEventName

 return varchar2

Description

PL/SQL Syntax

Description

PL/SQL Syntax

Description

PL/SQL Syntax

Description

PL/SQL Syntax

Description

5 – 14 Oracle Workflow API Reference

Returns the value of the EVENT_NAME attribute in a WF_EVENT_T
object.

getEventKey

MEMBER FUNCTION getEventKey

 return varchar2

Returns the value of the EVENT_KEY attribute in a WF_EVENT_T
object.

getEventData

MEMBER FUNCTION getEventData

 return clob

Returns the value of the EVENT_DATA attribute in a WF_EVENT_T
object.

getFromAgent

MEMBER FUNCTION getFromAgent

 return wf_agent_t

Returns the value of the FROM_AGENT attribute in a WF_EVENT_T
object.

getToAgent

MEMBER FUNCTION getToAgent

 return wf_agent_t

Returns the value of the TO_AGENT attribute in a WF_EVENT_T
object.

PL/SQL Syntax

Description

PL/SQL Syntax

Description

PL/SQL Syntax

Description

PL/SQL Syntax

Description

Arguments (input)

5 – 15Business Event System APIs

getErrorSubscription

MEMBER FUNCTION getErrorSubscription

 return raw

Returns the value of the ERROR_SUBSCRIPTION attribute in a
WF_EVENT_T object.

getErrorMessage

MEMBER FUNCTION getErrorMessage

 return varchar2

Returns the value of the ERROR_MESSAGE attribute in a
WF_EVENT_T object.

getErrorStack

MEMBER FUNCTION getErrorStack

 return varchar2

Returns the value of the ERROR_STACK attribute in a WF_EVENT_T
object.

setPriority

MEMBER PROCEDURE setPriority

 (pPriority in number)

Sets the value of the PRIORITY attribute in a WF_EVENT_T object.

The value for the PRIORITY attribute.pPriority

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

5 – 16 Oracle Workflow API Reference

setSendDate

MEMBER PROCEDURE setSendDate

 (pSendDate in date default sysdate)

Sets the value of the SEND_DATE attribute in a WF_EVENT_T object.

The value for the SEND_DATE attribute.

setReceiveDate

MEMBER PROCEDURE setReceiveDate

 (pReceiveDate in date default sysdate)

Sets the value of the RECEIVE_DATE attribute in a WF_EVENT_T
object.

The value for the RECEIVE_DATE attribute.

setCorrelationID

MEMBER PROCEDURE setCorrelationID

 (pCorrelationID in varchar2)

Sets the value of the CORRELATION_ID attribute in a WF_EVENT_T
object.

The value for the CORRELATION_ID attribute.

setParameterList

MEMBER PROCEDURE setParameterList

 (pParameterList in wf_parameter_list_t)

pSendDate

pReceiveDate

pCorrelationID

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

5 – 17Business Event System APIs

Sets the value of the PARAMETER_LIST attribute in a WF_EVENT_T
object.

The value for the PARAMETER_LIST attribute.

setEventName

MEMBER PROCEDURE setEventName

 (pEventName in varchar2)

Sets the value of the EVENT_NAME attribute in a WF_EVENT_T
object.

The value for the EVENT_NAME attribute.

setEventKey

MEMBER PROCEDURE setEventKey

 (pEventKey in varchar2)

Sets the value of the EVENT_KEY attribute in a WF_EVENT_T object.

The value for the EVENT_KEY attribute.

setEventData

MEMBER PROCEDURE setEventData

 (pEventData in clob)

Sets the value of the EVENT_DATA attribute in a WF_EVENT_T object.

The value for the EVENT_DATA attribute.

pParameterList

pEventName

pEventKey

pEventData

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

5 – 18 Oracle Workflow API Reference

setFromAgent

MEMBER PROCEDURE setFromAgent

 (pFromAgent in wf_agent_t)

Sets the value of the FROM_AGENT attribute in a WF_EVENT_T
object.

The value for the FROM_AGENT attribute.

setToAgent

MEMBER PROCEDURE setToAgent

 (pToAgent in wf_agent_t)

Sets the value of the TO_AGENT attribute in a WF_EVENT_T object.

The value for the TO_AGENT attribute.

setErrorSubscription

MEMBER PROCEDURE setErrorSubscription

 (pErrorSubscription in raw)

Sets the value of the ERROR_SUBSCRIPTION attribute in a
WF_EVENT_T object.

The value for the ERROR_SUBSCRIPTION
attribute.

setErrorMessage

MEMBER PROCEDURE setErrorMessage

pFromAgent

pToAgent

pErrorSubscrip–
tion

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

5 – 19Business Event System APIs

 (pErrorMessage in varchar2)

Sets the value of the ERROR_MESSAGE attribute in a WF_EVENT_T
object.

The value for the ERROR_MESSAGE attribute.

setErrorStack

MEMBER PROCEDURE setErrorStack

 (pErrorStack in varchar2)

Sets the value of the ERROR_STACK attribute in a WF_EVENT_T
object.

The value for the ERROR_STACK attribute.

Content

MEMBER PROCEDURE Content

 (pName in varchar2,

 pKey in varchar2,

 pData in clob)

Sets the values of all the event content attributes in a WF_EVENT_T
object, including EVENT_NAME, EVENT_KEY, and EVENT_DATA.

The value for the EVENT_NAME attribute.

The value for the EVENT_KEY attribute.

The value for the EVENT_DATA attribute.

pErrorMessage

pErrorStack

pName

pKey

pData

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

Description

Arguments (input)

PL/SQL Syntax

5 – 20 Oracle Workflow API Reference

Address

MEMBER PROCEDURE Address

 (pOutAgent in wf_agent_t,

 pToAgent in wf_agent_t,

 pPriority in number,

 pSendDate in date)

Sets the values of the all address attributes in a WF_EVENT_T object,
including FROM_AGENT, TO_AGENT, PRIORITY, and SEND_DATE.

The value for the FROM_AGENT attribute.

The value for the TO_AGENT attribute.

The value for the PRIORITY attribute.

The value for the SEND_DATE attribute.

AddParameterToList

MEMBER PROCEDURE AddParameterToList

 (pName in varchar2,

 pValue in varchar2)

Adds a new parameter name and value pair to the list stored in the
PARAMETER_LIST attribute of a WF_EVENT_T object. If a parameter
with the specified name already exists in the parameter list, then the
previous value of that parameter is overwritten with the specified
value.

The parameter name.

The parameter value.

GetValueForParameter

MEMBER FUNCTION GetValueForParameter

pOutAgent

pToAgent

pPriority

pSendDate

pName

pValue

Description

Arguments (input)

5 – 21Business Event System APIs

 (pName in varchar2) return varchar2

Returns the value of the specified parameter from the list stored in the
PARAMETER_LIST attribute of a WF_EVENT_T object. This method
begins at the end of the parameter list and searches backwards through
the list. If no parameter with the specified name is found in the
parameter list, then the GetValueForParameter method returns NULL.

The parameter name.pName

☞

5 – 22 Oracle Workflow API Reference

Example for Using Abstract Datatypes

The following example shows some ways to use abstract datatype
methods in a SQL script, including:

• Initializing a new event message structure with the Initialize
method

Attention: You must call the Initialize method before you can
perform any further manipulation on a new WF_EVENT_T
object.

• Initializing a CLOB locator

• Writing a text variable into a CLOB variable

• Setting the content attributes of the event message structure with
the Content method

• Setting the address attributes of the event message structure
with the Address method

The example code is from the script wfevtenq.sql, which enqueues an
event message on a queue using an override agent. See: Wfevtenq.sql,
Oracle Workflow Administrator’s Guide.

declare

l_overrideagent varchar2(30) := ’&overrideagent’;

l_overridesystem varchar2(30) := ’&overridesystem’;

l_fromagent varchar2(30) := ’&fromagent’;

l_fromsystem varchar2(30) := ’&fromsystem’;

l_toagent varchar2(30) := ’&toagent’;

l_tosystem varchar2(30) := ’&tosystem’;

l_eventname varchar2(100) := ’&eventname’;

l_eventkey varchar2(100) := ’&eventkey’;

l_msg varchar2(200) := ’&message’;

l_clob clob;

l_overrideagent_t wf_agent_t;

l_toagent_t wf_agent_t;

l_fromagent_t wf_agent_t;

l_event_t wf_event_t;

begin

 /*You must call wf_event_t.initialize before you can manipulate

 a new wf_event_t object.*/

 wf_event_t.initialize(l_event_t);

5 – 23Business Event System APIs

 l_overrideagent_t := wf_agent_t(l_overrideagent,

 l_overridesystem);

 l_toagent_t := wf_agent_t(l_toagent, l_tosystem);

 l_fromagent_t := wf_agent_t(l_fromagent, l_fromsystem);

 if l_msg is null then

 l_event_t.Content(l_eventname, l_eventkey, null);

 else

 dbms_lob.createtemporary(l_clob, FALSE, DBMS_LOB.CALL);

 dbms_lob.write(l_clob, length(l_msg), 1, l_msg);

 l_event_t.Content(l_eventname, l_eventkey, l_clob);

 end if;

 l_event_t.Address(l_fromagent_t, l_toagent_t, 50, sysdate);

 wf_event.enqueue(l_event_t, l_overrideagent_t);

end;

5 – 24 Oracle Workflow API Reference

Mapping Between WF_EVENT_T and SYS.AQ$_JMS_TEXT_MESSAGE

Java Message Service (JMS) is a messaging standard defined by Sun
Microsystems, Oracle, IBM, and other vendors. JMS is a set of
interfaces and associated semantics that define how a JMS client
accesses the facilities of an enterprise messaging product.

Oracle Java Message Service provides a Java API for Oracle Advanced
Queuing (AQ) based on the JMS standard. Oracle JMS supports the
standard JMS interfaces and has extensions to support the AQ
administrative operations and other AQ features that are not a part of
the standard. The abstract datatype used to store a JMS Text message in
an AQ queue is called SYS.AQ$_JMS_TEXT_MESSAGE.

Oracle Workflow supports communication of JMS Text messages
through the Business Event System by providing a queue handler
called WF_EVENT_OJMSTEXT_QH. This queue handler translates
between the standard Workflow WF_EVENT_T message structure and
SYS.AQ$_JMS_TEXT_MESSAGE. Oracle Workflow also provides
standard inbound and outbound queues that you can use for JMS Text
messages, These queues are called WF_JMS_IN and WF_JMS_OUT,
respectively, and use the WF_EVENT_OJMSTEXT_QH queue handler.
See: Agents, Oracle Workflow Developer’s Guide.

The SYS.AQ$_JMS_TEXT_MESSAGE datatype contains the following
attributes.

• HEADER – Header properties in the SYS.AQ$_JMS_HEADER
datatype

• TEXT_LEN – The size of the message payload, set automatically

• TEXT_VC – The message payload in VARCHAR2 format, if the
payload is equal to or less than 4000 bytes

• TEXT_LOB – The message payload in CLOB format, if the
payload is greater than 4000 bytes

The SYS.AQ$_JMS_HEADER datatype contains the following
attributes.

• REPLYTO – A Destination supplied by a client when a message
is sent

• TYPE – The type of the message

• USERID – The identity of the user sending the message

• APPID – The identity of the application sending the message

• GROUPID – The identity of the message group of which this
message is a part; set by the client

5 – 25Business Event System APIs

• GROUPSEQ – The sequence number of the message within the
group

• PROPERTIES – Additional message properties in the
SYS.AQ$_JMS_USERPROPARRAY datatype

The SYS.AQ$_JMS_USERPROPARRAY datatype is a named varying
array with a maximum size of 100. The datatype of its elements is
another ADT named SYS.AQ$_JMS_USERPROPERTY.

The following table shows how the attributes of the WF_EVENT_T
message structure are mapped to the attributes within the
SYS.AQ$_JMS_TEXT_MESSAGE structure.

WF_EVENT_T SYS.AQ$_JMS_TEXT_MESSAGE

WF_EVENT_T.PRIORITY SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.SEND_DATE SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.RECEIVE_DATE SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.CORRELATION_ID SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.EVENT_NAME SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.EVENT_KEY SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.EVENT_DATA TEXT_VC or TEXT_LOB

WF_EVENT_T.PARAMETER_LIST SYS.AQ$_JMS_HEADER.REPLYTO

WF_EVENT_T.PARAMETER_LIST SYS.AQ$_JMS_HEADER.TYPE

WF_EVENT_T.PARAMETER_LIST SYS.AQ$_JMS_HEADER.USERID

WF_EVENT_T.PARAMETER_LIST SYS.AQ$_JMS_HEADER.APPID

WF_EVENT_T.PARAMETER_LIST SYS.AQ$_JMS_HEADER.GROUPID

WF_EVENT_T.PARAMETER_LIST SYS.AQ$_JMS_HEADER.GROUPSEQ

WF_EVENT_T.PARAMETER_LIST
(any parameters other than JMS header
properties)

SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.FROM_AGENT SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.TO_AGENT SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.ERROR_SUBSCRIPTION SYS.AQ$_JMS_USERPROPARRAY

Table 5 – 4 (Page 1 of 2)

5 – 26 Oracle Workflow API Reference

SYS.AQ$_JMS_TEXT_MESSAGEWF_EVENT_T

WF_EVENT_T.ERROR_MESSAGE SYS.AQ$_JMS_USERPROPARRAY

WF_EVENT_T.ERROR_STACK SYS.AQ$_JMS_USERPROPARRAY

Table 5 – 4 (Page 2 of 2)

See Also

Using Oracle Java Message Service to Access AQ, Oracle Application
Developer’s Guide – Advanced Queuing or Using Oracle Java Message
Service (OJMS) to Access Oracle Streams AQ, Oracle Streams Advanced
Queuing User’s Guide and Reference

Package oracle.jms, Oracle Supplied Java Packages Reference

5 – 27Business Event System APIs

Event APIs

The Event APIs can be called by an application program or a workflow
process in the runtime phase to communicate with the Business Event
System and manage events. These APIs are defined in a PL/SQL
package called WF_EVENT.

• Raise: page 5 – 28

• Raise3: page 5 – 32

• Send: page 5 – 34

• NewAgent: page 5 – 36

• Test: page 5 – 37

• Enqueue: page 5 – 38

• Listen: page 5 – 39

• SetErrorInfo: page 5 – 42

• SetDispatchMode: page 5 – 43

• AddParameterToList: page 5 – 44

• AddParameterToListPos: page 5 – 45

• GetValueForParameter: page 5 – 46

• GetValueForParameterPos: page 5 – 47

• SetMaxNestedRaise: page 5 – 48

• GetMaxNestedRaise: page 5 – 49

PL/SQL Syntax

Description

5 – 28 Oracle Workflow API Reference

Raise

procedure Raise

 (p_event_name in varchar2,

 p_event_key in varchar2,

 p_event_data in clob default NULL,

 p_parameters in wf_parameter_list_t default NULL,

 p_send_date in date default NULL);

Raises a local event to the Event Manager. Raise() creates a
WF_EVENT_T structure for this event instance and sets the specified
event name, event key, event data, parameter list, and send date into
the structure.

The event data can be passed to the Event Manager within the call to
the Raise() API, or the Event Manager can obtain the event data itself by
calling the Generate function for the event, after first checking whether
the event data is required by a subscription. If the event data is not
already available in your application, you can improve performance by
allowing the Event Manager to run the Generate function and generate
the event data only when subscriptions exist that require that data,
rather than always generating the event data from your application at
runtime. See: Events, Oracle Workflow Developer’s Guide and Standard
API for an Event Data Generate Function, Oracle Workflow Developer’s
Guide.

The send date can optionally be set to indicate when the event should
become available for subscription processing. If the send date is null,
Raise() sets the send date to the current system date. You can defer an
event by setting the send date to a date later than the system date. In
this case, the Event Manager places the event message on the standard
WF_DEFERRED queue, where it remains in a WAIT state until the send
date. When the send date arrives, the event message becomes available
for dequeuing and will be dequeued the next time an agent listener
runs on the WF_DEFERRED queue.

Note: If an event is deferred when it is raised, the event retains
its original Local source type when it is dequeued from the
WF_DEFERRED queue.

When an event is raised and is not deferred, or when an event that was
deferred is dequeued from the WF_DEFERRED queue, the Event
Manager begins subscription processing for the event. The Event
Manager searches for and executes any enabled subscriptions by the
local system to that event with a source type of Local, and also any
enabled subscriptions by the local system to the Any event with a

Arguments (input)

5 – 29Business Event System APIs

source type of Local. If no enabled subscriptions exist for the event that
was raised (apart from subscriptions to the Any event), then Oracle
Workflow executes any enabled subscriptions by the local system to the
Unexpected event with a source type of Local.

Note: The Event Manager does not raise an error if the event is
not defined.

The Event Manager checks each subscription before executing it to
determine whether the subscription requires the event data. If the event
data is required but is not already provided, the Event Manager calls
the Generate function for the event to produce the event data. If the
event data is required but no Generate function is defined for the event,
Oracle Workflow creates a default set of event data using the event
name and event key.

Note: Any exceptions raised during Raise() processing are not
trapped, but instead are exposed to the code that called the
Raise() procedure. This behavior enables you to use
subscriptions and their rule functions to perform validation,
with the same results as if the validation logic were coded
inline.

The internal name of the event.

A string generated when the event occurs within a
program or application. The event key uniquely
identifies a specific instance of the event.

An optional set of information about the event that
describes what occurred. The Event Manager
checks each subscription before executing it to
determine whether the subscription requires the
event data. If the event data is required but is not
already provided, the Event Manager calls the
Generate function for the event to produce the
event data. See: Events, Oracle Workflow Developer’s
Guide and Standard API for an Event Data
Generate Function, Oracle Workflow Developer’s
Guide.

An optional list of additional parameter name and
value pairs.

An optional date to indicate when the event should
become available for subscription processing.

p_event_name

p_event_key

p_event_data

p_parameters

p_send_date

Example

5 – 30 Oracle Workflow API Reference

declare

 l_xmldocument varchar2(32000);

 l_eventdata clob;

 l_parameter_list wf_parameter_list_t;

 l_message varchar2(10);

begin

/*

** If the complete event data is easily available, we can

** optionally test if any subscriptions to this event

** require it (rule data = Message).

*/

 l_message := wf_event.test(’<EVENT_NAME>’);

/*

** If we do require a message, and we have the message now,

** set it; else we can just rely on the Event Generate

** Function callback code. Then Raise the Event with the

** required parameters.

*/

 if l_message = ’MESSAGE’ then

 if l_xmldocument is not null then

 dbms_lob.createtemporary(l_eventdata, FALSE,

 DBMS_LOB.CALL);

 dbms_lob.write(l_eventdata, length(l_xmldocument), 1 ,

 l_xmldocument);

 –– Raise the Event with the message

 wf_event.raise(p_event_name => ’<EVENT_NAME>’,

 p_event_key => ’<EVENT_KEY>’,

 p_event_data => l_eventdata,

 p_parameters => l_parameter_list);

 else

 –– Raise the Event without the message

 wf_event.raise(p_event_name => ’<EVENT_NAME>’,

 p_event_key => ’<EVENT_KEY>’,

 p_parameters => l_parameter_list);

 end if;

 elsif

 l_message = ’KEY’ then

 –– Raise the Event

 wf_event.raise(p_event_name => <EVENT_NAME>,

 p_event_key => <EVENT_KEY>,

5 – 31Business Event System APIs

 p_parameters => l_parameter_list);

 end if;

/*

** Up to your own custom code to commit the transaction

*/

 commit;

/*

** Up to your own custom code to handle any major exceptions

*/

exception

when others then

null;

end;

See Also

Any Event, Oracle Workflow Developer’s Guide

Unexpected Event, Oracle Workflow Developer’s Guide

PL/SQL Syntax

Description

Arguments (input)

5 – 32 Oracle Workflow API Reference

Raise3

procedure Raise3

 (p_event_name in varchar2,

 p_event_key in varchar2,

 p_event_data in clob default NULL,

 p_parameter_list in out nocopy wf_parameter_list_t,

 p_send_date in date default NULL);

Raises a local event to the Event Manager and returns the parameter
list for the event. Raise3() performs the same processing as the Raise()
procedure, except that Raise3() passes the event parameter list back to
the calling application after completing the event subsription
processing. See: Raise: page 5 – 28.

Raise3() creates a WF_EVENT_T structure for this event instance and
sets the specified event name, event key, event data, parameter list, and
send date into the structure. Then, if the event is not deferred, the
Event Manager begins subscription processing for the event. The Event
Manager searches for and executes any enabled subscriptions by the
local system to that event with a source type of Local, and also any
enabled subscriptions by the local system to the Any event with a
source type of Local. If no enabled subscriptions exist for the event that
was raised (apart from subscriptions to the Any event), then Oracle
Workflow executes any enabled subscriptions by the local system to the
Unexpected event with a source type of Local.

After completing subscription processing for the event, Raise3() returns
the parameter list for the event, including any modifications made to
the parameters by the rule functions of the subscriptions. In this way,
event subscriptions can communicate parameters back to the
application that raised the event.

Note: Any exceptions raised during Raise3() processing are not
trapped, but instead are exposed to the code that called the
Raise3() procedure. This behavior enables you to use
subscriptions and their rule functions to perform validation,
with the same results as if the validation logic were coded
inline.

The internal name of the event.

A string generated when the event occurs within a
program or application. The event key uniquely
identifies a specific instance of the event.

p_event_name

p_event_key

5 – 33Business Event System APIs

An optional set of information about the event that
describes what occurred. The Event Manager
checks each subscription before executing it to
determine whether the subscription requires the
event data. If the event data is required but is not
already provided, the Event Manager calls the
Generate function for the event to produce the
event data. See: Events, Oracle Workflow Developer’s
Guide and Standard API for an Event Data
Generate Function, Oracle Workflow Developer’s
Guide.

A list of additional parameter name and value
pairs.

An optional date to indicate when the event should
become available for subscription processing.

p_event_data

p_parameter_list

p_send_date

PL/SQL Syntax

Description

5 – 34 Oracle Workflow API Reference

Send

procedure Send

 (p_event in out wf_event_t);

Sends an event message from one agent to another. If the event
message contains both a From Agent and a To Agent, the message is
placed on the outbound queue of the From Agent and then
asynchronously delivered to the To Agent by AQ propagation, or
whichever type of propagation is implemented for the agents’ protocol.

If the event message contains a To Agent but no specified From Agent,
the message is sent from the default outbound agent that matches the
queue type of the To Agent.

If the event message contains a From Agent but no specified To Agent,
the event message is placed on the From Agent’s queue without a
specified recipient.

• You can omit the To Agent if the From Agent uses a
multi–consumer queue with a subscriber list. (The standard
Workflow queue handlers work only with multi–consumer
queues.) In this case, the queue’s subscriber list determines
which consumers can dequeue the message. If no subscriber list
is defined for that queue, however, the event message is placed
on the WF_ERROR queue for error handling.

Note: The subscriber list for a multi–consumer queue in Oracle
Advanced Queuing is different from event subscriptions in the
Oracle Workflow Business Event System. For more
information, see: Subscription and Recipient Lists, Oracle
Application Developer’s Guide – Advanced Queuing or Oracle
Streams Advanced Queuing User’s Guide and Reference.

• You can also omit the To Agent if the From Agent uses a
single–consumer queue for which you have defined a custom
queue handler. For a single–consumer queue, no specified
consumer is required.

The send date within the event message indicates when the message
should become available for the consumer to dequeue. If the send date
is blank, the Send() procedure resets the value to the current system
date, meaning the message is immediately available for dequeuing as
soon as it is propagated. If the send date is a future date, the message is
marked with a delay time corresponding to that date and does not
become available for dequeuing until the delay time has passed. For
more information, see: Time Specification: Delay, Oracle Application

Arguments (input)

5 – 35Business Event System APIs

Developer’s Guide – Advanced Queuing or Oracle Streams Advanced
Queuing User’s Guide and Reference.

Note: If you want to use the send date to determine when a
message becomes available for dequeuing on the To Agent, you
should set the send date during subscription processing before
Send() is called.

Send() returns the final event message that was sent, including any
properties set by the procedure.

The event message.p_event

PL/SQL Syntax

Description

Arguments (input)

5 – 36 Oracle Workflow API Reference

NewAgent

function NewAgent

 (p_agent_guid in raw) return wf_agent_t;

Creates a WF_AGENT_T structure for the specified agent and sets the
agent’s system and name into the structure. See: Agent Structure: page
5 – 4.

The globally unique identifier of the agent.p_agent_guid

PL/SQL Syntax

Description

Arguments (input)

5 – 37Business Event System APIs

Test

function Test

 (p_event_name in varchar2) return varchar2;

Tests whether the specified event is enabled and whether there are any
enabled subscriptions by the local system referencing the event, or
referencing an enabled event group that contains the event. Test()
returns the most costly data requirement among these subscriptions,
using the following result codes:

• NONE—No enabled local subscriptions reference the event, or
the event does not exist.

• KEY—At least one enabled local subscription references the
event, but all such subscriptions require only the event key.

• MESSAGE—At least one enabled local subscription on the event
requires the complete event data.

The internal name of the event.p_event_name

PL/SQL Syntax

Description

Arguments (input)

5 – 38 Oracle Workflow API Reference

Enqueue

procedure Enqueue

 (p_event in wf_event_t,

 p_out_agent_override in wf_agent_t default null);

Enqueues an event message onto a queue associated with an outbound
agent. You can optionally specify an override agent where you want to
enqueue the event message. Otherwise, the event message is enqueued
on the From Agent specified within the message. The message recipient
is set to the To Agent specified in the event message. Enqueue() uses the
queue handler for the outbound agent to place the message on the
queue.

The event message.

The outbound agent on whose queue the event
message should be enqueued.

p_event

p_out_agent_
override

PL/SQL Syntax

Description

5 – 39Business Event System APIs

Listen

procedure Listen

 (p_agent_name in varchar2,

 p_wait in binary_integer default dbms_aq.no_wait,

 p_correlation in varchar2 default null,

 p_deq_condition in varchar2 default null);

Monitors an agent for inbound event messages and dequeues messages
using the agent’s queue handler, in the database tier.

The standard WF_EVENT_QH queue handler sets the date and time
when an event message is dequeued into the RECEIVE_DATE attribute
of the event message. Custom queue handlers can also set the
RECEIVE_DATE value if this functionality is included in the Dequeue
API.

When an event is dequeued, the Event Manager searches for and
executes any enabled subscriptions by the local system to that event
with a source type of External, and also any enabled subscriptions by
the local system to the Any event with a source type of External. If no
enabled subscriptions exist for the event that was received (apart from
subscriptions to the Any event), then Oracle Workflow executes any
enabled subscriptions by the local system to the Unexpected event with
a source type of External.

The Listen() procedure exits after all event messages on the agent’s
queue have been dequeued, unless you specify a wait period to block
on the queue waiting for additional messages.

You must not call Listen() from within application code. If you want to
call this procedure directly, you can run it from SQL*Plus. Otherwise,
you can schedule PL/SQL agent listeners for your inbound agents from
Oracle Applications Manager, Oracle Enterprise Manager, or other
methods, depending on your version of Oracle Workflow. See:
Scheduling Listeners for Local Inbound Agents, Oracle Workflow
Administrator’s Guide.

You can optionally restrict the event messages that the Listen()
procedure will process by specifying an AQ correlation ID consisting of
an event name, or a partial event name followed by a percent sign (%)
as a wildcard character. Additionally, if your database version is
Oracle9i Database or higher, you can also optionally restrict the event
messages that the Listen() procedure will process by specifying a
dequeue condition that references the properties or content of the
message. However, you cannot specify both of these parameters at the
same time. If you specify one, you must leave the other null.

Arguments (input)

5 – 40 Oracle Workflow API Reference

The name of the inbound agent.

An optional wait period, in seconds, during which
you want the agent listener to block on the agent’s
queue to wait for messages. By default an agent
listener does not wait but exits after all messages
on the queue have been dequeued.

Optionally specify an AQ correlation ID to identify
the event messages that you want the agent listener
to process. The AQ correlation ID for an event
message in the Business Event System is usually
specified as an event name, or as a partial event
name followed by a percent sign (%) as a wildcard
character. Consequently, by specifying an AQ
correlation ID in this parameter, you can dedicate
the agent listener to listen only for messages that
are instances of the specified event or events. For
example, you can specify
oracle.apps.wf.notification% to listen for
all events related to notifications whose names
begin with that value. The default value for this
correlation ID is null, which allows the agent
listener to process messages that are instances of
any event. If a dequeue condition is specified in the
next parameter, this parameter must be null. See:
Dequeue Methods, Oracle Application Developer’s
Guide – Advanced Queuing or Oracle Streams
Advanced Queuing User’s Guide and Reference.

Note: The AQ correlation ID is different than the correlation
ID contained within the WF_EVENT_T event message
structure.

Optionally specify a dequeue condition to identify
the event messages that you want the agent listener
to process. A dequeue condition is an expression
that is similar in syntax to the WHERE clause of a
SQL query. Dequeue conditions are expressed in
terms of the attributes that represent message
properties or message content. The messages in the
queue are evaluated against the condition, so you
can restrict the agent listener to listen only for
messages that satisfy this condition. The default
value is null, which does not place any restriction
on the messages the agent listener can process. If

p_agent_name

p_wait

p_correlation

p_deq_condition

5 – 41Business Event System APIs

an AQ correlation ID is specified in the previous
parameter, this parameter must be null. See:
Dequeue Methods, Oracle Application Developer’s
Guide – Advanced Queuing or Oracle Streams
Advanced Queuing User’s Guide and Reference.

See Also

Any Event, Oracle Workflow Developer’s Guide

Unexpected Event, Oracle Workflow Developer’s Guide

Wfagtlst.sql, Oracle Workflow Administrator’s Guide

Standard APIs for a Queue Handler, Oracle Workflow Developer’s Guide

PL/SQL Syntax

Description

Arguments (input)

5 – 42 Oracle Workflow API Reference

SetErrorInfo

procedure SetErrorInfo

 (p_event in out wf_event_t,

 p_type in varchar2);

Retrieves error information from the error stack and sets it into the
event message. The error message and error stack are set into the
corresponding attributes of the event message. The error name and
error type are added to the PARAMETER_LIST attribute of the event
message.

The event message.

The error type, either ’ERROR’ or ’WARNING’.

p_event

p_type

PL/SQL Syntax

Description

Arguments (input)

5 – 43Business Event System APIs

SetDispatchMode

procedure SetDispatchMode

 (p_mode in varchar2);

Sets the dispatch mode of the Event Manager to either deferred or
synchronous subscription processing. Call SetDispatchMode() with the
mode ’ASYNC’ just before calling Raise() to defer all subscription
processing forever for the event that you will raise. In this case, the
Event Manager places the event on the WF_DEFERRED queue before
executing any subscriptions for that event. The subscriptions are not
executed until an agent listener runs to dequeue the event from the
WF_DEFERRED queue.

You can call SetDispatchMode() with the mode ’SYNC’ to set the
dispatch mode back to normal synchronous subscription processing. In
this mode, the phase number for each subscription determines whether
the subscription is executed immediately or deferred.

Note: This method of deferring subscription processing is not
recommended and should only be used in exceptional
circumstances, since it requires hard–coding the deferral in
your application. To retain the flexibility to modify subscription
processing without intrusion into the application, you can
simply mark some or all of the individual subscriptions for
deferral using the subscription phase numbers.

The dispatch mode: either ’ASYNC’ for deferred
(asynchronous) subscription processing, or ’SYNC’
for synchronous subscription processing.

See Also

Deferred Subscription Processing, Oracle Workflow Developer’s Guide

Raise: page 5 – 28

p_mode

PL/SQL Syntax

Description

Arguments (input)

5 – 44 Oracle Workflow API Reference

AddParameterToList

procedure AddParameterToList

 (p_name in varchar2,

 p_value in varchar2,

 p_parameterlist in out wf_parameter_list_t);

Adds the specified parameter name and value pair to the end of the
specified parameter list varray. If the varray is null,
AddParameterToList() initializes it with the new parameter.

The parameter name.

The parameter value.

The parameter list.

p_name

p_value

p_parameterlist

PL/SQL Syntax

Description

Arguments (input)

5 – 45Business Event System APIs

AddParameterToListPos

procedure AddParameterToListPos

 (p_name in varchar2,

 p_value in varchar2,

 p_position out integer,

 p_parameterlist in out wf_parameter_list_t);

Adds the specified parameter name and value pair to the end of the
specified parameter list varray. If the varray is null,
AddParameterToListPos() initializes it with the new parameter. The
procedure also returns the index for the position at which the
parameter is stored within the varray.

The parameter name.

The parameter value.

The parameter list.

p_name

p_value

p_parameterlist

PL/SQL Syntax

Description

Arguments (input)

5 – 46 Oracle Workflow API Reference

GetValueForParameter

function GetValueForParameter

 (p_name in varchar2,

 p_parameterlist in wf_parameter_list_t)

 return varchar2;

Retrieves the value of the specified parameter from the specified
parameter list varray. GetValueForParameter() begins at the end of the
parameter list and searches backwards through the list.

The parameter name.

The parameter list.

p_name

p_parameterlist

PL/SQL Syntax

Description

Arguments (input)

5 – 47Business Event System APIs

GetValueForParameterPos

function GetValueForParameterPos

 (p_position in integer,

 p_parameterlist in wf_parameter_list_t)

 return varchar2;

Retrieves the value of the parameter stored at the specified position in
the specified parameter list varray.

The index representing the position of the
parameter within the parameter list.

The parameter list.

p_position

p_parameterlist

PL/SQL Syntax

Description

Arguments (input)

5 – 48 Oracle Workflow API Reference

SetMaxNestedRaise

procedure SetMaxNestedRaise

 (maxcount in number default 100);

Sets the maximum number of nested raises that can be performed to
the specified value. A nested raise occurs when one event is raised and
a Local subscription to that event is executed and raises another event.
The default maximum is 100.

The maximum number of nested raises to allow.max_count

PL/SQL Syntax

Description

5 – 49Business Event System APIs

GetMaxNestedRaise

function GetMaxNestedRaise

 return number;

Returns the maximum number of nested raises that can currently be
performed. A nested raise occurs when one event is raised and a Local
subscription to that event is executed and raises another event.

5 – 50 Oracle Workflow API Reference

Event Subscription Rule Function APIs

The event subscription rule function APIs provide standard rule
functions that you can assign to event subscriptions. A rule function
specifies the processing that Oracle Workflow performs when the
subscription’s triggering event occurs.

Oracle Workflow provides a standard Default_Rule function to
perform basic subscription processing. The default rule function
includes the following actions:

• Sending the event message to a workflow process, if specified in
the subscription definition

• Sending the event message to an agent, if specified in the
subscription definition

Oracle Workflow also provides some other standard rule functions that
you can use. The Log, Error, Warning, and Success functions can be
used for testing and debugging your application. Other standard rule
functions provide specialized processing used in predefined Oracle
Workflow event subscriptions or in special options you can choose to
refine your subscription processing.

These rule function APIs are defined in a PL/SQL package called
WF_RULE.

• Default_Rule: page 5 – 52

• Log: page 5 – 54

• Error: page 5 – 55

• Warning: page 5 – 56

• Success: page 5 – 57

• Workflow_Protocol: page 5 – 58

• Error_Rule: page 5 – 59

• SetParametersIntoParameterList: page 5 – 60

• Default_Rule2: page 5 – 61

• Default_Rule3: page 5 – 62

• SendNotification: page 5 – 63

• Instance_Default_Rule: page 5 – 65

5 – 51Business Event System APIs

See Also

Event Subscriptions, Oracle Workflow Developer’s Guide

Standard API for an Event Subscription Rule Function, Oracle Workflow
Developer’s Guide

PL/SQL Syntax

Description

5 – 52 Oracle Workflow API Reference

Default_Rule

function Default_Rule

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Performs default subscription processing for an event subscription. The
default processing includes:

• Sending the event message to a workflow process, if specified in
the subscription definition

• Sending the event message to an agent, if specified in the
subscription definition

If either of these operations raises an exception, Default_Rule() traps the
exception, stores the error information in the event message, and
returns the status code ERROR. Otherwise, Default_Rule() returns the
status code SUCCESS.

Note: If the event message is being sent to the Default Event
Error workflow process, Default_Rule() generates a new
correlation ID to use as the item key for the process in order to
ensure that the item key is unique.

If you want to run a custom rule function on the event message before
it is sent, you can define one subscription with a low phase number
that uses the custom rule function, and then define another
subscription with a higher phase number that uses the default rule
function to send the event.

For example, follow these steps:

1. Define a subscription to the relevant event with your custom rule
function and a phase of 10.

2. Define another subscription to the event with the rule function
WF_EVENT.Default_Rule and a phase of 20, and specify the
workflow or agent to which you want to send the event.

3. Raise the event to trigger the subscriptions. The subscription with
the lower phase number will be executed first and will run your
custom rule function on the event message. When the event is
passed to the second subscription, the modified event message will
be sent to the workflow or agent you specified.

You can also call Default_Rule() to add the default send processing
within a custom rule function. If you enter a rule function other than
Default_Rule() for a subscription, Oracle Workflow does not
automatically send the event message to the workflow and agent

Arguments (input)

5 – 53Business Event System APIs

specified in the subscription. Instead, if you want to send the message
from the same subscription, you must explicitly include the send
processing in your custom rule function, which you can optionally
accomplish by calling Default_Rule(). See: Standard API for an Event
Subscription Rule Function, Oracle Workflow Developer’s Guide.

Note: You may find it advantageous to define multiple
subscriptions to an event with simple rule functions that you
can reuse, rather than creating complex specialized rule
functions that cannot be reused.

The globally unique identifier of the subscription.

The event message.

p_subscription_
guid

p_event

PL/SQL Syntax

Description

Arguments (input)

5 – 54 Oracle Workflow API Reference

Log

function Log

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Logs the contents of the specified event message using
DBMS_OUTPUT.put_line and returns the status code SUCCESS. Use
this function to output the contents of an event message to a SQL*Plus
session for testing and debugging purposes.

For example, if you want to test a custom rule function that modifies
the event message, you can use Log() to show the event message both
before and after your custom rule function is run. Define three
subscriptions to the relevant event as follows:

• Define the first subscription with a phase of 10 and the rule
function WF_RULE.Log.

• Define the second subscription with a phase of 20 and your
custom rule function.

• Define the third subscription with a phase of 30 and the rule
function WF_RULE.Log.

Next, connect to SQL*Plus. Execute the following command:

set serveroutput on size 100000

Then raise the event using WF_EVENT.Raise. As the Event Manager
executes your subscriptions to the event in phase order, you should see
the contents of the event message both before and after your custom
rule function is run.

Note: You should not assign Log() as the rule function for any
enabled subscriptions in a production instance of Oracle
Workflow. This function should be used for debugging only.

The globally unique identifier of the subscription.

The event message.

p_subscription_
guid

p_event

PL/SQL Syntax

Description

Arguments (input)

5 – 55Business Event System APIs

Error

function Error

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Returns the status code ERROR. Additionally, when you assign this
function as the rule function for a subscription, you must enter a text
string representing the internal name of an error message in the
Parameters field for the subscription. When the subscription is
executed, Error() will set that error message into the event message
using setErrorMessage(). See: setErrorMessage: page 5 – 18.

The text string you enter in the Parameters field must be a valid name
of an Oracle Workflow error message. The names of the error messages
provided by Oracle Workflow are stored in the NAME column of the
WF_RESOURCES table for messages with a type of WFERR.

You can use Error() as a subscription rule function if you want to send
the system administrator an error notification with one of the
predefined Workflow error messages whenever a particular event is
raised.

For example, define a subscription to the relevant event with the rule
function WF_RULE.Error and enter WFSQL_ARGS in the Parameters
field. Then raise the event to trigger the subscription. Because Error()
returns the status code ERROR, the Event Manager places the event
message on the WF_ERROR queue and subscription processing for the
event is halted. When the listener runs on the WF_ERROR queue, an
error notification will be sent to the system administrator with the
message ”Invalid value(s) passed for arguments,” which is the display
name of the WFSQL_ARGS error message.

Note: Error() does not raise any exception to the calling
application when it completes normally.

The globally unique identifier of the subscription.

The event message.

p_subscription_
guid

p_event

PL/SQL Syntax

Description

Arguments (input)

5 – 56 Oracle Workflow API Reference

Warning

function Warning

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Returns the status code WARNING. Additionally, when you assign this
function as the rule function for a subscription, you must enter a text
string representing the internal name of an error message in the
Parameters field for the subscription. When the subscription is
executed, Warning() will set that error message into the event message
using setErrorMessage(). See: setErrorMessage: page 5 – 18.

The text string you enter in the Parameters field must be a valid name
of an Oracle Workflow error message. The names of the error messages
provided by Oracle Workflow are stored in the NAME column of the
WF_RESOURCES table for messages with a type of WFERR.

You can use Warning() as a subscription rule function if you want to
send the system administrator a warning notification with one of the
predefined Workflow error messages whenever a particular event is
raised.

For example, define a subscription to the relevant event with the rule
function WF_RULE.Warning and enter WFSQL_ARGS in the Parameters
field. Then raise the event to trigger the subscription. Because
Warning() returns the status code WARNING, the Event Manager
places the event message on the WF_ERROR queue, but subscription
processing for the event still continues. When the listener runs on the
WF_ERROR queue, a warning notification will be sent to the system
administrator with the message ”Invalid value(s) passed for
arguments,” which is the display name of the WFSQL_ARGS error
message.

Note: Warning() does not raise any exception to the calling
application when it completes normally.

The globally unique identifier of the subscription.

The event message.

p_subscription_
guid

p_event

PL/SQL Syntax

Description

Arguments (input)

5 – 57Business Event System APIs

Success

function Success

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Returns the status code SUCCESS. This function removes the event
message from the queue but executes no other code except returning
the SUCCESS status code to the calling subscription.

You can use Success for testing and debugging purposes while
developing code for use with the Business Event System. For example,
if you are trying to debug multiple subscriptions to the same event, you
can modify one of the subscriptions by replacing its rule function with
WF_RULE.Success, leaving all other details for the subscription intact.
When the subscription is executed, it will return SUCCESS but not
perform any other subscription processing. This method can help you
isolate a problem subscription.

Success() is analogous to the WF_STANDARD.Noop procedure used in
the standard Noop activity.

The globally unique identifier of the subscription.

The event message.

p_subscription_
guid

p_event

PL/SQL Syntax

Description

Arguments (input)

5 – 58 Oracle Workflow API Reference

Workflow_Protocol

function Workflow_Protocol

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Sends the event message to the workflow process specified in the
subscription, which will in turn send the event message to the inbound
agent specified in the subscription.

Note: Workflow_Protocol() does not itself send the event
message to the inbound agent. This function only sends the
event message to the workflow process, where you can model
the processing that you want to send the event message on to
the specified agent.

If the subscription also specifies an outbound agent, the workflow
process places the event message on that agent’s queue for propagation
to the inbound agent. Otherwise, a default outbound agent will be
selected.

If the subscription parameters include the parameter name and value
pair ACKREQ=Y, then the workflow process waits to receive an
acknowledgement after sending the event message.

If the workflow process raises an exception, Workflow_Protocol() stores
the error information in the event message and returns the status code
ERROR. Otherwise, Workflow_Protocol() returns the status code
SUCCESS.

Workflow_Protocol() is used as the rule function in several predefined
subscriptions to Workflow Send Protocol and Event System
Demonstration events. See: Workflow Send Protocol, Oracle Workflow
Developer’s Guide and Event System Demonstration, Oracle Workflow
Developer’s Guide.

The globally unique identifier of the subscription.

The event message.

p_subscription_
guid

p_event

PL/SQL Syntax

Description

Arguments (input)

5 – 59Business Event System APIs

Error_Rule

function Error_Rule

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Performs the same subscription processing as Default_Rule(), including:

• Sending the event message to a workflow process, if specified in
the subscription definition

• Sending the event message to an agent, if specified in the
subscription definition

However, if either of these operations encounters an exception,
Error_Rule() reraises the exception so that the event is not placed back
onto the WF_ERROR queue. Otherwise, Error_Rule() returns the status
code SUCCESS.

Error_Rule() is used as the rule function for the predefined
subscriptions to the Unexpected event and to the Any event with the
Error source type. The predefined subscriptions specify that the event
should be sent to the Default Event Error process in the System: Error
item type.

You can also use this rule function with your own error subscriptions.
Enter WF_RULE.Error as the rule function for your error subscription
and specify the workflow item type and process that you want the
subscription to launch.

The globally unique identifier of the subscription.

The event message.

See Also

Unexpected Event, Oracle Workflow Developer’s Guide

Any Event, Oracle Workflow Developer’s Guide

p_subscription_
guid

p_event

PL/SQL Syntax

Description

Arguments (input)

5 – 60 Oracle Workflow API Reference

SetParametersIntoParameterList

function SetParametersIntoParameterList

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Sets the parameter name and value pairs from the subscription
parameters into the PARAMETER_LIST attribute of the event message,
except for any parameter named ITEMKEY or CORRELATION_ID. For
a parameter with one of these names, the function sets the
CORRELATION_ID attribute of the event message to the parameter
value.

If these operations raise an exception, SetParametersIntoParameterList()
stores the error information in the event message and returns the status
code ERROR. Otherwise, SetParametersIntoParameterList() returns the
status code SUCCESS.

You can use SetParametersIntoParameterList() as the rule function for a
subscription with a lower phase number, to add predefined parameters
from the subscription into the event message. Then subsequent
subscriptions with higher phase numbers can access those parameters
within the event message.

Note: If the event message will later be sent to a workflow
process, then the value for any ITEMKEY or
CORRELATION_ID parameter can only contain single–byte
characters, because the CORRELATION_ID attribute of the
event message will be used as the item key for the process. The
item key for a process instance can only contain single–byte
characters. It cannot contain a multibyte value.

The globally unique identifier of the subscription.

The event message.

See Also

Event Message Structure: page 5 – 9

p_subscription_
guid

p_event

PL/SQL Syntax

Description

Arguments (input)

5 – 61Business Event System APIs

Default_Rule2

function Default_Rule2

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Performs the default subscription processing only if the
PARAMETER_LIST attribute of the event message includes parameters
whose names and values match all the parameters defined for the
subscription. If the event includes the required parameters, then the
rule function calls Default_Rule() to perform the following processing:

• Sending the event message to a workflow process, if specified in
the subscription definition

• Sending the event message to an agent, if specified in the
subscription definition

If either of these operations raises an exception, Default_Rule2() traps
the exception, stores the error information in the event message, and
returns the status code ERROR. Otherwise, Default_Rule2() returns the
status code SUCCESS.

The globally unique identifier of the subscription.

The event message.

See Also

Default_Rule: page 5 – 52

p_subscription_
guid

p_event

PL/SQL Syntax

Description

Arguments (input)

5 – 62 Oracle Workflow API Reference

Default_Rule3

function Default_Rule3

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Sets the parameter name and value pairs from the subscription
parameters into the PARAMETER_LIST attribute of the event message,
and then performs the default subscription processing with the
modified event message. This rule function first calls
SetParametersIntoParameterList() to set the parameters and then calls
Default_Rule() to perform the following processing:

• Sending the event message to a workflow process, if specified in
the subscription definition

• Sending the event message to an agent, if specified in the
subscription definition

If either of these operations raises an exception, Default_Rule3() traps
the exception, stores the error information in the event message, and
returns the status code ERROR. Otherwise, Default_Rule3() returns the
status code SUCCESS.

The globally unique identifier of the subscription.

The event message.

See Also

SetParametersIntoParameterList: page 5 – 60

Default_Rule: page 5 – 52

p_subscription_
guid

p_event

PL/SQL Syntax

Description

5 – 63Business Event System APIs

SendNotification

function SendNotification

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Sends a notification as specified by the parameters in the
PARAMETER_LIST attribute of the event message. Use this rule
function to send notifications outside of a workflow process.

After sending the notification, this function sets the notification ID into
the event parameter list as a parameter named #NID. If you want to use
the notification ID in further processing, raise the event using
WF_EVENT.Raise3(), which returns the event parameter list after
Oracle Workflow completes subscription processing for the event. You
can then call WF_EVENT.GetValueForParameter() to obtain the value of
the #NID parameter.

For example, if the notification requires a response, you can retrieve the
response values from the user’s reply by obtaining the notification ID
and using it to call WF_NOTIFICATION.GetAttrText(),
WF_NOTIFICATION.GetAttrNumber(), or
WF_NOTIFICATION.GetAttrDate() for the RESPOND attributes.

SendNotification() calls the WF_NOTIFICATION.Send() API to send the
notification, using the event parameters as the input arguments for
WF_NOTIFICATION.Send(). The following table shows the names of
the parameters you should include in the event parameter list to
specify the notification you want to send, and the information you
should provide in each parameter’s value.

Parameter Name Parameter Value

RECIPIENT_ROLE The role name assigned to receive the notification.

MESSAGE_TYPE The item type associated with the message.

MESSAGE_NAME The message internal name.

CALLBACK The callback function name used for communication of
SEND and RESPOND source message attributes.

CONTEXT Context information passed to the callback function.

SEND_COMMENT A comment presented with the message.

Table 5 – 5 (Page 1 of 2)

Arguments (input)

5 – 64 Oracle Workflow API Reference

Parameter ValueParameter Name

PRIORITY The priority of the message. If this value is null, the
Notification System uses the default priority of the
message.

DUE_DATE The date that a response is required. This optional due
date is only for the recipient’s information; it has no effect
on processing.

Table 5 – 5 (Page 2 of 2)

Note: Although you can send a notification using the
SendNotification() rule function without defining or running a
workflow process, you do need to define the message you want
to send within a workflow item type.

The globally unique identifier of the subscription.

The event message.

See Also

Send: page 4 – 16

Event Message Structure: page 5 – 9

Raise3: page 5 – 32

GetValueForParameter: page 5 – 46

GetAttribute: page 4 – 43

p_subscription_
guid

p_event

PL/SQL Syntax

Description

5 – 65Business Event System APIs

Instance_Default_Rule

function Instance_Default_Rule

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Sends the event to all existing workflow process instances that have
eligible receive event activities waiting to receive it. This rule function
lets you use a business key attribute to identify one or more workflow
processes that should receive the event, instead of sending the event to
one particular process based on a specific item type, process name, and
item key, as with Default_Rule().

Note: Instance_Default_Rule() only sends the event to continue
existing workflow processes. If you want to send the event to
launch a new process instance, use Default_Rule() instead.

First, Instance_Default_Rule() calls SetParametersIntoParameterList() to set
any parameter name and value pairs from the subscription parameters
into the PARAMETER_LIST attribute of the event message.

Next, the function searches for existing workflow processes that are
eligible to receive this event. To be eligible, a workflow process must
meet the following requirements:

• The process includes a receive event activity with an activity
status of NOTIFIED, meaning the process has transitioned to
that activity and is waiting to receive the event.

• The event filter for the receive event activity is set to one of the
following values:

– This individual event

– An event group of which this event is a member

– NULL, meaning the activity can receive any event

• The receive event activity has an activity attribute named
#BUSINESS_KEY whose default value is an item type attribute.

• The current value of that item type attribute matches the event
key.

After sending the event to all eligible workflow processes,
Instance_Default_Rule() also sends the event message to an agent, if
specified in the subscription definition.

If any operations raise an exception, Instance_Default_Rule() traps the
exception, stores the error information in the event message, and

Arguments (input)

5 – 66 Oracle Workflow API Reference

returns the status code ERROR. Otherwise, Instance_Default_Rule()
returns the status code SUCCESS.

The globally unique identifier of the subscription.

The event message.

See Also

SetParametersIntoParameterList: page 5 – 60

Default_Rule: page 5 – 52

p_subscription_
guid

p_event

5 – 67Business Event System APIs

Event Function APIs

The Event Function APIs provide utility functions that can be called by
an application program, the Event Manager, or a workflow process in
the runtime phase to communicate with the Business Event System and
manage events. These APIs are defined in a PL/SQL package called
WF_EVENT_FUNCTIONS_PKG.

• Parameters: page 5 – 68

• SubscriptionParameters: page 5 – 70

• AddCorrelation: page 5 – 71

• Generate: page 5 – 73

• Receive: page 5 – 75

PL/SQL Syntax

Description

Arguments (input)

Example

5 – 68 Oracle Workflow API Reference

Parameters

function Parameters

 (p_string in varchar2,

 p_numvalues in number,

 p_separator in varchar2) return t_parameters;

Parses a string of text that contains the specified number of parameters
delimited by the specified separator. Parameters() returns the parsed
parameters in a varray using the T_PARAMETERS composite datatype,
which is defined in the WF_EVENT_FUNCTIONS_PKG package. The
following table describes the T_PARAMETERS datatype:

Datatype Name Element Datatype Definition

T_PARAMETERS VARCHAR2(240)

Table 5 – 6 (Page 1 of 1)

Parameters() is a generic utility that you can call in Generate functions
when the event key is a concatenation of values separated by a known
character. Use this function to separate the event key into its
component values.

A text string containing concatenated parameters.

The number of parameters contained in the string.

The separator used to delimit the parameters in the
string.

set serveroutput on

declare

l_parameters wf_event_functions_pkg.t_parameters;

begin

–– Initialize the datatype

l_parameters := wf_event_functions_pkg.t_parameters(1,2);

l_parameters :=

wf_event_functions_pkg.parameters(’1111/2222’,2,’/’);

dbms_output.put_line(’Value 1:’||l_parameters(1));

dbms_output.put_line(’Value 2:’||l_parameters(2));

p_string

p_numvalues

p_separator

5 – 69Business Event System APIs

end;

/

PL/SQL Syntax

Description

Arguments (input)

Example

5 – 70 Oracle Workflow API Reference

SubscriptionParameters

function SubscriptionParameters

 (p_string in varchar2,

 p_key in varchar2) return varchar2;

Returns the value for the specified parameter from a text string
containing the parameters defined for an event subscription. The
parameter name and value pairs in the text string should be separated
by spaces and should appear in the following format:

<name1>=<value1> <name2>=<value2> ... <nameN>=<valueN>

SubscriptionParameters() searches the text string for the specified
parameter name and returns the value assigned to that name. For
instance, you can call this function in a subscription rule function to
retrieve the value of a subscription parameter, and then code different
behavior for the rule function based on that value.

A text string containing the parameters defined for
an event subscription.

The name of the parameter whose value should be
returned.

In the following example, SubscriptionParameters() is used to assign the
value of the ITEMKEY subscription parameter to the l_function
program variable. The example code is from the AddCorrelation
function, which adds a correlation ID to an event message during
subscription processing. See: AddCorrelation: page 5 – 71.

...

––

–– This is where we will do some logic to determine

–– if there is a parameter

––

 l_function := wf_event_functions_pkg.SubscriptionParameters

 (l_parameters,’ITEMKEY’);

...

p_string

p_key

PL/SQL Syntax

Description

5 – 71Business Event System APIs

AddCorrelation

function AddCorrelation

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Adds a correlation ID to an event message during subscription
processing. AddCorrelation() searches the subscription parameters for a
parameter named ITEMKEY that specifies a custom function to
generate a correlation ID for the event message. The function must be
specified in the Parameters field for the subscription in the following
format:

ITEMKEY=<package_name.function_name>

AddCorrelation() uses SubscriptionParameters() to search for and retrieve
the value of the ITEMKEY parameter. See: SubscriptionParameters:
page 5 – 70.

If a custom correlation ID function is specified with the ITEMKEY
parameter, then AddCorrelation() runs that function and sets the
correlation ID to the value returned by the function. Otherwise,
AddCorrelation() sets the correlation ID to the system date. If the event
message is then sent to a workflow process, the Workflow Engine uses
that correlation ID as the item key to identify the process instance.

Note: The item key for a process instance can only contain
single–byte characters. It cannot contain a multibyte value.

If AddCorrelation() encounters an exception, the function returns the
status code ERROR. Otherwise, AddCorrelation() returns the status code
SUCCESS.

AddCorrelation() is defined according the standard API for an event
subscription rule function. You can use AddCorrelation() as the rule
function for a subscription with a low phase number to add a
correlation ID to an event, and then use a subscription with a higher
phase number to perform any further processing.

For example, follow these steps:

1. Define a subscription to the relevant event with the rule function
WF_EVENT_FUNCTIONS_PKG.AddCorrelation and a phase of 10.
Enter the parameter name and value pair
ITEMKEY=<package_name.function_name> in the Parameters field
for the subscription, replacing <package_name.function_name>
with the package and function that will generate the correlation ID.

Arguments (input)

5 – 72 Oracle Workflow API Reference

2. Define another subscription to the event with a phase of 20, and
specify the processing you want to perform by entering a custom
rule function or a workflow item type and process, or both.

3. Raise the event to trigger the subscriptions. The subscription with
the lower phase number will be executed first and will add a
correlation ID to the event message. When the event is passed to
the second subscription, that correlation ID will be used as the item
key.

You can also call AddCorrelation() within a custom rule function to add
a correlation ID during your custom processing. See: Standard API for
an Event Subscription Rule Function, Oracle Workflow Developer’s Guide.

Note: You may find it advantageous to define multiple
subscriptions to an event with simple rule functions that you
can reuse, rather than creating complex specialized rule
functions that cannot be reused.

The globally unique identifier of the subscription.

The event message.

p_subscription_
guid

p_event

PL/SQL Syntax

Description

5 – 73Business Event System APIs

Generate

function Generate

 (p_event_name in varchar2,

 p_event_key in varchar2) return clob;

Generates the event data for events in the Seed event group. This event
data contains Business Event System object definitions which can be
used to replicate the objects from one system to another.

The Seed event group includes the following events:

• oracle.apps.wf.event.event.create

• oracle.apps.wf.event.event.update

• oracle.apps.wf.event.event.delete

• oracle.apps.wf.event.group.create

• oracle.apps.wf.event.group.update

• oracle.apps.wf.event.group.delete

• oracle.apps.wf.event.system.create

• oracle.apps.wf.event.system.update

• oracle.apps.wf.event.system.delete

• oracle.apps.wf.event.agent.create

• oracle.apps.wf.event.agent.update

• oracle.apps.wf.event.agent.delete

• oracle.apps.wf.agent.group.create

• oracle.apps.wf.agent.group.update

• oracle.apps.wf.agent.group.delete

• oracle.apps.wf.event.subscription.create

• oracle.apps.wf.event.subscription.update

• oracle.apps.wf.event.subscription.delete

• oracle.apps.wf.event.all.sync

For the event, event group, system, agent, agent group member, and
subscription definition events,
WF_EVENT_FUNCTIONS_PKG.Generate() calls the Generate APIs
associated with the corresponding tables to produce the event data
XML document. For the Synchronize Event Systems event,

Arguments (input)

5 – 74 Oracle Workflow API Reference

WF_EVENT_FUNCTIONS_PKG.Generate() produces an XML document
containing all the event, event group, system, agent, agent group
member, and subscription definitions from the Event Manager on the
local system.

Note: Agent groups are currently only available for the version
of Oracle Workflow embedded in Oracle Applications.

The internal name of the event.

A string generated when the event occurs within a
program or application. The event key uniquely
identifies a specific instance of the event.

See Also

WF_EVENTS_PKG.Generate: page 5 – 80

WF_EVENT_GROUPS_PKG.Generate: page 5 – 83

WF_SYSTEMS_PKG.Generate: page 5 – 86

WF_AGENTS_PKG.Generate: page 5 – 89

WF_AGENT_GROUPS_PKG.Generate: page 5 – 92

WF_EVENT_SUBSCRIPTIONS_PKG.Generate: page 5 – 95

Predefined Workflow Events, Oracle Workflow Developer’s Guide

p_event_name

p_event_key

PL/SQL Syntax

Description

5 – 75Business Event System APIs

Receive

function Receive

 (p_subscription_guid in raw,

 p_event in out wf_event_t) return varchar2;

Receives Business Event System object definitions during subscription
processing and loads the definitions into the appropriate Business
Event System tables. This function completes the replication of the
objects from one system to another.

WF_EVENT_FUNCTIONS_PKG.Receive() is defined according the the
standard API for an event subscription rule function. Oracle Workflow
uses WF_EVENT_FUNCTIONS_PKG.Receive() as the rule function for
two predefined subscriptions, one that is triggered when the System
Signup event is raised locally, and one that is triggered when any of the
events in the Seed event group is received from an external source.

The Seed event group includes the following events:

• oracle.apps.wf.event.event.create

• oracle.apps.wf.event.event.update

• oracle.apps.wf.event.event.delete

• oracle.apps.wf.event.group.create

• oracle.apps.wf.event.group.update

• oracle.apps.wf.event.group.delete

• oracle.apps.wf.event.system.create

• oracle.apps.wf.event.system.update

• oracle.apps.wf.event.system.delete

• oracle.apps.wf.event.agent.create

• oracle.apps.wf.event.agent.update

• oracle.apps.wf.event.agent.delete

• oracle.apps.wf.agent.group.create

• oracle.apps.wf.agent.group.update

• oracle.apps.wf.agent.group.delete

• oracle.apps.wf.event.subscription.create

• oracle.apps.wf.event.subscription.update

• oracle.apps.wf.event.subscription.delete

Arguments (input)

5 – 76 Oracle Workflow API Reference

• oracle.apps.wf.event.all.sync

WF_EVENT_FUNCTIONS_PKG.Receive() parses the event data XML
document from the event message that was received and then loads the
Business Event System object definitions into the appropriate tables.

Note: For the event, event group, system, agent, agent group,
and subscription definition events,
WF_EVENT_FUNCTIONS_PKG.Receive() calls the Receive APIs
associated with the corresponding tables to parse the XML
document and load the definition into the table.

Note: Agent groups are currently only available for the version
of Oracle Workflow embedded in Oracle Applications.

The globally unique identifier of the subscription.

The event message.

See Also

WF_EVENTS_PKG.Receive: page 5 – 81

WF_EVENT_GROUPS_PKG.Receive: page 5 – 84

WF_SYSTEMS_PKG.Receive: page 5 – 87

WF_AGENTS_PKG.Receive: page 5 – 90

WF_AGENT_GROUPS_PKG.Receive: page 5 – 93

WF_EVENT_SUBSCRIPTIONS_PKG.Receive: page 5 – 96

Predefined Workflow Events, Oracle Workflow Developer’s Guide

p_subscription_
guid

p_event

5 – 77Business Event System APIs

Business Event System Replication APIs

You can call the following APIs to replicate Business Event System data
across your systems. The replication APIs are stored in the following
PL/SQL packages, each of which corresponds to a Business Event
System table. Oracle Workflow provides both a Generate function and
a Receive function for each table.

• WF_EVENTS_PKG

– WF_EVENTS_PKG.Generate: page 5 – 80

– WF_EVENTS_PKG.Receive: page 5 – 81

• WF_EVENT_GROUPS_PKG

– WF_EVENT_GROUPS_PKG.Generate: page 5 – 83

– WF_EVENT_GROUPS_PKG.Receive: page 5 – 84

• WF_SYSTEMS_PKG

– WF_SYSTEMS_PKG.Generate: page 5 – 86

– WF_SYSTEMS_PKG.Receive: page 5 – 87

• WF_AGENTS_PKG

– WF_AGENTS_PKG.Generate: page 5 – 89

– WF_AGENTS_PKG.Receive: page 5 – 90

• WF_AGENT_GROUPS_PKG

– WF_AGENT_GROUPS_PKG.Generate: page 5 – 92

– WF_AGENT_GROUPS_PKG.Receive: page 5 – 93

• WF_EVENT_SUBSCRIPTIONS_PKG

– WF_EVENT_SUBSCRIPTIONS_PKG.Generate: page 5 – 95

– WF_EVENT_SUBSCRIPTIONS_PKG.Receive: page 5 – 96

Each Generate API produces an XML message containing the complete
information from the appropriate table for the specified Business Event
System object definition. The corresponding Receive API parses the
XML message and loads the row into the appropriate table.

Oracle Workflow uses these APIs during the automated replication of
Business Event System data. The Generate APIs are called by
WF_EVENT_FUNCTIONS_PKG.Generate(), while the Receive APIs are
called by WF_EVENT_FUNCTIONS_PKG.Receive(). See: Generate: page
5 – 73 and Receive: page 5 – 75.

5 – 78 Oracle Workflow API Reference

Document Type Definitions

The document type definitions (DTDs) for the Workflow table XML
messages are defined under the master tag WF_TABLE_DATA.
Beneath the master tag, each DTD has a tag identifying the Workflow
table name to which it applies, and beneath that, a version tag as well
as tags for each column in the table. The following example shows how
the DTDs are structured:

<WF_TABLE_DATA> <– masterTagName

 <WF_TABLE_NAME> <– m_table_name

 <VERSION></VERSION> <– m_package_version

 <COL1></COL1>

 <COL2></COL2>

 </WF_TABLE_NAME>

</WF_TABLE_DATA>

The Business Event System replication APIs use the following DTDs:

• WF_EVENTS DTD: page 5 – 79

• WF_EVENT_GROUPS DTD: page 5 – 82

• WF_SYSTEMS DTD: page 5 – 85

• WF_AGENTS DTD: page 5 – 88

• WF_AGENT_GROUPS DTD: page 5 – 91

• WF_EVENT_SUBSCRIPTIONS DTD: page 5 – 94

Note: Agent groups are currently only available for the version
of Oracle Workflow embedded in Oracle Applications.

5 – 79Business Event System APIs

WF_EVENTS Document Type Definition

The following document type definition (DTD) describes the required
structure for an XML message that contains the complete information
for an event definition in the WF_EVENTS table.

<WF_TABLE_DATA>

 <WF_EVENTS>

 <VERSION></VERSION>

 <GUID></GUID>

 <NAME></NAME>

 <TYPE></TYPE>

 <STATUS></STATUS>

 <GENERATE_FUNCTION></GENERATE_FUNCTION>

 <OWNER_NAME></OWNER_NAME>

 <OWNER_TAG></OWNER_TAG>

 <CUSTOMIZATION_LEVEL></CUSTOMIZATION_LEVEL>

 <LICENSED_FLAG></LICENSED_FLAG>

 <DISPLAY_NAME></DISPLAY_NAME>

 <DESCRIPTION></DESCRIPTION>

 </WF_EVENTS>

</WF_TABLE_DATA>

PL/SQL Syntax

Description

Arguments (input)

5 – 80 Oracle Workflow API Reference

WF_EVENTS_PKG.Generate

function Generate

 (x_guid in raw)

 return varchar2;

Generates an XML message containing the complete information from
the WF_EVENTS table for the specified event definition.

The globally unique identifier of the event.x_guid

PL/SQL Syntax

Description

Arguments (input)

5 – 81Business Event System APIs

WF_EVENTS_PKG.Receive

procedure Receive

 (x_message in varchar2);

Receives an XML message containing the complete information for an
event definition and loads the information into the WF_EVENTS table.

An XML message containing the complete
information for an event definition.

x_message

5 – 82 Oracle Workflow API Reference

WF_EVENT_GROUPS Document Type Definition

The following document type definition (DTD) describes the required
structure for an XML message that contains the complete information
for an event group member definition in the WF_EVENT_GROUPS
table.

Note: Event group header information is defined in the
WF_EVENTS table, similarly to an individual event. Only the
event group member definitions are stored in the
WF_EVENT_GROUPS table.

<WF_TABLE_DATA>

 <WF_EVENT_GROUPS>

 <VERSION></VERSION>

 <GROUP_GUID></GROUP_GUID>

 <MEMBER_GUID></MEMBER_GUID>

 </WF_EVENT_GROUPS>

</WF_TABLE_DATA>

PL/SQL Syntax

Description

Arguments (input)

5 – 83Business Event System APIs

WF_EVENT_GROUPS_PKG.Generate

function Generate

 (x_group_guid in raw,

 x_member_guid in raw)

 return varchar2;

Generates an XML message containing the complete information from
the WF_EVENT_GROUPS table for the specified event group member
definition.

The globally unique identifier of the event group.

The globally unique identifier of the individual
member event.

x_group_guid

x_member_guid

PL/SQL Syntax

Description

Arguments (input)

5 – 84 Oracle Workflow API Reference

WF_EVENT_GROUPS_PKG.Receive

procedure Receive

 (x_message in varchar2);

Receives an XML message containing the complete information for an
event group member definition and loads the information into the
WF_EVENT_GROUPS table.

An XML message containing the complete
information for an event group member definition.

x_message

5 – 85Business Event System APIs

WF_SYSTEMS Document Type Definition

The following document type definition (DTD) describes the required
structure for an XML message that contains the complete information
for a system definition in the WF_SYSTEMS table.

<WF_TABLE_DATA>

 <WF_SYSTEMS>

 <VERSION></VERSION>

 <GUID></GUID>

 <NAME></NAME>

 <MASTER_GUID></MASTER_GUID>

 <DISPLAY_NAME></DISPLAY_NAME>

 <DESCRIPTION></DESCRIPTION>

 </WF_SYSTEMS>

</WF_TABLE_DATA>

PL/SQL Syntax

Description

Arguments (input)

5 – 86 Oracle Workflow API Reference

WF_SYSTEMS_PKG.Generate

function Generate

 (x_guid in raw)

 return varchar2;

Generates an XML message containing the complete information from
the WF_SYSTEMS table for the specified system definition.

The globally unique identifier of the system.x_guid

PL/SQL Syntax

Description

Arguments (input)

5 – 87Business Event System APIs

WF_SYSTEMS_PKG.Receive

procedure Receive

 (x_message in varchar2);

Receives an XML message containing the complete information for a
system definition and loads the information into the WF_SYSTEMS
table.

An XML message containing the complete
information for a system definition.

x_message

5 – 88 Oracle Workflow API Reference

WF_AGENTS Document Type Definition

The following document type definition (DTD) describes the required
structure for an XML message that contains the complete information
for an agent definition in the WF_AGENTS table.

<WF_TABLE_DATA>

 <WF_AGENTS>

 <VERSION></VERSION>

 <GUID></GUID>

 <NAME></NAME>

 <SYSTEM_GUID></SYSTEM_GUID>

 <PROTOCOL></PROTOCOL>

 <ADDRESS></ADDRESS>

 <QUEUE_HANDLER></QUEUE_HANDLER>

 <QUEUE_NAME></QUEUE_NAME>

 <DIRECTION></DIRECTION>

 <STATUS></STATUS>

 <DISPLAY_NAME></DISPLAY_NAME>

 <DESCRIPTION></DESCRIPTION>

 <TYPE></TYPE>

 </WF_AGENTS>

</WF_TABLE_DATA>

PL/SQL Syntax

Description

Arguments (input)

5 – 89Business Event System APIs

WF_AGENTS_PKG.Generate

function Generate

 (x_guid in raw)

 return varchar2;

Generates an XML message containing the complete information from
the WF_AGENTS table for the specified agent definition.

The globally unique identifier of the agent.x_guid

PL/SQL Syntax

Description

Arguments (input)

5 – 90 Oracle Workflow API Reference

WF_AGENTS_PKG.Receive

procedure Receive

 (x_message in varchar2);

Receives an XML message containing the complete information for an
agent definition and loads the information into the WF_AGENTS table.

An XML message containing the complete
information for an agent definition.

x_message

5 – 91Business Event System APIs

WF_AGENT_GROUPS Document Type Definition

The following document type definition (DTD) describes the required
structure for an XML message that contains the complete information
for an agent group member definition in the WF_AGENT_GROUPS
table.

Note: Agent group header information is defined in the
WF_AGENTS table, similarly to an individual agent. Only the
agent group member definitions are stored in the
WF_AGENT_GROUPS table.

Note: Agent groups are currently only available for the version
of Oracle Workflow embedded in Oracle Applications.

<WF_TABLE_DATA>

 <WF_AGENT_GROUPS>

 <VERSION></VERSION>

 <GROUP_GUID></GROUP_GUID>

 <MEMBER_GUID></MEMBER_GUID>

 </WF_AGENT_GROUPS>

</WF_TABLE_DATA>

PL/SQL Syntax

Description

Arguments (input)

5 – 92 Oracle Workflow API Reference

WF_AGENT_GROUPS_PKG.Generate

function Generate

 (x_group_guid in raw,

 x_member_guid in raw)

 return varchar2;

Generates an XML message containing the complete information from
the WF_AGENT_GROUPS table for the specified agent group member
definition.

Note: Agent groups are currently only available for the version
of Oracle Workflow embedded in Oracle Applications.

The globally unique identifier of the agent group.

The globally unique identifier of the individual
member agent.

x_group_guid

x_member_guid

PL/SQL Syntax

Description

Arguments (input)

5 – 93Business Event System APIs

WF_AGENT_GROUPS_PKG.Receive

procedure Receive

 (x_message in varchar2);

Receives an XML message containing the complete information for an
agent group member definition and loads the information into the
WF_AGENT_GROUPS table.

Note: Agent groups are currently only available for the version
of Oracle Workflow embedded in Oracle Applications.

An XML message containing the complete
information for an agent group member definition.

x_message

5 – 94 Oracle Workflow API Reference

WF_EVENT_SUBSCRIPTIONS Document Type Definition

The following document type definition (DTD) describes the required
structure for an XML message that contains the complete information
for an event subscription definition in the
WF_EVENT_SUBSCRIPTIONS table.

<WF_TABLE_DATA>

 <WF_EVENT_SUBSCRIPTIONS>

 <VERSION></VERSION>

 <GUID></GUID>

 <SYSTEM_GUID></SYSTEM_GUID>

 <SOURCE_TYPE></SOURCE_TYPE>

 <SOURCE_AGENT_GUID></SOURCE_AGENT_GUID>

 <EVENT_FILTER_GUID></EVENT_FILTER_GUID>

 <PHASE></PHASE>

 <STATUS></STATUS>

 <RULE_DATA></RULE_DATA>

 <OUT_AGENT_GUID></OUT_AGENT_GUID>

 <TO_AGENT_GUID></TO_AGENT_GUID>

 <PRIORITY></PRIORITY>

 <RULE_FUNCTION></RULE_FUNCTION>

 <WF_PROCESS_TYPE></WF_PROCESS_TYPE>

 <WF_PROCESS_NAME></WF_PROCESS_NAME>

 <PARAMETERS></PARAMETERS>

 <OWNER_NAME></OWNER_NAME>

 <OWNER_TAG></OWNER_TAG>

 <CUSTOMIZATION_LEVEL></CUSTOMIZATION_LEVEL>

 <LICENSED_FLAG></LICENSED_FLAG>

 <DESCRIPTION></DESCRIPTION>

 <EXPRESSION></EXPRESSION>

 </WF_EVENT_SUBSCRIPTIONS>

</WF_TABLE_DATA>

PL/SQL Syntax

Description

Arguments (input)

5 – 95Business Event System APIs

WF_EVENT_SUBSCRIPTIONS_PKG.Generate

function Generate

 (x_guid in raw)

 return varchar2;

Generates an XML message containing the complete information from
the WF_EVENT_SUBSCRIPTIONS table for the specified event
subscription definition.

The globally unique identifier of the event
subscription.

x_guid

PL/SQL Syntax

Description

Arguments (input)

5 – 96 Oracle Workflow API Reference

WF_EVENT_SUBSCRIPTIONS_PKG.Receive

procedure Receive

 (x_message in varchar2);

Receives an XML message containing the complete information for an
event subscription definition and loads the information into the
WF_EVENT_SUBSCRIPTIONS table.

An XML message containing the complete
information for an event subscription definition.

x_message

PL/SQL Syntax

Description

5 – 97Business Event System APIs

Business Event System Cleanup API

The Workflow Business Event System cleanup API can be used to clean
up the standard WF_CONTROL queue in the Business Event System
by removing inactive subscribers from the queue. This API is defined in
a PL/SQL package called WF_BES_CLEANUP.

Cleanup_Subscribers

procedure Cleanup_Subscribers

 (errbuf out varchar2,

 retcode out varchar2);

Performs cleanup for the standard WF_CONTROL queue.

When a middle tier process for Oracle Applications or for standalone
Oracle Workflow starts up, it creates a JMS subscriber to the
WF_CONTROL queue. Then, when an event message is placed on the
queue, a copy of the event message is created for each subscriber to the
queue. If a middle tier process dies, however, the corresponding
subscriber remains in the database. For more efficient processing, you
should ensure that WF_CONTROL is periodically cleaned up by
running Cleanup_Subscribers() to remove the subscribers for any middle
tier processes that are no longer active.

The Cleanup_Subscribers() procedure sends an event named
oracle.apps.wf.bes.control.ping to check the status of each subscriber to
the WF_CONTROL queue. If the corresponding middle tier process is
still alive, it sends back a response.

The next time the cleanup procedure runs, it checks whether responses
have been received for each ping event sent during the previous run. If
no response was received from a particular subscriber, that subscriber
is removed.

Finally after removing any subscribers that are no longer active, the
procedure sends a new ping event to the remaining subscribers.

The recommended frequency for performing cleanup is every twelve
hours. In order to allow enough time for subscribers to respond to the
ping event, the minimum wait time between two cleanup runs is thirty
minutes. If you run the procedure again less than thirty minutes after
the last run, it will not perform any processing.

5 – 98 Oracle Workflow API Reference

The maxiumum retention time for information about ping events sent
to subscribers is thirty days. Cleanup_Subscribers() deletes information
for previously sent pings that are more than thirty days old.

The procedure returns an error buffer that contains an error message if
any inactive subscriber could not be removed during the cleanup. It
also returns one of the following codes to indicate the status of the
cleanup.

• 0 – Success

• 1 – Warning

• 2 – Error

See Also

Cleaning Up the Workflow Control Queue, Oracle Workflow
Administrator’s Guide

Standard Agents, Oracle Workflow Developer’s Guide

Workflow Control Events, Oracle Workflow Developer’s Guide

C H A P T E R

6
T

6 – 1Workflow Queue APIs

Workflow Queue APIs

his chapter describes the APIs for Oracle Workflow Advanced
Queues processing. The APIs consist of PL/SQL functions and
procedures to handle workflow Advanced Queues processing.
Although these APIs will continue to be supported for backward
compatibility, customers using Oracle Workflow Release 2.6 and higher
should use the Business Event System rather than the queue APIs to
integrate with Oracle Advanced Queuing.

☞

6 – 2 Oracle Workflow API Reference

Workflow Queue APIs

Oracle Workflow queue APIs can be called by an application program
or a workflow function in the runtime phase to handle workflow
Advanced Queues processing.

Note: Although these APIs will continue to be supported for
backward compatibility, customers using Oracle Workflow
Release 2.6 and higher should use the Business Event System
rather than the queue APIs to integrate with Oracle Advanced
Queuing.

In a future release, this workflow Advanced Queues processing
will be implemented within the Business Event System using a
specialized queue handler to handle dequeue and enqueue
operations.

In Oracle Workflow, an ’outbound’ and an ’inbound’ queue are
established. A package of data on the queue is referred to as an event
or a message.

Note: An event in this context is different from the business
events associated with the Business Event System, and a
message in this context is different from the messages
associated with notification activities.

Events are enqueued in the outbound queue for agents to consume and
process. These agents may be any application that is external to the
database. Similarly an agent may enqueue some message to the
inbound queue for the Workflow Engine to consume and process. The
outbound and inbound queues facilitate the integration of external
activities into your workflow processes.

Note: Background engines use a separate ’deferred’ queue.

All Oracle Workflow queue APIs are defined in a PL/SQL package
called WF_QUEUE. You must execute these queue APIs from the same
Oracle Workflow account since the APIs are account dependent.

Attention: In using these APIs, we assume that you have
prior knowledge of Oracle Advanced Queuing concepts and
terminology. Refer to the Oracle Application Developer’s Guide –
Advanced Queuing or Oracle Streams Advanced Queuing User’s
Guide and Reference for more information on Advanced Queues.

Queue APIs

• EnqueueInbound: page 6 – 5

• DequeueOutbound: page 6 – 7

• DequeueEventDetail: page 6 – 10

6 – 3Workflow Queue APIs

• PurgeEvent: page 6 – 12

• PurgeItemType: page 6 – 13

• ProcessInboundQueue: page 6 – 14

• GetMessageHandle: page 6 – 15

• DequeueException: page 6 – 16

• DeferredQueue: page 6 – 17

• InboundQueue: page 6 – 18

• OutboundQueue: page 6 – 19

Developer APIs for the Inbound Queue

The following APIs are for developers who wish to write to the
inbound queue by creating messages in the internal stack rather than
using WF_QUEUE.EnqueueInbound(). The internal stack is purely a
storage area and you must eventually write each message that you
create on the stack to the inbound queue.

Note: For efficient performance, you should periodically write
to the inbound queue to prevent the stack from growing too
large.

• ClearMsgStack: page 6 – 20

• CreateMsg: page 6 – 21

• WriteMsg: page 6 – 22

• SetMsgAttr: page 6 – 23

• SetMsgResult: page 6 – 24

Payload Structure

Oracle Workflow queues use the datatype system.wf_payload_t to
define the payload for any given message. The payload contains all the
information that is required about the event. The following table lists
the attributes of system.wf_payload_t.

Attribute Name Datatype Description

ITEMTYPE VARCHAR2(8) The item type of the event.

ITEMKEY VARCHAR2(240) The item key of the event.

6 – 4 Oracle Workflow API Reference

DescriptionDatatypeAttribute Name

ACTID NUMBER The function activity instance ID.

FUNCTION_NAME VARCHAR2(200) The name of the function to execute.

PARAM_LIST VARCHAR2(4000) A list of ”value_name=value” pairs. In the
inbound scenario, the pairs are passed as
item attributes and item attribute values.
In the outbound scenario, the pairs are
passed as all the attributes and attribute
values of the function (activity attributes).

RESULT VARCHAR2(30) An optional activity completion result.
Possible values are determined by the
function activity’s Result Type or can be an
engine standard result.

Table 6 – 1 (Page 2 of 2)

See Also

Standard API for PL/SQL Procedures Called by Function Activities,
Oracle Workflow Developer’s Guide

Oracle Application Developer’s Guide – Advanced Queuing or Oracle
Streams Advanced Queuing User’s Guide and Reference

Syntax

Description

Arguments (input)

6 – 5Workflow Queue APIs

EnqueueInbound

procedure EnqueueInbound

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 result in varchar2 default null,

 attrlist in varchar2 default null,

 correlation in varchar2 default null,

 error_stack in varchar2 default null);

Enqueues the result from an outbound event onto the inbound queue.
An outbound event is defined by an outbound queue message that is
consumed by some agent.

Oracle Workflow marks the external function activity as complete with
the specified result when it processes the inbound queue. The result
value is only effective for successful completion, however. If you
specify an external program error in the error_stack parameter, Oracle
Workflow marks the external function activity as complete with an
ERROR status, overriding the result value. Additionally, if a
corresponding error process is defined in the item type, Oracle
Workflow launches that error process.

The item type of the event.

The item key of the event. An item key is a string
generated from the application object’s primary
key. The string uniquely identifies the item within
an item type. The item type and key together
identify the process instance.

The function activity instance ID that this event is
associated with.

An optional activity completion result. Possible
values are determined by the function activity’s
Result Type.

A longlist of ”value name=value” pairs that you
want to pass back as item attributes and item
attribute values. Each pair must be delimited by
the caret character (^), as in the example,
”ATTR1=A^ATTR2=B^ATTR3=C”. If a specified
value name does not exist as an item attribute,

itemtype

itemkey

actid

result

attrlist

6 – 6 Oracle Workflow API Reference

Oracle Workflow creates the item attribute for you,
of type varchar2.

Specify an optional correlation identifier for the
message to be enqueued. Oracle Advanced
Queues allow you to search a queue for messages
based on a specific correlation value. If null, the
Workflow Engine creates a correlation identifier
based on the Workflow schema name and the item
type.

Specify an optional external program error that will
be placed on Oracle Workflow’s internal error
stack. You can specify any text value up to a
maximum length of 200 characters.

correlation

error_stack

Syntax

Description

☞

Arguments (input)

6 – 7Workflow Queue APIs

DequeueOutbound

procedure DequeueOutbound

 (dequeuemode in number,

 navigation in number default 1,

 correlation in varchar2 default null,

 itemtype in varchar2 default null,

 payload out system.wf_payload_t,

 message_handle in out raw,

 timeout out boolean);

Dequeues a message from the outbound queue for some agent to
consume.

Attention: If you call this procedure within a loop, you must
remember to set the returned message handle to null,
otherwise, the procedure dequeues the same message again.
This may not be the behavior you want and may cause an
infinite loop.

A value of DBMS_AQ.BROWSE,
DBMS_AQ.LOCKED, or DBMS_AQ.REMOVE,
corresponding to the numbers 1, 2 and 3
respectively, to represent the locking behavior of
the dequeue. A mode of DBMS_AQ.BROWSE
means to read the message from the queue without
acquiring a lock on the message. A mode of
DBMS_AQ.LOCKED means to read and obtain a
write lock on the message, where the lock lasts for
the duration of the transaction. A mode of
DBMS_AQ.REMOVE means read the message and
delete it.

Specify DBMS_AQ.FIRST_MESSAGE or
DBMS_AQ.NEXT_MESSAGE, corresponding to
the number 1 or 2 respectively, to indicate the
position of the message that will be retrieved. A
value of DBMS_AQ.FIRST_MESSAGE retrieves the
first message that is available and matches the
correlation criteria. The first message is inherently
the beginning of the queue. A value of
DBMS_AQ.NEXT_MESSAGE retrieves the next
message that is available and matches the

dequeuemode

navigation

☞
Example

6 – 8 Oracle Workflow API Reference

correlation criteria, and lets you read through the
queue. The default is 1.

Specify an optional correlation identifier for the
message to be dequeued. Oracle Advanced
Queues allow you to search a queue for messages
based on a specific correlation value. You can use
the Like comparison operator, ’%’, to specify the
identifier string. If null, the Workflow Engine
creates a correlation identifier based on the
Workflow schema name and the item type.

The item type of the event.

Specify an optional message handle ID for the
specific event to be dequeued. If you specify a
message handle ID, the correlation identifier is
ignored.

Attention: The timeout output returns TRUE when there is
nothing further to read in the queue.

Following is an example of code that loops through the outbound
queue and displays the output.

declare

 event system.wf_payload_t;

 i number;

 msg_id raw(16);

 queuename varchar2(30);

 navigation_mode number;

 end_of_queue boolean;

begin

 queuename:=wf_queue.OUTBOUNDQUEUE;

 i:=0;

 LOOP

 i:=i+1;

 –– always start with the first message then progress

to next

 if i = 1 then

 navigation_mode := dbms_aq.FIRST_MESSAGE;

 else

 navigation_mode := dbms_aq.NEXT_MESSAGE;

 end if;

correlation

itemtype

message_handle

6 – 9Workflow Queue APIs

 –– not interested in specific msg_id. Leave it null so

 ––as to loop through all messages in queue

 msg_id :=null;

 wf_queue.DequeueOutbound(

 dequeuemode => dbms_aq.BROWSE,

 payload => event,

 navigation => navigation_mode,

 message_handle => msg_id,

 timeout => end_of_queue);

 if end_of_queue then

 exit;

 end if;

 –– print the correlation itemtype:itemKey

 dbms_output.put_line(’Msg ’||to_char(i)||’ = ’||

 event.itemtype||’:’||event.itemkey

 ||’ ’||event.actid||’ ’

 ||event.param_list);

 END LOOP;

end;

/

Syntax

Description

☞

Arguments (input)

6 – 10 Oracle Workflow API Reference

DequeueEventDetail

procedure DequeueEventDetail

 (dequeuemode in number,

 navigation in number default 1,

 correlation in varchar2 default null,

 itemtype in out varchar2,

 itemkey out varchar2,

 actid out number,

 function_name out varchar2,

 param_list out varchar2,

 message_handle in out raw,

 timeout out boolean);

Dequeue from the outbound queue, the full event details for a given
message. This API is similar to DequeueOutbound except it does not
reference the payload type. Instead, it outputs itemkey, actid,
function_name, and param_list, which are part of the payload.

Attention: If you call this procedure within a loop, you must
remember to set the returned message handle to null,
otherwise, the procedure dequeues the same message again.
This may not be the behavior you want and may cause an
infinite loop.

A value of DBMS_AQ.BROWSE,
DBMS_AQ.LOCKED, or DBMS_AQ.REMOVE,
corresponding to the numbers 1, 2 and 3
respectively, to represent the locking behavior of
the dequeue. A mode of DBMS_AQ.BROWSE
means to read the message from the queue without
acquiring a lock on the message. A mode of
DBMS_AQ.LOCKED means to read and obtain a
write lock on the message, where the lock lasts for
the duration of the transaction. A mode of
DBMS_AQ.REMOVE means read the message and
update or delete it.

Specify DBMS_AQ.FIRSTMESSAGE or
DBMS_AQ.NEXTMESSAGE, corresponding to the
number 1 or 2 respectively, to indicate the position
of the message that will be retrieved. A value of
DBMS_AQ.FIRSTMESSAGE retrieves the first
message that is available and matches the

dequeuemode

navigation

☞

6 – 11Workflow Queue APIs

correlation criteria. It also resets the position to the
beginning of the queue. A value of
DBMS_AQ.NEXTMESSAGE retrieves the next
message that is available and matches the
correlation criteria. The default is 1.

Specify an optional correlation identifier for the
message to be dequeued. Oracle Advanced
Queues allow you to search a queue for messages
based on a specific correlation value. You can use
the Like comparison operator, ’%’, to specify the
identifier string. If null, the Workflow Engine
creates a correlation identifier based on the
Workflow schema name and the item type.

The Oracle Workflow database account name. If
acctname is null, it defaults to the pseudocolumn
USER.

Specify an optional item type for the message to
dequeue if you are not specifying a correlation.

Specify an optional message handle ID for the
specific event to be dequeued. If you specify a
message handle ID, the correlation identifier is
ignored.

Attention: The timeout output returns TRUE when there is
nothing further to read in the queue.

correlation

acctname

itemtype

message_handle

Syntax

Description

Arguments (input)

6 – 12 Oracle Workflow API Reference

PurgeEvent

procedure PurgeEvent

 (queuename in varchar2,

 message_handle in raw);

Removes an event from a specified queue without further processing.

The name of the queue from which to purge the
event.

The message handle ID for the specific event to
purge.

queuename

message_handle

Syntax

Description

Arguments (input)

6 – 13Workflow Queue APIs

PurgeItemType

procedure PurgeItemType

 (queuename in varchar2,

 itemtype in varchar2 default null,

 correlation in varchar2 default null);

Removes all events belonging to a specific item type from a specified
queue without further processing.

The name of the queue from which to purge the
events.

An optional item type of the events to purge.

Specify an optional correlation identifier for the
message to be purged. Oracle Advanced Queues
allow you to search a queue for messages based on
a specific correlation value. You can use the Like
comparison operator, ’%’, to specify the identifier
string. If null, the Workflow Engine creates a
correlation identifier based on the Workflow
schema name and the item type.

queuename

itemtype

correlation

Syntax

Description

Arguments (input)

6 – 14 Oracle Workflow API Reference

ProcessInboundQueue

procedure ProcessInboundQueue

 (itemtype in varchar2 default null,

 correlation in varchar2 default null);

Reads every message off the inbound queue and records each message
as a completed event. The result of the completed event and the list of
item attributes that are updated as a consequence of the completed
event are specified by each message in the inbound queue. See:
EnqueueInbound: page 6 – 5.

An optional item type of the events to process.

If you wish to process only messages with a
specific correlation, enter a correlation identifier. If
correlation is null, the Workflow Engine creates a
correlation identifier based on the Workflow
schema name and the item type.

itemtype

correlation

Syntax

Description

Arguments (input)

6 – 15Workflow Queue APIs

GetMessageHandle

function GetMessageHandle

 (queuename in varchar2,

 itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 correlation in varchar2 default null)

 return raw;

Returns a message handle ID for a specified message.

The name of the queue from which to retrieve the
message handle.

The item type of the message.

The item key of the message. An item key is a
string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process instance.

The function activity instance ID that this message
is associated with.

Specify an optional correlation identifier for the
message. If the correlation is null, the Workflow
Engine creates a correlation identifier based on the
Workflow schema name and the item type.

queuename

itemtype

itemkey

actid

correlation

Syntax

Description

Arguments (input)

6 – 16 Oracle Workflow API Reference

DequeueException

procedure DequeueException

 (queuename in varchar2);

Dequeues all messages from an exception queue and places the
messages on the standard Business Event System WF_ERROR queue
with the error message ’Message Expired.’ When the messages are
dequeued from WF_ERROR, a predefined subscription is triggered that
launches the Default Event Error process.

The name of the exception queue that has been
enabled for dequeue.

See Also

Default Event Error Process, Oracle Workflow Developer’s Guide

queuename

Syntax

Description

6 – 17Workflow Queue APIs

DeferredQueue

function DeferredQueue return varchar2;

Returns the name of the queue and schema used by the background
engine for deferred processing.

Syntax

Description

6 – 18 Oracle Workflow API Reference

InboundQueue

function InboundQueue return varchar2;

Returns the name of the inbound queue and schema. The inbound
queue contains messages for the Workflow Engine to consume.

Syntax

Description

6 – 19Workflow Queue APIs

OutboundQueue

function OutboundQueue return varchar2;

Returns the name of the outbound queue and schema. The outbound
queue contains messages for external agents to consume.

Syntax

Description

6 – 20 Oracle Workflow API Reference

ClearMsgStack

procedure ClearMsgStack;

Clears the internal stack. See: Developer APIs for the Inbound Queue:
page 6 – 3.

Syntax

Description

Arguments (input)

6 – 21Workflow Queue APIs

CreateMsg

procedure CreateMsg

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number);

Creates a new message in the internal stack if it doesn’t already exist.
See: Developer APIs for the Inbound Queue: page 6 – 3.

The item type of the message.

The item key of the message. An item key is a
string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process instance.

The function activity instance ID that this message
is associated with.

itemtype

itemkey

actid

Syntax

Description

Arguments (input)

6 – 22 Oracle Workflow API Reference

WriteMsg

procedure WriteMsg

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number);

Writes a message from the internal stack to the inbound queue. See:
Developer APIs for the Inbound Queue: page 6 – 3.

The item type of the message.

The item key of the message. An item key is a
string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process.

The function activity instance ID that this message
is associated with.

itemtype

itemkey

actid

Syntax

Description

Arguments (input)

6 – 23Workflow Queue APIs

SetMsgAttr

procedure SetMsgAttr

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 attrName in varchar2,

 attrValue in varchar2);

Appends an item attribute to the message in the internal stack. See:
Developer APIs for the Inbound Queue: page 6 – 3.

The item type of the message.

The item key of the message. An item key is a
string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process instance.

The function activity instance ID that this message
is associated with.

The internal name of the item attribute you wish to
append to the message.

The value of the item attribute you wish to append.

itemtype

itemkey

actid

attrName

attrValue

Syntax

Description

Arguments (input)

6 – 24 Oracle Workflow API Reference

SetMsgResult

procedure SetMsgResult

 (itemtype in varchar2,

 itemkey in varchar2,

 actid in number,

 result in varchar2);

Sets a result to the message written in the internal stack. See:
Developer APIs for the Inbound Queue: page 6 – 3.

The item type of the message.

The item key of the message. An item key is a
string generated from the application object’s
primary key. The string uniquely identifies the
item within an item type. The item type and key
together identify the process instance.

The function activity instance ID that this message
is associated with.

The completion result for the message. Possible
values are determined by the activity’s Result
Type.

itemtype

itemkey

actid

result

C H A P T E R

7
T

7 – 1Document Management APIs

Document
Management APIs

his chapter describes the APIs for Oracle Workflow document
management. The APIs consist of PL/SQL functions and procedures to
integrate with document management systems. Document
management functionality is reserved for future use. This description
of Oracle Workflow document management APIs is provided for
reference only.

☞

7 – 2 Oracle Workflow API Reference

Document Management APIs

Attention: Document management functionality is reserved
for future use. This description of Oracle Workflow document
management APIs is provided for reference only.

The following document management APIs can be called by user
interface (UI) agents to return URLs or javascript functions that enable
integrated access to supported document management systems. All
supported document management (DM) systems accommodate a URL
interface to access documents.

The document management APIs allow you to access documents across
multiple instances of the same DM system, as well as across multiple
instances of DM systems from different vendors within the same
network.

The document management APIs are defined in a PL/SQL package
called FND_DOCUMENT_MANAGEMENT:

• get_launch_document_url: page 7 – 3

• get_launch_attach_url: page 7 – 4

• get_open_dm_display_window: page 7 – 5

• get_open_dm_attach_window: page 7 – 6

• set_document_id_html: page 7 – 7

See Also

Standard API for PL/SQL Procedures Called by Function Activities,
Oracle Workflow Developer’s Guide

Syntax

Description

Arguments (input)

7 – 3Document Management APIs

get_launch_document_url

procedure get_launch_document_url

 (username in varchar2,

 document_identifier in varchar2,

 display_icon in Boolean,

 launch_document_url out varchar2);

Returns an anchor URL that launches a new browser window
containing the DM integration screen that displays the specified
document. The screen is a frame set of two frames. The upper frame
contains a customizable company logo and a toolbar of Oracle
Workflow–integrated document management functions. The lower
frame displays the specified document.

The username of the person accessing the
document management system.

The document identifier for the document you
wish to display. The document identifier should be
stored as a value in an item attribute of type
document. You can retrieve the document
identifier using the GetItemAttrDocument API. See:
GetItemAttrDocument: page 2 – 62 and
SetItemAttrDocument: page 2 – 54.

True or False. True tells the procedure to return the
URL with the paper clip attachment icon and
translated prompt name, whereas False tells the
procedure to return only the URL. This argument
provides you the flexibility needed when you call
this procedure from a form– or HTML–based UI
agent.

username

document_
identifier

display_icon

Syntax

Description

Arguments (input)

7 – 4 Oracle Workflow API Reference

get_launch_attach_url

procedure get_launch_attach_url

 (username in varchar2,

 callback_function in varchar2,

 display_icon in Boolean,

 launch_attach_url out varchar2);

Returns an anchor URL that launches a new browser window
containing a DM integration screen that allows you to attach a
document. The screen is a frame set of two frames. The upper frame
contains a customizable company logo and a toolbar of Oracle
Workflow–integrated document management functions. The lower
frame displays the search screen of the default document management
system.

The username of the person accessing the
document management system.

The URL you would like to invoke after the user
selects a document to attach. This callback
function should be the callback_url syntax that is
returned from the set_document_id_html API.

True or False. True tells the procedure to return the
URL with the paper clip attachment icon and
translated prompt name, whereas False tells the
procedure to return only the URL. This argument
provides you the flexibility needed when you call
this procedure from a form– or HTML–based UI
agent.

username

callback_
function

display_icon

Syntax

Description

7 – 5Document Management APIs

get_open_dm_display_window

procedure get_open_dm_display_window

Returns a javascript function that displays an attached document from
the current UI. The javascript function is used by all the document
management functions that the user can perform on an attached
document. Each DM function also gives the current DM integration
screen a name so that the Document Transport Window can call back to
the javascript function in the current window.

Syntax

Description

7 – 6 Oracle Workflow API Reference

get_open_dm_attach_window

procedure get_open_dm_attach_window

Returns a javascript function to open a Document Transport Window
when a user tries to attach a document in the current UI. The
javascript function is used by all the document management functions
that the user can perform to attach a document. Each DM function also
gives the current DM integration screen a name so that the Document
Transport Window can call back to the javascript function in the
current window.

Syntax

Description

Arguments (input)

7 – 7Document Management APIs

set_document_id_html

procedure set_document_id_html

 (frame_name in varchar2,

 form_name in varchar2,

 document_id_field_name in varchar2

 document_name_field_name in varchar2,

 callback_url out varchar2);

Returns a callback URL that gets executed when a user selects a
document from the DM system. Use this procedure to set the
document that is selected from the document management Search
function to the specified destination field of an HTML page. The
destination field is the field from which the user launches the DM
integration screen to attach a document. Pass the returned callback
URL as an argument to the get_launch_attach_url API.

The name of the HTML frame that you wish to
interact with in the current UI.

The name of the HTML form that you wish to
interact with in the current UI.

The name of the HTML field in the current UI that
you would like to write the resulting document
identifier to. The resulting document identifier is
determined by the document the user selects from
the document management Search function. The
document identifier is a concatenation of the
following values:

DM:<node_id>:<document_id>:<version>

<nodeid> is the node ID assigned to the document
management system node as defined in the
Document Management Nodes web page.

<documentid> is the document ID of the document,
as assigned by the document management system
where the document resides.

<version> is the version of the document. If a
version is not specified, the latest version is
assumed.

frame_name

form_name

document_id_
field_name

7 – 8 Oracle Workflow API Reference

The name of the HTML field in the current UI that
you would like to write the resulting document
name to.

document_name_
field_name

Glossary – 1

Glossary

Access Level A numeric value ranging from 0
to 1000. Every workflow user operates at a
specific access level. The access level
defines whether the user can modify certain
workflow data. You can only modify data
that is protected at a level equal to or
higher than your access level.

Activity A unit of work performed during a
business process.

Activity Attribute A parameter that has been
externalized for a function activity that
controls how the function activity operates.
You define an activity attribute by
displaying the activity’s Attributes
properties page in the Activities window.
You assign a value to an activity attribute
by displaying the activity node’s Attribute
Values properties page in the Process
window.

Agent A named point of communication
within a system.

Agent Listener A type of service component
that processes event messages on inbound
agents.

Attribute See Activity Attribute, Item Type
Attribute, or Message Attribute.

Background Engines A supplemental
Workflow Engine that processes deferred or
timed out activities.

Business Event See Event.

Cost A relative value that you can assign to a
function or notification activity to inform
the Workflow Engine how much processing
is required to complete the activity. Assign
a higher cost to longer running, complex
activities. The Workflow Engine can be set
to operate with a threshold cost. Any
activity with a cost above the Workflow
Engine threshold cost gets set to
’DEFERRED’ and is not processed. A
background engine can be set up to poll for
and process deferred activities.

Directory Services A mapping of Oracle
Workflow users and roles to a site’s
directory repository.

Event An occurrence in an internet or intranet
application or program that might be
significant to other objects in a system or to
external agents.

Event Activity A business event modelled as
an activity so that it can be included in a
workflow process.

Event Data A set of additional details
describing an event. The event data can be
structured as an XML document. Together,
the event name, event key, and event data
fully communicate what occurred in the
event.

Glossary – 2 Oracle Workflow API Reference

Event Key A string that uniquely identifies an
instance of an event. Together, the event
name, event key, and event data fully
communicate what occurred in the event.

Event Message A standard Workflow
structure for communicating business
events, defined by the datatype
WF_EVENT_T. The event message contains
the event data as well as several header
properties, including the event name, event
key, addressing attributes, and error
information.

Event Subscription A registration indicating
that a particular event is significant to a
system and specifying the processing to
perform when the triggering event occurs.
Subscription processing can include calling
custom code, sending the event message to
a workflow process, or sending the event
message to an agent.

External Functions Programs that are
executed outside of the Oracle database
server.

External Java Functions Java programs that
are executed outside of the Oracle Database
by the Java Function Activity Agent.

Function A PL/SQL stored procedure that
can define business rules, perform
automated tasks within an application, or
retrieve application information. The
stored procedure accepts standard
arguments and returns a completion result.

Function Activity An automated unit of work
that is defined by a PL/SQL stored
procedure.

Generic Service Component Framework A
facility that helps to simplify and automate
the management of background Java
services.

Item A specific process, document, or
transaction that is managed by a workflow
process. For example, the item managed by
the Requisition Approval Process workflow
is a specific requisition created by Oracle
Internet Commerce’s Web Requisitions
page.

Item Attribute See Item Type Attribute.

Item Type A grouping of all items of a
particular category that share the same set
of item attributes. For example, PO
Requisition is an item type used to group
all requisitions created by Oracle Internet
Commerce’s Web Requisitions page. Item
type is also used as a high level grouping
for processes.

Item Type Attribute A feature associated with
a particular item type, also known as an
item attribute. An item type attribute is
defined as a variable whose value can be
looked up and set by the application that
maintains the item. An item type attribute
and its value is available to all activities in a
process.

Lookup Code An internal name of a value
defined in a lookup type.

Lookup Type A predefined list of values.
Each value in a lookup type has an internal
and a display name.

Glossary – 3

Message The information that is sent by a
notification activity. A message must be
defined before it can be associated with a
notification activity. A message contains a
subject, a priority, a body, and possibly one
or more message attributes.

Message Attribute A variable that you define
for a particular message to either provide
information or prompt for a response when
the message is sent in a notification. You
can use a predefine item type attribute as a
message attribute. Defined as a ’Send’
source, a message attribute gets replaced
with a runtime value when the message is
sent. Defined as a ’Respond’ source, a
message attribute prompts a user for a
response when the message is sent.

Node An instance of an activity in a process
diagram as shown in the Process window.

Notification An instance of a message
delivered to a user.

Notification Activity A unit of work that
requires human intervention. A
notification activity sends a message to a
user containing the information necessary
to complete the work.

Notification Mailer A type of service
component that sends e–mail notifications
to users through a mail application, and
processes e–mail responses.

Notification Web Page A Web page that you
can view from any Web browser to query
and respond to workflow notifications.

Performer A user or role assigned to perform
a human activity (notification). Notification
activities that are included in a process
must be assigned to a performer.

Process A set of activities that need to be
performed to accomplish a business goal.

Process Definition A workflow process as
defined in Oracle Workflow Builder.

Process Activity A process modelled as an
activity so that it can be referenced by other
processes.

Protection Level A numeric value ranging
from 0 to 1000 that represents who the data
is protected from for modification. When
workflow data is defined, it can either be
set to customizable (1000), meaning anyone
can modify it or it can be assigned a
protection level that is equal to the access
level of the user defining the data. In the
latter case, only users operating at an access
level equal to or lower than the data’s
protection level can modify the data.

Result Code The internal name of a result
value, as defined by the result type.

Result Type The name of the lookup type that
contains an activity’s possible result values.

Result Value The value returned by a
completed activity.

Role One or more users grouped by a
common responsibility or position.

Service Component Container An instance of
a service or servlet that manages the
running of the individual service
components that belong to it. The container
monitors the status of its components and
handles control events for itself and for its
components.

Service Component An instance of a Java
program which has been defined according
to the Generic Service Component
Framework standards so that it
can be managed through this framework.

Subscription See Event Subscription.

Glossary – 4 Oracle Workflow API Reference

System A logically isolated software
environment such as a host machine or
database instance.

Timeout The amount of time during which a
notification activity must be performed
before the Workflow Engine transitions to
an error process or an alternate activity if
one is defined.

Transition The relationship that defines the
completion of one activity and the
activation of another activity within a
process. In a process diagram, the arrow
drawn between two activities represents a
transition.

Workflow Definitions Loader A concurrent
program that lets you upload and
download workflow definitions between a
flat file and a database.

Workflow Engine The Oracle Workflow
component that implements a workflow
process definition. The Workflow Engine
manages the state of all activities for an
item, automatically executes functions and
sends notifications, maintains a history of
completed activities, and detects error
conditions and starts error processes. The
Workflow Engine is implemented in server
PL/SQL and activated when a call to an
engine API is made.

Index – 1

Index

A
AbortProcess(), 2–38
AccessCheck(), 4–50
Activities

processing cost, 2–8
statuses, 2–2

Activities(), 2–122
Ad hoc users and roles, APIs, 3–2
AddAttr(), 4–36
AddCorrelation(), 5–71
AddItemAttr(), 2–45
addItemAttrDate(), 2–45
AddItemAttrDateArray(), 2–48
addItemAttrNumber(), 2–45
AddItemAttrNumberArray(), 2–48
addItemAttrText(), 2–45
AddItemAttrTextArray(), 2–48
AddParameterToList, 5–20
AddParameterToList(), 5–44
AddParameterToListPos(), 5–45
AddRelationship(), 3–54
Address, 5–20
AddUsersToAdHocRole(), 3–23
AddUsersToAdHocRole2(), 3–24
Advanced Queues integration, 6–2
Agent, datatype, 5–4
ANSWER mode, 2–15
APIs, 2–2
AQ message payload, 6–3
AQ$_JMS_TEXT_MESSAGE, 5–24

AssignActivity(), 2–79
Asynchronous processes, 2–16

B
Background(), 2–43
BeginActivity(), 2–72
Business Event System, 1–4

overview, 5–2
Business Event System Replication APIs, 5–77
Business events, in Workflow processes, 2–19

C
Cancel(), 4–27
CancelGroup(), 4–28
ChangeLocalUserName(), 3–34
Cleanup_Subscribers(), 5–97
CLEAR(), 2–109
ClearMsgStack(), 6–20
Close(), 4–35
compareTo(), 2–107
CompleteActivity(), 2–74
CompleteActivityInternalName(), 2–77
Concurrent programs

Purge Obsolete Workflow Runtime Data,
2–129

Workflow Resource Generator, 2–112
Constants, WFAttribute class, 2–97
Content, 5–19
CONTEXT(), 2–116
CreateAdHocRole(), 3–17

Index – 2 Oracle Workflow API Reference

CreateAdHocRole2(), 3–20
CreateAdHocUser(), 3–14
CreateForkProcess(), 2–40
CreateMsg(), 6–21
CreateProcess(), 2–23

D
Data types, wf_payload_t, 6–3
Datatypes

example, 5–22
for the Business Event System, 5–3
WF_AGENT_T, 5–4
WF_EVENT_T, 5–9
WF_PARAMETER_LIST_T, 5–8
WF_PARAMETER_T, 5–6

Default_Rule(), 5–52
Default_Rule2(), 5–61
Default_Rule3(), 5–62
Deferred processing, for workflow processes,

2–8
DeferredQueue function, 6–17
Denormalize_Notification(), 4–55
DequeueEventDetail(), 6–10
DequeueException(), 6–16
DequeueOutbound(), 6–7
Directory services, synchronization, 3–36
Directory Services APIs, 3–2
Directory(), 2–128
Document Management APIs, 7–2
Document Type Definitions

Business Event System, 5–78
notifications, 4–8
WF_AGENT_GROUPS, 5–91
WF_AGENTS, 5–88
WF_EVENT_GROUPS, 5–82
WF_EVENT_SUBSCRIPTIONS, 5–94
WF_EVENTS, 5–79
WF_SYSTEMS, 5–85

E
E–mail notifications, 1–5
Effective dates, 2–11
EncodeBLOB(), 4–58
Enqueue(), 5–38
EnqueueInbound(), 6–5
Error handling

for process activities, 2–82
for workflow processes, 2–9

Error(), 5–55
Error_Rule(), 5–59
Event activities, Workflow Engine, 2–19
Event APIs, 5–27
Event data URL, 2–52
Event Function APIs, 5–67
Event messages, datatype, 5–9
Event Rule APIs, 5–50
Event(), 2–80
execute(), 2–96
ExpireRelationship(), 3–55
External Java function activities, 2–4, 2–89

F
FNDWFPR, 2–129
Forced synchronous processes, 2–16
FORWARD mode, 2–15
Forward(), 4–5, 4–23

G
Generate()

WF_AGENT_GROUPS_PKG, 5–92
WF_AGENTS_PKG, 5–89
WF_EVENT_FUNCTIONS_PKG, 5–73
WF_EVENT_GROUPS_PKG, 5–83
WF_EVENT_SUBSCRIPTIONS_PKG, 5–95
WF_EVENTS_PKG, 5–80
WF_SYSTEMS_PKG, 5–86

GET_ERROR(), 2–110
get_launch_attach_url(), 7–4
get_launch_document_url(), 7–3

Index – 3

get_open_dm_select_window(), 7–5, 7–6
get_pref(), 3–58
GetAccessKey(), 2–132
getActivityAttr(), 2–92
GetActivityAttrClob(), 2–70
GetActivityAttrDate(), 2–68
GetActivityAttrEvent(), 2–68
getActivityAttributes(), 2–71
GetActivityAttrInfo(), 2–67
GetActivityAttrNumber(), 2–68
GetActivityAttrText(), 2–68
GetActivityLabel(), 2–27
GetAdvancedEnvelopeURL(), 2–138
GetAllRelationships(), 3–57
GetAttrDate(), 4–43
GetAttrDoc(), 4–45
GetAttrInfo(), 4–39
GetAttrNumber(), 4–43
GetAttrText(), 4–43
GetBody(), 4–47
getCorrelationID, 5–13
GetDiagramURL(), 2–133
GetEncryptedAccessKey(), 2–142
GetEncryptedAdminMode(), 2–143
GetEnvelopeURL(), 2–136
getErrorMessage, 5–15
getErrorStack, 5–15
getErrorSubscription, 5–15
getEventData, 5–14
getEventKey, 5–14
getEventName, 5–13
getFormat(), 2–104
getFromAgent, 5–14
GetInfo(), 4–40
getItemAttr(), 2–94
GetItemAttrClob(), 2–64
GetItemAttrDate(), 2–60
GetItemAttrDocument(), 2–62
GetItemAttrEvent(), 2–60
getItemAttributes(), 2–65

GetItemAttrInfo(), 2–66
GetItemAttrNumber(), 2–60
GetItemAttrText(), 2–60
getItemTypes(), 2–59
GetItemUserKey(), 2–26
GetMaxNestedRaise(), 5–49
GetMessageHandle(), 6–15
getName

WF_AGENT_T, 5–4
WF_PARAMETER_T, 5–6
WFAttribute, 2–101

getNotificationAttributes(), 4–53
getNotifications(), 4–52
getParameterList, 5–13
getPriority, 5–12
getProcessStatus(), 2–88
getReceiveDate, 5–13
GetRelationships(), 3–56
GetRoleDisplayName(), 3–13
GetRoleInfo(), 3–6
GetRoleInfo2(), 3–7
GetRoleName(), 3–12
GetRoleUsers(), 3–4
getSendDate, 5–12
GetShortBody(), 4–48
GetShortText(), 4–42
GetSubject(), 4–46
getSystem, 5–4
GetText(), 4–41
getToAgent, 5–14
getType(), 2–103
GetUserName(), 3–11
GetUserRoles(), 3–5
getValue

WF_PARAMETER_T, 5–6
WFAttribute, 2–102

GetValueForParameter, 5–20
GetValueForParameter(), 5–46
GetValueForParameterPos(), 5–47
getValueType(), 2–105

H
HandleError(), 2–82

Index – 4 Oracle Workflow API Reference

I
InboundQueue function, 6–18
Initialize, 5–12
Instance_Default_Rule(), 5–65
IsMLSEnabled(), 3–35
IsMonitorAdministrator(), 2–144
IsPerformer(), 3–9
Item type attributes, 2–12

arrays, 2–12
Items(), 2–121
ItemStatus(), 2–87

J
Java APIs, 2–4
Java interface, 2–4
Java Message Service, 5–24
JMS, 5–24

L
LaunchProcess(), 2–32
LDAP APIs, 3–36
Listen(), 5–39
loadActivityAttributes(), 2–91
loadItemAttributes(), 2–90
Log(), 5–54
Loops, 2–10

M
Monitoring, work items, 1–5

N
NewAgent(), 5–36
Notification activities, coupling with custom

functions, 2–12
Notification APIs, 4–2, 4–14

Notification Document Type Definition, 4–8
Notification functions, 2–12
Notification Mailer Utility API, 4–58
Notification System, 4–2
Notification Web page, 1–5
Notifications

forwarding, 4–5
identifying the responder, 4–29
requesting more information, 4–6
timed out, 4–7
transferring, 4–5

Notifications(), 2–123
NtfSignRequirementsMet(), 4–32

O
On Revisit, 2–10
OpenNotificationsExist(), 4–34
Oracle Advanced Queues integration, 6–2
Oracle Applications Manager, 1–5
Oracle Java Message Service, 5–24
Oracle Workflow Builder, 1–3
Oracle Workflow Manager, 1–5
Oracle Workflow views, 2–145
OutboundQueue function, 6–19

P
Parameter, datatype, 5–6
Parameter list, datatype, 5–8
Parameters(), 5–68
Payload, for Advanced Queues messages, 6–3
PL/SQL, 1–4
Post–notification functions, 2–12
Process rollback, 2–82
Processes, loops, 2–10
ProcessInboundQueue(), 6–14
Propagate_Role(), 3–46
Propagate_User(), 3–41
PropagateUserRole(), 3–51
Purge, Workflow Purge APIs, 2–119

Index – 5

Purge Obsolete Workflow Runtime Data
concurrent program, 2–129

PurgeEvent(), 6–12
PurgeItemType(), 6–13

Q
QUESTION mode, 2–15

R
RAISE(), 2–112
Raise(), 5–28
Raise3(), 5–32
Receive date, for event messages, 5–39
Receive()

WF_AGENT_GROUPS_PKG, 5–93
WF_AGENTS_PKG, 5–90
WF_EVENT_FUNCTIONS_PKG, 5–75
WF_EVENT_GROUPS_PKG, 5–84
WF_EVENT_SUBSCRIPTIONS_PKG, 5–96
WF_EVENTS_PKG, 5–81
WF_SYSTEMS_PKG, 5–87

RemoveUsersFromAdHocRole, 3–25
Replication APIs, Business Event System, 5–77
Reset process. See Rollback
RESPOND mode, 2–15
Respond(), 4–4, 4–29
Responder, 4–29
Responder(), 4–31
Responses, processing, 4–4
ResumeProcess(), 2–36
Role hierarchies, APIs, 3–53
Rollback, of process, 2–82

S
Savepoints, 2–3
Schedule_changes(), 3–39
Send date, for event messages, 5–34
Send(), 4–2, 4–16, 5–34

SendGroup(), 4–2, 4–21
SendNotification(), 5–63
set_document_id_html(), 7–7
SetAdHocRoleAttr(), 3–32
SetAdHocRoleExpiration(), 3–29
SetAdHocRoleStatus(), 3–27
SetAdHocUserAttr(), 3–30
SetAdHocUserExpiration(), 3–28
SetAdHocUserStatus(), 3–26
SetAttrDate(), 4–37
SetAttrNumber(), 4–37
SetAttrText(), 4–37
setCorrelationID, 5–16
SetDispatchMode(), 5–43
SetErrorInfo(), 5–42
setErrorMessage, 5–18
setErrorStack, 5–19
setErrorSubscription, 5–18
setEventData, 5–17
setEventKey, 5–17
setEventName, 5–17
setFromAgent, 5–18
SetItemAttrDate(), 2–50
SetItemAttrDateArray(), 2–56
SetItemAttrDocument(), 2–54
SetItemAttrEvent(), 2–50
setItemAttrFormattedDate(), 2–53
SetItemAttrNumber(), 2–50
SetItemAttrNumberArray(), 2–56
SetItemAttrText(), 2–50
SetItemAttrTextArray(), 2–56
setItemAttrValue(), 2–95
SetItemOwner(), 2–28
SetItemParent(), 2–85
SetItemUserKey(), 2–25
SetMaxNestedRaise(), 5–48
SetMsgAttr(), 6–23
SetMsgResult(), 6–24
setName

WF_AGENT_T, 5–5
WF_PARAMETER_T, 5–7

setParameterList, 5–16

Index – 6 Oracle Workflow API Reference

SetParametersIntoParameterList(), 5–60
setPriority, 5–15
setReceiveDate, 5–16
setSendDate, 5–16
setSystem, 5–5
setToAgent, 5–18
setValue, 5–7
StartForkProcess(), 2–42
StartProcess(), 2–30
SubscriptionParameters(), 5–70
SubstituteSpecialChars(), 4–57
Success(), 5–57
SuspendProcess(), 2–34
Synch_all(), 3–38
Synch_changes(), 3–37
Synchronization

APIs, 3–40
with Oracle Internet Directory, 3–36
with Workflow local tables, 3–40

Synchronous processes, 2–16
SYS.AQ$_JMS_TEXT_MESSAGE, 5–24

T
Test(), 5–37
TestContext(), 4–49
TIMEOUT mode, 2–15
TOKEN(), 2–111
toString(), 2–106
Total(), 2–124
TotalPERM(), 2–126
TRANSFER mode, 2–15
Transfer(), 4–5, 4–25
TRANSLATE(), 2–118

U
UpdateInfo(), 4–6
UpdateInfo2(), 4–6
UpdateInfoGuest(), 4–6

Upgrading workflow definitions, 2–11
URLs, for event data, 2–52
User–defined datatypes, for the Business Event

System, 5–3
UserActive(), 3–10

V
value(), 2–100
Version, 2–11
Views, Oracle Workflow, 2–145
VoteCount(), 4–33
Voting activities, processing, 4–7

W
Warning(), 5–56
WF_AGENT_GROUPS Document Type

Definition, 5–91
WF_AGENT_GROUPS_PKG.Generate, 5–92
WF_AGENT_GROUPS_PKG.Receive, 5–93
WF_AGENT_T, 5–4
WF_AGENTS Document Type Definition, 5–88
WF_AGENTS_PKG.Generate, 5–89
WF_AGENTS_PKG.Receive, 5–90
WF_EVENT_FUNCTIONS_PKG.Generate(),

5–73
WF_EVENT_FUNCTIONS_PKG.Receive(),

5–75
WF_EVENT_GROUPS Document Type

Definition, 5–82
WF_EVENT_GROUPS_PKG.Generate, 5–83
WF_EVENT_GROUPS_PKG.Receive, 5–84
WF_EVENT_OJMSTEXT_QH, attribute

mapping, 5–24
WF_EVENT_SUBSCRIPTIONS Document

Type Definition, 5–94
WF_EVENT_SUBSCRIPTIONS_PKG.Generate,

5–95
WF_EVENT_SUBSCRIPTIONS_PKG.Receive,

5–96
WF_EVENT_T, 5–9

mapping attributes to
SYS.AQ$_JMS_TEXT_MESSAGE, 5–24

Index – 7

WF_EVENTS Document Type Definition, 5–79
WF_EVENTS_PKG.Generate, 5–80
WF_EVENTS_PKG.Receive, 5–81
WF_ITEM_ACTIVITY_STATUSES_V, 2–145
WF_ITEMS_V, 2–149
WF_LDAP, 3–36
WF_LOCAL_SYNCH, 3–40
WF_NOTIFICATION_ATTR_RESP_V, 2–147
WF_PARAMETER_LIST_T, 5–8
WF_PARAMETER_T, 5–6
wf_payload_t, 6–3
WF_PURGE, 2–119
WF_ROLE_HIERARCHY, 3–53
WF_RUNNABLE_PROCESSES_V, 2–148
WF_SYSTEMS Document Type Definition,

5–85
WF_SYSTEMS_PKG.Generate, 5–86
WF_SYSTEMS_PKG.Receive, 5–87
WFAttribute class, 2–97
WFAttribute(), 2–99
WFFunctionAPI class, 2–89
wfresgen, 2–112
Wftypes.sql, 5–3
WorkCount(), 4–51
Workflow Business Event System Cleanup

API, 5–97
Workflow Core APIs, 2–108
Workflow definitions, loading, 1–4
Workflow Definitions Loader, 1–4
Workflow Designer. See Oracle Workflow

Builder

Workflow Directory Service APIs, 3–2
Workflow Engine, 1–3

calling after activity completion, 2–8
calling for activity initiation, 2–2
CANCEL mode, 2–10
core APIs, 2–108, 2–119
deferred activities, 2–8
directory services, 3–2
error processing, 2–9
Java APIs, 2–4, 2–21
looping, 2–10
master/detail processes, 2–85
PL/SQL APIs, 2–21
RUN mode, 2–10
threshold cost, 2–8

Workflow Engine APIs, 2–2
Workflow Framework Monitor APIs, 2–141
Workflow LDAP APIs, 3–36
Workflow Local Synchronization APIs, 3–40
Workflow Monitor APIs, 2–131
Workflow Notification APIs. See Notification

APIs
Workflow Preferences API, 3–58
Workflow Purge APIs, 2–119
Workflow Queue APIs, 6–2
Workflow Resource Generator, 2–112

concurrent program, 2–113
Workflow Role Hierarchy APIs, 3–53
Workflow Views, 2–145
Workflow_Protocol(), 5–58
WriteMsg(), 6–22
WriteToClob(), 4–54

Index – 8 Oracle Workflow API Reference

Reader’s Comment Form

Oracle Workflow API Reference, Release 2.6.3.5

Part No. B12163–02

Oracle welcomes your comments and suggestions on the quality and usefulness of this publication. Your
input is an important part of the information we use for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and part
number of the documentation and the chapter, section, and page number (if available). You can send
comments to us in the following ways:

• Electronic mail: appsdoc_us@oracle.com

• Fax: (650) 506–7200 Attn: Oracle Workflow

• Postal Service

Oracle Applications Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
USA
Phone: (650) 506–7000

If you would like a reply, please give your name, address, telephone number, and electronic mail address
(optional).

If you have problems with the software, please contact your local Oracle Support Services.

	Contents
	Preface
	1 Overview of Oracle Workflow
	Overview of Oracle Workflow
	Major Features and Definitions
	Workflow Processes

	Oracle Workflow Procedures and Functions

	2 Workflow Engine APIs
	Overview of the Workflow Engine
	Oracle Workflow Java Interface
	Additional Workflow Engine Features

	Workflow Engine APIs
	CreateProcess
	SetItemUserKey
	GetItemUserKey
	GetActivityLabel
	SetItemOwner
	StartProcess
	LaunchProcess
	SuspendProcess
	ResumeProcess
	AbortProcess
	CreateForkProcess
	StartForkProcess
	Background
	AddItemAttribute
	AddItemAttributeArray
	SetItemAttribute
	setItemAttrFormattedDate
	SetItemAttrDocument
	SetItemAttributeArray
	getItemTypes
	GetItemAttribute
	GetItemAttrDocument
	GetItemAttrClob
	getItemAttributes
	GetItemAttrInfo
	GetActivityAttrInfo
	GetActivityAttribute
	GetActivityAttrClob
	getActivityAttributes
	BeginActivity
	CompleteActivity
	CompleteActivityInternalName
	AssignActivity
	Event
	HandleError
	SetItemParent
	ItemStatus
	getProcessStatus

	Workflow Function APIs
	loadItemAttributes
	loadActivityAttributes
	getActivityAttr
	getItemAttr
	setItemAttrValue
	execute

	Workflow Attribute APIs
	WFAttribute
	value
	getName
	getValue
	getType
	getFormat
	getValueType
	toString
	compareTo

	Workflow Core APIs
	CLEAR
	GET_ERROR
	TOKEN
	RAISE
	CONTEXT
	TRANSLATE

	Workflow Purge APIs
	Items
	Activities
	Notifications
	Total
	TotalPERM
	Directory
	Purge Obsolete Workflow Runtime Data Concurrent Program

	Workflow Monitor APIs
	GetAccessKey
	GetDiagramURL
	GetEnvelopeURL
	GetAdvancedEnvelopeURL

	Workflow Status Monitor APIs
	GetEncryptedAccessKey
	GetEncryptedAdminMode
	IsMonitorAdministrator

	Oracle Workflow Views
	WF_ITEM_ACTIVITY_STATUSES_V
	WF_NOTIFICATION_ATTR_RESP_V
	WF_RUNNABLE_PROCESSES_V
	WF_ITEMS_V

	3 Directory Service APIs
	Workflow Directory Service APIs
	GetRoleUsers
	GetUserRoles
	GetRoleInfo
	GetRoleInfo2
	IsPerformer
	UserActive
	GetUserName
	GetRoleName
	GetRoleDisplayName
	CreateAdHocUser
	CreateAdHocRole
	CreateAdHocRole2
	AddUsersToAdHocRole
	AddUsersToAdHocRole2
	RemoveUsersFromAdHocRole
	SetAdHocUserStatus
	SetAdHocRoleStatus
	SetAdHocUserExpiration
	SetAdHocRoleExpiration
	SetAdHocUserAttr
	SetAdHocRoleAttr
	ChangeLocalUserName
	IsMLSEnabled

	Workflow LDAP APIs
	Synch_changes
	Synch_all
	Schedule_changes

	Workflow Local Synchronization APIs
	Propagate_User
	Propagate_Role
	PropagateUserRole

	Workflow Role Hierarchy APIs
	AddRelationship
	ExpireRelationship
	GetRelationships
	GetAllRelationships

	Workflow Preferences API
	get_pref

	4 Notification System APIs
	Overview of the Oracle Workflow Notification System
	Notification Model
	Notification Document Type Definition

	Notification APIs
	Send
	SendGroup
	Forward
	Transfer
	Cancel
	CancelGroup
	Respond
	Responder
	NtfSignRequirementsMet
	VoteCount
	OpenNotificationsExist
	Close
	AddAttr
	SetAttribute
	GetAttrInfo
	GetInfo
	GetText
	GetShortText
	GetAttribute
	GetAttrDoc
	GetSubject
	GetBody
	GetShortBody
	TestContext
	AccessCheck
	WorkCount
	getNotifications
	getNotificationAttributes
	WriteToClob
	Denormalize_Notification
	SubstituteSpecialChars

	Notification Mailer Utility API
	EncodeBLOB

	5 Business Event System APIs
	Overview of the Oracle Workflow Business Event System
	Business Event System Datatypes
	Agent Structure
	getName
	getSystem
	setName
	setSystem
	Parameter Structure
	getName
	getValue
	setName
	setValue
	Parameter List Structure
	Event Message Structure
	Initialize
	getPriority
	getSendDate
	getReceiveDate
	getCorrelationID
	getParameterList
	getEventName
	getEventKey
	getEventData
	getFromAgent
	getToAgent
	getErrorSubscription
	getErrorMessage
	getErrorStack
	setPriority
	setSendDate
	setReceiveDate
	setCorrelationID
	setParameterList
	setEventName
	setEventKey
	setEventData
	setFromAgent
	setToAgent
	setErrorSubscription
	setErrorMessage
	setErrorStack
	Content
	Address
	AddParameterToList
	GetValueForParameter
	Example for Using Abstract Datatypes
	Mapping Between WF_EVENT_T and SYS.AQ$_JMS_TEXT_MESSAGE

	Event APIs
	Raise
	Raise3
	Send
	NewAgent
	Test
	Enqueue
	Listen
	SetErrorInfo
	SetDispatchMode
	AddParameterToList
	AddParameterToListPos
	GetValueForParameter
	GetValueForParameterPos
	SetMaxNestedRaise
	GetMaxNestedRaise

	Event Subscription Rule Function APIs
	Default_Rule
	Log
	Error
	Warning
	Success
	Workflow_Protocol
	Error_Rule
	SetParametersIntoParameterList
	Default_Rule2
	Default_Rule3
	SendNotification
	Instance_Default_Rule

	Event Function APIs
	Parameters
	SubscriptionParameters
	AddCorrelation
	Generate
	Receive

	Business Event System Replication APIs
	WF_EVENTS Document Type Definition
	WF_EVENTS_PKG.Generate
	WF_EVENTS_PKG.Receive
	WF_EVENT_GROUPS Document Type Definition
	WF_EVENT_GROUPS_PKG.Generate
	WF_EVENT_GROUPS_PKG.Receive
	WF_SYSTEMS Document Type Definition
	WF_SYSTEMS_PKG.Generate
	WF_SYSTEMS_PKG.Receive
	WF_AGENTS Document Type Definition
	WF_AGENTS_PKG.Generate
	WF_AGENTS_PKG.Receive
	WF_AGENT_GROUPS Document Type Definition
	WF_AGENT_GROUPS_PKG.Generate
	WF_AGENT_GROUPS_PKG.Receive
	WF_EVENT_SUBSCRIPTIONS Document Type Definition
	WF_EVENT_SUBSCRIPTIONS_PKG.Generate
	WF_EVENT_SUBSCRIPTIONS_PKG.Receive

	Business Event System Cleanup API
	Cleanup_Subscribers

	6 Workflow Queue APIs
	Workflow Queue APIs
	EnqueueInbound
	DequeueOutbound
	DequeueEventDetail
	PurgeEvent
	PurgeItemType
	ProcessInboundQueue
	GetMessageHandle
	DequeueException
	DeferredQueue
	InboundQueue
	OutboundQueue
	ClearMsgStack
	CreateMsg
	WriteMsg
	SetMsgAttr
	SetMsgResult

	7 Document Management APIs
	Document Management APIs
	get_launch_document_url
	get_launch_attach_url
	get_open_dm_display_window
	get_open_dm_attach_window
	set_document_id_html

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [540.000 648.000]
>> setpagedevice

