
Oracle® Application Server
MapViewer User’s Guide

10g Release 2 (10.1.2)

B14036-02

July 2005

Describes how to use OracleAS MapViewer, a tool that
renders maps showing different kinds of spatial data.

Oracle Application Server MapViewer User’s Guide, 10g Release 2 (10.1.2)

B14036-02

Copyright © 2001, 2005, Oracle. All rights reserved.

Primary Author: Chuck Murray

Contributors: Dan Abugov, Janet Blowney, Clarke Colombo, Dan Geringer, Albert Godfrind, Frank Lee,
Joao Paiva, L.J. Qian, Vishal Rao, Jayant Sharma, Ji Yang

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

List of ExamplesList of FiguresList of Tables

Preface ... xiii

Audience... xiii
Documentation Accessibility ... xiii
Related Documents ... xiv
Conventions ... xiv

New and Changed Features.. xv

Enhanced SVG Mouse Event Support.. xv
Oracle Spatial GeoRaster Support .. xv
Oracle Spatial Network Data Model Support ... xv
Oracle Spatial Topology Data Model Support.. xv
Workspace Manager Support.. xv
Multiple Data Sources in a Map Request... xvi
Maps in SVG Formats (Basic, Compressed, and Tiny) .. xvi
Dynamic Coordinate System Transformation in a Map Request... xvi
OGC WMS Protocol Support... xvi
JPEG Format and Transparent PNG Map Support .. xvi
Container Data Source as the Map Data Source .. xvii
OracleAS MapViewer Configuration File Moved Inside the web.war File..................................... xvii
Label Styles in a Bucket-Based Advanced Style .. xvii
Style Enhancements ... xvii
Dynamically Defined (Temporary) Styles .. xvii
Bounding Themes Option for Restricting Displayed Data .. xvii
Performance Enhancements and Bug Fixes.. xvii
High Availability and OracleAS MapViewer ... xviii
Flash Map Support Deprecated... xviii

1 Introduction to OracleAS MapViewer

1.1 Overview of OracleAS MapViewer.. 1-1
1.1.1 Basic Flow of Action with OracleAS MapViewer ... 1-2
1.1.2 OracleAS MapViewer Architecture .. 1-2
1.2 Getting Started with OracleAS MapViewer.. 1-3
1.3 Prerequisite Software for OracleAS MapViewer.. 1-3
1.4 Installing and Deploying OracleAS MapViewer ... 1-4

iv

1.4.1 Deploying OracleAS MapViewer in an Oracle Application Server Environment..... 1-4
1.4.1.1 URL Mappings for the Web Modules Page.. 1-6
1.4.1.2 Summary Page .. 1-6
1.4.1.3 Pages for Completing the Deployment ... 1-6
1.4.1.4 Configuring a Secure Administrator User for OracleAS MapViewer 1-7
1.4.2 Installing OracleAS MapViewer with a Standalone Installation of OC4J 1-12
1.4.2.1 Editing the OC4J Configuration Files to Autostart OracleAS MapViewer....... 1-13
1.4.2.2 Restarting OC4J.. 1-14
1.4.2.3 Running SQL Scripts, If Necessary ... 1-14
1.4.2.4 Verifying That the Deployment Was Successful... 1-14
1.4.2.5 Checking the OracleAS MapViewer Administrator User Account 1-16
1.5 Configuring OracleAS MapViewer... 1-16
1.5.1 Specifying Logging Information... 1-21
1.5.2 Specifying Map File Storage and Life Cycle Information... 1-22
1.5.3 Restricting Administrative (Non-Map) Requests .. 1-23
1.5.4 Specifying a Web Proxy for Background Image URLs ... 1-23
1.5.5 Specifying Global Map Configuration Options ... 1-24
1.5.6 Customizing the Spatial Data Cache ... 1-25
1.5.7 Defining Permanent Map Data Sources .. 1-26
1.6 High Availability and OracleAS MapViewer .. 1-28
1.6.1 Deploying OracleAS MapViewer on a Multiprocess OC4J Instance 1-28
1.6.2 Deploying OracleAS MapViewer on a Middle-Tier Cluster 1-28
1.7 Getting Started Using OracleAS MapViewer .. 1-29
1.7.1 Dynamically Defining OracleAS MapViewer Data Sources 1-29
1.7.2 Example JSP File That Uses OracleAS MapViewer ... 1-30
1.7.3 Additional JSP Example Files ... 1-31

2 OracleAS MapViewer Concepts

2.1 Overview of OracleAS MapViewer.. 2-1
2.2 Styles ... 2-2
2.2.1 Specifying a Label Style for a Bucket .. 2-3
2.2.2 Orienting Text Labels and Markers .. 2-5
2.2.2.1 Controlling Text Style Orientation... 2-5
2.2.2.2 Controlling Marker Orientation ... 2-6
2.3 Themes.. 2-7
2.3.1 Predefined Themes .. 2-8
2.3.1.1 Styling Rules in Predefined Spatial Geometry Themes .. 2-8
2.3.1.2 Caching of Predefined Themes.. 2-10
2.3.2 JDBC Themes... 2-10
2.3.2.1 Storing Complex JDBC Themes in the Database .. 2-11
2.3.3 Thematic Mapping ... 2-12
2.3.4 Attributes Affecting Theme Appearance .. 2-18
2.3.5 Image Themes ... 2-19
2.3.5.1 Creating Predefined Image Themes ... 2-20
2.3.6 GeoRaster Themes .. 2-21
2.3.6.1 Creating Predefined GeoRaster Themes .. 2-23
2.3.7 Network Themes... 2-28

v

2.3.7.1 Creating Predefined Network Themes... 2-30
2.3.7.2 Using OracleAS MapViewer for Network Analysis .. 2-31
2.3.8 Topology Themes ... 2-32
2.3.8.1 Creating Predefined Topology Themes ... 2-34
2.4 Maps... 2-35
2.4.1 Map Size and Scale ... 2-36
2.4.2 Map Legend... 2-37
2.5 Data Sources ... 2-38
2.6 How a Map Is Generated.. 2-39
2.7 Workspace Manager Support in OracleAS MapViewer .. 2-40
2.8 OracleAS MapViewer Metadata Views.. 2-43
2.8.1 xxx_SDO_MAPS Views ... 2-44
2.8.2 xxx_SDO_THEMES Views .. 2-44
2.8.3 xxx_SDO_STYLES Views... 2-45

3 OracleAS MapViewer Map Request XML API

3.1 Map Request Examples .. 3-2
3.1.1 Simple Map Request.. 3-2
3.1.2 Map Request with Dynamically Defined Theme.. 3-3
3.1.3 Map Request with Base Map, Center, and Additional Predefined Theme................. 3-3
3.1.4 Map Request with Center, Base Map, Dynamically Defined Theme, and Other

Features 3-4
3.1.5 Map Request for Point Features with Attribute Value and Dynamically Defined

Variable Marker Style 3-5
3.1.6 Map Request with an Image Theme ... 3-6
3.1.7 Map Request for Image of Map Legend Only ... 3-7
3.1.8 Map Request with SRID Different from Data SRID ... 3-8
3.1.9 Map Request Using a Pie Chart Theme.. 3-9
3.1.10 Java Program Using OracleAS MapViewer.. 3-11
3.1.11 PL/SQL Program Using OracleAS MapViewer .. 3-13
3.2 Map Request DTD ... 3-14
3.2.1 map_request Element... 3-19
3.2.1.1 map_request Attributes .. 3-19
3.2.2 bounding_themes Element.. 3-23
3.2.3 box Element ... 3-25
3.2.4 center Element... 3-25
3.2.5 geoFeature Element .. 3-26
3.2.6 jdbc_georaster_query Element.. 3-29
3.2.7 jdbc_image_query Element ... 3-29
3.2.8 jdbc_network_query Element ... 3-31
3.2.9 jdbc_query Element .. 3-31
3.2.10 jdbc_topology_query Element .. 3-33
3.2.11 legend Element.. 3-33
3.2.12 style Element ... 3-36
3.2.13 styles Element.. 3-37
3.2.14 theme Element... 3-37
3.2.15 themes Element ... 3-39

vi

3.3 Information Request DTD .. 3-40
3.4 Map Response DTD... 3-41
3.5 OracleAS MapViewer Exception DTD .. 3-41
3.6 Geometry DTD (OGC) .. 3-42

4 OracleAS MapViewer JavaBean-Based API

4.1 Usage Model for the OracleAS MapViewer JavaBean-Based API....................................... 4-1
4.2 Preparing to Use the OracleAS MapViewer JavaBean-Based API 4-3
4.3 Using the OracleAS MapViewer Bean... 4-3
4.3.1 Creating the OracleAS MapViewer Bean... 4-4
4.3.2 Setting Up Parameters of the Current Map Request .. 4-4
4.3.3 Adding Themes or Features to the Current Map Request... 4-6
4.3.4 Adding Dynamically Defined Styles to a Map Request .. 4-8
4.3.5 Manipulating Themes in the Current Map Request.. 4-10
4.3.6 Sending a Request to the OracleAS MapViewer Service .. 4-12
4.3.7 Extracting Information from the Current Map Response... 4-13
4.3.8 Obtaining Information About Data Sources... 4-13
4.3.9 Querying Nonspatial Attributes in the Current Map Window 4-13
4.3.10 Using Optimal Methods for Thick Clients .. 4-15

5 OracleAS MapViewer JSP Tag Library

5.1 Using OracleAS MapViewer JSP Tags ... 5-1
5.2 OracleAS MapViewer JSP Tag Reference Information.. 5-3
5.2.1 addJDBCTheme.. 5-3
5.2.2 addPredefinedTheme.. 5-5
5.2.3 getMapURL .. 5-5
5.2.4 getParam ... 5-6
5.2.5 identify .. 5-6
5.2.6 importBaseMap.. 5-8
5.2.7 init .. 5-8
5.2.8 makeLegend ... 5-9
5.2.9 run.. 5-9
5.2.10 setParam... 5-10
5.3 JSP Example (Several Tags) for OracleAS MapViewer .. 5-11

6 OracleAS MapViewer Administrative Requests

6.1 Managing Data Sources ... 6-1
6.1.1 Adding a Data Source ... 6-1
6.1.2 Removing a Data Source... 6-3
6.1.3 Redefining a Data Source ... 6-4
6.1.4 Listing All Data Sources ... 6-5
6.1.5 Checking the Existence of a Data Source ... 6-6
6.2 Listing All Maps.. 6-6
6.3 Listing Themes .. 6-7
6.4 Listing Styles.. 6-8
6.5 Managing Cache.. 6-9

vii

6.5.1 Clearing Metadata Cache for a Data Source .. 6-9
6.5.2 Clearing Spatial Data Cache for a Theme ... 6-10
6.6 Editing the OracleAS MapViewer Configuration File.. 6-11
6.7 Restarting the OracleAS MapViewer Server.. 6-11

7 Map Definition Tool

7.1 Overview of the Map Definition Tool.. 7-2
7.2 Connection Page.. 7-3
7.3 Styles: Color Page.. 7-4
7.4 Styles: Marker Page .. 7-5
7.5 Styles: Line Page.. 7-6
7.6 Styles: Area Page... 7-8
7.7 Styles: Text Page.. 7-9
7.8 Styles: Advanced Page .. 7-10
7.9 Themes Page ... 7-11
7.10 Maps Page ... 7-12

A XML Format for Styles, Themes, and Base Maps

A.1 Color Styles ... A-2
A.2 Marker Styles .. A-2
A.2.1 Vector Marker Styles .. A-3
A.2.2 Image Marker Styles... A-4
A.2.3 Using Marker Styles on Lines ... A-4
A.3 Line Styles ... A-5
A.4 Area Styles .. A-6
A.5 Text Styles ... A-7
A.6 Advanced Styles... A-7
A.6.1 Bucket Styles.. A-8
A.6.1.1 Collection-Based Buckets with Discrete Values.. A-8
A.6.1.2 Individual Range-Based Buckets... A-9
A.6.1.3 Equal-Ranged Buckets .. A-9
A.6.2 Color Scheme Styles ... A-10
A.6.3 Variable Marker Styles... A-11
A.7 Themes: Styling Rules ... A-11
A.8 Base Maps.. A-14

B JavaScript Functions for SVG Maps

B.1 Navigation Control Functions.. B-1
B.2 Display Control Functions.. B-2
B.3 Mouse-Click Event Control Functions.. B-2
B.3.1 Predefined Mouse-Click Control Functions ... B-2
B.3.2 User-Defined Mouse Event Control Functions .. B-3
B.3.2.1 Map-Level Functions .. B-3
B.3.2.2 Theme-Level Functions .. B-4
B.3.2.3 Selection Event Control Functions .. B-5
B.4 Other Control Functions ... B-5

viii

C Creating and Registering a Custom Image Renderer

D OGC WMS Support in OracleAS MapViewer

D.1 Setting Up the WMS Interface for OracleAS MapViewer.. D-1
D.1.1 Required Files.. D-3
D.2 WMS Specification and Corresponding OracleAS MapViewer Concepts D-3
D.2.1 Supported GetMap Request Parameters ... D-3
D.2.1.1 BASEMAP Parameter (OracleAS MapViewer-Only)... D-4
D.2.1.2 BBOX Parameter .. D-4
D.2.1.3 BGCOLOR Parameter ... D-4
D.2.1.4 DATASOURCE Parameter (OracleAS MapViewer-Only) D-4
D.2.1.5 DYNAMIC_STYLES Parameter (OracleAS MapViewer-Only)............................ D-5
D.2.1.6 EXCEPTIONS Parameter.. D-5
D.2.1.7 FORMAT Parameter ... D-5
D.2.1.8 HEIGHT Parameter... D-5
D.2.1.9 LAYERS Parameter ... D-5
D.2.1.10 LEGEND_REQUEST Parameter (OracleAS MapViewer-Only) D-5
D.2.1.11 MVTHEMES Parameter (OracleAS MapViewer-Only) ... D-5
D.2.1.12 REQUEST Parameter .. D-6
D.2.1.13 SERVICE Parameter .. D-6
D.2.1.14 SRS Parameter .. D-6
D.2.1.15 STYLES Parameter... D-6
D.2.1.16 TRANSPARENT Parameter... D-6
D.2.1.17 VERSION Parameter... D-6
D.2.1.18 WIDTH Parameter... D-6
D.2.2 Supported GetCapabilities Request and Response Features D-6
D.2.3 Supported GetFeatureInfo Request and Response Features .. D-9
D.2.3.1 GetMap Parameter Subset for GetFeatureInfo Requests D-9
D.2.3.2 EXCEPTIONS Parameter.. D-10
D.2.3.3 FEATURE_COUNT Parameter ... D-10
D.2.3.4 INFO_FORMAT Parameter ... D-10
D.2.3.5 QUERY_LAYERS Parameter ... D-10
D.2.3.6 QUERY_TYPE Parameter (OracleAS MapViewer-Only) D-10
D.2.3.7 RADIUS Parameter (OracleAS MapViewer-Only)... D-10
D.2.3.8 UNIT Parameter (OracleAS MapViewer-Only) .. D-11
D.2.3.9 X and Y Parameters ... D-11
D.2.3.10 Specifying Attributes to Be Queried for a GetFeatureInfo Request D-11
D.3 Adding a WMS Map Theme... D-11
D.3.1 XML API for Adding a WMS Map Theme ... D-12
D.3.2 JavaBean-Based API for Adding a WMS Map Theme .. D-14

Index

ix

List of Examples

1–1 Sample OracleAS MapViewer Configuration File .. 1-17
1–2 Restricting Administrative Requests... 1-23
2–1 Advanced Style with Text Label Style for Each Bucket .. 2-3
2–2 Labeling an Oriented Point ... 2-5
2–3 XML Definition of Styling Rules for an Airport Theme.. 2-8
2–4 JDBC Theme in a Map Request.. 2-11
2–5 Complex Query in a Predefined Theme ... 2-12
2–6 XML Definition of Styling Rules for an Earthquakes Theme.. 2-13
2–7 Advanced Style Definition for an Earthquakes Theme.. 2-14
2–8 Mapping Population Density Using a Graduated Color Scheme..................................... 2-14
2–9 Mapping Average Household Income Using a Graduated Color Scheme 2-15
2–10 Mapping Average Household Income Using a Color for Each Income Range 2-16
2–11 Advanced Style Definition for Gasoline Stations Theme... 2-16
2–12 Styling Rules of Theme Definition for Gasoline Stations... 2-17
2–13 Creating a Predefined Image Theme .. 2-20
2–14 GeoRaster Theme Containing a SQL Statement.. 2-23
2–15 GeoRaster Theme Specifying a Raster ID and Raster Data Table..................................... 2-23
2–16 Creating a Predefined GeoRaster Theme ... 2-23
2–17 Preparing GeoRaster Data for Use with a GeoRaster Theme.. 2-24
2–18 Network Theme ... 2-29
2–19 Creating a Predefined Network Theme.. 2-30
2–20 Network Theme for Shortest-Path Analysis .. 2-31
2–21 Network Theme for Within-Cost Analysis .. 2-32
2–22 Topology Theme .. 2-33
2–23 Topology Theme Using Debug Mode... 2-34
2–24 Creating a Predefined Topology Theme .. 2-34
2–25 XML Definition of a Base Map... 2-35
2–26 Legend Included in a Map Request... 2-37
2–27 Workspace Manager-Related Attributes in a Map Request .. 2-41
2–28 <list_workspace_name> Element in an Administrative Request..................................... 2-42
2–29 <list_workspace_session> Element in an Administrative Request 2-43
2–30 Finding Styles Owned by the MDSYS Schema.. 2-45
3–1 Simple Map Request ("Hello World") .. 3-3
3–2 Simple Map Request with a Dynamically Defined Theme... 3-3
3–3 Map Request with Base Map, Center, and Additional Predefined Theme 3-3
3–4 Map Request with Center, Base Map, Dynamically Defined Theme, Other Features...... 3-4
3–5 Map Request for Point Features with Attribute Value and Dynamically Defined Variable

Marker Style 3-5
3–6 Map Request with an Image Theme .. 3-6
3–7 Map Request for Image of Map Legend Only .. 3-7
3–8 Map Request with SRID Different from Data SRID... 3-8
3–9 Map Request Using a Pie Chart Theme.. 3-10
3–10 JDBC Theme Using a Pie Chart Style.. 3-11
3–11 Java Program That Interacts with OracleAS MapViewer .. 3-11
3–12 PL/SQL Program That Interacts with OracleAS MapViewer... 3-13
3–13 OracleAS MapViewer Information Request .. 3-40
3–14 Map Response .. 3-41
5–1 OracleAS MapViewer Operations Using JSP Tags ... 5-12
6–1 Adding a Data Source by Specifying Detailed Connection Information............................ 6-2
6–2 Adding a Data Source by Specifying the Container Data Source.. 6-3
6–3 Removing a Data Source.. 6-4
C–1 Custom Image Renderer for ECW Image Format... C-3
D–1 WMS Servlet Filter Entries in the web.xml File... D-1
D–2 GetMap Request... D-4

x

D–3 GetCapabilities Response (Excerpt) .. D-7
D–4 GetFeatureInfo Request... D-9
D–5 GetFeatureInfo Response.. D-9
D–6 Adding a WMS Map Theme (XML API) .. D-13

xi

List of Figures

1–1 Basic Flow of Action with OracleAS MapViewer .. 1-2
1–2 OracleAS MapViewer Architecture.. 1-3
1–3 Deploying OracleAS MapViewer: Wizard Introduction Page... 1-5
1–4 Deployed Applications .. 1-6
1–5 OracleAS MapViewer Administration Security Link.. 1-8
1–6 OracleAS MapViewer Security Page: Add User Button ... 1-9
1–7 OracleAS MapViewer Security: Add User Page ... 1-10
1–8 OracleAS MapViewer Security Page: Map Role to Principals Button 1-11
1–9 Mapping the OracleAS MapViewer Administrator User to the map_admin_role Role 1-12
1–10 OracleAS MapViewer Example JSP Display.. 1-31
2–1 Varying Label Styles for Different Buckets ... 2-4
2–2 Map Display of the Label for an Oriented Point .. 2-6
2–3 Oriented Marker.. 2-7
2–4 Thematic Mapping: Advanced Style and Theme Relationship .. 2-13
2–5 Image Theme and Other Themes Showing Boston Roadways ... 2-19
2–6 Map with Legend... 2-38
3–1 Map Display Using a Pie Chart Theme .. 3-10
3–2 Bounding Themes .. 3-25
3–3 Orientation Vector ... 3-27
3–4 Map with <geoFeature> Element Showing Two Concentric Circles 3-29
3–5 Two-Column Map Legend ... 3-34
4–1 OracleAS MapViewer Bean Usage Scenarios ... 4-2
7–1 Connection Page.. 7-3
7–2 Color Page .. 7-4
7–3 Marker Page... 7-5
7–4 Line Page .. 7-6
7–5 Area Page ... 7-8
7–6 Text Page .. 7-9
7–7 Advanced Page... 7-10
7–8 Themes Page ... 7-11
7–9 Maps Page ... 7-13
A–1 Shield Symbol Marker for a Highway .. A-4
A–2 Text Style with White Background.. A-7

xii

List of Tables

2–1 Style Types and Applicable Geometry Types.. 2-2
2–2 Table Used with Gasoline Stations Theme.. 2-17
2–3 xxx_SDO_MAPS Views.. 2-44
2–4 xxx_SDO_THEMES Views .. 2-44
2–5 xxx_SDO_STYLES Views... 2-45
5–1 JSP Tags for OracleAS MapViewer ... 5-3
5–2 addJDBCTheme Tag Parameters ... 5-4
5–3 addPredefinedTheme Tag Parameters ... 5-5
5–4 getParam Tag Parameter... 5-6
5–5 identify Tag Parameters .. 5-6
5–6 importBaseMap Tag Parameter ... 5-8
5–7 init Tag Parameters.. 5-8
5–8 makeLegend Tag Parameters... 5-9
5–9 run Tag Parameters... 5-10
5–10 setParam Tag Parameters .. 5-10

xiii

Preface

Oracle Application Server MapViewer User’s Guide describes how to install and use
Oracle Application Server MapViewer (OracleAS MapViewer), a tool that renders
maps showing different kinds of spatial data.

Audience
This document is intended primarily for programmers who develop applications that
require maps to be drawn. You should understand Oracle database concepts and the
major concepts associated with XML, including DTDs. You should also be familiar
with Oracle Spatial or Oracle Locator concepts, or at least have access to Oracle Spatial
User's Guide and Reference.

This document is not intended for end users of Web sites or client applications.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

xiv

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see the following documents in the Oracle Database
documentation set:

■ Oracle Spatial User's Guide and Reference

■ Oracle Spatial GeoRaster

■ Oracle Spatial Topology and Network Data Models

■ Oracle Database Concepts

■ Oracle Database SQL Reference

See also the following document in the Oracle Application Server documentation set:

■ Oracle Application Server High Availability Guide

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, go to the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xv

New and Changed Features

This section describes major features that are new or changed since the previous
release of OracleAS MapViewer, which was included in Oracle9iAS Release 10g (9.0.4).

Enhanced SVG Mouse Event Support
The following new attributes are supported for mouse events with SVG maps:

■ onmousemove for the <map_request> and <theme> elements

■ onmouseover for the <theme> element

■ onmouseout for the <theme> element

The <map_request> attributes are described in Section 3.2.1.1, and the <theme>
attributes are described in Section 3.2.14. For an explanation of map-level and
theme-level user-defined mouse event functions, see Section B.3.2.

Oracle Spatial GeoRaster Support
Oracle Spatial GeoRaster data can now be visualized in OracleAS MapViewer. You can
define dynamic or permanent themes based on GeoRaster data. Vector and raster data
can now be effectively overlaid in a single map. For more information, see
Section 2.3.6.

Oracle Spatial Network Data Model Support
Networks created using the Oracle Spatial network data model can now be visualized
in OracleAS MapViewer. You can view a network as well as the result of limited
network analysis results, and you can customize the rendering and labeling styles for
the network's links, nodes, and paths. For more information, see Section 2.3.7.

Oracle Spatial Topology Data Model Support
Topologies created using the Oracle Spatial topology data model can now be
visualized in OracleAS MapViewer, in both regular and debug modes. For more
information, see Section 2.3.8.

Workspace Manager Support
Workspace Manager is an Oracle Database feature that lets you version-enable one or
more tables in the database. You can request a map from a specific workspace, at a

xvi

specific savepoint in a workspace, or at a point close to a specific date in a workspace.
You can also perform administrative requests related to Workspace Manager support.
For more information, see Section 2.7.

Multiple Data Sources in a Map Request
You can now generate a map based on dynamic or predefined themes that come from
different data sources (databases). This capability is necessary for aggregating data
from multiple data stores. To specify a data source for a theme, use the datasource
attribute in the <theme> element, as explained in Section 3.2.14.

Maps in SVG Formats (Basic, Compressed, and Tiny)
OracleAS MapViewer now supports the output of maps in SVG Basic, SVG
Compressed, and SVG Tiny formats. When generating an SVG map, you can specify
attributes for a theme that will be returned with the resulting SVG map, which can
then be displayed in a pop-up window that follows your cursor as you move around
in the SVG map. You can also customize and control the layers in a generated SVG
map through such tools as JavaScript.

The format attribute of the <map_request> element (see Section 3.2.1.1) includes
the following new possible values: SVG_STREAM, SVG_URL, SVGZ_STREAM, SVGZ_
URL, SVGTINY_STREAM, and SVGTINY_URL. The <map_request> element also
contains the following new attributes for SVG maps: navbar, infoon, onclick,
onrectselect, onpolyselect, and rasterbasemap. The <theme> element,
described in Section 3.2.14, contains the following new attributes for SVG maps:
fixed_svglabel, visible_in_svg, selectable_in_svg, part_of_basemap,
and onclick.

The OracleAS MapViewer JavaScript application programming interface (API) for
SVG maps is described in Appendix B.

Dynamic Coordinate System Transformation in a Map Request
You can now specify a SRID (spatial reference ID, or coordinate reference system ID) in
a map request, and OracleAS MapViewer will transform the theme data if it is not
already in the specified SRID, as explained in Section 3.1.8.

OGC WMS Protocol Support
OracleAS MapViewer supports the rendering of data delivered using the Open GIS
Consortium (OGC) Web Map Service (WMS) protocol, as explained in Appendix D.

JPEG Format and Transparent PNG Map Support
OracleAS MapViewer now supports indexed PNG maps with a transparent
background and JPEG maps. For a JPEG map, specify the format attribute value as
JPEG_STREAM or JPEG_URL in the map request. For an indexed PNG map, specify
the format attribute value as PNG8_URL or PNG8_STREAM, and specify
transparent=true. For information about these attributes and their possible values,
see Section 3.2.1.1.

xvii

Container Data Source as the Map Data Source
OracleAS MapViewer now lets you use a data source defined in the OC4J container as
the map data source, as explained in Section 6.1.1 and illustrated in Example 6–2.

OracleAS MapViewer Configuration File Moved Inside the web.war File
In previous releases, the OracleAS MapViewer configuration file
(mapViewerConfig.xml) was located in the conf directory and outside the
web.war file. Starting with this release, the conf directory is moved into its WEB-INF
directory. This makes it easier to import the web.war file into JDeveloper and to
repackage or redeploy it with customized configurations.

Label Styles in a Bucket-Based Advanced Style
Previously, you could specify only a rendering style for each bucket in an advanced
style. Now, you can specify a label (text) style for each bucket, as explained in
Section 2.2.1. This makes it possible to replace many similar styling rules (which result
in many subqueries) in a predefined theme with a single advanced style.

Style Enhancements
Several enhancements have been made to existing styles. The line style supports
arrows, and a line style can be used as the boundary of an area style. Text and marker
style displays can be further controlled using the new support for orientation vectors
(see Section 2.2.2).

Dynamically Defined (Temporary) Styles
You can now create dynamically defined styles (that is, temporary styles) for use with
a map request. Dynamically defined styles are defined in Section 2.2. For information
about adding dynamically defined styles using the JavaBean-based API, see
Section 4.3.4.

Bounding Themes Option for Restricting Displayed Data
You can use the new <bounding_themes> element in a map request to restrict the
range of the user data to be plotted on a map. This element is described in
Section 3.2.2.

Performance Enhancements and Bug Fixes
The spatial data cache in OracleAS MapViewer has also been rewritten and improved
with more statistics to guide you in tuning the cache. The problem has been fixed
where generated map images were corrupted when multiple JVM processes were
started for a single OC4J instance. Several problems in the Java client API and the JSP
tag library were also fixed.

xviii

High Availability and OracleAS MapViewer
OracleAS MapViewer enables you to use the high availability features of Oracle
Application Server more effectively than in previous releases, as explained in
Section 1.6.

Flash Map Support Deprecated
Support for the Macromedia Flash mapping client, documented in an appendix in the
previous release of this manual, is deprecated. You are instead encouraged to use the
SVG support in OracleAS MapViewer.

Introduction to OracleAS MapViewer 1-1

1
Introduction to OracleAS MapViewer

Oracle Application Server MapViewer (OracleAS MapViewer) is a programmable tool
for rendering maps using spatial data managed by Oracle Spatial or Oracle Locator
(also referred to as Locator). OracleAS MapViewer provides tools that hide the
complexity of spatial data queries and cartographic rendering, while providing
customizable options for more advanced users. These tools can be deployed in a
platform-independent manner and are designed to integrate with map-rendering
applications.

This chapter contains the following major sections:

■ Section 1.1, "Overview of OracleAS MapViewer"

■ Section 1.2, "Getting Started with OracleAS MapViewer"

■ Section 1.3, "Prerequisite Software for OracleAS MapViewer"

■ Section 1.4, "Installing and Deploying OracleAS MapViewer"

■ Section 1.5, "Configuring OracleAS MapViewer" (for advanced users)

■ Section 1.6, "High Availability and OracleAS MapViewer" (for advanced users)

■ Section 1.7, "Getting Started Using OracleAS MapViewer"

1.1 Overview of OracleAS MapViewer
OracleAS MapViewer includes the following main components:

■ A rendering engine (Java class library) that provides cartographic rendering
capabilities (map renderer)

■ An Extensible Markup Language (XML) API that provides a programmable
interface to OracleAS MapViewer

The rendering engine connects to the Oracle database through Java Database
Connectivity (JDBC). It also loads the map metadata (such as map definitions, styling
rules, and symbology) from the database, and applies it to the retrieved spatial data.

The XML API provides high-level application developers with a convenient interface
for submitting a map request to OracleAS MapViewer and handling the map response.

In addition to these components, the Map Definition Tool, an unsupported tool
available through the Oracle Technology Network, simplifies the process of creating
and managing map, theme, and symbology metadata in a spatial database. For
information about the Map Definition Tool, see Chapter 7.

The primary benefit of OracleAS MapViewer is its integration with Oracle Spatial and
Oracle Locator. The current release of OracleAS MapViewer supports only

Overview of OracleAS MapViewer

1-2 Oracle Application Server MapViewer User’s Guide

two-dimensional vector geometries. OracleAS MapViewer is not a full-featured Web
map server or spatial application server.

1.1.1 Basic Flow of Action with OracleAS MapViewer
With OracleAS MapViewer, the basic flow of action involves two steps, whether the
client requests a map or some OracleAS MapViewer administrative action.

For a map request:

1. The client requests a map, passing in the map name, data source, center location,
map size, and, optionally, other data to be plotted on top of a map.

2. The server returns the map image (or a URL for the image) and the minimum
bounding rectangle (MBR) of the map, and the status of the request.

For an OracleAS MapViewer administrative request:

1. The client requests an OracleAS MapViewer administrative action, passing in the
specific type of request and appropriate input values.

2. The server returns the status of the request and the requested information.

Figure 1–1 shows the basic flow of action with OracleAS MapViewer.

Figure 1–1 Basic Flow of Action with OracleAS MapViewer

1.1.2 OracleAS MapViewer Architecture
Figure 1–2 illustrates the architecture of OracleAS MapViewer.

Oracle Spatial

MapViewer

Mapping Client
Map Request:
 - Map Name
 - Data Source
 - Center and Size
or
Administrative Request:
 - Type of Request
 - Input Values

Map Response:
 - Map Image
 - MBR of the Map
 - Status
or
Administrative Response:
 - Status
 - Output Values

Prerequisite Software for OracleAS MapViewer

Introduction to OracleAS MapViewer 1-3

Figure 1–2 OracleAS MapViewer Architecture

As shown in Figure 1–2:

■ OracleAS MapViewer is part of the Oracle Application Server middle tier.

■ OracleAS MapViewer includes a rendering engine.

■ OracleAS MapViewer can communicate with a client Web browser or application
using the HTTP protocol.

■ OracleAS MapViewer performs spatial data access (reading and writing Oracle
Spatial and Oracle Locator data) through JDBC calls to the database.

■ The database includes Oracle Spatial or Oracle Locator, as well as mapping
metadata.

1.2 Getting Started with OracleAS MapViewer
To get started using OracleAS MapViewer, follow these steps:

1. Either before or after you install and deploy OracleAS MapViewer, read Chapter 2
to be sure you understand important terms and concepts.

2. Ensure that you have the prerequisite software (see Section 1.3).

3. Install (if necessary) and deploy OracleAS MapViewer (see Section 1.4).

4. Use OracleAS MapViewer for some basic tasks, as described in Section 1.7.

5. Optionally, use the Map Definition Tool (described in Chapter 7) to familiarize
yourself with styles, themes, and maps, and the options for each.

1.3 Prerequisite Software for OracleAS MapViewer
To use OracleAS MapViewer, you must have the following Java packages and Oracle
products, with the release number listed or a later release:

■ Oracle Application Server 10g Release 2 (10.1.2), or a standalone version of Oracle
Application Server Containers for J2EE (OC4J) Release 9.0.4 or later, which is
available from the Oracle Technology Network at

MapViewer

Client

 Middle Tier
(Oracle

Application
Server)

Database

JDBC

HTTP

(rendering engine)

Web Browser or Application

Spatial or
Locator

Mapping
Metadata

Installing and Deploying OracleAS MapViewer

1-4 Oracle Application Server MapViewer User’s Guide

http://www.oracle.com/technology/

■ Oracle Spatial or Oracle Locator (Release 8.1.6 or later)

■ Oracle Client (Release 8.1.7 or later), if you need to use JDBC Oracle Call Interface
(OCI) features

■ J2SE SDK (Java 2 Platform Standard Edition, Software Development Kit from Sun
Microsystems) 1.4 or later, with SDK 1.4.2_04 the recommended Java version for
this release of OracleAS MapViewer

OracleAS MapViewer also supports the headless AWT mechanism in J2SE SDK 1.4,
which enables OracleAS MapViewer to run on Linux or UNIX systems without setting
any X11 DISPLAY variable. To enable AWT headless mode on Linux or UNIX
systems, specify the following in the command line to start OracleAS MapViewer:

-Djava.awt.headless=true

1.4 Installing and Deploying OracleAS MapViewer
This section describes how to install (if necessary) and deploy OracleAS MapViewer to
run in the middle tier. OracleAS MapViewer runs as an OC4J Web application and
receives map requests from a client.

If you want to use GeoRaster themes or network themes for network analysis, then
before you follow any procedure in this section, you must ensure that certain library
files are in the Java CLASSPATH definition. For example, if the files are not already in
the $ORACLE_HOME/lbs/mapviewer/web/WEB-INF/lib directory, you can add
them there.

■ To view GeoRaster data (described in Section 2.3.6), ensure that the Java Advanced
Imaging (JAI) library files (jai_core.jar and jai_codec.jar) are in the
OracleAS MapViewer library path. These files are included in a full Oracle
Application Server 10g or Oracle Database 10g installation. You can also get these
files from the Sun Microsystems Web site.

■ To perform network analysis, such as shortest-path and within-cost analysis (see
Section 2.3.7.2), and to view the results of the analysis on a map, ensure that the
network model library file (sdonm.jar) is in the OracleAS MapViewer library
path. This file is included in the Oracle Spatial installation for Oracle Database 10g.

You can deploy OracleAS MapViewer either in a full Oracle Application Server
environment or after a standalone installation of OC4J. Choose the procedure that
applies to your needs:

■ If you have already installed Oracle Application Server and want to deploy
OracleAS MapViewer, follow the instructions in Section 1.4.1.

■ If you have not installed Oracle Application Server but have installed OC4J and
now want to install and deploy OracleAS MapViewer, follow the instructions in
Section 1.4.2.

1.4.1 Deploying OracleAS MapViewer in an Oracle Application Server Environment
If you have already successfully installed Oracle Application Server, you can deploy
the OracleAS MapViewer application using the Oracle Enterprise Manager interface.

For all Oracle Application Server installation types except the J2EE and Web Cache
installation type and the Infrastructure installation type, the following files are placed
in the $ORACLE_HOME/lbs directory:

Installing and Deploying OracleAS MapViewer

Introduction to OracleAS MapViewer 1-5

■ mapviewer.ear

■ lib/sdovis.jar

■ lib/sdoapi.jar

■ lib/sdoutl.jar

The rest of this section describes how to deploy OracleAS MapViewer using the Oracle
Enterprise Manager interface. The main steps are the following:

1. Select or create an OC4J instance.

2. Deploy the mapviewer.ear file.

3. If sdovis.jar, sdoapi.jar, and sdoutl.jar exist as separate files (that is, if
you did not download a mapviewer.ear file that already includes these files),
add the directory for these files to the library path.

4. Configure a secure administrator user for OracleAS MapViewer.

In your Web browser, go to the Oracle Enterprise Manager Application Server page,
and either navigate to the OC4J instance where you want to deploy OracleAS
MapViewer or create a new OC4J instance for the deployment. Click the Applications
tab, and click the Deploy EAR file button to start a wizard that takes you through the
deployment steps. Figure 1–3 shows the introductory page for this wizard.

Figure 1–3 Deploying OracleAS MapViewer: Wizard Introduction Page

For J2EE Application, specify the complete path for the mapviewer.ear file.

Note: If you install and deploy OracleAS MapViewer with a
standalone installation of OC4J, as described in Section 1.4.2, the
mapviewer.ear file that you download already also includes the
sdovis.jar, sdoapi.jar, and sdoutl.jar files.

Installing and Deploying OracleAS MapViewer

1-6 Oracle Application Server MapViewer User’s Guide

For Application Name, specify mapviewer.

For Parent Application, accept the value default.

Press Continue to go to the next page of the wizard.

1.4.1.1 URL Mappings for the Web Modules Page
For URL Binding, specify /mapviewer.

Click Finish to go directly to the Summary page.

1.4.1.2 Summary Page
Review the information on the Summary page. If you need to make any changes, go
back to the appropriate screen. If the information is correct, click Deploy.

Oracle Enterprise Manager deploys mapviewer.ear, modifies some XML files,
creates a URL binding in the Oracle HTTP listener, and displays a screen with
information about deployed applications. Figure 1–4 shows part of this page.

Figure 1–4 Deployed Applications

1.4.1.3 Pages for Completing the Deployment
After you click Deploy on the Summary page, you must perform some steps to
associate the sdovis.jar, sdoapi.jar, and sdoutl.jar files with OracleAS
MapViewer. This section presents these steps.

Installing and Deploying OracleAS MapViewer

Introduction to OracleAS MapViewer 1-7

1. In the Deployed Applications section of the page shown in Figure 1–4, click the
button (in the Select column) next to mapviewer (in the Name column).

2. Click Edit.

3. On the next page, in the Administration section, under Properties, click General.

4. On the next page, in the Library Paths section, click Add Another Row.

5. In the box for the added row, type the path for the sdovis.jar file, which is in
the $ORACLE_HOME/lbs/lib directory.

For example: D:\oracle\ora_Bl\lbs\lib\sdovis.jar

6. Click Apply.

7. Repeat Steps 4 to 6 to add rows for the sdoapi.jar file and for the sdoutl.jar
file.

8. Restart the OC4J instance by clicking Restart on the OC4J instance page.

9. If the target database is Oracle9i Release 9.0.1 or earlier, run SQL scripts to create
the OracleAS MapViewer metadata views and predefined styles (see
Section 1.4.2.3).

10. Verify that the deployment was successful (see Section 1.4.2.4).

1.4.1.4 Configuring a Secure Administrator User for OracleAS MapViewer
Starting with Oracle Application Server MapViewer Release 9.0.4, you must configure
an administrator user for OracleAS MapViewer in order to access the OracleAS
MapViewer Admin page. This user must be given the OracleAS MapViewer map_
admin_role security role. Follow these steps to configure the administrator user for
OracleAS MapViewer.

1. Go to the OC4J instance running OracleAS MapViewer, select the mapviewer
application, and click the Security link shown in Figure 1–5.

Note: The sdovis.jar, sdoapi.jar, and sdoutl.jar files
contain the core rendering library for OracleAS MapViewer. These
files are not packaged as part of the mapviewer.ear file, because
some other Oracle Application Server components require their
functions. Therefore, the sdovis.jar, sdoapi.jar, and
sdoutl.jar files must be accessible even if OracleAS MapViewer
is never deployed (that is, even if the mapviewer.ear file is never
unpacked).

Installing and Deploying OracleAS MapViewer

1-8 Oracle Application Server MapViewer User’s Guide

Figure 1–5 OracleAS MapViewer Administration Security Link

2. On the Security page, click the Add User button (shown in Figure 1–6) to add a
user for OracleAS MapViewer.

Installing and Deploying OracleAS MapViewer

Introduction to OracleAS MapViewer 1-9

Figure 1–6 OracleAS MapViewer Security Page: Add User Button

3. On the Security: Add User page (shown in Figure 1–7), specify the user name, a
description, and password (twice, to confirm the password) for the new security
user being created for OracleAS MapViewer, and then click OK.

Installing and Deploying OracleAS MapViewer

1-10 Oracle Application Server MapViewer User’s Guide

Figure 1–7 OracleAS MapViewer Security: Add User Page

4. On the Security page, click the Map Role to Principals button (shown in
Figure 1–8) to map this new user to the OracleAS MapViewer security role map_
admin_role.

Installing and Deploying OracleAS MapViewer

Introduction to OracleAS MapViewer 1-11

Figure 1–8 OracleAS MapViewer Security Page: Map Role to Principals Button

5. On the Role page for map_admin_role, under Map Role to Users, select the
newly created user (shown in Figure 1–9) to be mapped to the map_admin_role
role, and then click Apply.

Installing and Deploying OracleAS MapViewer

1-12 Oracle Application Server MapViewer User’s Guide

Figure 1–9 Mapping the OracleAS MapViewer Administrator User to the map_admin_role Role

After completing these steps, you can go to the OracleAS MapViewer Admin page to
perform administrator operations, such as adding a data source. When you are
prompted for the user name and password, enter the values that you specified on the
Add User page.

After you have finished performing OracleAS MapViewer administrator operations,
you should exit from the Web browser; otherwise, the Admin page login information
will remain in the cache for your current browser session.

1.4.2 Installing OracleAS MapViewer with a Standalone Installation of OC4J
To install and deploy OracleAS MapViewer with a standalone installation of OC4J,
you must have installed OC4J on your system.

Follow these steps to install and deploy OracleAS MapViewer with a standalone
installation of OC4J:

1. If you have not already installed Oracle Application Server Wireless, download
the mapviewer.ear file to the $ORACLE_HOME/lbs directory. If this directory
does not exist, create it.

You can put the mapviewer.ear file in another directory; however, the
instructions in this guide assume that the mapviewer.ear file is in the
$ORACLE_HOME/lbs directory.

2. Edit the OC4J configuration files (see Section 1.4.2.1).

3. Restart OC4J (see Section 1.4.2.2).

4. If the target database is Oracle9i Release 9.0.1 or earlier, run SQL scripts to create
the OracleAS MapViewer metadata views and predefined styles (see
Section 1.4.2.3).

Installing and Deploying OracleAS MapViewer

Introduction to OracleAS MapViewer 1-13

5. Verify that the deployment was successful (see Section 1.4.2.4).

6. Check the OracleAS MapViewer administrator user account (see Section 1.4.2.5).

1.4.2.1 Editing the OC4J Configuration Files to Autostart OracleAS MapViewer
To start OracleAS MapViewer automatically each time OC4J is restarted, edit the OC4J
configuration files, as follows.

1. Edit $OC4J_HOME/config/default-web-site.xml (or
http-web-site.xml if you downloaded an OC4J kit from the Oracle
Technology Network), where $OC4J_HOME should be $ORACLE_
HOME/j2ee/home. Add a <web-app> element inside the <web-site> element.
For example:

<web-app application="mapviewer" name="web" root="/mapviewer"
 load-on-startup="true"/>

The following example shows a sample default-web-site.xml file after the
modification.

<?xml version="1.0"?>
<!DOCTYPE web-site PUBLIC "Oracle Application Server XML Web site"
"http://xmlns.oracle.com/ias/dtds/web-site.dtd">

<!-- Change the host name below to your own host name. Localhost will -->
<!-- not work with clustering. -->
<!-- Also add cluster-island attribute as below.
<web-site host="localhost" port="8888" display-name="Default Oracle Application
Server Java Web Site" cluster-island="1" >
-->

<web-site port="8888" display-name="Default Oracle Application Server
Containers for J2EE Web Site">
 <!-- Uncomment the following line when using clustering -->
 <!-- <frontend host="your_host_name" port="80"/> -->
 <!-- The default web-app for this site, bound to the root -->
 <default-web-app application="default" name="defaultWebApp"/>

 <!-- Access Log, where requests are logged to -->

 <access-log path="../log/default-web-access.log"/>
 <web-app application="mapviewer" name="web" root="/mapviewer"
 load-on-startup="true"/>
</web-site>

2. Modify $OC4J_HOME/config/server.xml. Add an <application> element
inside the <application-server> element. For example:

<application name="mapviewer" path="$MAPVIEWER_EAR_PATH" auto-start="true"/>

$MAPVIEWER_EAR_PATH should be the full path of the mapviewer.ear file.

The following example shows a sample server.xml file after the modification.

<?xml version="1.0"?>
<!DOCTYPE application-server PUBLIC "Orion Application Server Config"
"http://xmlns.oracle.com/ias/dtds/application-server.dtd">

<application-server application-directory="../applications"
 deployment-directory="../application-deployments">
 <rmi-config path="./rmi.xml"/>

Installing and Deploying OracleAS MapViewer

1-14 Oracle Application Server MapViewer User’s Guide

 <!-- JMS-server config link, uncomment to activate the JMS service -->
 <jms-config path="./jms.xml"/>
 <log>
 <file path="../log/server.log"/>
 </log>

 <global-application name="default" path="application.xml"/>

 <global-web-app-config path="global-web-application.xml"/>
 <!-- <web-site path="./secure-web-site.xml"/> -->
 <web-site path="./default-web-site.xml"/>

 <application name="mapviewer" path="D:\Oracle\Ora817\lbs\mapviewer.ear"
 auto-start="true"/>
</application-server>

1.4.2.2 Restarting OC4J
If OC4J is already running, you should not need to restart it. Instead, after you save
changes made to the OC4J configuration files, OC4J should automatically restart and
"hot deploy" OracleAS MapViewer. In this case, you should see messages such as the
following:

04/04/19 11:26:11 WARN [oracle.lbs.mapserver.core.MapperPool] destroying ALL
mapmaker instances.
04/04/19 11:26:11 INFO [oracle.lbs.mapserver.core.MapperConfig] Map Recycling
thread started.
04/04/19 11:26:11 INFO [oracle.lbs.mapserver.oms] *** Oracle MapViewer started.

If OC4J is not running, start OC4J after saving the changes that you made to the OC4J
configuration files. OC4J should start to deploy OracleAS MapViewer.

While it is deploying OracleAS MapViewer, OC4J extracts the whole OracleAS
MapViewer directory structure from mapviewer.ear into the $ORACLE_
HOME/lbs/mapviewer directory.

1.4.2.3 Running SQL Scripts, If Necessary
If all target databases are running Oracle9i Release 9.2 or later, skip this step and go to
the next section. A target database is a database with Oracle Spatial or Oracle Locator
(Release 8.1.6 or later) installed and from which you want OracleAS MapViewer to be
able to render maps.

For each target database that is running Oracle9i Release 9.0.1 or earlier, run SQL
scripts to create the OracleAS MapViewer metadata views and predefined styles.
While you are connected to the database as the MDSYS user, you must run the first of
the following SQL scripts, and it is recommended that you run the second script:

$ORACLE_HOME/lbs/mapviewer/admin/mapdefinition.sql
$ORACLE_HOME/lbs/mapviewer/admin/defaultstyles.sql

The second script (defaultstyles.sql) inserts some styles and themes and a base
map into the OracleAS MapViewer metadata views. You can use these styles and
themes in applications, and you can also use them as models when you create your
own OracleAS MapViewer metadata objects.

1.4.2.4 Verifying That the Deployment Was Successful
To test if the OracleAS MapViewer servlet has started correctly, point your browser to
that OC4J instance. For example, if OracleAS MapViewer is installed on a system

Installing and Deploying OracleAS MapViewer

Introduction to OracleAS MapViewer 1-15

named mapserver.xyzabc.com and the HTTP port is 8888, enter the following URL
to invoke the OracleAS MapViewer servlet without sending it a request:

http://mapserver.xyzabc.com:8888/mapviewer/omserver

You should use an XML-enabled Web browser, such as Internet Explorer 5.0 or a later
version, to see the XML response.

If the servlet has been started and initialized correctly, it generates a response, which
will probably be a message such as the following:

<?xml version="1.0" encoding="UTF-8" ?>
<oms_error>Message:[oms] empty or null xml map request string. Wed Oct 24 12:22:03
EDT 2001 Machine Node Name: mapserver Severity: 0 Description: at
oracle.spatial.mapserver.oms.getXMLDocument(oms.java:379) at
oracle.spatial.mapserver.oms.doPost(oms.java:151) at
oracle.spatial.mapserver.oms.doGet(oms.java:119) at
javax.servlet.http.HttpServlet.service(HttpServlet.java:195) at
javax.servlet.http.HttpServlet.service(HttpServlet.java:309) at
javax.servlet.http.HttpServlet.service(HttpServlet.java:336) at
com.evermind.server.http.ServletRequestDispatcher.invoke(ServletRequestDispatcher.
java:501) at
com.evermind.server.http.ServletRequestDispatcher.forwardInternal(ServletRequestDi
spatcher.java:170) at
com.evermind.server.http.HttpRequestHandler.processRequest(HttpRequestHandler.java
:576) at
com.evermind.server.http.HttpRequestHandler.run(HttpRequestHandler.java:189) at
com.evermind.util.ThreadPoolThread.run(ThreadPoolThread.java:62)</oms_error>

The preceding display indicates that the servlet has been started and initialized
correctly. The apparent errors in the display are normal at this point, because no
request was specified in the URL.

If the servlet has not been started and initialized correctly, there will be no response, or
the message 500 internal server error will be displayed.

If the response message includes wording like MapServer is not ready. Please try again
later, it could mean that the OracleAS MapViewer servlet is initializing, but the process
will take some additional time (for example, because the system is slow or because
multiple predefined data sources are specified in the configuration file). In this case,
you can wait at least a few seconds and try the request again. However, if you
continue to get this response message, there may be a problem with the deployment.
Check for any error messages, either in the OC4J console for a standalone OC4J
deployment or in the redirected output/errors log file of the OC4J instance (using the
Oracle Enterprise Manager site) for a full Oracle Application Server deployment. The
following are common causes of this problem:

■ On a UNIX or Linux operating system, the Java virtual machine (JVM) was not
started with the –Djava.awt.headless=true option, and no DISPLAY
environment variable is set. This causes the OracleAS MapViewer server to fail
because the server accesses the Java graphics library, which on UNIX and Linux
systems relies on the X11 windowing system.

■ You are using the mapviewer.ear file from a full Oracle Application Server
installation, but you forgot to add the sdovis.jar, sdoapi.jar, and
sdoutl.jar files to the OC4J instance’s library path, or you did not specify the
correct locations for these JAR files.

Configuring OracleAS MapViewer

1-16 Oracle Application Server MapViewer User’s Guide

1.4.2.5 Checking the OracleAS MapViewer Administrator User Account
Check the OracleAS MapViewer administrator user account to ensure that it is set up
correctly with the map_admin_role role, and that you can, therefore, perform
OracleAS MapViewer administrative operations. When you deploy OracleAS
MapViewer to a standalone instance of OC4J, you can use the user name and
password of the standalone instance to log in to the OracleAS MapViewer Admin
page. (The OracleAS MapViewer script WEB_INF/orion-web.xml script sets this
up.)

The user name is typically admin. The password is the one that you specified when
you installed the OC4J instance (that is, at the prompt after you typed java -jar
oc4j.jar -install). If you have forgotten the password, you can set a new
password as follows:

1. Go to the OC4J j2ee/home directory.

2. Type the same installation command as before (java -jar oc4j.jar
-install).

3. Specify a new password at the prompt.

If you enter the correct password but are still prompted for login information, the
problem might be caused by an automatically generated deployment descriptor (in
$OC4J_HOME/application-deployments/mapviewer/web/orion-web.xml)
from an earlier version of OracleAS MapViewer. If this is the cause of the problem,
delete the orion-web.xml file from that directory, and redeploy the current version
of the mapviewer.ear file.

1.5 Configuring OracleAS MapViewer

If the default configuration settings for running OracleAS MapViewer are not
adequate, you can configure OracleAS MapViewer by editing the OracleAS
MapViewer configuration file, mapViewerConfig.xml, which is located in the
$ORACLE_HOME/lbs/mapviewer/web/WEB-INF/conf directory. To modify this
file, you can use a text editor, or you can use the OracleAS MapViewer Admin page.

After you modify this file, you must restart OC4J to have the changes take effect;
however, you can instead use the OracleAS MapViewer Admin page to restart only the
OracleAS MapViewer servlet (instead of the entire OC4J instance, which may have
other applications deployed and running) if either of the following applies:

■ You installed OracleAS MapViewer with a standalone OC4J instance.

■ The OracleAS MapViewer OC4J instance with Oracle Application Server is
configured to have only one OC4J process running (the default) and not to be
clustered (that is, not to be in an island).

If you deployed OracleAS MapViewer to an OC4J instance with multiple processes
(thus with multiple physical JVMs on the same host), or if you deployed to an
OC4J instance that is in a clustered island (with multiple OC4J instances running
on multiple hosts), you must restart the OC4J instance itself for the changes to the
OracleAS MapViewer configuration file to take effect in all OracleAS MapViewer

Note: Most readers should skip this section, because after the
installation, OracleAS MapViewer is configured to run using the
default settings. This section is intended for advanced users who
need to customize the OracleAS MapViewer configuration.

Configuring OracleAS MapViewer

Introduction to OracleAS MapViewer 1-17

servers. In the latter case (clustered OC4J instances), you may also need to modify
the OracleAS MapViewer configuration file in the OracleAS MapViewer directory
hierarchy for each host’s OC4J instance in the cluster. For more information about
repository-based middle-tier clustering, see Oracle Application Server High
Availability Guide.

The OracleAS MapViewer configuration file defines the following information in XML
format:

■ Logging information, defined in the <logging> element (see Section 1.5.1)

■ Map image file information, defined in the <save_images_at> element (see
Section 1.5.2)

■ Administrative request restrictions, defined in the <ip_monitor> element (see
Section 1.5.3)

■ Web proxy information for accessing external information across a firewall,
defined in the <web_proxy> element (see Section 1.5.4)

■ Global map "look and feel" configuration, defined in the <global_map_config>
element (see Section 1.5.5)

■ Internal spatial data cache settings, defined in the <spatial_data_cache>
element (see Section 1.5.6)

■ Custom image renderer registration, defined in the <custom_image_renderer>
element (see Appendix C)

■ Permanent map data sources, defined in the <map_data_source> element (see
Section 1.5.7)

All path names in the mapViewerConfig.xml file are relative to the directory in
which the file is stored, unless otherwise specified.

Example 1–1 shows a sample mapViewerConfig.xml file.

Example 1–1 Sample OracleAS MapViewer Configuration File

<?xml version="1.0" ?>
<!-- This is the configuration file for Oracle Application Server MapViewer. -->
<!-- Note: All paths are resolved relative to this directory (where this
 configuration file is located), unless specified as an absolute
 path name.
 -->

<MapperConfig>

 <!-- ** -->
 <!-- ************************ Logging Settings ************************ -->
 <!-- ** -->

 <!-- Uncomment the following to modify logging. Possible values are:
 log_level = "fatal"|"error"|"warn"|"info"|"debug"|"finest"
 default: info) ;
 log_thread_name = "true" | "false" ;
 log_time = "true" | "false" ;
 one or more log_output elements.
 -->
 <!--
 <logging log_level="info" log_thread_name="false"
 log_time="true">
 <log_output name="System.err" />

Configuring OracleAS MapViewer

1-18 Oracle Application Server MapViewer User’s Guide

 <log_output name="../log/mapviewer.log" />
 </logging>
 -->

 <!-- ** -->
 <!-- ********************** Map Image Settings ************************ -->
 <!-- ** -->

 <!-- Uncomment the following only if you want generated images to
 be stored in a different directory, or if you want to customize
 the life cycle of generated image files.

 By default, all maps are generated under
 $ORACLE_HOME/lbs/mapviewer/web/images.

 Images location-related attributes:
 file_prefix: image file prefix, default value is "omsmap"
 url: the URL at which images can be accessed. It must match the 'path'
 attribute below. Its default value is "%HOST_URL%/mapviewer/images"
 path: the corresponding path in the server where the images are
 saved; default value is "%ORACLE_HOME%/lbs/mapviewer/web/images"

 Images life cycle-related attributes:
 life: the life period of generated images, specified in minutes.
 If not specified or if the value is 0, images saved on disk will
 never be deleted.
 recycle_interval: this attribute specifies how often the recycling
 of generated map images will be performed. The unit is minute.
 The default interval (when not specified or if the value is 0)
 is 8*60, or 8 hours.

 -->
 <!--
 <save_images_at file_prefix="omsmap"
 url="http://system3.my_corp.com:8888/mapviewer/images"
 path="../web/images"
 />
 -->

 <!-- ** -->
 <!-- ********************* IP Monitoring Settings ********************* -->
 <!-- ** -->

 <!-- Uncomment the following to enable IP filtering for administrative
 requests.
 Note:
 - Use <ips> and <ip_range> to specify which IPs (and ranges) are allowed.
 Wildcard form such as 20.* is also accepted. Use a comma-delimited
 list in <ips>.

 - Use <ips_exclude> and <ip_range_exclude> for IPs and IP ranges
 prohibited from accessing eLocation.

 - If an IP falls into both "allowed" and "prohibited" categories, it is
 prohibited.

 - If you put "*" in an <ips> element, then all IPs are allowed, except
 those specified in <ips_exclude> and <ip_range_exclude>.

Configuring OracleAS MapViewer

Introduction to OracleAS MapViewer 1-19

 On the other hand, if you put "*" in an <ips_exclude> element, no one
 will be able to access MapViewer (regardless of whether an IP is in
 <ips> or <ip_range>).

 - You can have multiple <ips>, <ip_range>, <ips_exclude>, and
 <ip_range_exclude> elements under <ip_monitor>.

 - If no <ip_monitor> element is present in the XML configuration
 file, then no IP filtering will be performed (all allowed).

 - The way MapViewer determines if an IP is allowed is:

 if(IP filtering is not enabled) then allow;
 if(IP is in exclude-list) then not allow;
 else if(IP is in allow-list) then allow;
 else not allow;
 -->

 <!--
 <ip_monitor>
 <ips> 138.1.17.9, 138.1.17.21, 138.3.*, 20.* </ips>
 <ip_range> 24.17.1.3 - 24.17.1.20 </ip_range>
 <ips_exclude> 138.3.29.* </ips_exclude>
 <ip_range_exclude>20.22.34.1 - 20.22.34.255</ip_range_exclude>
 </ip_monitor>
 -->

 <!-- ** -->
 <!-- ********************** Web Proxy Setting ************************ -->
 <!-- ** -->
 <!-- Uncomment and modify the following to specify the Web proxy setting.
 This is only needed for passing background image URLs to
 MapViewer in map requests or for setting a logo image URL, if
 such URLs cannot be accessed without the proxy.
 -->

 <!--
 <web_proxy host="www-proxy.my_corp.com" port="80" />
 -->

 <!-- ** -->
 <!-- *********************** Global Map Configuration ***************** -->
 <!-- ** -->
 <!-- Uncomment and modify the following to specify systemwide parameters
 for generated maps. You can specify your copyright note, map title, and
 an image to be used as a custom logo shown on maps. The logo image must
 be accessible to this MapViewer and in either GIF or JPEG format.
 Notes:
 - To disable a global note or title, specify an empty string ("") for
 the text attribute of <note> and <title> elements.
 - position specifies a relative position on the map where the
 logo, note, or title will be displayed. Possible values are
 NORTH, EAST, SOUTH, WEST, NORTH_EAST, SOUTH_EAST,
 SOUTH_WEST, NORTH_WEST, and CENTER.
 - image_path specifies a file path or a URL (starts with "http://")
 for the image.

 <rendering> element attributes:

Configuring OracleAS MapViewer

1-20 Oracle Application Server MapViewer User’s Guide

 - Local geodetic data adjustment: If allow_local_adjustment="true",
 MapViewer automatically performs local data
 "flattening" with geodetic data if the data window is less than
 3 decimal degrees. Specifically, MapViewer performs a simple
 mathematical transformation of the coordinates using a tangential
 plane at the current map request center.
 If allow_local_adjustment="false" (default), no adjustment is
 performed.
 - Automatically applies a globular map projection (geodetic data only):
 If use_globular_projection="true", MapViewer will dynamically
 apply a globular projection to geometries being displayed.
 If use_globular_projection="false" (the default), MapViewer does no map
 projection to geodetic geometries. This option has no effect on
 non-geodetic data.
 -->

 <!--
 <global_map_config>
 <note text="Copyright 2004, Oracle. All rights reserved."
 font="sans serif"
 position="SOUTH_EAST"/>
 <title text="MapViewer Demo"
 font="Serif"
 position="NORTH" />
 <logo image_path="C:\\images\\a.gif"
 position="SOUTH_WEST" />

 <rendering allow_local_adjustment="false"
 use_globular_projection="false" />
 </global_map_config>
 -->

 <!-- ** -->
 <!-- ****************** Spatial Data Cache Setting ******************* -->
 <!-- ** -->
 <!-- Uncomment and modify the following to customize the spatial data cache
 used by MapViewer. The default is 64 MB for in-memory cache and 512 MB
 for disk spooling of spatial data. The disk cache path is determined by
 MapViewer by default.

 To disable the cache, set max_cache_size to 0.

 max_cache_size: Maximum size of in-memory spatial cache of MapViewer.
 Size must be specified in megabytes (MB).
 -->

 <!--
 <spatial_data_cache max_cache_size="64"
 />
 -->

 <!-- ** -->
 <!-- ******************** Custom Image Renderers ********************** -->
 <!-- ** -->
 <!-- Uncomment and add as many custom image renderers as needed here,
 each in its own <custom_image_renderer> element. The "image_format"
 attribute specifies the format of images that are to be custom
 rendered using the class with full name specified in "impl_class".

Configuring OracleAS MapViewer

Introduction to OracleAS MapViewer 1-21

 You are responsible for placing the implementation classes in the
 MapViewer's classpath.
 -->
 <!--
 <custom_image_renderer image_format="ECW"
 impl_class="com.my_corp.image.ECWRenderer" />
 -->

 <!-- ** -->
 <!-- ******************** Predefined Data Sources ******************** -->
 <!-- ** -->
 <!-- Uncomment and modify the following to predefine one or more data
 sources.
 Note: You must precede the jdbc_password value with a '!'
 (exclamation point), so that when MapViewer starts the next
 time, it will encrypt and replace the clear text password.
 -->

 <!--
 <map_data_source name="mvdemo"
 jdbc_host="elocation.us.oracle.com"
 jdbc_sid="orcl"
 jdbc_port="1521"
 jdbc_user="scott"
 jdbc_password="!tiger"
 jdbc_mode="thin"
 number_of_mappers="3"
 />
 -->

</MapperConfig>

1.5.1 Specifying Logging Information
Logging information is specified in the <logging> element.

OracleAS MapViewer provides a flexible logging mechanism to record run-time
information and events. You can configure the volume, format, and destination of the
log output.

You can specify the following information as attributes or subelements of the
<logging> element:

■ The log_level attribute controls the levels of information that are recorded in
the log, which in turn affect the log output volume. Set the log_level attribute
value to one of the following, listed from most restrictive logging to least
restrictive logging: FATAL, ERROR, WARN, INFO, DEBUG, and FINEST. The FATAL
level outputs the least log information (only unrecoverable events are logged), and
the other levels are progressively more inclusive, with the FINEST level causing
the most information to be logged. For production work, a level of WARN or more
restrictive (ERROR or FATAL) is recommended; however, for debugging you may
want to set a less restrictive level.

■ The log_thread_name attribute controls whether or not to include the name of
the thread that encountered and logged the event.

■ The log_time attribute controls whether or not the current time is included when
a logging event occurs.

Configuring OracleAS MapViewer

1-22 Oracle Application Server MapViewer User’s Guide

■ The log_output subelement identifies output for the logging information. By
default, log records are written to the system error console. You can change this to
the system output console or to one or more files, or some combination. If you
specify more than one device through multiple log_output subelements, the
logging records are sent to all devices, using the same logging level and attributes.

1.5.2 Specifying Map File Storage and Life Cycle Information
Map image file information is specified in the <save_images_at> element. By
default, images are stored in the $ORACLE_HOME /lbs/mapviewer/web/images
directory. You do not need to modify the <save_images_at> element unless you
want to specify a different directory for storing images.

A mapping client can request that OracleAS MapViewer send back the URL for an
image file instead of the actual map image data, by setting the format attribute of the
<map_request> element (described in Section 3.2.1.1) to GIF_URL or PNG_URL. In
this case, OracleAS MapViewer saves the requested map image as a file on the host
system where OracleAS MapViewer is running and sends a response containing the
URL of the image file back to the map client.

You can specify the following map image file information as attributes of the <save_
images_at> element:

■ The file_prefix attribute identifies the map image file prefix. A map image file
name will be a fixed file prefix followed by a serial number and the image type
suffix. For example, if the map image file prefix is omsmap, a possible GIF map
image file could be omsmap1.gif.

Default value: file_prefix=omsmap

■ The url attribute identifies the map image base URL, which points to the
directory under which all map image files are saved on the OracleAS MapViewer
host. The map image URL sent to the mapping client is the map image base URL
plus the map image file name. For example, if the map image base URL is
http://dev04.abcxyz.com:1521/mapviewer/images, the map image URL
for omsmap1.gif will be
http://dev04.abcxyz.com:1521/mapviewer/images/omsmap1.gif.

Default value: url=$HOST_URL/mapviewer/images

■ The path attribute identifies the path of the directory where all map image files
are saved on the OracleAS MapViewer host system. This directory must be
accessible by HTTP and must match the map image URL. Map image files saved
in the directory specified by the path attribute should be accessible from the URL
specified by the url attribute.

■ The life attribute specifies the number of minutes that a generated map image is
guaranteed to stay on the file system before the image is deleted. If the life
attribute is specified, the recycle_interval attribute controls how frequently
OracleAS MapViewer checks for possible files to delete.

Default: OracleAS MapViewer never deletes the generated map images.

■ The recycle_interval attribute specifies the number of minutes between times
when OracleAS MapViewer checks to see if it can delete any image files that have
been on the file system longer than the number of minutes for the life attribute
value.

Default value: 480 (8 hours)

Configuring OracleAS MapViewer

Introduction to OracleAS MapViewer 1-23

1.5.3 Restricting Administrative (Non-Map) Requests
In addition to map requests, OracleAS MapViewer accepts administrative (non-map)
requests, such as requests to list all data sources and to add and delete data sources.
(Chapter 6 describes the administrative requests.) By default, all OracleAS MapViewer
users are permitted to make administrative requests.

However, if you want to restrict the ability to submit administrative requests, you can
edit the OracleAS MapViewer configuration file to allow administrative requests only
from users with specified IP addresses.

To restrict administrative requests to users at specified IP addresses, add the <ip_
monitor> element to the OracleAS MapViewer configuration file (or uncomment and
modify an existing element, if one is commented out). Example 1–2 shows a sample
<ip_monitor> element excerpt from a configuration file.

Example 1–2 Restricting Administrative Requests

<MapperConfig>
 . . .
 <ip_monitor>
 <ips> 138.1.17.9, 138.1.17.21, 138.3.*, 20.* </ips>
 <ip_range> 24.17.1.3 - 24.17.1.20 </ip_range>
 <ips_exclude> 138.3.29.* </ips_exclude>
 <ip_range_exclude>20.22.34.1 - 20.22.34.255</ip_range_exclude>
 </ip_monitor>
 . . .
</MapperConfig>

In Example 1–2:

■ The following IP addresses are explicitly included as able to submit administrative
requests (unless excluded by an <ips_exclude> element): 138.1.17.9, 138.1.17.21,
all that start with 138.3., all that start with 20., and all in the range (inclusive) of
24.17.1.3 to 24.17.1.20.

■ The following IP addresses are explicitly excluded from submitting administrative
requests: all starting with 138.3.29., and all in the range (inclusive) of 20.22.34.1 to
20.22.34.255.

■ All other IP addresses that are not explicitly included cannot submit
administrative requests.

Syntax notes for the <ip_monitor> element:

■ Use <ips> and <ip_range> elements to specify which IP addresses (and ranges)
are allowed. Asterisk wildcards (such as 20.*) are acceptable. Use a
comma-delimited list for addresses.

■ Use <ips_exclude> and <ip_range_exclude> elements to exclude IP
addresses and address ranges from submitting administrative requests. If an
address falls into both the included and excluded category, it is excluded.

■ If you specify the asterisk wildcard in an <ips> element, all associated IP
addresses are included except any specified in <ips_exclude> and <ip_
range_exclude> elements.

1.5.4 Specifying a Web Proxy for Background Image URLs
If a map request contains the bgimage (background image) attribute specifying a URL
for an image, the image might be behind a firewall that OracleAS MapViewer cannot
directly access. To allow OracleAS MapViewer to access background images in these

Configuring OracleAS MapViewer

1-24 Oracle Application Server MapViewer User’s Guide

cases, use the <web_proxy> element to identify the host name and port number for
proxy access. For example:

<web_proxy host="www-proxy.mycompany.com" port="80"/>

1.5.5 Specifying Global Map Configuration Options
You can specify the following global "look and feel" options for the display of each
map generated by OracleAS MapViewer:

■ Title

■ Note (such as a copyright statement or a footnote)

■ Logo (custom symbol or corporate logo)

■ Local geodetic data adjustment

■ Splitting geometries along the 180 meridian

To specify any of these options, use the <global_map_config> element. For
example:

<global_map_config>
 <note text="Copyright (c) 2003, XYZ Corporation"
 font="sans serif"
 position="SOUTH_EAST"/>
 <title text="Map Courtesy of XYZ Corp."
 font="Serif"
 position="NORTH"/>
 <logo image_path="C:\\images\\a.gif"
 position="SOUTH_WEST"/>

 <rendering allow_local_adjustment="false"
 use_globular_projection="false"/>
</global_map_config>

Set the map title through the <title> element of the <global_map_config>
element. You can also set the map title in an individual map request by specifying the
title attribute with the <map_request> element, and in this case, the title in the
map request is used instead of the global title in the OracleAS MapViewer
configuration file. Note the following information about the attributes of the <title>
element:

■ The text attribute specifies the title string.

■ The font attribute specifies a font. The font must exist on the system where
OracleAS MapViewer is running.

■ The position attribute provides a positioning hint to OracleAS MapViewer
when determining where the map title will be drawn on a map. Possible values
are: NORTH, EAST, SOUTH, WEST, NORTH_EAST, SOUTH_EAST, SOUTH_WEST,
NORTH_WEST, and CENTER.

Default value: NORTH

Set the map note through the <note> element of the <global_map_config>
element. Note the following information about the attributes of the <note> element:

■ The text attribute specifies the note string.

■ The font attribute specifies a font. The font must exist on the system where
OracleAS MapViewer is running.

Configuring OracleAS MapViewer

Introduction to OracleAS MapViewer 1-25

■ The position attribute provides a positioning hint to OracleAS MapViewer
when determining where the map note will be drawn on a map. Possible values
are: NORTH, EAST, SOUTH, WEST, NORTH_EAST, SOUTH_EAST, SOUTH_WEST,
NORTH_WEST, and CENTER.

Default value: SOUTH_EAST

Set the map logo through the <logo> element of the <global_map_config>
element. The map logo image must be in either JPEG or GIF format. The image can be
stored in a local file system where the OracleAS MapViewer instance will have access
to it, or it can be obtained from the Web by specifying its URL. To specify a map logo,
uncomment the <map_logo> element in the OracleAS MapViewer configuration file
and edit its attributes as needed.

Note the following information about the attributes of the <logo> element:

■ The image_path attribute must specify a valid file path name, or a URL starting
with http://.

■ The position attribute provides a positioning hint to OracleAS MapViewer
when determining where the map logo will be drawn on a map. Possible values
are: NORTH, EAST, SOUTH, WEST, NORTH_EAST, SOUTH_EAST, SOUTH_WEST,
NORTH_WEST, and CENTER.

Default value: SOUTH_WEST

If the logo image is obtained through a URL that is outside your firewall, you may
need to set the Web proxy in order for OracleAS MapViewer to retrieve the logo image.
For information about specifying a Web proxy, see Section 1.5.4.

If you also specify a map legend, be sure that its position is not the same as any
position for a map title, note, or logo. (Map legends are explained in Section 2.4.2 and
Section 3.2.11. The default position for a map legend is SOUTH_WEST.)

To have OracleAS MapViewer automatically project geodetic data to a local
non-geodetic coordinate system before displaying it if the map data window is less
than 3 decimal degrees, specify allow_local_adjustment="true" in the
<rendering> element.

To have OracleAS MapViewer automatically apply a globular map projection (that is, a
map projection suitable for viewing the world, and specifically the azimuthal
equidistant projection for OracleAS MapViewer), specify use_globular_
projection="true" in the <rendering> element. This option applies to geodetic
data only.

1.5.6 Customizing the Spatial Data Cache
You can customize the in-memory cache that OracleAS MapViewer uses for spatial
data by using the <spatial_data_cache> element. For example:

<spatial_data_cache max_cache_size="64"
 report_stats="true"
/>

You can specify the following information as attributes of the <spatial_data_
cache> element:

■ The max_cache_size attribute specifies the maximum number of megabytes
(MB) of in-memory cache.

Default value: 64

Configuring OracleAS MapViewer

1-26 Oracle Application Server MapViewer User’s Guide

■ The report_stats attribute, if set to true, instructs the OracleAS MapViewer
server to periodically (every 5 minutes) output cache statistics, such as the number
of objects cached, the total size of cache objects, and data relating to the efficiency
of the internal cache structure. The statistics are provided for each data source and
for each predefined theme. They can help you to determine the optimal setting of
the in-memory cache. For example, if you want to pin all geometry data for certain
themes in the memory cache, you need to specify a max_cache_size value that
is large enough to accommodate these themes.

Default value: false

The spatial data cache is always enabled by default, even if the element is commented
out in the configuration file. To completely disable the caching of spatial data, you
must specify the max_cache_size attribute value as 0 (zero).

For detailed information about the caching of predefined themes, see Section 2.3.1.2.

1.5.7 Defining Permanent Map Data Sources
Every map request must have a data source attribute that specifies a map data source,
which is a database user with geospatial data. You can predefine available map data
sources by using the <map_data_source> element. For example:

<map_data_source name="mvdemo"
 jdbc_host="mapsrus.us.oracle.com"
 jdbc_sid="orcl"
 jdbc_port="1521"
 jdbc_user="scott"
 jdbc_password="!tiger"
 jdbc_mode="thin"
 number_of_mappers="5"
 max_connections="100"
/>

You can specify the following information as attributes of the <map_data_source>
element:

■ The name attribute specifies a unique data source name to OracleAS MapViewer.
You must specify the data source name in all map requests that identify a data
source.

■ The jdbc_host, jdbc_sid, jdbc_port, and jdbc_user attributes specify the
database connection information and the database user name. (As an alternative to
specifying these attributes and the jdbc_password and jdbc_mode attributes,
you can specify the container_ds attribute, described later in this section.)

■ The jdbc_password attribute specifies the database user's login password. It
must be prefixed with an exclamation point (!) when you specify the password for
the first time. When OracleAS MapViewer next restarts, it will automatically
obfuscate and replace the clear text password.

Note: The disk-based spatial cache, which was supported in the
previous release, is no longer supported, because performance tests
have shown that disk-based spatial caching was often less efficient
than fetching spatial objects directly from the database when needed
(that is, in cases where the cached objects frequently did not need to
be retrieved again after caching).

Configuring OracleAS MapViewer

Introduction to OracleAS MapViewer 1-27

■ The jdbc_mode attribute tells OracleAS MapViewer which Oracle JDBC driver to
use when connecting to the database. The default is thin (for the "thin" driver).
The other possible value is oci8, which requires that you also have the Oracle
Database client installed on the same host on which OracleAS MapViewer is
running.

■ The number_of_mappers attribute identifies the maximum number of map
renderers available (and thus the maximum number of map requests that
OracleAS MapViewer can process in parallel for the data source) for this data
source. Any unprocessed map requests are queued and eventually processed. For
example, if the value is 3, OracleAS MapViewer will be able to process at most
three mapping requests concurrently. If a fourth map request comes while three
requests are being processed, it will wait until OracleAS MapViewer has finished
processing one of the current requests.

Specifying a large number_of_mappers value (such as 30 or 50) does not cause
additional static memory to be used, and it does not affect the total number of
database connections that will remain open. However, specifying a large value
does cause some additional overhead operations, which might affect server
performance at times of peak loads. The maximum number of mappers for a
single data source is 64.

■ The max_connections attribute specifies the maximum number of database
connections or sessions open for the data source at any given time. In most cases
you should not specify this attribute, and accept the default value of 100.

If you specify a value that is too small, the effect on performance can be
significant. For example, if you specify max_connections="5" for a map
request with 12 predefined themes, 12 connections will still be created temporarily
to meet the demand, but 7 of them will be closed immediately upon the
completion of the request (leaving only 5 open connections). OracleAS MapViewer
will then dynamically create database connections whenever it needs more than 5
to meet the demand when processing map requests, because the number of
permanently open database connections will never exceed the specified max_
connections attribute value. Specifying a value that is too small will almost
certainly increase the time it takes to process a map request, because opening a
new database connection involves significant processing overhead.

■ The container_ds attribute lets you specify the J2EE container name (from the
ejb-location attribute value) instead of specifying the jdbc_host, jdbc_sid,
jdbc_port, jdbc_user, jdbc_password, and jdbc_mode attributes. For
example, assume that the <data_source> element in the data-source.xml
file for the standalone OC4J instance contains
ejb-location="jdbc/OracleDS". In this case, instead of using the example at
the beginning of this section, you can define the permanent OracleAS MapViewer
data source as follows:

<map_data_source name="mvdemo"
 container_ds="jdbc/OracleDS"
 number_of_mappers="5"
 max_connections="100"
/>

To use the container_ds attribute in the OracleAS MapViewer configuration
file, you must start the OC4J instance with the -userThreads option. OracleAS
MapViewer processes its configuration file in a separate user thread; if the
-userThreads option is not specified, the container’s context information is not
available to user threads. However, if you are dynamically defining a data source
through the OracleAS MapViewer Admin page, you can use the container_ds

High Availability and OracleAS MapViewer

1-28 Oracle Application Server MapViewer User’s Guide

attribute regardless of whether you started the OC4J instance with the
-userThreads option.

1.6 High Availability and OracleAS MapViewer

With the current release of Oracle Application Server, OracleAS MapViewer users can
benefit from the high availability features more effectively than in previous releases.

1.6.1 Deploying OracleAS MapViewer on a Multiprocess OC4J Instance
You can safely deploy OracleAS MapViewer in an OC4J instance of Oracle Application
Server that has multiple processes. Oracle Application Server lets you configure the
number of actual processes (JVMs) that can be started for each OC4J instance. On a
multiprocessor host, starting multiple processes for a single OC4J can better utilize the
system resources. (Releases of OracleAS MapViewer before 10g Release 2 (10.1.2) could
not take advantage of this feature and thus could not be deployed on such OC4J
instances.)

When OracleAS MapViewer is deployed to an OC4J instance with multiple processes,
each process has an OracleAS MapViewer server running inside it. These OracleAS
MapViewer servers all reside on the same host but in different Java processes. Map
requests sent to this OC4J instance are automatically dispatched to the individual
OracleAS MapViewer servers. Each OracleAS MapViewer server generates map image
files according to a unique naming scheme, with the names coordinated when the
different OracleAS MapViewer servers are first started (that is, when the containing
OC4J instance is started). This avoids the possibility of two OracleAS MapViewer
servers generating map files in the same sequence with the same file names.

1.6.2 Deploying OracleAS MapViewer on a Middle-Tier Cluster
OC4J instances in different Oracle Application Server installations can be clustered
into an island. This provides a middle-tier fail-safe option. OracleAS MapViewer can
be deployed to an OC4J island. You must take care, however, about how the generated
image files on each host are named and referenced through URLs by client
applications.

Consider the following sample scenario. When a map request is sent to the front Web
server, it reaches the OracleAS MapViewer server running on host A. OracleAS
MapViewer on host A then sends back the URL for the generated map image, and the
client then sends a second request to fetch the actual image. This second request might
be received by the OC4J container running on host B, which has no such image (or
which will send back an incorrect image with the same name).

There is no single best solution for this problem in all environments. One option is to
have the hosts share common networked storage, so that the map images are
deposited in the same virtual (networked) file system by different OracleAS
MapViewer servers running on different hosts. You must configure the map file
storage information (see Section 1.5.2) for each OracleAS MapViewer instance so that
the images are deposited in different subdirectories or so that they have different file

Note: This section is intended for advanced users who want to take
full advantage of the high availability features of Oracle Application
Server with OracleAS MapViewer. You must have a strong
understanding of high availability features, which are described in
Oracle Application Server High Availability Guide.

Getting Started Using OracleAS MapViewer

Introduction to OracleAS MapViewer 1-29

prefixes. Otherwise, the image files generated by the multiple OracleAS MapViewer
servers might overwrite each other on the disk. By properly configuring the map file
storage information, you ensure that each URL sent back to the client uniquely
identifies the correct map on the network drive.

If you cannot use networked drives, consider using a load balancer. You may first need
to configure the map file storage information for each OracleAS MapViewer instance
(as explained in the preceding paragraph), so that each OracleAS MapViewer instance
names its generated images using an appropriate scheme to ensure uniqueness. You
can then specify rules in the load balancer to have it redirect image requests to a
certain host if the URL matches a certain pattern, such as containing a specified map
image file prefix.

1.7 Getting Started Using OracleAS MapViewer
To get started using OracleAS MapViewer quickly, you can load a supplied set of
demonstration data to which styles have been applied. If you have downloaded the
entire OracleAS MapViewer kit from the Oracle Technology Network, you have a file
named mvdemo.zip, which includes the Oracle export file mvdemo.dmp. Follow these
steps:

1. Import the mvdemo.dmp file into your Oracle database under the supplied user
SCOTT. (Do not import it under any other database user. The demo may fail if you
import the file under a different user). Use the following command (and include
the directory path in the FILE parameter if mvdemo.dmp is not in the current
directory):

imp SCOTT/TIGER FILE=mvdemo.dmp FULL=Y

2. Run the SQL script copymeta.sql (included in the mvdemo.zip file) to set up
the mapping metadata for the user SCOTT.

3. Define a data source for user SCOTT in OracleAS MapViewer, as explained in
Section 1.7.1.

4. Optionally, use the supplied example JSP file described in Section 1.7.2.

1.7.1 Dynamically Defining OracleAS MapViewer Data Sources
Before you can use OracleAS MapViewer to render a map, you must have at least one
map data source defined. A data source can be permanently defined in the
mapViewerConfig.xml file, or it can be dynamically defined using the OracleAS
MapViewer home page. The rest of this section explains how to define a data source
dynamically.

To define a data source dynamically, follow these steps:

1. After starting OracleAS MapViewer, go to an OracleAS MapViewer page for
submitting administrative and other requests by visiting a URL that has the
following format:

http://hostname:port/mapviewer

In the preceding format, hostname:port is the host name string and port
number for OracleAS MapViewer. For example:

http://mapserver.xyzabc.com:8888/mapviewer

2. Examine the Add a data source form, which contains the following or similar text:

Getting Started Using OracleAS MapViewer

1-30 Oracle Application Server MapViewer User’s Guide

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <add_data_source
 name="mvdemo"
 jdbc_host="elocation.us.oracle.com"
 jdbc_port="1521"
 jdbc_sid="orcl"
 jdbc_user="scott"
 jdbc_password="tiger"
 jdbc_mode="thin"
 number_of_mappers="3"/>
</non_map_request>

3. Edit the name and the JDBC-related information to reflect your environment.

4. Click Submit.

This page contains forms that you can use for a variety of other tasks, such as:

■ Removing a data source

■ Redefining a data source

■ Listing all existing data sources

■ Listing all maps defined in a data source

■ Listing all themes defined in a data source

■ Listing all themes defined in a data source that belong to a specific map

■ Clearing the OracleAS MapViewer metadata cache for a specific data source

Many of these tasks use OracleAS MapViewer administrative requests, which are
described in Chapter 6.

1.7.2 Example JSP File That Uses OracleAS MapViewer
The directory $ORACLE_HOME/lbs/mapviewer/web/demo contains a simple
JavaServer Pages (JSP) file named mapclient.jsp that demonstrates how to interact
with OracleAS MapViewer. The mapclient.jsp file lets you submit map requests,
and it displays the resulting map image. (This file is one of several JSP example files,
as explained in Section 1.7.3.)

To run this example file, go to a URL that has the following format:

http://hostname:port/mapviewer/demo/mapclient.jsp

In the preceding format, hostname:port is the host name string and port number for
OracleAS MapViewer. For example:

http://mapserver.xyzabc.com:8888/mapviewer/demo/mapclient.jsp

To submit a map request using this page, enter the necessary information in the text
boxes above the Clear and Submit buttons (Title is optional), and click Submit.

A map is displayed reflecting the information you entered, and the
Request/Response/Msg box contains the XML format of the map request and
response. You can perform additional operations on the map display by clicking the
other buttons on the page, such as Zm In and Zm Out for zoom operations.

Figure 1–10 shows this page displaying the result of a map request.

Getting Started Using OracleAS MapViewer

Introduction to OracleAS MapViewer 1-31

Figure 1–10 OracleAS MapViewer Example JSP Display

1.7.3 Additional JSP Example Files
The OracleAS MapViewer home page (that is, the URL with the format
http://hostname:port/mapviewer) contains a Demos link, which leads to JSP
example files that can help you to develop applications that use OracleAS MapViewer.
In addition to a link to the mapclient.jsp file (described in Section 1.7.2), there are
links to pages for the following files:

■ jview.jsp visualizes the results of spatial queries issued against a specified data
source. You can type in up to three separate queries that retrieve geometric data,
and choose different styling for each query result.

■ mapinit.jsp shows how to use the OracleAS MapViewer client API to develop a
simple interactive Web mapping application with a feature-identifying capability.
That is, you can select Identify and then click the circle for a city to display data
(from nonspatial columns) about that city.

■ tagmap.jsp shows how to use the OracleAS MapViewer JSP tag library and the
client API together. It also shows how to generate a map legend and place it on the
mapping page.

Getting Started Using OracleAS MapViewer

1-32 Oracle Application Server MapViewer User’s Guide

OracleAS MapViewer Concepts 2-1

2
OracleAS MapViewer Concepts

This chapter explains concepts that you should be familiar with before using OracleAS
MapViewer.

Some fundamental concepts include style, theme, base map, mapping metadata, and map.

■ Styles define rendering properties for features that are associated with styles. For
example, a text style determines how such a feature is labeled on a map, while a
line style determines the rendition of a linear feature such as a road.

■ A theme is a collection of features (entities with spatial and nonspatial attributes)
that are associated with styles through the use of styling rules.

■ A base map consists of one or more themes.

■ Mapping metadata consists of a repository of styles, themes, and base maps stored
in a database.

■ A map is one of the components that OracleAS MapViewer creates in response to a
map request. The map can be an image file, the object representation of an image
file, or a URL referring to an image file.

This chapter contains the following major sections:

■ Section 2.1, "Overview of OracleAS MapViewer"

■ Section 2.2, "Styles"

■ Section 2.3, "Themes"

■ Section 2.4, "Maps"

■ Section 2.5, "Data Sources"

■ Section 2.6, "How a Map Is Generated"

■ Section 2.7, "Workspace Manager Support in OracleAS MapViewer"

■ Section 2.8, "OracleAS MapViewer Metadata Views"

2.1 Overview of OracleAS MapViewer
When an application uses OracleAS MapViewer, it applies specific styles (such as
colors and patterns) to specific themes (that is, collections of spatial features, such as
cities, rivers, and highways) to render a map (such as a GIF image for display on a
Web page). For example, the application might display a map in which state parks
appear in green and restaurants are marked by red stars. A map typically has several
themes representing political or physical entities, or both. For example, a map might
show national and state boundaries, cities, mountain ranges, rivers, and historic sites.
When the map is rendered, each theme represents a layer in the complete image.

Styles

2-2 Oracle Application Server MapViewer User’s Guide

OracleAS MapViewer lets you define styles, themes, and base maps, including the
rules for applying one or more styles to each theme. These styles, themes, base maps,
and associated rules are stored in the database in map definition tables under the
MDSYS schema, and they are visible to you through metadata views. All styles in a
database instance are shared by all users. The mapping metadata (the set of styles,
themes, and base maps) that you can access is determined by the OracleAS
MapViewer metadata views described in Section 2.8 (for example, USER_SDO_
STYLES, USER_SDO_THEMES, and USER_SDO_MAPS). The set of map definition
objects that a given user can access is sometimes called that user’s mapping profile. You
can manage styles, themes, and base maps with the Map Definition Tool, described in
Chapter 7.

2.2 Styles
A style is a visual attribute that can be used to represent a spatial feature. The basic
map symbols and labels for representing point, line, and area features are defined and
stored as individual styles. Each style has a unique name and defines one or more
graphical elements in an XML syntax.

Each style is of one of the following types:

■ Color: a color for the fill or the stroke (border), or both.

■ Marker: a shape with a specified fill and stroke color, or an image. Markers are
often icons for representing point features, such as airports, ski resorts, and
historical attractions.

When a marker style is specified for a line feature, the rendering engine selects a
suitable point on the line and applies the marker style (for example, a shield
marker for a U.S. interstate highway) to that point.

■ Line: a line style (width, color, end style, join style) and optionally a center line,
edges, and hash mark. Lines are often used for linear features such as highways,
rivers, pipelines, and electrical transmission lines.

■ Area: a color or texture, and optionally a stroke color. Areas are often used for
polygonal features such as counties and census tracts.

■ Text: a font specification (size and family) and optionally highlighting (bold, italic)
and a foreground color. Text is often used for annotation and labeling (such as
names of cities and rivers).

■ Advanced: a composite used primarily for thematic mapping, which is described
in Section 2.3.3. The key advanced style is BucketStyle, which defines the
relationship between a set of simple rendering (and optionally labeling) styles and
a set of buckets. For each feature to be plotted, a designated value or set of values
from that feature is used to determine which bucket the feature falls into, and then
the style associated with that bucket is used to plot the feature.

The AdvancedStyle class is extended by BucketStyle, which is in turn
extended by ColorSchemeStyle and VariableMarkerStyle. (Additional
advanced styles, such as for charts, are planned for a future release.)

Table 2–1 lists the applicable geometry types for each type of style.

Table 2–1 Style Types and Applicable Geometry Types

Style Type Applicable Geometry Types

Color (any type)

Styles

OracleAS MapViewer Concepts 2-3

All styles for a database user are stored in that user’s USER_SDO_STYLES view, which
is described in Section 2.8 and Section 2.8.3.

You can also create dynamically defined styles (that is, temporary styles) of any style
type as part of a map request. To create a dynamically defined style, define the style
using its XML elements within the <map_request> element. (You can also use the
JavaBean API to add a dynamically defined style to a map request, as explained in
Section 4.3.4.) OracleAS MapViewer creates dynamically defined styles from these
definitions when it processes the map request, and it discards the dynamically defined
styles when the request is completed.

For more detailed information about the types of styles, including information about
the XML format for defining each type, see Appendix A.

2.2.1 Specifying a Label Style for a Bucket
For collection-based bucket styles and individual range-based bucket styles (described
in Section A.6.1.1 and Section A.6.1.2, respectively), you can specify a labeling style by
using the label_style attribute in each bucket element. Example 2–1 creates an
advanced style named V.RB1 in which each bucket is assigned a text label style (using
the label_style attribute), with some styles being used for several buckets.

Example 2–1 Advanced Style with Text Label Style for Each Bucket

<?xml version="1.0" ?>
<AdvancedStyle>
 <BucketStyle>
 <Buckets>
 <RangedBucket seq="0" label="10k or less" high="10000"
 style="c.rb13_1" label_style="T.AIRPORT NAME"/>
 <RangedBucket seq="1" label="10k - 20k" low="10000" high="20000"
 style="c.rb13_2" label_style="T.CITY NAME"/>
 <RangedBucket seq="2" label="20k - 30k" low="20000" high="30000"
 style="c.rb13_3" label_style="T.CITY NAME"/>
 <RangedBucket seq="4" label="30k - 40k" low="30000" high="40000"
 style="c.rb13_4" label_style="T.CITY NAME"/>
 <RangedBucket seq="5" label="40k - 50k" low="40000" high="50000"
 style="c.rb13_5" label_style="T.CITY NAME"/>
 <RangedBucket seq="6" label="50k - 75k" low="50000" high="75000"
 style="c.rb13_6" label_style="T.ROAD NAME"/>
 <RangedBucket seq="7" label="75k - 100k" low="75000" high="100000"
 style="c.rb13_7" label_style="T.PARK NAME"/>
 <RangedBucket seq="8" label="100k - 125k" low="100000" high="125000"
 style="c.rb13_8" label_style="T.RED STREET"/>
 <RangedBucket seq="9" label="125k - 250k" low="125000" high="250000"
 style="c.rb13_9" label_style="T.ROAD NAME"/>
 <RangedBucket seq="10" label="250k - 450k" low="250000" high="450000"
 style="c.rb13_10" label_style="T.ROAD NAME"/>

Marker point, line

Line line

Area polygon

Text (any type)

Advanced (any type)

Table 2–1 (Cont.) Style Types and Applicable Geometry Types

Style Type Applicable Geometry Types

Styles

2-4 Oracle Application Server MapViewer User’s Guide

 <RangedBucket seq="11" label="450k - 650k" low="450000" high="650000"
 style="c.rb13_11" label_style="T.ROAD NAME"/>
 <RangedBucket seq="12" label="650k up" low="650000" style="c.rb13_13"/>
 </Buckets>
 </BucketStyle>
</AdvancedStyle>

For individual range-based buckets, the lower-bound value is inclusive, while the
upper-bound value is exclusive (except for the range that has values greater than any
value in the other ranges; its upper-bound value is inclusive). No range is allowed to
have a range of values that overlaps values in other ranges.

If the V.RB1 style in Example 2–1 is used in a map request, it displays a map that
might look like the display in Figure 2–1, where the county names are shown with
labels that reflect various text styles (in this case depending on the county’s total
population).

Figure 2–1 Varying Label Styles for Different Buckets

In Example 2–1, all buckets except the last one specify a label style. For any features
that fall into a bucket that has no specified label style, the label style (if any) applied to
the feature depends on the following:

■ If the <label> element of the theme’s styling rules specifies a label style other
than the advanced style itself, the specified label style is used to label the feature.
In the following example, because the <label> element’s style specification
(T.STATE_NAME) is different from the <features> element’s style specification
(V.RB1), features that fall into a bucket with no specified label style are labeled
using the T.STATE_NAME style:

<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <rule column="TOTPOP">
 <features style="V.RB1">
 </features>
 <label column="county" style="T.STATE NAME">
 1
 </label>
 </rule>
</styling_rules>

■ If the <label> element of the theme’s styling rules specifies the advanced style as
its label style, the feature is not labeled. (This is why some counties in Figure 2–1
are not labeled.) In the following example, because the <features> and

Styles

OracleAS MapViewer Concepts 2-5

<label> elements both specify the advanced style V.RB1, features that fall into a
bucket with no specified label style are not labeled:

<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <rule column="TOTPOP">
 <features style="V.RB1">
 </features>
 <label column="county" style="V.RB1">
 1
 </label>
 </rule>
</styling_rules>

2.2.2 Orienting Text Labels and Markers
You can control the orientation of text labels and markers on a map by using oriented
points. The oriented point is a special type of point geometry introduced in Oracle
Spatial for Oracle Database 10g Release 1 (10.1). In an oriented point, the coordinates
represent both the location of the point and a virtual end point, to indicate an
orientation vector. The text is aligned or the marker symbol is rotated according to the
orientation vector, which is explained in Section 3.2.5 and illustrated in Figure 3–3 in
that section. For more information about oriented points, see Oracle Spatial User's Guide
and Reference.

2.2.2.1 Controlling Text Style Orientation
To orient the text label of a point in the direction of an orientation vector, you can
specify the point as an Oracle Spatial oriented point in the map request. When
OracleAS MapViewer labels an oriented point, it automatically centers the text label on
the point position, and aligns the label so that it points in the direction of the
orientation vector.

For each feature to be so labeled, you must specify its location as an oriented point.
You can group these oriented points in a single table and create a spatial index on the
column containing the point geometries. You can then create a theme based on the
table, specifying a desired text style as the labeling, and specifying transparent color
style as the rendering style so that the points themselves are not displayed on the map.

Example 2–2 is a map request that labels a single oriented point with coordinates
(12,14, 0.3,0.2), where (12,14) represents the X and Y coordinates of the point and
(0.3,0.2) represents the orientation vector. It renders the point using a dynamically
defined transparent color style (named transparent_color) to ensure that the text
is displayed but the underlying point is not displayed.

Example 2–2 Labeling an Oriented Point

<map_request
 title="Labeling Oriented Points"
 datasource="my_datasource" width="400" height="300"
 antialiase="true"
 format="PNG_STREAM">

 <themes>
 <theme name="theme1">
 <jdbc_query
 spatial_column="geom" jdbc_srid="8265"
 render_style="transparent_color"
 label_column="label" label_style="t.street name"
 datasource="tilsmenv">

Styles

2-6 Oracle Application Server MapViewer User’s Guide

 SELECT MDSYS.SDO_GEOMETRY(2001, 8265, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1, 1, 3, 1, 0),
 MDSYS.SDO_ORDINATE_ARRAY(12, 14, .3, .2))
 geom, 'Oriented Point' label FROM dual
 </jdbc_query>
 </theme>
 </themes>

 <styles>
 <style name="transparent_color">
 <svg width="1in" height="1in">
 <g class="color" style="stroke:#ff0000;stroke-opacity:0">
 <rect width="50" height="50"/>
 </g>
 </svg>
 </style>
 </styles>
</map_request>

Figure 2–2 shows part of the map generated by the request in Example 2–2. (The label
is the phrase Oriented Point.)

Figure 2–2 Map Display of the Label for an Oriented Point

2.2.2.2 Controlling Marker Orientation
When a marker style is applied to an oriented point, OracleAS MapViewer
automatically rotates the marker style so that it points to the orientation vector. Any
necessary rotation of the marker style is around the center of the marker.

Figure 2–3 shows how you can use an oriented point to control the orientation of
marker styles. In this figure, the original marker style is first shown without any
rotation. However, when the marker is applied to the same oriented point shown in
Example 2–2 in Section 2.2.2.1, the marker style is rotated accordingly (in this case
about 34 degrees counterclockwise) to reflect the orientation vector.

Themes

OracleAS MapViewer Concepts 2-7

Figure 2–3 Oriented Marker

2.3 Themes
A theme is a visual representation of a particular data layer. Typically, a theme is
associated with a spatial geometry layer, that is, with a column of type SDO_
GEOMETRY in a table or view. For example, a theme named US_STATES might be
associated with a column named GEOMETRY in a STATES table. Other types of
themes include the following:

■ Image themes, which are associated with georeferenced images

■ GeoRaster themes, which are associated with Oracle Spatial GeoRaster data

■ Network themes, which are associated with networks in the Oracle Spatial
network data model

■ Topology themes, which are associated with topologies in the Oracle Spatial
topology data model

When you define a theme, you must specify a base table or view, a spatial data column
in that table or view, and a set of styling rules. For a predefined theme (described in
Section 2.3.1), the definition is permanently stored in the database. However, you can
also dynamically define a theme (that is, create a JDBC theme, described in
Section 2.3.2) by supplying the definition within a map request.

If a theme is associated with a spatial layer geometry in a view, the view can be based
on one or more tables. However, if the view is based on two or more tables (that is, if it
is a join view), you must specify the key_column attribute (described in Section A.7)
in the STYLING_RULES column definition in the USER_SDO_THEMES view. The
following example specifies the column named GID in the join view named VIEW_
THEME for the key_column attribute:

UPDATE user_sdo_themes SET styling_rules=
'<?xml version="1.0" standalone="yes"?>
<styling_rules key_column="gid">
<rule>
 <features style="L.PH"/>
 <label column="label" style="M.FLASH_SHIELD1">1</label>
</rule>
</styling_rules>' WHERE name='VIEW_THEME';

(12,14, 0.3,0.2)

Original marker style

Oriented point

Marker style applied
to the oriented point

Themes

2-8 Oracle Application Server MapViewer User’s Guide

2.3.1 Predefined Themes
A predefined theme is a theme whose definition is stored in a user’s database schema.
All predefined themes for a database user are stored in that user’s USER_SDO_
THEMES view (described in Section 2.8, especially Section 2.8.2). When you specify a
predefined theme in a map request, you need to specify only the theme name.
OracleAS MapViewer automatically finds the theme’s definition, constructs a query
based on it, retrieves the relevant spatial and attribute data, and renders the theme
according to the styling rules for the theme.

Each predefined theme must have an associated base table or view. If you base a theme
on a view, you must insert a row in the view owner’s USER_SDO_GEOM_
METADATA view (described in Oracle Spatial User's Guide and Reference) specifying the
view and its spatial column. If the view is a join view (that is, if it is based on multiple
tables), you must specify the key_column attribute (described in Section A.7) in the
theme’s styling rules. The reason for this requirement is that OracleAS MapViewer by
default caches geometries for a predefined theme based on the rowid in the base table;
however, for a join view there is no ROWID pseudocolumn, so you must specify a key
column.

For many themes (but not for GeoRaster, network, or topology themes), you can use
the graphical Map Definition Tool predefined themes of varying complexity. For
information about the Map Definition Tool, see Chapter 7.

2.3.1.1 Styling Rules in Predefined Spatial Geometry Themes
Each predefined theme is associated with one or more styling rules, specifications in
XML format that control aspects of how the theme is displayed. This section describes
styling rules for predefined spatial geometry themes, such as the airport theme shown
in Example 2–3. Other types of themes, such as image, GeoRaster, network, and
topology themes, have their own distinct styling rules requirements, and these are
discussed in sections that explain these themes. However, the styling rules for all types
of themes are grouped under the <styling_rules> element in an XML document,
which is stored in the STYLING_RULES column for each predefined theme in the
USER_SDO_THEMES view. (The <styling_rules> DTD is described in
Section A.7.)

Example 2–3 XML Definition of Styling Rules for an Airport Theme

<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <rule>
 <features style="c.black gray">
 runway_number > 1
 </features>
 <label column="name" style="t.airport name">

Note: The following naming conventions are used for prefixes in
style names in the examples in this chapter: v. indicates variable
(advanced style), m. indicates marker, c. indicates color, l.
indicates line, and t. indicates text. (If the style is not under the
current user’s schema, you must specify the owner’s schema name
followed by a colon. For example: mdsys:c.red.)

In the content (character data) of an XML document, < and
> must be used to represent < and >, respectively. Otherwise, <
or >, such as in WHERE CATEGORY > ’B’, will be interpreted by
the XML parser as part of an XML tag.

Themes

OracleAS MapViewer Concepts 2-9

 1
 </label>
 </rule>
 <rule>
 <features style="m.airplane">
 runway_number = 1
 </features>
 </rule>
</styling_rules>

Each styling rule has a required <features> element and an optional <label>
element. The <features> element specifies which row or rows (features) in the table
or view will be selected based on the attribute value, and the style to be used for the
selected features. The <label> element specifies whether or not to annotate the
selected features, and if so, which column in the table or view to use for text labels.

In Example 2–3, there are two styling rules associated with the Airport theme:

■ The first rule specifies that only those rows that satisfy the condition runway_
number > 1 (that is, runway number greater than 1) will be selected, and
these will be rendered using the style named c.black gray. Any conditions that
are valid in a SQL WHERE clause can be used as the value of a <features>
element. If no value is supplied, no WHERE clause condition is applied. For
example, assume that the definition had been the following (that is, omitting the
runway_number > 1 condition):

<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <rule>
 <features style="c.black gray"/>
 <label column="name" style="t.airport name">
 1
 </label>
 </rule>
</styling_rules>

In this case, all airport features would be selected and would be rendered using
the color style named c.black gray.

The first rule also has a <label> element, which specifies that the NAME column
in the table or view will be used to annotate each airport, using the text style
t.airport name. The value of the <label> element, which can be any SQL
expression, is used to determine whether or not a feature will be annotated. If the
value is greater than zero, the feature will be annotated. In this case, because the
value is the constant 1, all features specified by the <features> element will be
annotated, using the values in the NAME column. If the value is less than or equal
to zero for a feature, that feature will not be annotated.

■ The second rule, which applies to those airports with only one runway, does not
have a <label> element, thus preventing all such airports from being annotated.
In addition, the features that satisfy the second rule will be rendered using a
different style (m.airplane), as specified in its <features> element.

If two or more rules are specified, a UNION ALL operation is performed on the SQL
queries for the rules (from first to last) to fetch the qualified features from the table or
view.

If an advanced style is specified in a rule, the SELECT list of the query to fetch
qualified features contains the spatial column, the attribute column or columns, the
name of the feature style, the label information, the WHERE clause, and the feature

Themes

2-10 Oracle Application Server MapViewer User’s Guide

query. Based on the value of the attribute column or columns and the definition of the
specified feature style, each feature is associated with a style.

2.3.1.2 Caching of Predefined Themes
By default, OracleAS MapViewer automatically caches the spatial data for a
predefined theme when it is fetched from the database for processing by the OracleAS
MapViewer rendering engine. By contrast, data for dynamic (JDBC) themes is never
cached in OracleAS MapViewer. If you do not want any data for a predefined theme to
be cached (such as for a theme whose underlying base table is constantly being
updated), you can set the caching attribute to NONE in the <styling_rules>
element for the theme. (The <styling_rules> element, including the caching
attribute, is described in Section A.7.)

For frequently used themes whose base data is static or read-only, specify caching
ALL for the best performance. This causes OracleAS MapViewer, when it first accesses
the theme definition, to fetch all the features (including spatial data, attribute data, and
styling information associated with them) and cache them in the OracleAS MapViewer
memory, creating an in-memory R-tree for the theme’s spatial data. All subsequent
requests requiring that theme occur locally instead of going to the database.

If the caching attribute value is NORMAL (the default), each time a map involving that
theme is requested, OracleAS MapViewer queries the database to get the spatial data
and any associated attribute data. However, if any of the spatial geometry data, as
referenced by rowid or a user-specified key column, has already been cached, the
unpickling process (the conversion from the raw database geometry format to a Java
geometry object) is skipped. Still, if memory is not an issue and if a frequently used
theme can completely fit in the cache, you should specify caching ALL, to eliminate
virtually all database access for that theme after the initial loading.

Because the OracleAS MapViewer spatial data cache is global, all predefined themes
that are accessed by OracleAS MapViewer compete for a global fixed-sized memory
cache. The cache resides completely in memory, and you can specify the maximum
size of the cache as explained in Section 1.5.6. When the cache limit is reached, older
cached data is removed from the cache to make room for the most recently accessed
data, except that data for themes specified with caching ALL is not removed from
the cache, and OracleAS MapViewer does not requery the database for these themes.

2.3.2 JDBC Themes
A JDBC theme is a theme that is dynamically defined with a map request. JDBC
themes are not stored permanently in the database, as is done with predefined themes.

For a JDBC theme, you must specify a valid SQL query that retrieves all the necessary
spatial data (geometries or other types of data, such as image, GeoRaster, network, or
topology). If attribute data is needed, such as for thematic mapping or spatial data
analysis, the query must also select it. In other words, you must provide a correct and
complete query for a JDBC theme. In addition to the query, you can also specify the
rendering and labeling styles to be used for the theme.

For a JDBC theme based on spatial geometries, OracleAS MapViewer processed the
columns specified in the query according to the following rules:

■ The column of type SDO_GEOMETRY is treated as the spatial data column.

■ Any column whose name or alias matches that specified in the JDBC theme’s
label_column attribute is treated as the labeling column, whose values are used
as text for labels.

Themes

OracleAS MapViewer Concepts 2-11

■ Any other columns are treated as attribute data columns, which may or may not
be used by OracleAS MapViewer. For example, if the rendering style is an
advanced style, any attribute columns are processed by that style in the order in
which they appear in the SELECT list in the query. Thus, if you are performing
thematic mapping and using an advanced style, you must specify all attribute
columns that are needed for the thematic mapping, in addition to the geometry
column and optional labeling column. (A labeling column can also be an attribute
column, in which case you do not need to specify that column in the SELECT list.)

Example 2–4 is a map request that includes a JDBC theme.

Example 2–4 JDBC Theme in a Map Request

<?xml version="1.0" standalone="yes"?>
<map_request title="My MAP" datasource = "mvdemo">

 <themes>
 <theme name="jdbc_theme_1">
 <jdbc_query
 datasource="mvdemo"
 jdbc_srid="41052"
 spatial_column="geometry"
 render_style="C.RED">
 SELECT geometry from states where name='MA'
 </jdbc_query>
 </theme>
 </themes>

</map_request>

The full query that OracleAS MapViewer executes for the JDBC theme in Example 2–4
is:

SELECT geometry FROM states WHERE name='MA’;

For this request, OracleAS MapViewer generates a map that contains only the selected
geometry as a result of executing this JDBC theme's query. In a more typical case,
however, the map request will need to use several JDBC themes to plot additional
dynamic data on top of the base map. Furthermore, the map request may have a query
window associated with it; that is, the user may want to see only a portion of the area
included in the whole base map. In this case, the SQL queries in the JDBC themes will
be subjected to a spatial window query, to eliminate any unwanted results.

For more information about JDBC themes, see the information about the <jdbc_
query> element in Section 3.2.9.

2.3.2.1 Storing Complex JDBC Themes in the Database
Sometimes the SQL query for a JDBC theme is so complex that you may want to save
the query. In such cases, you can define a predefined theme (whose definition is stored
in the database's USER_SDO_THEMES view), and then include the full SQL query as
the content of the <features> element in the styling rules for that theme.

The feature style specified in the <features> element is then used to render the
geometries retrieved using the full query. The base table as defined for such a theme is
ignored because the full SQL query already includes a FROM clause. The geometry
column defined in the USER_SDO_THEMES view is still needed, and it must be the
same as the geometry column selected in the user-supplied SQL query. If you have a
<label> element for a styling rule, the label style specified is used to label the
geometries, as long as the query selects a column that contains label text.

Themes

2-12 Oracle Application Server MapViewer User’s Guide

Example 2–5 is a sample <styling_rules> element of a predefined theme with a
complex SQL query.

Example 2–5 Complex Query in a Predefined Theme

<?xml version="1.0" standalone="yes"?>
 <styling_rules>
 <rule>
 <features style="L.POOR_ROADS" asis="true">
 select sdo_lrs.clip_geom_segment(geometry,start_measure,end_measure)
 geometry
 from (select /*+ no_merge use_hash(a b) */
 a.street_id, name, start_measure, end_measure, geometry
 from (select /*+ no_merge */ a.street_id, name, geometry
 from philly_roads a
 where sdo_filter(geometry,sdo_geometry(2002,41124,null,
 sdo_elem_info_array(1,2,1),
 sdo_ordinate_array(?,?,?,?)),
 'querytype=window')='TRUE') a,
 philly_road_conditions b
 where condition='POOR' and a.street_id = b.street_id)
 </features>
 </rule>
 </styling_rules>

Even though Example 2–5 is defined as a predefined theme, OracleAS MapViewer still
treats it as a JDBC theme at run time when a user requests a map that includes this
theme. As with a normal JDBC theme, OracleAS MapViewer by default imposes a
window filtering process (if a query window was included in the map request) on top
of the SQL query. To override this default behavior and have the supplied query string
executed without any modification, specify asis="true" in the <features>
element, as shown in Example 2–5. (For information about the asis attribute, see
Section 3.2.9.)

2.3.3 Thematic Mapping
Thematic mapping refers to the drawing of spatial features based on their attribute
values. OracleAS MapViewer uses thematic mapping to create maps in which colors or
symbols are applied to features to indicate their attributes. For example, a Counties
theme can be drawn using colors with different hues that map directly to the
population density of each county, or an Earthquakes theme can be plotted with
filled circles whose sizes map to the scale or damage of each earthquake.

To achieve thematic mapping, you must first create an advanced style that is suitable
for the type of thematic map, and then create a theme for the features specifying the
advanced style as the rendering style. In the styling rules for the theme, you must also
specify attribute columns in the table or view whose values will be used to determine
exactly how a feature will be rendered thematically by the advanced style.

For example, assume that you wanted to display a map in which the color used for
each region reflects the level of sales for a particular product. To do this, create an
advanced style that defines a series of individual range-based buckets (see
Section A.6.1.2), where each bucket contains a predefined range of sales values for a
product, and each bucket has an associated rendering style. (Each region will be
rendered using the style associated with the range in which that region's sales value
falls.) Also specify the name of the column or columns that provide the attribute
values to be checked against the ranges. In other words, the advanced style defines
how to map regions based on their sales values, and the theme’s styling rules tie

Themes

OracleAS MapViewer Concepts 2-13

together the advanced style and the attribute column containing the actual sales
values.

Figure 2–4 shows the relationship between an advanced style and a theme, and how
the style and the theme relate to the base table. In this figure, the advanced style
named V.SALES defines the series of buckets. The predefined theme named SALES_
BY_REGION specified the V.SALES style in its styling rules. The theme also identifies
the SALES column in the REGIONS table as the column whose value is to be
compared with the bucket ranges in the style. (Each bucket could be associated with a
labeling style in addition to or instead of a rendering style, as explained in
Section 2.2.1.)

Figure 2–4 Thematic Mapping: Advanced Style and Theme Relationship

In addition to the individual range-based buckets shown in Figure 2–4, OracleAS
MapViewer supports other bucket styles, as explained in Section A.6.1. You can also
use more than one attribute column for thematic mapping, such as when drawing pie
charts (explained in Section 3.1.9).

The rest of this section presents additional examples of thematic mapping.

Example 2–6 is the XML definition for an Earthquakes theme.

Example 2–6 XML Definition of Styling Rules for an Earthquakes Theme

<?xml version="1.0" standalone="yes"?>
<styling_rules theme_type="nature">
 <rule column="RICHTER_SCALE">
 <features style="v.earthquakes">
 </features>
 </rule>
</styling_rules>

The theme in Example 2–6 has only one rule. The <rule> element includes an
attribute named column that does not appear in the Airport theme in Example 2–3.

Themes

2-14 Oracle Application Server MapViewer User’s Guide

The column attribute specifies one or more columns (comma-delimited) that provide
the attribute values needed for thematic mapping. The style specified for the
<features> element is named v.earthquakes, and it is an advanced style.

Another part of the definition of the Earthquakes theme specifies the table that
contains the data to be rendered. This table must contain a column named RICHTER_
SCALE in addition to a column (of type SDO_GEOMETRY) for the spatial data. (The
table and the column of type SDO_GEOMETRY must be identified in the BASE_
TABLE and GEOMETRY_COLUMN columns, respectively, of the USER_SDO_
THEMES view, which is described in Section 2.8.2.) The RICHTER_SCALE column
must be of type NUMBER. To understand why, look at the advanced style definition in
Example 2–7.

Example 2–7 Advanced Style Definition for an Earthquakes Theme

<?xml version="1.0" ?>
<AdvancedStyle>
 <VariableMarkerStyle basemarker="m.circle" startsize="7" increment="4">
 <Buckets>
 <RangedBucket seq="0" label="less than 4" high="4"/>
 <RangedBucket seq="1" label="4 - 5" low="4" high="5"/>
 <RangedBucket seq="2" label="5 - 6" low="5" high="6"/>
 <RangedBucket seq="3" label="6 - 7" low="6" high="7"/>
 <RangedBucket seq="4" label="7 and up" low="7"/>
 </Buckets>
 </VariableMarkerStyle>
</AdvancedStyle>

This style specifies that the marker named m.circle is used to indicate the location
of an earthquake. The size of the marker to be rendered for an earthquake depends on
the numeric value of the RICHTER_SCALE column for that row. In this example there
are five buckets, each covering a predetermined range of values. For example, if an
earthquake is of magnitude 5.7 on the Richter scale, the marker size will be 15 pixels (7
+ 4 + 4), because the value 5.7 falls in the third bucket (5 - 6) and the starting marker
size is 7 pixels (startsize="7") with an increment of 4 for each range
(increment="4").

Example 2–7 used the <VariableMarkerStyle> tag. The following examples use
the <ColorSchemeStyle> tag in creating thematic maps of census blocks in
California. Example 2–8 illustrates the use of a graduated color scale for a thematic
mapping of population density. Example 2–9 is a thematic mapping of average
household income using a graduated color scale. Example 2–10 is also a thematic
mapping of average household income, but it uses a specific color style for each
income range rather a graduated scale.

Example 2–8 Mapping Population Density Using a Graduated Color Scheme

ca pop density usbg_hhinfo
<?xml version="1.0" standalone="yes"?>

Note: The label attribute value (for example, label="less
than 4") is not displayed on the map, but is used only in a label
that is compiled for an advanced style.

The seq attribute value (for example, seq="0") is ignored by
OracleAS MapViewer, which determines sequence only by the
order in which elements appear in a definition.

Themes

OracleAS MapViewer Concepts 2-15

<styling_rules theme_type="political">
<rule column="densitycy">
 <features style="v.CA Pop density">
 </features>
 </rule>
</styling_rules>

The table named USBG_HHINFO includes a column named DENSITYCY (used in
Example 2–8). The definition of the style (v.CA Pop density) that corresponds to
this population density theme is as follows:

<?xml version="1.0" ?>
<AdvancedStyle>
 <ColorSchemeStyle basecolor="#ffff00" strokecolor="#00aaaa">
 <Buckets low="0.0" high="20000.0" nbuckets="10"/>
 </ColorSchemeStyle>
</AdvancedStyle>

The base color (basecolor) and the stroke color (strokecolor) are 24-bit RGB
(red-green-blue) values specified using a hexadecimal notation. The base color value is
used for the first bucket. The color value for each subsequent bucket is obtained by
first converting the base color from the RGB to the HSB (hue-saturation-brightness)
model and then reducing the brightness by a fixed increment for each bucket. Thus,
the first bucket is the brightest and the last is the darkest.

As in Example 2–8, Example 2–9 illustrates the use of a base color and a graduated
color scheme, this time to show household income.

Example 2–9 Mapping Average Household Income Using a Graduated Color Scheme

<?xml version="1.0" standalone="yes"?>
<!-- # ca hh income theme table = usbg_hhinfo -->
<styling_rules>
<rule column="avghhicy">
 <features style="v.ca income">
 </features>
 </rule>
</styling_rules>

The table named USBG_HHINFO includes a column named AVGHHICY (used in
Example 2–9 and Example 2–10). The definition of the style (v.ca income) that
corresponds to this average household income theme is as follows:

<?xml version="1.0" ?>
<AdvancedStyle>
 <ColorSchemeStyle basecolor="#ffff00" strokecolor="#00aaaa">
 <!-- # income range with a color gradient -->
 <Buckets>
 <RangedBucket seq="0" label="less than 10k" high="10000"/>
 <RangedBucket seq="1" label="10-15k" low="10000" high="15000"/>
 <RangedBucket seq="2" label="15-20k" low="15000" high="20000"/>
 <RangedBucket seq="3" label="20-25k" low="20000" high="25000"/>
 <RangedBucket seq="4" label="25-35k" low="25000" high="35000"/>
 <RangedBucket seq="5" label="35-50k" low="35000" high="50000"/>
 <RangedBucket seq="6" label="50-75k" low="50000" high="75000"/>
 <RangedBucket seq="7" label="75-100k" low="75000" high="100000"/>
 <RangedBucket seq="8" label="100-125k" low="100000" high="125000"/>
 <RangedBucket seq="9" label="125-150k" low="125000" high="150000"/>
 <RangedBucket seq="10" label="150-250k" low="150000" high="250000"/>
 <RangedBucket seq="11" label="250-500k" low="250000" high="500000"/>
 <RangedBucket seq="12" label="500k and up" low="500000"/>

Themes

2-16 Oracle Application Server MapViewer User’s Guide

 </Buckets>
 </ColorSchemeStyle>
</AdvancedStyle>

For individual range-based buckets, the lower-bound value is inclusive, while the
upper-bound value is exclusive (except for the range that has values greater than any
value in the other ranges; its upper-bound value is inclusive). No range is allowed to
have a range of values that overlaps values in other ranges.

Example 2–10 uses specific color styles for each average household income range.

Example 2–10 Mapping Average Household Income Using a Color for Each Income
Range

<?xml version="1.0" standalone="yes"?>
<!-- # ca hh income theme table = usbg_hhinfo -->
<styling_rules>
<rule column="avghhicy">
 <features style="v.ca income 2">
 </features>
 </rule>
</styling_rules>

The definition of the v.ca income 2 style is as follows:

<?xml version="1.0" ?>
<AdvancedStyle>
 <BucketStyle>
 <Buckets>
 <!-- # income ranges with specific colors -->
 <RangedBucket seq="0" label="less than 10k" high="10000" style="c.rb13_1"/>
 <RangedBucket seq="1" label="10-15k" low="10000" high="15000" style="c.rb13_2"/>
 <RangedBucket seq="2" label="15-20k" low="15000" high="20000" style="c.rb13_3"/>
 <RangedBucket seq="3" label="20-25k" low="20000" high="25000" style="c.rb13_4"/>
 <RangedBucket seq="4" label="25-35k" low="25000" high="35000" style="c.rb13_5"/>
 <RangedBucket seq="5" label="35-50k" low="35000" high="50000" style="c.rb13_6"/>
 <RangedBucket seq="6" label="50-75k" low="50000" high="75000" style="c.rb13_7"/>
 <RangedBucket seq="7" label="75-100k" low="75000" high="100000" style="c.rb13_8"/>
 <RangedBucket seq="8" label="100-125k" low="100000" high="125000" style="c.rb13_9"/>
 <RangedBucket seq="9" label="125-150k" low="125000" high="150000" style="c.rb13_10"/>
 <RangedBucket seq="10" label="150-250k" low="150000" high="250000" style="c.rb13_11"/>
 <RangedBucket seq="11" label="250-350k" low="250000" high="350000" style="c.rb13_12"/>
 <RangedBucket seq="12" label="350k and up" low="350000" style="c.rb13_13"/>
 </Buckets>
 </BucketStyle>
</AdvancedStyle>

Each <RangedBucket> definition has a specified style.

The following examples create an advanced style to identify gasoline stations operated
by different oil companies, and a theme that uses the style. A <CollectionBucket>
tag is used to associate a column value (Shell; Esso; Texaco; BP; any of Avia,
Benzinex, Q8, Total, Witte Pomp; and all others for a default category) with a
style appropriate for that company’s stations, as shown in Example 2–11.

Example 2–11 Advanced Style Definition for Gasoline Stations Theme

<?xml version="1.0" ?>
<AdvancedStyle>
<BucketStyle>
 <Buckets>
 <CollectionBucket seq="0" label="Shell" style="m.shell gasstation">
 Shell

Themes

OracleAS MapViewer Concepts 2-17

 </CollectionBucket>
 <CollectionBucket seq="1" label="Esso" style="m.esso gasstation">
 Esso
 </CollectionBucket>
 <CollectionBucket seq="2" label="Texaco" style="m.texaco gasstation">
 Texaco
 </CollectionBucket>
 <CollectionBucket seq="3" label="BP" style="m.bp gasstation">
 BP
 </CollectionBucket>
 <CollectionBucket seq="4" label="Other" style="m.generic gasstation">
 Avia,Benzinex,Q8,Total,Witte Pomp
 </CollectionBucket>
 <CollectionBucket seq="5" label="DEFAULT" style="m.default gasstation">
 #DEFAULT#
 </CollectionBucket>
 </Buckets>
</BucketStyle>
</AdvancedStyle>

Notes on Example 2–11:

■ m.esso gasstation, m.texaco gasstation, and the other style names have
a space between the words in their names.

■ The names are not case-sensitive. Therefore, be sure not to use case as a way of
differentiating names. For example, m.esso gasstation and M.ESSO
GASSTATION are considered the same name.

■ A default collection bucket can be specified by using #DEFAULT# as its value. This
bucket is used for any column values (gas station names) that are not specified in
the other buckets.

A theme (theme_gasstation) is then defined that specifies the column (MERK) in
the table that contains company names. The styling rules of the theme are shown in
Example 2–12.

Example 2–12 Styling Rules of Theme Definition for Gasoline Stations

<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <rule column="merk">
 <features style="v.gasstations">
 </features>
 <label column="merk" style="t.SansSerif red 10">
 1
 </label>
 </rule>
</styling_rules>

This theme depends on a table named NED_GASSTATIONS, which has the columns
shown in Table 2–2 (with column names reflecting the fact that the developer’s
language is Dutch).

Table 2–2 Table Used with Gasoline Stations Theme

Column Data Type

FID NOT NULL NUMBER

ID NUMBER

Themes

2-18 Oracle Application Server MapViewer User’s Guide

In this table, the GEOM column contains spatial geometries, and the MERK column
contains company names (Shell, Esso, and so on).

The styling rules for the theme_gasstation theme specify that the marker (style
v.gasstations) at a location specified by the content of the GEOM column is
determined by the value of the MERK column for that row. The style v.gasstations
(see Example 2–11) specifies that if the column value is Shell, use the style m.shell
gasstation; if the column value is Esso, use the style m.esso gasstation; and
so on, including if the column value is any one of Avia, Benzinex, Q8, Total, and
Witte Pomp, use the style m.generic gasstation; and if the column value is
none of the preceding, use the style m.default gasstation.

2.3.4 Attributes Affecting Theme Appearance
Some attributes of the <theme> element affect only the appearance of the map display,
rather than determining the data to be associated with the theme. These
appearance-related attributes control whether and how the theme is processed and
rendered when a map is generated. Examples include the following attributes:

■ min_scale and max_scale determine whether or not a theme is displayed at
various map scales (levels of resolution). For example, if you are displaying a map
of streets, there are certain map scales at which the streets would become too
dense for a usable display, such as when viewing an entire state or province. In
this case, you should create a theme for streets, and specify minimum and
maximum scale values to ensure that individual streets affected by the theme are
displayed when the scale is appropriate and otherwise are not displayed.

■ labels_always_on determines whether or not labels for the theme will be
displayed if they would overlap another label. By choosing appropriate labels_
always_on values and choosing an appropriate order of themes to be processed
within a map request, you can control how cluttered the labels might become and
which labels have priority in getting displayed.

■ fast_unpickle determines the unpickling (unstreaming) method to be used,
which can involve a trade-off between performance and precision in the display.

■ fixed_svglabel, visible_in_svg, selectable_in_svg, onclick,
onmousemove, onmouseover, and onmouseout affect the appearance of SVG
maps.

NAAM VARCHAR2(31)

STRAAT_ VARCHAR2(30)

NR NUMBER

TV VARCHAR2(1)

AAND VARCHAR2(2)

PCODE VARCHAR2(6)

PLAATS VARCHAR2(10)

GEOM SDO_GEOMETRY

MERK VARCHAR2(40)

Table 2–2 (Cont.) Table Used with Gasoline Stations Theme

Column Data Type

Themes

OracleAS MapViewer Concepts 2-19

To specify any appearance-related attributes, use the <theme> element (described in
Section 3.2.14) with the XML API or the JavaBean-based API (see especially
Section 4.3).

2.3.5 Image Themes
An image theme is a special kind of OracleAS MapViewer theme useful for
visualizing geographically referenced imagery (raster) data, such as from remote
sensing and aerial photography.

You can define an image theme dynamically or permanently (as a predefined theme)
in the database. You can use image themes with vector (nonimage) themes in a map.
Figure 2–5 shows a map in which an image theme (showing an aerial photograph of
part of the city of Boston) is overlaid with themes showing several kinds of roadways
in the city.

Figure 2–5 Image Theme and Other Themes Showing Boston Roadways

Before you can define an image theme, you must follow these rules in organizing your
image data:

■ Store image data in its original format (such as JPEG) in a BLOB column in a
database table.

■ Add a geometry (SDO_GEOMETRY) column to the same table, and store the
minimum bounding rectangle (MBR) for each image in that column.

Each geometry in the MBR column contains the geographic bounds for an image,
not its size in the pixel space. For example, if an orthophoto image is 2000 by 2000
pixels in size, but covers a ground rectangle starting at the corner of (936000,
248000) and having a width and height of 8000 meters, the MBR for the geometry
column should be populated with (936000, 248000, 944000, 256000).

Themes

2-20 Oracle Application Server MapViewer User’s Guide

■ Insert an entry for the geometry column in the USER_SDO_GEOM_METADATA
view.

■ Create a spatial index on the geometry column.

To predefine an image theme, follow the guidelines in Section 2.3.5.1. To define a
dynamic image theme in a map request, follow the guidelines for defining a JDBC
theme, as explained in Section 2.3.2 and Section 3.2.9, but note the following additional
considerations with dynamic image themes:

■ You must provide the original image resolution information when defining an
image theme.

■ OracleAS MapViewer by default automatically scales the image data when
generating a map with an image theme, so that it fits the current query window. To
disable this automatic scaling, specify imagescaling="false" in the map
request.

For any image theme definition, note the following considerations:

■ You cannot use the Map Definition Tool to create an image theme. Instead, you
must create an image theme and add it to the OracleAS MapViewer instance
programmatically, or you must predefine the theme as explained in Section 2.3.5.1.

■ OracleAS MapViewer supports only GIF and JPEG image formats. To enable
OracleAS MapViewer to visualize data in any other image format, you must
implement a custom image renderer using the
oracle.sdovis.CustomImageRenderer interface in Java, and then register
your implementation class in the mapViewerConfig.xml file (to tell OracleAS
MapViewer which custom image renderer to use for image data in a specific
format). For detailed information about implementing and registering a custom
image renderer, see Appendix C.

For an example of a map request specifying an image theme, including an explanation
of how OracleAS MapViewer processes the request, see Example 3–6 in Section 3.1.6.

2.3.5.1 Creating Predefined Image Themes
To create a predefined image theme, you must store the definition of the image theme
in the database by inserting a row into the USER_SDO_THEMES view (described in
Section 2.8.2). Example 2–13 stores the definition of an image theme.

Example 2–13 Creating a Predefined Image Theme

INSERT INTO user_sdo_themes VALUES (
 'IMAGE_LEVEL_2',
 'Orthophotos at pyramid level 2',
 'IMAGES',
 'IMAGE_MBR',
 '<?xml version="1.0" standalone="yes"?>
 <styling_rules theme_type="image" image_column="image"
 image_format="JPEG" image_resolution="2"
 image_unit="M">
 <rule >
 <features style="C.RED"> plevel=2 </features>
 </rule>
 </styling_rules>');

Example 2–13 creates an image theme named IMAGE_LEVEL_2. The base table (where
all image data and associated MBRs are stored) is named IMAGES, and the minimum
bounding rectangles (MBRs) for the images are stored in the column named IMAGE_

Themes

OracleAS MapViewer Concepts 2-21

MBR. In the STYLING_RULES column of the USER_SDO_THEMES view, an XML
document with one <styling_rules> element is inserted.

The <styling_rules> element for an image theme has the following attributes:

■ theme_type must be image in order for this theme to be recognized as an image
theme.

■ image_column specifies the column in the base table or view that stores the
actual image data.

■ image_format is a string identifying the format of the image data. If you specify
GIF or JPEG, OracleAS MapViewer can always render the image data. If you
specify any other value, such as ECW, you must have implemented a custom image
renderer and registered it to OracleAS MapViewer in order for the image to be
rendered properly. For information about implementing a custom image renderer,
see Appendix C.

■ image_resolution is an optional attribute that identifies the original image
resolution (number of image_unit units for each pixel).

■ image_unit is an optional attribute, except it is required if you specify the
image_resolution attribute. The image_unit attribute specifies the unit of the
resolution, such as M for meter. The value for this attribute must be one of the
values in the SDO_UNIT column of the MDSYS.SDO_DIST_UNITS table. In
Example 2–13, the image resolution is 2 meters per pixel.

The DTD for the <styling_rules> element is presented in Section A.7.

2.3.6 GeoRaster Themes
A GeoRaster theme is a special kind of OracleAS MapViewer theme useful for
visualizing GeoRaster objects. GeoRaster is a feature of Oracle Spatial that lets you
store, index, query, analyze, and deliver raster image and gridded data and its
associated metadata. GeoRaster objects are defined using the SDO_GEORASTER data
type. For detailed information about GeoRaster, see Oracle Spatial GeoRaster.

Before you can use OracleAS MapViewer with GeoRaster themes, you must ensure
that the Java Advanced Imaging (JAI) library files (jai_core.jar and jai_
codec.jar) are in the OracleAS MapViewer library path, as explained in Section 1.4.
You must also perform the following actions with the GeoRaster data:

1. Georeference the GeoRaster data to establish the relationship between cell
coordinates of the GeoRaster data and real-world ground coordinates (or some
other local coordinates).

If you are using Oracle Database Release 10.1, you must also set the spatial
resolution values.

2. Generate or define the spatial extent (footprint) associated with the raster data.

3. Optionally, generate pyramid levels that represent the raster image or data at
different sizes and degrees of resolution.

4. Insert a row into the USER_SDO_GEOM_METADATA view that specifies the
name of the GeoRaster table and the SPATIALEXTENT attribute of the GeoRaster
column (that is, the column of type SDO_GEORASTER). The following example
inserts a row for a table named GEOR_TABLE with a GeoRaster column named
GEOR_COLUMN:

INSERT INTO USER_SDO_GEOM_METADATA VALUES
('geor_table',

Themes

2-22 Oracle Application Server MapViewer User’s Guide

 'geor_column.spatialextent',
 SDO_DIM_ARRAY(
 SDO_DIM_ELEMENT('X', 496602.844, 695562.844, 0.000005),
 SDO_DIM_ELEMENT('Y',8788409.499,8973749.499, 0.000005)
),
 82279 -- SRID
);

5. Create a spatial index on the spatial extent of the GeoRaster table. The following
example creates a spatial index named GEOR_IDX on the spatial extent of the
table named GEOR_TABLE:

CREATE INDEX geor_idx ON geor_table(geor_column.spatialextent)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX;

Example 2–17 in Section 2.3.6.1 prepares GeoRaster data for use and stores a
GeoRaster theme in the database.

OracleAS MapViewer supports two types of map requests with objects from a
GeoRaster table:

■ A request containing a SQL statement to select one or more GeoRaster objects

■ A request specifying a single GeoRaster object by the combination of its raster data
table name and its rasterID attribute value in the SDO_GEORASTER object.
(The rasterID attribute value in the SDO_GEORASTER object is distinct from
and unrelated to any primary key or ID column in the GeoRaster table.)

The following elements and attributes apply to the definition of a GeoRaster theme:

■ <jdbc_georaster_query> element: Specifies that this is a dynamically defined
GeoRaster theme. For a theme that uses a SQL statement to select one or more
GeoRaster objects, this element contains the SQL query statement (without a
terminating semicolon). The complete DTD for this element is included in the map
request DTD in Section 3.2.

■ georaster_table attribute: Specifies the name of the GeoRaster table.

■ georaster_column attribute: Specifies the name of the column of type SDO_
GEORASTER in the GeoRaster table.

■ polygon_mask attribute (optional): Specifies a set of two-dimensional
coordinates representing a polygon, to be used as a mask to make transparent the
part of the GeoRaster image that is outside the polygon mask. The coordinates are
defined as x1,y1,x2,y2, The mask coordinates must be in the data coordinate
space.

■ raster_bands attribute (optional): Specifies the band composition to be assigned
to the red, green, and blue channels. If you specify only one value, the resulting
image uses one band (gray levels for monochromatic images). If you specify two
values, they are used for the red and green channels, and the default blue band
stored in the GeoRaster metadata is used for the blue channel. If you do not
specify this attribute, OracleAS MapViewer uses the default values stored in the
GeoRaster metadata.

■ raster_pyramid attribute (optional): Specifies the pyramid level (level of
resolution). If you do not specify this attribute, OracleAS MapViewer calculates
the best pyramid level for the current window query and device area.

■ raster_id attribute (only if the definition does not include a SQL statement):
Specifies the rasterID attribute value in the SDO_GEORASTER object definition
of the single GeoRaster object for the map request.

Themes

OracleAS MapViewer Concepts 2-23

■ raster_table attribute (optional, and only if the definition does not include a
SQL statement): Specifies the raster data table associated with the single GeoRaster
object for the map request.

Example 2–14 defines a GeoRaster theme that contains a SQL statement that selects a
single GeoRaster object. The theme assigns band 1 to the red channel, band 2 to the
green channel, and band 3 to the blue channel. Because the raster_pyramid
attribute is not specified, OracleAS MapViewer calculates the best pyramid level by
using the spatial resolution values set during or after the georeferencing process. (Note
that in Example 2–14, georid=1 in the WHERE clause refers to a column named
GEORID in the GeoRaster table named PCI_IMAGE.)

Example 2–14 GeoRaster Theme Containing a SQL Statement

<theme name="georaster_theme">
 <jdbc_georaster_query
 georaster_table="pci_image"
 georaster_column="georaster"
 raster_bands="1,2,3"
 jdbc_srid="82301"
 datasource="mvdemo"
 asis="false"> SELECT georaster FROM pci_image WHERE georid =1
 </jdbc_georaster_query>
</theme>

Example 2–15 defines a GeoRaster theme that specifies the single GeoRaster object
whose rasterID attribute value in the SDO_GEORASTER object is 1 (raster_
id="1") and associated with the raster data table named RDT_PCI. The theme
specifies 2 as the pyramid level.

Example 2–15 GeoRaster Theme Specifying a Raster ID and Raster Data Table

<theme name="georaster_theme">
 <jdbc_georaster_query
 georaster_table="pci_image"
 georaster_column="georaster"
 raster_id="1"
 raster_table="rdt_pci"
 raster_pyramid="2"
 raster_bands="1,2,3"
 jdbc_srid="82301"
 datasource="mvdemo"
 asis="false">
 </jdbc_georaster_query>
</theme>

2.3.6.1 Creating Predefined GeoRaster Themes
To create a predefined GeoRaster theme, you must store the definition of the
GeoRaster theme in the database by inserting a row into the USER_SDO_THEMES
view (described in Section 2.8.2). Example 2–16 stores the definition of a GeoRaster
theme.

Example 2–16 Creating a Predefined GeoRaster Theme

INSERT INTO user_sdo_themes VALUES (
 'GEOR_BANDS_012',
 'Band 0 for red, 1 for green, 2 for blue',
 'GEOR_TABLE',
 'GEOR_COLUMN',

Themes

2-24 Oracle Application Server MapViewer User’s Guide

 '<?xml version="1.0" standalone="yes"?>
 <styling_rules theme_type="georaster" raster_table="RDT_PCI"
 raster_id="1" raster_bands="0,1,2">
 </styling_rules>');

Example 2–16 creates a GeoRaster theme named GEOR_BANDS_012, in which band 0
is assigned to the red channel, band 1 to the green channel, and band 2 to the blue
channel. The GeoRaster table name (GEOR_TABLE in this example) is inserted in the
BASE_TABLE column of the USER_SDO_THEMES view, the GeoRaster column name
(GEOR_COLUMN in this example) is inserted in the GEOMETRY_COLUMN column,
and an XML document with one <styling_rules> element is inserted in the
STYLING_RULES column.

In the <styling_rules> element for a GeoRaster theme, theme_type must be
georaster in order for this theme to be recognized as a GeoRaster theme.

The <styling_rules> element for a GeoRaster theme can contain the attributes
described in Section 2.3.6, including raster_bands, raster_pyramid, raster_id,
and raster_table, as shown in Example 2–16. Alternatively, the <styling_
rules> element for a GeoRaster theme can be a rule definition. For example, to create
a GeoRaster theme that selects a GeoRaster object from the GeoRaster table satisfying
the WHERE clause condition georid=1, replace the <styling_rules> element in
Example 2–16 with the following:

<styling_rules theme_type="georaster">
 <rule>
 <features> georid=1
 </features>
 </rule>
</styling_rules>

The DTD for the <styling_rules> element is presented in Section A.7.

Example 2–17 prepares GeoRaster data for use with a GeoRaster theme that is stored
in the database. Comments in the code example briefly describe the main steps. For
detailed information about requirements and steps for using GeoRaster data, see
Oracle Spatial GeoRaster.

Example 2–17 Preparing GeoRaster Data for Use with a GeoRaster Theme

connect scott/tiger

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 100
SET PAGESIZE 10000
SET SERVEROUTPUT ON SIZE 5000
SET LONG 20000
SET TIMING ON
call dbms_java.set_output(5000);

-- Create a GeoRaster table (a table that has a
-- column of SDO_GEORASTER object type).

create table georaster_table
 (georid number primary key,
 type varchar2(32),

Themes

OracleAS MapViewer Concepts 2-25

 georaster sdo_georaster);

-- Create the GeoRaster DML trigger on the GeoRaster table.
--
-- This is REQUIRED for all GeoRaster tables.
-- It is used to manage the GeoRaster sysdata table.

call sdo_geor_utl.createDMLTrigger('georaster_table', 'georaster');

-- Create a raster data table (RDT).
--
-- It is used to store cell data of GeoRaster objects.
-- This step is not a requirement. If the RDT table does not
-- exist, the GeoRaster procedures or functions will generate it
-- automatically whenever needed.
-- However, for huge GeoRaster objects, some tuning and setup on those
-- tables can improve the scalability and performance significantly.
-- In those cases, it is better for users to create the RDTs.
-- The primary key must be added to the RDT if you create it.

create table rdt_geor of sdo_raster
 (primary key (rasterId, pyramidLevel, bandBlockNumber,
 rowBlockNumber, columnBlockNumber))
 lob(rasterblock) store as (nocache nologging);

commit;

-- Import the image.

connect system/manager;

call dbms_java.grant_permission('MDSYS','SYS:java.io.FilePermission',
 'lbs/demo/images/l7_ms.tif', 'read');

call dbms_java.grant_permission('SCOTT','SYS:java.io.FilePermission',
 'lbs/demo/images/l7_ms.tif', 'read');

connect scott/tiger;

 declare
 geor SDO_GEORASTER;
begin
 delete from georaster_table where georid = 1;
 insert into georaster_table
 values(1, 'TIFF', sdo_geor.init('rdt_geor', 1));
 select georaster into geor
 from georaster_table where georid = 1 for update;
 sdo_geor.importFrom(geor, '', 'TIFF', 'file',
 'lbs/demo/images/l7_ms.tif');
 update georaster_table set georaster = geor where georid = 1;
 commit;
end;
/

Themes

2-26 Oracle Application Server MapViewer User’s Guide

connect system/manager;

call dbms_java.revoke_permission('MDSYS','SYS:java.io.FilePermission',
 'lbs/demo/images/l7_ms.tif', 'read');

call dbms_java.revoke_permission('SCOTT','SYS:java.io.FilePermission',
 'lbs/demo/images/l7_ms.tif', 'read');

connect scott/tiger;

-- Change the GeoRaster format (optional).

declare
 gr1 sdo_georaster;
begin
 --
 -- Using changeFormat with a GeoRaster object:
 --

 -- 1. Select the source GeoRaster object.
 select georaster into gr1
 from georaster_table where georid = 1;

 -- 2. Make changes. (Interleaving is application-dependent. For TIFF images,
 -- the default interleaving is BSQ.)
 sdo_geor.changeFormat(gr1, 'blocksize=(512,512,3) interleaving=BIP');

 -- 3. Update the GeoRaster object in the GeoRaster table.
 update georaster_table set georaster = gr1 where georid = 1;

 commit;
end;
/

-- Generate pyramid levels (strongly recommended, but optional).

declare
 gr sdo_georaster;
begin

 -- 1. Select the source GeoRaster object.
 select georaster into gr
 from georaster_table where georid = 1 for update;

 -- 2. Generate pyramids.
 sdo_geor.generatePyramid(gr, 'resampling=NN');

 -- 3. Update the original GeoRaster object.
 update georaster_table set georaster = gr where georid = 1;

 commit;
end;
/

-- Georeference the GeoRaster object.

Themes

OracleAS MapViewer Concepts 2-27

DECLARE
 gr sdo_georaster;
BEGIN
 SELECT georaster INTO gr FROM georaster_table WHERE georid = 1 FOR UPDATE;
 sdo_geor.georeference(gr, 82216, 1,
 sdo_number_array(30, 0, 410000.000000),
 sdo_number_array(0, -30,3759000.000000));
 UPDATE georaster_table SET georaster = gr WHERE georid = 1;
 COMMIT;
END;
/

-- Set the spatial resolutions (required for 10gR1 only)

-- If you are using Oracle Database Release 10.1, set spatial resolutions. (Not
-- required if you are using Release 10.2.) The spatial resolution values of
-- (30, 30) are from the ESRI world file or from the georeferencing information;
-- however, you may have to compute these values if they are not part of
-- the original georeferencing metadata.
DECLARE
 gr sdo_georaster;
BEGIN
 SELECT georaster INTO gr FROM georaster_table WHERE georid = 1 FOR UPDATE;
 sdo_geor.setSpatialResolutions(gr, sdo_number_array(30, 30));
 UPDATE georaster_table SET georaster = gr WHERE georid = 1;
 COMMIT;
END;
/

-- Update the spatial extent.

DECLARE
 sptext sdo_geometry;
BEGIN
 SELECT sdo_geor.generateSpatialExtent(a.georaster) INTO sptext
 FROM georaster_table a WHERE a.georid=1 FOR UPDATE;
 UPDATE georaster_table a SET a.georaster.spatialextent = sptext WHERE
a.georid=1;
 COMMIT;
END;
/

commit;

--
-- Create metadata information for the GeoRaster spatial extent column.
--

INSERT INTO USER_SDO_GEOM_METADATA
 VALUES (
 'GEORASTER_TABLE',
 'georaster.spatialextent',
 SDO_DIM_ARRAY(
 SDO_DIM_ELEMENT('X', 410000.0, 470000.0, 0.000005),
 SDO_DIM_ELEMENT('Y', 3699000.0,3759000., 0.000005)

Themes

2-28 Oracle Application Server MapViewer User’s Guide

),
 82216 -- SRID
);

-- Create a spatial index on the spatial extent.

CREATE INDEX georaster_idx ON georaster_table(georaster.spatialextent)
INDEXTYPE IS MDSYS.SPATIAL_INDEX;

--
-- Create a predefined GeoRaster theme for OracleAS MapViewer.
--

INSERT INTO user_sdo_themes VALUES (
 'GEORASTER_TABLE',
 'GeoTiff image',
 'GEORASTER_TABLE',
 'GEORASTER',
 '<?xml version="1.0" standalone="yes"?>
 <styling_rules theme_type="georaster" raster_table="RDT_GEOR"
 raster_id="1" raster_bands="0,1,2">
 </styling_rules>');

commit;

2.3.7 Network Themes
A network theme is a special kind of OracleAS MapViewer theme useful for
visualizing networks defined using the Oracle Spatial network data model. A network
consists of a set of nodes and links. A network can be directed or undirected, although
links and paths typically have direction. A network can be organized into different
levels of abstraction, called a network hierarchy. OracleAS MapViewer assumes that
network spatial tables in a network use the same coordinate system, and that these
tables are indexed and registered as described in Oracle Spatial Topology and Network
Data Models.

Network node, link, and path tables store geometries of type SDO_GEOMETRY. You
can create JDBC themes that use these geometries. In addition, you can define dynamic
themes that consider aspects of the network, such as the direction of links for a
directed network.

The following elements and attributes apply to the definition of a network theme:

■ <jdbc_network_query> element: Specifies that this is a dynamically defined
network theme. The complete DTD for this element is included in the map request
DTD in Section 3.2.

■ network_name attribute: Specifies the name of the network.

■ network_level attribute (optional): Specifies the network hierarchy level to
which this theme applies. (For a nonhierarchical network, specify 1, which is the
default value.)

■ link_style attribute (optional): Specifies the style name to be used for links.

■ direction_style attribute (optional): Specifies the style name to be used for a
link direction marker (for example, a directional arrow image).

Themes

OracleAS MapViewer Concepts 2-29

■ direction_position attribute (optional): Specifies the position of the direction
marker relative to the link start, as a number between 0 and 1. For example, 0.85
indicates 85 percent of the way between the link start and end points.

■ direction_markersize attribute (optional): Specifies the size (number of
pixels) of the direction marker.

■ link_labelstyle attribute (optional): Specifies the style name to be used for
link labels in the column specified in the link_labelcolumn attribute.

■ link_labelcolumn attribute (optional): Specifies the name of the column
containing link labels to be rendered using the style specified in the link_
labelstyle attribute.

■ node_style attribute (optional): Specifies the style name to be used for nodes.

■ node_markersize attribute (optional): Specifies the size (number of pixels) of
the node marker.

■ node_labelstyle attribute (optional): Specifies the style name to be used for
node labels in the column specified in the node_labelcolumn attribute.

■ node_labelcolumn attribute (optional): Specifies the name of the column
containing node labels to be rendered using the style specified in the node_
labelstyle attribute.

■ path_ids attribute (optional): Specifies one or more path ID values of stored
paths to be rendered. For more than one path, use commas to delimit the path ID
values. For example, path_ids="1,3,4" specifies that the paths with path ID
values 1, 3, and 4 are to be rendered.

■ path_styles attribute (optional): Specifies one or more style names associated
with the paths specified in the path_ids attribute. For example, path_
styles="C.RED,C.GREEN,C.BLUE" specifies styles to be used to render the
first, second, and third paths (respectively) specified in the path_ids attribute.

■ path_labelstyle attribute (optional): Specifies the style name to be used for
path labels in the column specified in the path_labelcolumn attribute.

■ path_labelcolumn attribute (optional): Specifies the name of the column
containing path labels to be rendered using the style specified in the path_
labelstyle attribute.

Additional network theme attributes related to network analysis are described in
Section 2.3.7.2.

A network theme can combine attributes for links, nodes, and paths, or any
combination. In such cases, OracleAS MapViewer first renders the links, then the
paths, and then the nodes.

Example 2–18 defines a network theme that specifies attributes for the display of links
and nodes in the network named NYC_NET.

Example 2–18 Network Theme

<theme name="net_theme" user_clickable="false">
 <jdbc_network_query
 network_name="NYC_NET"
 network_level="1"
 jdbc_srid="8307"
 datasource="mvdemo"
 link_style="C.RED"
 direction_style="M.IMAGE105_BW"

Themes

2-30 Oracle Application Server MapViewer User’s Guide

 direction_position="0.85"
 direction_markersize="8"
 node_style="M.STAR"
 node_markersize="5"
 asis="false">
 </jdbc_network_query>
</theme>

2.3.7.1 Creating Predefined Network Themes
To create a predefined network theme, you must store the definition of the network
theme in the database by inserting a row into the USER_SDO_THEMES view
(described in Section 2.8.2). Example 2–19 stores the definition of a network theme.

Example 2–19 Creating a Predefined Network Theme

INSERT INTO user_sdo_themes VALUES (
 'NYC_NET_1',
 'New York City network',
 'NYC_NET_LINK_TABLE',
 'GEOMETRY',
 '<?xml version="1.0" standalone="yes"?>
 <styling_rules
 theme_type="network"
 network_name="NYC_NET"
 network_level="1">
 <rule>
 <features>
 <link
 style="C.RED"
 direction_style="M.IMAGE105_BW"
 direction_position="0.85"
 direction_markersize="8">
 </link>
 <path
 ids="1,3"
 styles="C.BLUE,C.GREEN">
 </path>
 <node
 style="M.CIRCLE"
 markersize="5">
 </node>
 </features>
 <label>
 <link column="LINK_ID" style="T.STREET NAME"> 1 </link>
 </label>
 </rule>
 </styling_rules>');

Example 2–19 creates a network theme named NYC_NET_1 for level 1 of the network
named NYC_NET. The network table name (NYC_NET_LINK_TABLE in this example)
is inserted in the BASE_TABLE column of the USER_SDO_THEMES view, the link
geometry column name (GEOMETRY in this example) is inserted in the GEOMETRY_
COLUMN column, and an XML document with one <styling_rules> element is
inserted in the STYLING_RULES column.

In the <styling_rules> element for a network theme, theme_type must be
network in order for this theme to be recognized as a network theme. Elements for
links, paths, and nodes can be specified in the same <features> element, as is done
in Example 2–19:

Themes

OracleAS MapViewer Concepts 2-31

■ The link feature rule specifies the style C.RED and direction marker attributes for
all links.

■ The path feature rule specifies the style C.BLUE for paths with the path ID value 1,
and the style C.GREEN for paths with the path ID value 3.

■ The node feature rule specifies the style M.CIRCLE and a marker size of 5.

Example 2–19 also contains a <label> element for links, specifying the link column
LINK_ID and the label style T.STREET NAME.

The DTD for the <styling_rules> element is presented in Section A.7.

2.3.7.2 Using OracleAS MapViewer for Network Analysis
The network model Java API provides several network analysis capabilities. You can
define OracleAS MapViewer network themes that support the shortest-path and
within-cost analysis capabilities. Some attributes apply to both capabilities, and some
attributes apply only to the relevant associated capability.

For all network analysis capabilities, the <jdbc_network_query> element and the
network-related attributes described in Section 2.3.7 apply to the definition of the
network theme.

For shortest-path analysis, the following attributes apply to the definition of the
network theme:

■ analysis_algorithm attribute: Specifies the shortest-path analysis algorithm to
use. Must be either DIJKSTRA or ASEARCH.

■ shortestpath_style attribute: Specifies the style name to be used for the
shortest path.

■ shortestpath_startnode attribute: Specifies the start node to be used for the
analysis.

■ shortestpath_endnode attribute: Specifies the end node to be used for the
analysis.

■ shortestpath_startstyle attribute (optional): Specifies the style name to be
used for the start node.

■ shortestpath_endstyle attribute (optional): Specifies the style name to be
used for the end node.

Example 2–20 defines a network theme that can be used for shortest-path analysis.

Example 2–20 Network Theme for Shortest-Path Analysis

<theme name="shortest_path_theme" user_clickable="false">
 <jdbc_network_query
 network_name="BI_TEST"
 network_level="1"
 jdbc_srid="0"
 datasource="mvdemo"
 analysis_algorithm="DIJKSTRA"
 shortestpath_style="L.PH"
 shortestpath_startnode="20"
 shortestpath_endnode="101"
 shortestpath_startstyle="M.STAR"
 shortestpath_endstyle="M.CIRCLE"
 asis="false">
 </jdbc_network_query>
</theme>

Themes

2-32 Oracle Application Server MapViewer User’s Guide

For within-cost analysis, the following attributes apply to the definition of the network
theme:

■ analysis_algorithm attribute: Must be WITHINCOST.

■ withincost_startnode attribute: Specifies the start node to be used for the
analysis.

■ withincost_cost attribute: Specifies the cost cutoff value for nodes to be
included. All nodes that can be reached from the start node at a cost less than or
equal to the specified value are included in the resulting display. Nodes that
cannot be reached from the start node or that can be reached only at a cost greater
than the specified value are not included.

■ withincost_startstyle attribute (optional): Specifies the style name to be
used for the start node.

■ withincost_style attribute: Specifies the style name to be used for links in the
displayed paths between the start node and each node that is within the specified
cost cutoff value.

Example 2–21 defines a network theme that can be used for within-cost analysis.

Example 2–21 Network Theme for Within-Cost Analysis

<theme name="within_cost_theme" user_clickable="false">
 <jdbc_network_query
 network_name="BI_TEST"
 network_level="1"
 jdbc_srid="0"
 datasource="mvdemo"
 analysis_algorithm="WITHINCOST"
 withincost_startnode="20"
 withincost_style="L.PH"
 withincost_cost="1"
 withincost_startstyle="M.STAR"
 asis="false">
 </jdbc_network_query>
</theme>

2.3.8 Topology Themes
A topology theme is a special kind of OracleAS MapViewer theme useful for
visualizing topologies defined using the Oracle Spatial topology data model. The
topology data model lets you work with data about nodes, edges, and faces in a
topology. The spatial representations of nodes, edges, and faces are spatial geometries
of type SDO_GEOMETRY. For nodes and edges, the geometries are explicitly stored;
for faces, the initial lines (exterior and interior) are stored, allowing the face geometry
to be generated.

In addition to the spatial representation of nodes, edges, and faces, a topology can
have features. A feature (also called a topology geometry) is a spatial representation of
a real-world object. Each feature is defined as an object of type SDO_TOPO_
GEOMETRY, which identifies the topology geometry type, topology geometry ID,
topology geometry layer ID, and topology ID. For detailed information, see Oracle
Spatial Topology and Network Data Models.

OracleAS MapViewer can render topology features. It can also render a theme in
debug mode (explained later in this section) to show the nodes, edges, and faces of a

Themes

OracleAS MapViewer Concepts 2-33

topology. For each topology theme, OracleAS MapViewer uses the topology metadata
information stored in the USER_SDO_TOPO_METADATA view.

The following elements and attributes apply to the definition of a topology theme:

■ <jdbc_topology_query> element: Specifies that this is a dynamically defined
topology theme. The element can specify a SQL query statement (without a
terminating semicolon). The complete DTD for this element is included in the map
request DTD in Section 3.2.

■ topology_name attribute: Specifies the name of the topology.

■ feature_table attribute: Specifies the name of the feature table.

■ spatial_column attribute: Specifies the name of the spatial feature column of
type SDO_TOPO_GEOMETRY.

■ label_column attribute: Specifies the column in the feature table that contains
the text label to be used with each feature.

■ label_style attribute: Specifies the name of the text style to be used to render
the labels in the label column.

■ render_style attribute: Specifies the name of the style to be used to render the
topology.

Example 2–22 defines a topology theme that specifies attributes for the display of
features and labels from the LAND_PARCELS table in the CITY_DATA topology. The
SQL statement specifies the spatial feature column and the label column, and it
includes all rows in the feature table.

Example 2–22 Topology Theme

<theme name="topo_theme" user_clickable="false">
 <jdbc_topology_query
 topology_name="CITY_DATA"
 feature_table="LAND_PARCELS"
 label_column="FEATURE_NAME"
 spatial_column="FEATURE"
 label_style="T.CITY NAME"
 render_style="C.COUNTIES"
 jdbc_srid="0"
 datasource="topology"
 asis="false">select feature, feature_name from land_parcels
 </jdbc_topology_query>
</theme>

OracleAS MapViewer also supports a debug mode that renders the nodes, edges, and
faces of a topology. To specify debug mode, include the mode="debug" attribute in
the <theme> element. In addition to the <jdbc_topology_query> attributes
mentioned earlier in this section, the following attributes can be used in debug mode:

■ edge_style attribute: Specifies the name of the style to be used to render edges.

■ edge_label_style attribute: Specifies the name of the text style to be used to
render edge labels.

■ edge_marker_style attribute: Specifies the name of the marker style to be used
for edge markers.

■ edge_marker_size attribute: Specifies the size (number of pixels) of for edge
markers.

■ node_style attribute: Specifies the name of the style to be used to render nodes.

Themes

2-34 Oracle Application Server MapViewer User’s Guide

■ node_label_style attribute: Specifies the name of the text style to be used to
render node labels.

■ face_style attribute: Specifies the name of the style to be used to render faces.

■ face_label_style attribute: Specifies the name of the text style to be used to
render face labels.

Example 2–23 defines a debug-mode topology theme for rendering features, edges,
nodes, and faces from all feature tables in the CITY_DATA topology.

Example 2–23 Topology Theme Using Debug Mode

<theme name="topo_theme" mode="debug" user_clickable="false">
 <jdbc_topology_query
 topology_name="CITY_DATA"
 edge_style="C.RED"
 edge_marker_style="M.IMAGE105_BW"
 edge_marker_size="8"
 edge_label_style="T.EDGE"
 node_style="M.CIRCLE"
 node_label_style="T.NODE"
 face_style="C.BLUE"
 face_label_style="T.FACE"
 jdbc_srid="0"
 datasource="topology"
 asis="false">
 </jdbc_topology_query>
</theme>

2.3.8.1 Creating Predefined Topology Themes
To create a predefined topology theme, you must store the definition of the topology
theme in the database by inserting a row into the USER_SDO_THEMES view
(described in Section 2.8.2). Example 2–24 stores the definition of a topology theme.

Example 2–24 Creating a Predefined Topology Theme

INSERT INTO user_sdo_themes VALUES (
 'LANDPARCELS',
 'Topology theme for land parcels',
 'LAND_PARCELS',
 'FEATURE',
 '<?xml version="1.0" standalone="yes"?>
 <styling_rules theme_type="topology" topology_name="CITY_DATA">
 <rule>
 <features style="C.RED"></features>
 <label column="FEATURE_NAME" style="T.TEXT STYLE"> </label>
 </rule>
 </styling_rules>');

Example 2–24 creates a topology theme named LANDPARCELS for the topology named
CITY_DATA. The feature table name (LAND_PARCELS in this example) is inserted in
the BASE_TABLE column of the USER_SDO_THEMES view, the feature column name
(FEATURE in this example) is inserted in the GEOMETRY_COLUMN column, and an
XML document with one <styling_rules> element is inserted in the STYLING_
RULES column.

In the <styling_rules> element for a topology theme, theme_type must be
topology in order for this theme to be recognized as a topology theme. The theme in
Example 2–24 defines one styling rule that renders all land parcel features from the

Maps

OracleAS MapViewer Concepts 2-35

CITY_DATA topology using the C.RED style and using the T.TEXT STYLE label style
for values in the FEATURE_NAME column of the feature table.

The DTD for the <styling_rules> element is presented in Section A.7.

2.4 Maps
A map can consist of a combination of elements and attributes, such as the following:

■ Background image

■ Title

■ Legend

■ Query window

■ Footnote (such as for a copyright notice)

■ Base map

■ Predefined themes (in addition to any in the base map)

■ JDBC themes (with dynamic queries)

■ Dynamically defined (temporary) styles

These elements and attributes, when specified in a map request, define the content and
appearance of the generated map. Chapter 3 contains detailed information about the
available elements and attributes for a map request.

A map can have a base map and a stack of themes rendered on top of each other in a
window. A map has an associated coordinate system that all themes in the map must
share. For example, if the map coordinate system is 8307 (for Longitude / Latitude (WGS
84), the most common system used for GPS devices), all themes in the map must have
geometries defined using that coordinate system.

You can add themes to a map by specifying a base map name or by using the
programming interface to add themes. The order in which the themes are added
determines the order in which they are rendered, with the last specified theme on top,
so be sure you know which themes you want in the background and foreground.

All base map names and definitions for a database user are stored in that user’s USER_
SDO_MAPS view, which is described in Section 2.8 and Section 2.8.1. The
DEFINITION column in the USER_SDO_MAPS view contains an XML definition of a
base map.

Example 2–25 shows a base map definition.

Example 2–25 XML Definition of a Base Map

<?xml version="1.0" ?>
<map_definition>
<theme name="theme_us_states" min_scale="10" max_scale="0"/>
<theme name="theme_us_parks" min_scale="5" max_scale="0"/>
<theme name="theme_us_highways" min_scale="5" max_scale="0"/>
<theme name="theme_us_streets" min_scale="0.05" max_scale="0"/>
</map_definition>

Each theme in a base map can be associated with a visible scale range within which it
is displayed. In Example 2–25, the theme named theme_us_streets is not
displayed unless the map request is for a map scale of 0.05 or less and greater than 0
(in this case, a scale showing a great deal of detail). If the min_scale and max_scale

Maps

2-36 Oracle Application Server MapViewer User’s Guide

attributes are not specified, the theme is displayed whenever the base map is
displayed. (For more information about map scale, see Section 2.4.1.)

The display order of themes in a base map is the same as their order in the base map
definition. In Example 2–25, the theme_us_states theme is rendered first, then
theme_us_parks, then theme_us_highways, and finally (if the map scale is within
all specified ranges) theme_us_streets.

2.4.1 Map Size and Scale
Map size is the height of the map in units of the map data space. For example, if the
map data is in WGS 84 geographic coordinates, the map center is (-120.5, 36.5), and the
size is 2, then the height of the map is 2 decimal degrees, the lower Y (latitude) value is
35.5 degrees, and the upper Y value is 37.5 decimal degrees.

Map scale is expressed as units in the user's data space that are represented by 1 inch
on the screen or device. Map scale for OracleAS MapViewer is actually the
denominator value in a popular method of representing map scale as 1/n, where:

■ 1, the numerator, is 1 unit (1 inch for OracleAS MapViewer) on the displayed map.

■ n, the denominator, is the number of units of measurement (for example, decimal
degrees, meters, or miles) represented by 1 unit (1 inch for OracleAS MapViewer)
on the displayed map.

For example:

■ If 1 inch on a computer display represents 0.5 decimal degree of user data, the
fraction is 1/0.5. The decimal value of the fraction is 2.0, but the scale value for
OracleAS MapViewer is 0.5.

■ If 1 inch on a computer display represents 2 miles of user data, the fraction is 1/2.
The decimal value of the fraction is 0.5, but the scale value for OracleAS
MapViewer is 2.

■ If 1 inch on a computer display represents 10 miles of user data, the fraction is
1/10. The decimal value of the fraction is 0.1, but the scale value for OracleAS
MapViewer is 10.

The min_scale and max_scale attributes in a <theme> element describe the visible
scale range of a theme. These attributes control whether or not a theme is displayed,
depending on the current map scale. The default scale value for min_scale is
positive infinity, and the default value for max_scale is negative infinity (or in other
words, by default display the theme for all map scales, if possible given the display
characteristics).

■ min_scale is the value to which the display must be zoomed in for the theme to
be displayed. For example, if parks have a min_scale value of 5 and if the
current map scale value is 5 or less but greater than the max_scale value, parks
will be included in the display; however, if the display is zoomed out so that the
map scale value is greater than 5, parks will not be included in the display.

■ max_scale is the value beyond which the display must be zoomed in for the
theme not to be displayed. For example, if counties have a max_scale value of 3
and if the current map scale value is 3 or less, counties will not be included in the
display; however, if the display is zoomed out so that the map scale value is
greater than 3, counties will be included in the display.

A high min_scale value is associated with less map detail and a smaller scale in
cartographic terms, while a high max_scale value is associated with greater map
detail and a larger scale in cartographic terms. (Note that the OracleAS MapViewer

Maps

OracleAS MapViewer Concepts 2-37

meaning of map scale is different from the popular meaning of cartographic map
scale.) The min_scale value for a theme should be larger than the max_scale value.
Example 2–25 in Section 2.4 includes min_scale and max_scale values.

To determine the current map scale for a map returned by OracleAS MapViewer, first
find the map size, namely the height (vertical span) of the map in terms of the
coordinate system associated with the map data. For example, assume that a map with
a height of 10 (miles, meters, decimal degrees, or whatever unit of measurement is
associated with the data) is requested, and that the map is drawn on a device with a
size of 500 by 350 pixels, where 350 is the height. OracleAS MapViewer assumes a
typical screen resolution of 72 dpi. Because 72 pixels equals 1 inch, the height of the
returned map is 4.86 inches (350/72 = 4.86). In this example, the size of the map is 10,
and therefore the map scale is approximately 2.057 (10/4.86 = 2.057).

2.4.2 Map Legend
A map legend is an inset illustration drawn on top of the map and describing what
various colors, symbols, lines, patterns, and so on represent. You have flexibility in
specifying the content and appearance of the legend. You can:

■ Customize the background, border style, and font

■ Have one or more columns in the legend

■ Add space to separate legend entries

■ Indent legend entries

■ Use any OracleAS MapViewer style, including advanced styles

Example 2–26 is an excerpt from a request that includes a legend.

Example 2–26 Legend Included in a Map Request

<?xml version="1.0" standalone="yes"?>
<map_request
 basemap="density_map"
 datasource = "mvdemo">
 <center size="1.5">
 . . .
 </center>

 <legend bgstyle="fill:#ffffff;fill-opacity:128;stroke:#ff0000"
 position="NORTH_WEST" font="Dialog">
 <column>
 <entry text="Map Legend" is_title="true"/>
 <entry style="M.STAR" text="center point"/>
 <entry style="M.CITY HALL 3" text="cities"/>
 <entry is_separator="true"/>
 <entry style="C.ROSY BROWN STROKE" text="state boundary"/>
 <entry style="L.PH" text="interstate highway"/>
 <entry text="County population:"/>
 <entry style="V.COUNTY_POP_DENSITY" tab="1"/>
 </column>
 </legend>

 <themes>
 . . .
 </themes>

</map_request>

Data Sources

2-38 Oracle Application Server MapViewer User’s Guide

Figure 2–6 shows a map with the legend specified in Example 2–26.

Figure 2–6 Map with Legend

Notes on Example 2–26 and Figure 2–6:

■ This example shows a legend with a single column, although you can create
multiple columns in a legend.

■ Each entry in the column definition can identify label text and whether the text is
the legend title (is_title="true"), a style name and associated text, or a
separator (is_separator="true") for vertical blank space to be added (after
the cities entry in this example).

For detailed information about adding a legend to a map request, see Section 3.2.11.

If you also specify a map title, note, or logo (or any combination), be sure that the
legend and the other features have different positions. (Map titles, notes, and logos are
explained in Section 1.5.5.) The default position for a legend is SOUTH_WEST.

2.5 Data Sources
A data source corresponds to a database schema or user. Before you can draw any
spatial data in a database schema, you must first define (create) a data source for the
schema, either permanently or dynamically:

How a Map Is Generated

OracleAS MapViewer Concepts 2-39

■ You can define a data source permanently by specifying its connection information
and user login credentials in the OracleAS MapViewer configuration file
(mapViewerConfig.xml).

■ You can define or modify a data source dynamically using the OracleAS
MapViewer administration (Admin) page.

Each map request must specify a master data source. You can, however, specify a
different data source for individual themes added to the map request. This makes it
easy to aggregate data stored across different database schemas. If a theme has no
specified data source, it is associated with the master data source. A base map (and
thus the themes included in it) is always associated with the master data source. When
a theme is processed, all of its underlying data, as well as the styles referenced in its
definition, must be accessible from the data source or sources associated with the
theme.

Each data source has associated renderers (sometimes called mappers or map makers),
the number of which is determined by the number_of_mappers attribute in the
<map_data_source> element. This attribute and the max_connections attribute
(both described in Section 1.5.7) affect the number of database connections created for
each data source when map requests are processed. The number of renderers specified
in a data source also is the maximum number of concurrent requests that can be
processed for that data source. Each additional renderer requires only a small amount
of memory, so the main potential disadvantage of specifying a large number of
renderers (such as 100) is that the underlying CPU resource might be strained if too
many map requests are allowed to come through, thus affecting the performance of
the entire OracleAS MapViewer server.

Each data source has its own internal metadata cache. The metadata cache holds the
definitions of all accessed styles, as well as of all predefined themes that originate from
the data source. This eliminates the need to query the database repeatedly for the
definition of a style or predefined theme whenever it is needed.

2.6 How a Map Is Generated
When a map request arrives at the OracleAS MapViewer server, the server picks a free
renderer associated with the master data source in the request. This section describes
the process that the OracleAS MapViewer server follows to generate a map. In brief,
OracleAS MapViewer performs the following steps:

1. Parse and process the incoming XML map request.

2. Prepare the data for each theme (executed in parallel).

3. Render and label each theme.

4. Generate final images or files.

Each map generated by OracleAS MapViewer results from its receiving a valid XML
map request. (If you use the JavaBean-based API, the request is automatically
converted to an XML document and passed to the OracleAS MapViewer server.) The
XML map request is parsed and its content is validated. OracleAS MapViewer then
creates any dynamic styles specified in the XML request. It builds a theme list from all
themes included in the base map (if a base map is specified), as well as any specified
predefined or JDBC themes. All individual features in the request are grouped into a
single temporary theme. In other words, after parsing the incoming request, all data
that must be shown on the map is presented in a list of themes to the OracleAS
MapViewer rendering engine.

Workspace Manager Support in OracleAS MapViewer

2-40 Oracle Application Server MapViewer User’s Guide

The ordering of the themes in the list is important, because it determines the order in
which the themes are rendered. All themes included in the base map (when present)
are added to the list first, followed by all specified themes (predefined or JDBC). The
theme that contains all the individual features is added as the last theme on the list.
Any other requested features of a map (such as legend, map title, or footnote), are
created and saved for rendering later.

For each theme in the request, OracleAS MapViewer then creates a separate execution
thread to prepare its data, so that preparation of the themes takes place in parallel. For
a predefined theme, this means formulating a query based on the theme's definition
and any other information, such as the current map request window. This query is sent
to the database for execution, and the result set is returned. OracleAS MapViewer
creates individual renderable objects based on the result set.

■ For predefined themes that are fully cached, no query is sent to the database,
because all renderable objects are readily available.

■ For JDBC themes, the query supplied by the user is either executed as is (when the
asis attribute value is TRUE in the JDBC theme definition) or with a spatial filter
subquery automatically applied to it. The spatial filter part is used to limit the
results of the user’s query to those within the current requested window.

■ For themes that already have renderable features (such as the one containing all
individual features in a request), there is no need to create renderable objects.

After all themes for the map request have been prepared and all necessary data has
been collected, OracleAS MapViewer starts to render the map. It creates an empty new
in-memory image to hold the result map, and paints the empty image with the
necessary backgrounds (color or image). It then renders all of the themes in the theme
list.

For each theme, features are rendered in an order determined internally by OracleAS
MapViewer. The rendering of each feature involves invoking the drawing methods of
its rendering style. After all themes have been rendered, the labeling process starts. For
each theme whose features must be labeled with text, OracleAS MapViewer invokes
algorithms to label each feature, with the specific algorithm depending on the type of
feature (such as polygon or line).

After all themes have been rendered and (when needed) labeled, OracleAS
MapViewer plots any additional map features (such as a legend) on the internal map
image. OracleAS MapViewer then converts that image into the desired format (such as
PNG or GIF) specified in the original map request; however, for SVG maps, instead of
using an internal image, OracleAS MapViewer initially creates an empty SVG map
object, then creates an SVG document as a result of the rendering process, and inserts
it into the map object.

2.7 Workspace Manager Support in OracleAS MapViewer
Workspace Manager is an Oracle Database feature that lets you version-enable one or
more tables in the database. After a table is version-enabled, users in a workspace
automatically see the correct version of database rows in which they are interested. For

Note: All image or GeoRaster themes are always rendered first,
regardless of their position in the theme list. All other themes,
however, are rendered in the order in which they appear in the theme
list.

Workspace Manager Support in OracleAS MapViewer

OracleAS MapViewer Concepts 2-41

detailed information about Workspace Manager, see Oracle Database Application
Developer's Guide - Workspace Manager.

You can request a map from a specific workspace, at a specific savepoint in a
workspace, or at a point close to a specific date in a workspace. The following
attributes of the <theme> element are related to support for Workspace Manager:

■ workspace_name attribute: specifies the name of the workspace from which to
get the map data.

■ workspace_savepoint attribute: specifies the name of the savepoint to go to in
the specified workspace.

■ workspace_date attribute: specifies the date to go to (that is, a point at or near
the specified date) in the specified workspace.

■ workspace_date_format attribute: specifies the date format. The default is
mmddyyyyhh24miss. This attribute applies only if you specified the
workspace_date attribute.

■ workspace_date_nlsparam attribute: specifies globalization support options.
The options and default are the same as for the nlsparam argument to the TO_
CHAR function for date conversion, which is described in Oracle Database SQL
Reference.

■ workspace_date_tswtz attribute: specifies a Boolean value. TRUE means that
the input date is in timestamp with time zone format; FALSE (the default) means
that the input date is a date string.

The workspace_name attribute is required for the use of Workspace Manager
support in OracleAS MapViewer.

If you specify neither the workspace_savepoint nor workspace_date attribute,
OracleAS MapViewer goes to the latest version of the workspace defined. If you
specify both the workspace_savepoint and workspace_date attributes,
OracleAS MapViewer uses the specified date instead of the savepoint name.

Example 2–27 shows the definition of a dynamic theme that uses attributes (shown in
bold) related to Workspace Manager support. In this example, OracleAS MapViewer
will render the data related to workspace wsp_1 at the savepoint sp1.

Example 2–27 Workspace Manager-Related Attributes in a Map Request

<?xml version="1.0" standalone="yes"?>
<map_request
 . . .
 <themes>
 <theme name="wmtheme" user_clickable="false"
 workspace_name="wsp_1" workspace_savepoint="sp1" >
 <jdbc_query
 spatial_column="GEOM"
 render_style="stylename"
 jdbc_srid="8307"
 datasource="mvdemo"
 asis="false"> select GEOM,ATTR from GEOM_TABLE
 </jdbc_query>
 </theme>
 </themes>
 . . .
</map_request>

Workspace Manager Support in OracleAS MapViewer

2-42 Oracle Application Server MapViewer User’s Guide

The following considerations apply to OracleAS MapViewer caching of predefined
themes (explained in Section 2.3.1.2) and the use of Workspace Manager-related
OracleAS MapViewer attributes:

■ The Workspace Manager-related attributes are ignored for predefined themes if
the caching attribute is set to ALL in the <styling_rules> element for the
theme.

■ No caching data is considered if you specify the workspace_name attribute.

For OracleAS MapViewer administrative requests (discussed in Chapter 6), the
following elements are related to Workspace Manager support:

■ <list_workspace_name>

■ <list_workspace_session>

The <list_workspace_name> element returns the name of the current workspace,
as specified with the workspace_name attribute in the most recent map request. If no
workspace has been specified (that is, if the workspace_name attribute has not been
specified in a map request in the current OracleAS MapViewer session), or if the LIVE
workspace has been specified, the LIVE workspace is returned. If Workspace Manager
is not currently installed in Oracle Database, the request fails.

Example 2–28 uses the <list_workspace_name> element in an administrative
request.

Example 2–28 <list_workspace_name> Element in an Administrative Request

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <list_workspace_name data_source="mvdemo"/>
</non_map_request>

If wsp_1 is the current workspace, the response for Example 2–28 will be:

<?xml version="1.0" ?>
<non_map_response>
 <workspace_name succeed="true" name="wsp_1"/>
</non_map_response>

If no workspace has been specified or if the LIVE workspace has been specified, the
response for Example 2–28 will be:

<?xml version="1.0" ?>
<non_map_response>
 <workspace_name succeed="true" name="LIVE"/>
</non_map_response>

If Workspace Manager is not currently installed in Oracle Database, the response for
Example 2–28 will be:

<?xml version="1.0" ?>
<non_map_response>
 <workspace_name succeed="false"/>
</non_map_response>

The <list_workspace_session> element returns the names of the current
workspace and current context. If no workspace has been specified (that is, if the
workspace_name attribute has not been specified in a map request in the current
OracleAS MapViewer session), or if the LIVE workspace has been specified,

OracleAS MapViewer Metadata Views

OracleAS MapViewer Concepts 2-43

information for the LIVE workspace is returned. If Workspace Manager is not
currently installed in Oracle Database, the request fails.

Example 2–29 uses the <list_workspace_session> element in an administrative
request.

Example 2–29 <list_workspace_session> Element in an Administrative Request

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <list_workspace_session data_source="mvdemo"/>
</non_map_request>

If wsp_1 is the current workspace and if the context is LATEST, the response for
Example 2–29 will be:

<?xml version="1.0" ?>
<non_map_response>
 <workspace_session succeed="true" name="wsp_1" context="LATEST"
 context_type="LATEST"/>
</non_map_response>

If no workspace has been specified or if the LIVE workspace has been specified, and if
the context is LATEST, the response for Example 2–29 will be:

<?xml version="1.0" ?>
<non_map_response>
 <workspace_session succeed="true" name="LIVE" context="LATEST"
 context_type="LATEST"/>
</non_map_response>

If Workspace Manager is not currently installed in Oracle Database, the response for
Example 2–29 will be:

<?xml version="1.0" ?>
<non_map_response>
 <workspace_session succeed="false"/>
</non_map_response>

2.8 OracleAS MapViewer Metadata Views
The mapping metadata describing base maps, themes, and styles is stored in the global
tables SDO_MAPS_TABLE, SDO_THEMES_TABLE, and SDO_STYLES_TABLE, which
are owned by MDSYS. However, you should never directly update these tables. Each
OracleAS MapViewer user has the following views available in the schema associated
with that user:

■ USER_SDO_MAPS and ALL_SDO_MAPS contain information about base maps.

■ USER_SDO_THEMES and ALL_SDO_THEMES contain information about
themes.

■ USER_SDO_STYLES and ALL_SDO_STYLES contain information about styles.

Note: You can use the Map Definition Tool (described in
Chapter 7) to manage most mapping metadata. However, for some
features you must use SQL statements to update the OracleAS
MapViewer metadata views.

OracleAS MapViewer Metadata Views

2-44 Oracle Application Server MapViewer User’s Guide

The USER_SDO_xxx views contain metadata information about mapping elements
(styles, themes, base maps) owned by the user (schema), and the ALL_SDO_xxx views
contain metadata information about mapping elements on which the user has SELECT
permission.

The ALL_SDO_xxx views include an OWNER column that identifies the schema of the
owner of the object. The USER_SDO_xxx views do not include an OWNER column.

All styles defined in the database can be referenced by any user to define that user’s
themes, markers with a text style, or advanced styles. However, themes and base maps
are not shared among users; so, for example, you cannot reference another user’s
themes in a base map that you create.

The following rules apply for accessing the mapping metadata:

■ If you need to add, delete, or modify any metadata, you must perform the
operations using the USER_SDO_xxx views. The ALL_SDO_xxx views are
automatically updated to reflect any changes that you make to USER_SDO_xxx
views.

■ If you need only read access to the metadata for all styles, you should use the
ALL_SDO_STYLES view. Both the OWNER and NAME columns make up the
primary key; therefore, when you specify a style, be sure to include both the
OWNER and NAME.

The OracleAS MapViewer metadata views are defined in the following file:

$ORACLE_HOME/lbs/admin/mapdefinition.sql

The following sections describe each set of views.

2.8.1 xxx_SDO_MAPS Views
The USER_SDO_MAPS and ALL_SDO_MAPS views have the columns listed in
Table 2–3.

2.8.2 xxx_SDO_THEMES Views
The USER_SDO_THEMES and ALL_SDO_THEMES views have the columns listed in
Table 2–4.

Table 2–3 xxx_SDO_MAPS Views

Column Name Data Type Description

OWNER VARCHAR2 Schema that owns the base map (ALL_SDO_MAPS only)

NAME VARCHAR2 Unique name to be associated with the base map

DESCRIPTION VARCHAR2 Optional descriptive text about the base map

DEFINITION CLOB XML definition of the list of themes and their scale value
range information to be associated with the base map

Table 2–4 xxx_SDO_THEMES Views

Column Name Data Type Description

OWNER VARCHAR2 Schema that owns the theme (ALL_SDO_THEMES only)

NAME VARCHAR2 Unique name to be associated with the theme

DESCRIPTION VARCHAR2 Optional descriptive text about the theme

BASE_TABLE VARCHAR2 Table or view containing the spatial geometry column

OracleAS MapViewer Metadata Views

OracleAS MapViewer Concepts 2-45

2.8.3 xxx_SDO_STYLES Views
The USER_SDO_STYLES and ALL_SDO_STYLES views have the columns listed in
Table 2–5.

Depending on the Oracle Database release, the ALL_SDO_STYLES view may contain
sample styles owned by the MDSYS schema. If these styles are defined on your
system, you can specify them in theme definitions and map requests, and you can
examine the XML definitions for ideas to use in defining your own styles.

To specify a style (or other type of OracleAS MapViewer object) that is owned by a
schema other than the one for the current user, you must specify the schema name,
and you must use a colon (:), not a period, between the schema name and the object
name. The following excerpt from a <jdbc_query> element refers to the style named
C.RED owned by the MDSYS schema:

<jdbc_query . . . render_style="MDSYS:C.RED">
. . .
 </jdbc_query>

Example 2–30 finds the names of all currently defined styles owned by the MDSYS
schema, and it displays the type, description, and XML definition of one of the styles.
(The example output is reformatted for readability.)

Example 2–30 Finding Styles Owned by the MDSYS Schema

SELECT owner, name FROM all_sdo_styles
 WHERE owner = 'MDSYS';

OWNER NAME
-------------------------------- --------------------------------
MDSYS C.BLACK
MDSYS C.BLACK GRAY

GEOMETRY_
COLUMN

VARCHAR2 Name of the spatial geometry column (of type SDO_
GEOMETRY)

STYLING_
RULES

CLOB XML definition of the styling rules to be associated with
the theme

Table 2–5 xxx_SDO_STYLES Views

Column Name Data Type Description

OWNER VARCHAR2 Schema that owns the style (ALL_SDO_STYLES only)

NAME VARCHAR2 Unique name to be associated with the style

TYPE VARCHAR2 One of the following values: COLOR, MARKER, LINE,
AREA, TEXT, or ADVANCED

DESCRIPTION VARCHAR2 Optional descriptive text about the style

DEFINITION CLOB XML definition of the style

IMAGE BLOB Image content (for example, airport.gif) for marker or
area styles that use image-based symbols (for markers) or
fillers (for areas)

GEOMETRY SDO_
GEOMETRY

(Reserved for future use)

Table 2–4 (Cont.) xxx_SDO_THEMES Views

Column Name Data Type Description

OracleAS MapViewer Metadata Views

2-46 Oracle Application Server MapViewer User’s Guide

MDSYS C.BLUE
MDSYS C.COUNTIES
MDSYS C.FACILITY
. . .
MDSYS L.MAJOR STREET
MDSYS L.MAJOR TOLL ROAD
MDSYS L.MQ_ROAD2
MDSYS L.PH
MDSYS L.POOR_ROADS
MDSYS L.PTH
MDSYS L.RAILROAD
MDSYS L.RAMP
MDSYS L.SH
MDSYS L.STATE BOUNDARY
. . .
MDSYS M.REDSQ
MDSYS M.SMALL TRIANGLE
MDSYS M.STAR
MDSYS M.TOWN HALL
MDSYS M.TRIANGLE
MDSYS T.AIRPORT NAME
MDSYS T.CITY NAME
MDSYS T.MAP TITLE
MDSYS T.PARK NAME
MDSYS T.RED STREET
MDSYS T.ROAD NAME
MDSYS T.SHIELD1
MDSYS T.SHIELD2
MDSYS T.STATE NAME
MDSYS T.STREET NAME
. . .

-- Display the type, description, and XML definition of one style.
SET LONG 4000;
SELECT owner, name, type, description, definition
 FROM all_sdo_styles WHERE name = 'L.PH';

OWNER NAME TYPE DESCRIPTION
------ ----- ------ ------------------
MDSYS L.PH LINE Primary highways

DEFINITION

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
<desc></desc>
<g class="line" style="fill:#33a9ff;stroke-width:4">
<line class="parallel" style="fill:#aa55cc;stroke-width:1.0"/>
</g>
</svg>

OracleAS MapViewer Map Request XML API 3-1

3
OracleAS MapViewer Map Request XML API

This chapter explains how to submit map requests in XML format to OracleAS
MapViewer, and it describes the XML document type definitions (DTDs) for the map
requests (input) and responses (output). XML is widely used for transmitting
structured documents using the HTTP protocol. If an HTTP request (GET or POST
method) is used, it is assumed the request has a parameter named xml_request
whose value is a string containing the XML document for the request.

(In addition to map requests, the OracleAS MapViewer XML API can be used for
administrative requests, such as adding new data sources. Administrative requests are
described in Chapter 6.)

As shown in Figure 1–1 in Section 1.1.1, the basic flow of action with OracleAS
MapViewer is that a client locates a remote OracleAS MapViewer instance, binds to it,
sends a map request, and processes the map response returned by the OracleAS
MapViewer instance.

A request to the OracleAS MapViewer servlet has the following format:

http://hostname[:port]/MapViewer-servlet-path?xml_request=xml-request

In this format:

■ hostname is the network path of the server on which OracleAS MapViewer is
running.

■ port is the port on which the Web server listens.

■ MapViewer-servlet-path is the OracleAS MapViewer servlet path (for
example, mapviewer/omserver).

■ xml-request is the URL-encoded XML request submitted using the HTML GET
or POST method.

The input XML is required for all requests. The output depends on the content of the
request: the response can be either an XML document, or a binary object containing
the (generated image) file requested by the user.

In an input request, you must specify a data source, and you can specify one or more
of the following:

■ Themes and styles.

■ A center point or a box for the map display, and options such as highlight, label,
and styles.

■ A predefined base map, which can be reused and overlaid with custom data.

■ A custom theme with the user data points (or any geometry) retrieved
dynamically and plotted directly from an accessible database.

Map Request Examples

3-2 Oracle Application Server MapViewer User’s Guide

■ Custom features (point, circles, or any geometry) specified in the XML request
string to be plotted. These require that you provide the dynamic data in the format
of the <geoFeature> element (described in Section 3.2.5), as defined in the DTD.
The geometry portion of the <geoFeature> element adopts the Geometry DTD
as specified in Open GIS Consortium Geography Markup Language Version 1.0
(OGC GML v1.0).

■ Thematic mapping.

You can manage the definition of base maps, themes, and styles (individual
symbologies) using the Map Definition Tool, which is described in Chapter 7.

For the current release, OracleAS MapViewer accepts only a coordinate pair to identify
the location for a map request; it cannot take a postal address as direct input for a map.

This chapter first presents some examples of map requests (see Section 3.1), and then
presents detailed explanations of the following XML DTDs for requests and other
operations:

■ Map Request DTD

■ Information Request DTD

■ Map Response DTD

■ OracleAS MapViewer Exception DTD

■ Geometry DTD (OGC)

3.1 Map Request Examples
This section provides examples of map requests. It refers to concepts, elements, and
attributes that are explained in detail in Section 3.2. It contains sections with the
following examples:

■ Section 3.1.1, "Simple Map Request"

■ Section 3.1.2, "Map Request with Dynamically Defined Theme"

■ Section 3.1.3, "Map Request with Base Map, Center, and Additional Predefined
Theme"

■ Section 3.1.4, "Map Request with Center, Base Map, Dynamically Defined Theme,
and Other Features"

■ Section 3.1.5, "Map Request for Point Features with Attribute Value and
Dynamically Defined Variable Marker Style"

■ Section 3.1.6, "Map Request with an Image Theme"

■ Section 3.1.7, "Map Request for Image of Map Legend Only"

■ Section 3.1.8, "Map Request with SRID Different from Data SRID"

■ Section 3.1.9, "Map Request Using a Pie Chart Theme"

■ Section 3.1.10, "Java Program Using OracleAS MapViewer"

■ Section 3.1.11, "PL/SQL Program Using OracleAS MapViewer"

3.1.1 Simple Map Request
Example 3–1 is a very simple map request. It requests a map consisting of a blank blue
image (from the mvdemo data source) with the string Hello World drawn on top. (The

Map Request Examples

OracleAS MapViewer Map Request XML API 3-3

datasource attribute is required for a map request, even though this specific map
request does not retrieve any map data from the data source.)

Example 3–1 Simple Map Request ("Hello World")

<?xml version="1.0" standalone="yes"?>
<map_request title="Hello World" datasource = "mvdemo"/>

3.1.2 Map Request with Dynamically Defined Theme
Example 3–2 is a simple map request with one dynamically defined theme. It requests
a map of all Oracle Spatial geometries from the COUNTIES table.

Example 3–2 Simple Map Request with a Dynamically Defined Theme

<?xml version="1.0" encoding="UTF-8" ?>
<map_request datasource="lbs_data">
 <themes>
 <theme name="t1">
 <jdbc_query spatial_column = "GEOM"
 datasource = "lbs_data">
 SELECT geom FROM counties
 </jdbc_query>
 </theme>
 </themes>
</map_request>

3.1.3 Map Request with Base Map, Center, and Additional Predefined Theme
Example 3–3 requests a map with a specified center for the result map, and specifies a
predefined theme (poi_theme_us_restaurants) to be rendered in addition to the
predefined themes that are part of the base map (basemap="us_base").

Example 3–3 Map Request with Base Map, Center, and Additional Predefined Theme

<?xml version="1.0" encoding="UTF-8" ?>
<map_request datasource="lbs_data" title="LBS CUSTOMER MAP"
 basemap="us_base" width="500" height="375"
 bgcolor="#a6cae0" format="GIF_URL">
 <center size="1">
 <geoFeature typeName="mapcenter" label="Motel 1" text_style="T.MOTEL"
 render_style="M.MOTEL" radius="300">
 <geometricProperty>
 <Point>
 <coordinates>-122.2615, 37.5266</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <srs>SDO:8265</srs>
 <themes>
 <theme name="poi_theme_us_restaurants"/>
 </themes>
</map_request>

Notes on Example 3–3:

■ Because basemap is specified, OracleAS MapViewer first draws all predefined
themes for that base map before drawing the specified theme (poi_theme_us_
restaurants).

Map Request Examples

3-4 Oracle Application Server MapViewer User’s Guide

■ The center will be drawn with a marker of the M.MOTEL style and the label Motel
1 in the T.MOTEL style.

■ A circle with a radius of 300 meters will be drawn around the center.

3.1.4 Map Request with Center, Base Map, Dynamically Defined Theme, and Other
Features

Example 3–4 requests a map with a specified center, a predefined theme named
theme_lbs_customers, a dynamically defined theme named sales_by_region,
and all base themes in the base map us_base_road, plus two features: a polygon
representing the top sales region, and a point. The requested map will be stored at the
OracleAS MapViewer host and a URL to that GIF image (format="GIF_URL") will
be returned to the requester.

Example 3–4 Map Request with Center, Base Map, Dynamically Defined Theme, Other
Features

<?xml version="1.0" encoding="UTF-8" ?>
<map_request datasource="lbs_data2" title="LBS CUSTOMER MAP 2"
 width="400" height="300" format="GIF_URL" basemap="us_base_road">
 <center size="1.5">
 <geoFeature typeName="nil">
 <geometricProperty>
 <Point>
 <coordinates>-122.2615, 37.5266</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <themes>
 <theme name="theme_lbs_customers"/>
 <theme name="sales_by_region">
 <jdbc_query spatial_column ="region"
 label_column="manager"
 render_style="V.SALES COLOR"
 label_style="T.SMALL TEXT"
 jdbc_host="data.my_corp.com"
 jdbc_sid="orcl"
 jdbc_port="1521"
 jdbc_user="scott"
 jdbc_password="tiger"
 jdbc_mode="thin"
 > select region, sales, manager from my_corp_sales_2001
 </jdbc_query>
 </theme>
 </themes>
 <geoFeature typeName="nil" label="TopSalesRegion"
 text_style="9988" render_style="2837">
 <geometricProperty>
 <Polygon srsName="SDO:8265">
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>42.9,71.1 43.2,72.3 39.2,73.0 39.0,
 73.1 42.9,71.1</coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </geometricProperty>

Map Request Examples

OracleAS MapViewer Map Request XML API 3-5

 </geoFeature>
 <geoFeature render_style="1397" text_style="9987">
 <geometricProperty>
 <Point>
 <coordinates>-122.5615, 37.3266</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
</map_request>

In Example 3–4, sales_by_region is a dynamically defined theme. For information
about dynamically defining a theme, see Section 3.2.14 and Section 3.2.9.

3.1.5 Map Request for Point Features with Attribute Value and Dynamically Defined
Variable Marker Style

Example 3–5 shows a map request to render point features with a dynamically defined
variable marker style. The attribute_values attribute defines the value that will
be used to find the appropriate bucket (for the range into which the value falls), as
defined in the variable marker style.

Example 3–5 Map Request for Point Features with Attribute Value and Dynamically
Defined Variable Marker Style

<?xml version="1.0" standalone="yes"?>
<map_request
 title="Point Features with Variable Marker Style"
 datasource="mvdemo"
 srid="0"
 width="500"
 height="375"
 bgcolor="#a6caf0"
 antialiase="true"
 format="PNG_URL">
 <center size="19.2">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-116.65,38.92</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <geoFeature
 render_style="varmarkerpf"
 attribute_values="50000.0">
 <geometricProperty>
 <Point>
 <coordinates>-112.0,43.0</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 <geoFeature
 render_style="varmarkerpf"
 attribute_values="125000.0">
 <geometricProperty>
 <Point>
 <coordinates>-123.0,40.0</coordinates>
 </Point>

Map Request Examples

3-6 Oracle Application Server MapViewer User’s Guide

 </geometricProperty>
 </geoFeature>
 <geoFeature
 render_style="varmarkerpf"
 attribute_values="200000.0">
 <geometricProperty>
 <Point>
 <coordinates>-116.64,38.92</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 <geoFeature
 render_style="varmarkerpf"
 attribute_values="300000.0">
 <geometricProperty>
 <Point>
 <coordinates>-112.0,35.0</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 <styles>
 <style name="varmarkerpf">
 <AdvancedStyle>
 <VariableMarkerStyle basemarker="mkcircle" startsize="10"
 increment="5">
 <Buckets>
 <RangedBucket label="less than 100k" high="100000.0"/>
 <RangedBucket label="100k - 150k" low="100000.0" high="150000.0"/>
 <RangedBucket label="150k - 250k" low="150000.0" high="250000.0"/>
 <RangedBucket label="250k - 350k" low="250000.0" high="350000.0"/>
 </Buckets>
 </VariableMarkerStyle>
 </AdvancedStyle>
 </style>

 <style name="mkcircle">
 <svg>
 <g class="marker" style="stroke:blue;fill:red;">
 <circle r="20"/>
 </g>
 </svg>
 </style>

 </styles>
</map_request>

3.1.6 Map Request with an Image Theme
Example 3–6 requests a map in which an image theme is to be plotted underneath all
other regular vector data. The image theme is specified in the <jdbc_image_query>
element as part of the <theme> element in a map request. (For an explanation of
image themes, see Section 2.3.5.)

Example 3–6 Map Request with an Image Theme

<?xml version="1.0" encoding="UTF-8" ?>
<map_request datasource="lbs_data" title="LBS Image MAP"
 basemap="us_roads" format="GIF_STREAM">
 <center size="1">
 <geoFeature>

Map Request Examples

OracleAS MapViewer Map Request XML API 3-7

 <geometricProperty>
 <Point>
 <coordinates>-122.2615, 37.5266</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <themes>
 <theme name="anImageTheme">
 <jdbc_image_query image_format="ECW"
 image_column="image"
 image_mbr_column="img_extent"
 jdbc_srid="33709"
 datasource="lbs_data">
 SELECT image, img_extent, image_id FROM my_images
 </jdbc_image_query>
 </theme>
 </themes>
</map_request>

OracleAS MapViewer processes the request in Example 3–6 as follows:

1. OracleAS MapViewer retrieves the image data by executing the user-supplied
query (SELECT image, img_extent, image_id FROM my_images) in the
current map window context.

2. OracleAS MapViewer checks its internal list of all registered image renderers to
see if one supports the ECW format (image_format="ECW"). Because OracleAS
MapViewer as supplied by Oracle does not support the ECW format, you must
implement and register a custom image renderer that supports the format, as
explained in Appendix C.

3. OracleAS MapViewer calls the renderImages method, and image data retrieved
from the user-supplied query is passed to the method as one of its parameters.

4. OracleAS MapViewer retrieves and renders any requested vector data on top of
the rendered image.

3.1.7 Map Request for Image of Map Legend Only
Example 3–7 requests a map with just the image of the map legend, but without
rendering any spatial data. In this example, the legend explains the symbology used
for identifying cities, state boundaries, interstate highways, and county population
density. (Map legends are explained in Section 3.2.11.)

Example 3–7 Map Request for Image of Map Legend Only

<?xml version="1.0" standalone="yes"?>
<map_request
 datasource = "mvdemo"
 format="PNG_URL">

 <legend bgstyle="fill:#ffffff;stroke:#ff0000" profile="MEDIUM" position="SOUTH_
EAST">
 <column>
 <entry text="Map Legend" is_title="true"/>
 <entry style="M.STAR" text="center point"/>
 <entry style="M.CITY HALL 3" text="cities"/>
 <entry is_separator="true"/>
 <entry style="C.ROSY BROWN STROKE" text="state boundary"/>

Map Request Examples

3-8 Oracle Application Server MapViewer User’s Guide

 <entry style="L.PH" text="interstate highway"/>
 <entry text="County population:"/>
 <entry style="V.COUNTY_POP_DENSITY" tab="1"/>
 </column>
 </legend>

</map_request>

Generating just the map legend image, as in Example 3–7, can save processing time if
you display the stored map legend image on a Web page separately from the actual
displayed maps. This avoids the need to generate a legend each time there is a map
request.

3.1.8 Map Request with SRID Different from Data SRID
Example 3–8 requests a map displayed in a coordinate system (srid="32775" for US
- Equal Area Projection) that is different from the coordinate system associated with
the county theme data (jdbc_srid="8265" for Longitude/Latitude - NAD 83). As a
result, during the rendering process, OracleAS MapViewer converts all geometries
from the data SRID to the map request SRID.

If no coordinate system is associated with the theme data, OracleAS MapViewer
assumes that the data is associated with the coordinate system of the map request, and
no conversion occurs.

Example 3–8 Map Request with SRID Different from Data SRID

<?xml version="1.0" standalone="yes"?>
<map_request
 title="US Counties: Equal-Area Projection (SRID=32775)"
 datasource="mvdemo"
 srid="32775"
 width="500"
 height="375"
 bgcolor="#a6caf0"
 antialiase="true"
 format="PNG_URL">
 <center size="4000000.0">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-218191.9643,1830357.1429</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <themes>
 <theme name="county_th" user_clickable="false">
 <jdbc_query
 spatial_column="geom"
 render_style="C.COUNTIES"
 jdbc_srid="8265"
 datasource="mvdemo"
 asis="false">select geom from counties</jdbc_query>
 </theme>
 </themes>
</map_request>

Map Request Examples

OracleAS MapViewer Map Request XML API 3-9

3.1.9 Map Request Using a Pie Chart Theme
This section shows how to use thematic mapping with a pie chart theme. The result is
a map in which each county contains a pie chart in which the size of each slice reflects
the proportion of the population in a specified household income level category (low,
medium, or high) in the county.

The basic steps are as follows.

1. Create an advanced style that defines the characteristics of the pie charts to be
used. The following example creates an advanced style named V.PIECHART1.

INSERT INTO user_sdo_styles VALUES (
'V.PIECHART1', 'ADVANCED', null,
'<?xml version="1.0" ?>
<AdvancedStyle>
 <PieChartStyle pieradius="10">
 <PieSlice name="low" color="#ff0000"/>
 <PieSlice name="medium" color="#ffff00"/>
 <PieSlice name="high" color="#00ff00"/>
 </PieChartStyle>
</AdvancedStyle>', null, null);

When the style defined in the preceding example is applied to a geographic
feature, a pie chart is created with three slices. The pieradius attribute specifies
the size of each pie chart in pixels. Each slice (<PieSlice> element) has a color
defined for it. The name attribute for each slice is ignored by OracleAS
MapViewer.

2. Create a new theme that uses the style that you created, as in the following
example:

INSERT INTO user_sdo_themes VALUES (
'THEME_PIE_CHART', null, 'COUNTIES', 'GEOM',
'<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <rule column="INC_LOW,INC_MED,INC_HIGH">
 <features style="C.US MAP YELLOW"> </features>
 <label column="''dummy''" style="V.PIECHART1"> 1 </label>
 </rule>
</styling_rules>');

In the theme definition in the preceding example, the <label> element of the
styling rule specifies style="V.PIECHART1", to indicate that this pie chart style
(the style created in Step 1) is used to label each geometry displayed on the map.

The column attribute (column="''dummy''" in this example) is required, even
though it has no effect on the resulting map. The column attribute value can be
dummy or any other string, and the value must be enclosed on both sides by two
single quotation marks.

Because the V.PIECHART1 style is defined with three slices, the preceding
example must specify the names of three columns from the COUNTIES table, and
these columns must have a numeric data type. The column names are INC_LOW,
INC_MED, and INC_HIGH. These columns will supply the value that will be used
to determine the size of each pie slice.

3. Issue a map request that uses the theme that you created. Example 3–9 requests a
map that uses the THEME_PIE_CHART theme that was created in Step 2.

Map Request Examples

3-10 Oracle Application Server MapViewer User’s Guide

Example 3–9 Map Request Using a Pie Chart Theme

<?xml version="1.0" standalone="yes"?>
<map_request datasource = "mvdemo"
 format="PNG_STREAM">
 <themes>
 <theme name="THEME_PIE_CHART"/>
 </themes>
</map_request>

Figure 3–1 shows part of a display resulting from the map request in Example 3–9.

Figure 3–1 Map Display Using a Pie Chart Theme

You can also use the pie chart style in a dynamic (JDBC) theme when issuing a map
request. You must specify the complete SQL query for a JDBC theme in the map
request, because you must identify the attribute columns that are needed by the pie
chart style. Any columns in the SELECT list that are not SDO_GEOMETRY columns or
label columns are considered to be attribute columns that can be used by an advanced
style.

Example 3–10 is a sample request with a JDBC theme using a pie chart style. The SQL
query (SELECT geom, ’dummy’, sales, service, training FROM
support_centers) is included in the theme definition.

Map Request Examples

OracleAS MapViewer Map Request XML API 3-11

Example 3–10 JDBC Theme Using a Pie Chart Style

<?xml version="1.0" standalone="yes"?>
<map_request
 basemap="CA_MAP"
 datasource = "mvdemo"
 format="PNG_URL">
 <themes>
 <theme name="support_center">
 <jdbc_query spatial_column="geom" datasource="tilsmenv"
 label_column="dummy",
 label_style="V.PIECHART1">
 SELECT geom, ’dummy’, sales, service, training
 FROM support_centers
 </jdbc_query>
 </theme>
 </themes>
</map_request>

3.1.10 Java Program Using OracleAS MapViewer
Example 3–11 uses the java.net package to send an XML request to OracleAS
MapViewer and to receive the response from OracleAS MapViewer. (Note, however,
most programmers will find it more convenient to use the JavaBean-based API,
described in Chapter 4, or the JSP tag library, described in Chapter 5.)

Example 3–11 Java Program That Interacts with OracleAS MapViewer

import java.net.*;
import java.io.*;

/**
 * A sample program that shows how to interact with OracleAS MapViewer
 */
public class MapViewerDemo
{
 private HttpURLConnection mapViewer = null;

 /**
 * Initializes this demo with the URL to the OracleAS MapViewer server.
 * The URL is typically http://my_corp.com:8888/mapviewer/omserver.
 */
 public MapViewerDemo(String mapViewerURLString)
 {
 URL url;

 try
 {
 url = new URL(mapViewerURLString);
 mapViewer = (HttpURLConnection) url.openConnection();
 mapViewer.setDoOutput(true);
 mapViewer.setDoInput(true);
 mapViewer.setUseCaches(false);
 }
 catch (Exception e)
 {
 e.printStackTrace(System.err);
 System.exit(1);
 }
 }

Map Request Examples

3-12 Oracle Application Server MapViewer User’s Guide

 /**
 * Submits an XML request to OracleAS MapViewer.
 * @param xmlreq the XML document that is an OracleAS MapViewer request
 */
 public void submitRequest(String xmlreq)
 {
 try
 {
 mapViewer.setRequestMethod("POST"); //Use HTTP POST method.
 OutputStream os = mapViewer.getOutputStream();
 //OracleAS MapViewer expects to find the request as a parameter
 //named "xml_request".
 xmlreq = "xml_request="+URLEncoder.encode(xmlreq);
 os.write(xmlreq.getBytes());
 os.flush();
 os.close();
 }
 catch (Exception e)
 {
 e.printStackTrace(System.err);
 System.exit(1);
 }
 }

 /**
 * Receives an XML response from OracleAS MapViewer.
 */
 public String getResponse()
 {
 ByteArrayOutputStream content = new ByteArrayOutputStream();
 InputStream is = null;
 try
 {
 is = mapViewer.getInputStream();
 int c;
 while ((c = is.read()) != -1)
 content.write(c);
 is.close();
 content.flush();
 content.close();
 return content.toString();
 }
 catch (Exception e)
 {
 e.printStackTrace(System.err);
 return null;
 }
 }

 // A simple main program that sends a list_data_sources XML
 // request to OracleAS MapViewer through HTTP POST
 public static void main(String[] args)
 {
 if(args.length<1)
 {
 System.out.println("Usage: java MapViewerDemo <mapviewer url>");
 System.out.println("Example: java MapViewerDemo http://my_
corp.com/mapviewer/omserver");
 System.exit(1);

Map Request Examples

OracleAS MapViewer Map Request XML API 3-13

 }

 // A sample XML request for OracleAS MapViewer
 String
 listDataSources = "<?xml version=\"1.0\" standalone=\"yes\"?>" +
 " <non_map_request>" +
 " <list_data_sources/>" +
 " </non_map_request>";

 MapViewerDemo tester = null;
 tester = new MapViewerDemo(args[0]);
 System.out.println("submitting request:\n"+listDataSources);
 tester.submitRequest(listDataSources);
 String response = tester.getResponse();
 System.out.println("response from MapViewer: \n" + response);
 }
}

3.1.11 PL/SQL Program Using OracleAS MapViewer
Example 3–12 is a sample PL/SQL program that sends an XML request to the
OracleAS MapViewer server. This example works only on Oracle9i Release 9.0.1 and
later releases.

Example 3–12 PL/SQL Program That Interacts with OracleAS MapViewer

set serverout on size 1000000;

--
-- Author: Clarke Colombo
--
declare

 l_http_req utl_http.req;
 l_http_resp utl_http.resp;
 l_url varchar2(4000):= 'http://my_corp.com:8888/mapviewer/omserver';

 l_value varchar2(4000);
 img_url varchar2(4000);
 response sys.xmltype;

 output varchar2(255);

 map_req varchar2(4000);

begin

 utl_http.set_persistent_conn_support(TRUE);

 map_req := '<?xml version="1.0" standalone="yes"?>
 <map_request title="MapViewer Demonstration"
 datasource="mvdemo"
 basemap="course_map"
 width="500"
 height="375"
 bgcolor="#a6cae0"
 antialiasing="false"
 format="GIF_URL">
 <center size="5">

Map Request DTD

3-14 Oracle Application Server MapViewer User’s Guide

 <geoFeature>
 <geometricProperty>
 <Point>
 <coordinates>-122.2615, 37.5266</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 </map_request>';

 l_http_req := utl_http.begin_request(l_url, 'POST', 'HTTP/1.0');

 --
 -- Sets up proper HTTP headers.
 --
 utl_http.set_header(l_http_req, 'Content-Type',
'application/x-www-form-urlencoded');
 utl_http.set_header(l_http_req, 'Content-Length', length('xml_request=' || map_
req));
 utl_http.set_header(l_http_req, 'Host', 'my_corp.com');
 utl_http.set_header(l_http_req, 'Port', '8888');
 utl_http.write_text(l_http_req, 'xml_request=' || map_req);
 --
 l_http_resp := utl_http.get_response(l_http_req);

 utl_http.read_text(l_http_resp, l_value);

 response := sys.xmltype.createxml (l_value);

 utl_http.end_response(l_http_resp);

 img_url := response.extract('/map_response/map_image/map_
content/@url').getstringval();

 dbms_output.put_line(img_url);

end;
/

3.2 Map Request DTD
The following is the complete DTD for a map request, which is followed by reference
sections that describe each element and its attributes.

<?xml version="1.0" encoding="UTF-8"?>
<!-- <box> is defined in OGC GML v1.0 -->
<!ELEMENT map_request ((box | center | bounding_themes)?, srs?, legend?, themes?,
 styles?, geoFeature*)>
<!ATTLIST map_request
 datasource CDATA #REQUIRED
 srid CDATA #IMPLIED
 basemap CDATA #IMPLIED
 width CDATA #IMPLIED
 height CDATA #IMPLIED
 antialiasing (TRUE|FALSE) "FALSE"
 imagescaling (TRUE|FALSE) "TRUE"
 format (GIF|GIF_URL|GIF_STREAM|JAVA_IMAGE|
 PNG_STREAM|PNG_URL|PNG8_STREAM|PNG8_URL|
 JPEG_STREAM|JPEG_URL|
 SVG_STREAM|SVGZ_STREAM|SVGTINY_STREAM|

Map Request DTD

OracleAS MapViewer Map Request XML API 3-15

 SVG_URL|SVGZ_URL|SVGTINY_URL) "GIF_URL"
 transparent (TRUE|FALSE) "FALSE"
 title CDATA #IMPLIED
 bgcolor (CDATA) "#A6CAF0"
 bgimage CDATA #IMPLIED
 zoomlevels CDATA #IMPLIED
 zoomfactor CDATA #IMPLIED
 zoomratio CDATA #IMPLIED
 initscale CDATA #IMPLIED
 navbar (TRUE|FALSE) "TRUE"
 infoon (TRUE|FALSE) "TRUE"
 onclick CDATA #IMPLIED
 onmousemove CDATA #IMPLIED
 rasterbasemap (TRUE|FALSE) "FALSE"
 onrectselect CDATA #IMPLIED
 onpolyselect CDATA #IMPLIED
>
<!ELEMENT center (geoFeature)>
<!ATTLIST center
 size CDATA #REQUIRED
>
<!ELEMENT box (coordinates) >
<!ATTLIST box
 ID CDATA #IMPLIED
 srsName CDATA #REQUIRED
>
<!ELEMENT bounding_themes (#PCDATA) >
<!ATTLIST bounding_themes
 border_margin CDATA #IMPLIED
 preserve_aspect_ratio CDATA "TRUE"
>
<!ELEMENT srs (#PCDATA) >

<!ELEMENT themes (theme+) >
<!ELEMENT theme (jdbc_query | jdbc_image_query | jdbc_georaster_query
 | jdbc_network_query | jdbc_topology_query)? >
<!ATTLIST theme
 name CDATA #REQUIRED
 datasource CDATA #IMPLIED
 max_scale CDATA #IMPLIED
 min_scale CDATA #IMPLIED
 label_always_on (TRUE|FALSE) "FALSE"
 fast_unpickle (TRUE|FALSE) "TRUE"
 mode CDATA #IMPLIED
 min_dist CDATA #IMPLIED
 fixed_svglabel (TRUE|FALSE) "FALSE"
 visible_in_svg (TRUE|FALSE) "TRUE"
 selectable_in_svg (TRUE|FALSE) "FALSE"
 part_of_basemap (TRUE|FALSE) "FALSE"
 onclick CDATA #IMPLIED
 onmousemove CDATA #IMPLIED
 onmouseover CDATA #IMPLIED
 onmouseout CDATA #IMPLIED
 workspace_name CDATA #IMPLIED
 workspace_savepoint CDATA #IMPLIED
 workspace_date CDATA #IMPLIED
 workspace_date_format CDATA #IMPLIED
>
<!ELEMENT jdbc_query (#PCDATA, hidden_info?)>
<!ATTLIST jdbc_query

Map Request DTD

3-16 Oracle Application Server MapViewer User’s Guide

 asis (TRUE|FALSE) "FALSE"
 spatial_column CDATA #REQUIRED
 key_column CDATA #IMPLIED
 label_column CDATA #IMPLIED
 label_style CDATA #IMPLIED
 render_style CDATA #IMPLIED
 datasource CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>
<!ELEMENT hidden_info (field+)>
<!ELEMENT field (#PCDATA)>
<!ATTLIST field
 column CDATA #REQUIRED
 name CDATA #IMPLIED
>
<!ELEMENT jdbc_image_query (#PCDATA) >
<!ATTLIST jdbc_image_query
 asis (TRUE|FALSE) "FALSE"
 image_format CDATA #REQUIRED
 image_column CDATA #REQUIRED
 image_mbr_column CDATA #REQUIRED
 image_resolution CDATA #IMPLIED
 image_unit CDATA #IMPLIED
 datasource CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>
<!ELEMENT jdbc_georaster_query (#PCDATA) >
<!ATTLIST jdbc_georaster_query
 asis (TRUE|FALSE) "FALSE"
 georaster_table CDATA #REQUIRED
 georaster_column CDATA #REQUIRED
 raster_id CDATA #IMPLIED
 raster_table CDATA #IMPLIED
 raster_pyramid CDATA #IMPLIED
 raster_bands CDATA #IMPLIED
 datasource CDATA #IMPLIED
 polygon_mask CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>
<!ELEMENT jdbc_network_query (#PCDATA) >
<!ATTLIST jdbc_network_query
 asis (TRUE|FALSE) "FALSE"

Map Request DTD

OracleAS MapViewer Map Request XML API 3-17

 network_name CDATA #REQUIRED
 network_level CDATA #IMPLIED
 link_style CDATA #IMPLIED
 direction_style CDATA #IMPLIED
 direction_position CDATA #IMPLIED
 direction_markersize CDATA #IMPLIED
 link_labelstyle CDATA #IMPLIED
 link_labelcolumn CDATA #IMPLIED
 node_style CDATA #IMPLIED
 node_markersize CDATA #IMPLIED
 node_labelstyle CDATA #IMPLIED
 node_labelcolumn CDATA #IMPLIED
 path_ids CDATA #IMPLIED
 path_styles CDATA #IMPLIED
 path_labelstyle CDATA #IMPLIED
 path_labelcolumn CDATA #IMPLIED
 analysis_algorithm CDATA #IMPLIED
 shortestpath_style CDATA #IMPLIED
 shortestpath_startnode CDATA #IMPLIED
 shortestpath_endnode CDATA #IMPLIED
 shortestpath_startstyle CDATA #IMPLIED
 shortestpath_endstyle CDATA #IMPLIED
 withincost_startnode CDATA #IMPLIED
 withincost_style CDATA #IMPLIED
 withincost_cost CDATA #IMPLIED
 withincost_startstyle CDATA #IMPLIED
 datasource CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>
<!ELEMENT jdbc_topology_query (#PCDATA)>
<!ATTLIST jdbc_topology_query
 asis (TRUE|FALSE) "FALSE"
 topology_name CDATA #REQUIRED
 feature_table CDATA #REQUIRED
 spatial_column CDATA #REQUIRED
 label_column CDATA #IMPLIED
 label_style CDATA #IMPLIED
 render_style CDATA #IMPLIED
 datasource CDATA #IMPLIED
 edge_style CDATA #IMPLIED
 edge_marker_style CDATA #IMPLIED
 edge_marker_size CDATA #IMPLIED
 edge_label_style CDATA #IMPLIED
 node_style CDATA #IMPLIED
 node_label_style CDATA #IMPLIED
 face_style CDATA #IMPLIED
 face_label_style CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"

Map Request DTD

3-18 Oracle Application Server MapViewer User’s Guide

>
<!ELEMENT geoFeature (description?, property*,
 geometricProperty)>
<!ATTLIST geoFeature
 typeName CDATA #IMPLIED
 id CDATA #IMPLIED
 render_style CDATA #IMPLIED
 text_style CDATA #IMPLIED
 label CDATA #IMPLIED
 label_always_on (TRUE|FALSE) "FALSE"
 marker_size CDATA #IMPLIED
 radius CDATA #IMPLIED
 attribute_values CDATA #IMPLIED
 orient_x CDATA #IMPLIED
 orient_y CDATA #IMPLIED
 orient_z CDATA #IMPLIED
 selectable_in_svg (TRUE|FALSE) "FALSE"
 onclick CDATA #IMPLIED
 hidden_info CDATA #IMPLIED
>
<!ELEMENT legend column+ >
<!ATTLIST legend
 bgstyle CDATA #implied
 font CDATA #implied
 profile (MEDIUM|SMALL|LARGE) "MEDIUM"
 position (SOUTH_WEST|SOUTH_EAST|SOUTH|NORTH|
 NORTH_WEST|NORTH_EAST|EAST|WEST|CENTER) "SOUTH_WEST"
>
<!ELEMENT column entry+ >
<!ATTLIST entry
 is_title (true|false) "false"
 is_separator (true|false) "false"
 tab CDATA "0"
 style CDATA #implied
 text CDATA #implied
>
<!ELEMENT styles (style+) >
<!ELEMENT style (svg | AdvancedStyle)?>
<!ATTLIST style
 name CDATA #REQUIRED
>

The main elements and attributes of the map request DTD are explained in sections
that follow. The <map_request> element is described in Section 3.2.1. The remaining
related elements are described, in alphabetical order by element name, in the following
sections:

■ Section 3.2.2, "bounding_themes Element"

■ Section 3.2.3, "box Element"

■ Section 3.2.4, "center Element"

■ Section 3.2.5, "geoFeature Element"

■ Section 3.2.6, "jdbc_georaster_query Element"

■ Section 3.2.7, "jdbc_image_query Element"

■ Section 3.2.8, "jdbc_network_query Element"

■ Section 3.2.9, "jdbc_query Element"

Map Request DTD

OracleAS MapViewer Map Request XML API 3-19

■ Section 3.2.10, "jdbc_topology_query Element"

■ Section 3.2.11, "legend Element"

■ Section 3.2.12, "style Element"

■ Section 3.2.13, "styles Element"

■ Section 3.2.14, "theme Element"

■ Section 3.2.15, "themes Element"

3.2.1 map_request Element
The <map_request> element has the following definition:

<!ELEMENT map_request ((box | center | bounding_themes)?, srs?, legend?, themes?,
 styles?, geoFeature*)>

The root element of a map request to OracleAS MapViewer is always named map_
request.

<map_request> can have a child element that is <box> (see Section 3.2.3),
<center> (see Section 3.2.4), or <bounding_themes> (see Section 3.2.2), which
specifies the range of the user data to be plotted on a map. If none of these child
elements is specified, the result map is drawn using all data available to OracleAS
MapViewer.

The optional <srs> child element is ignored by the current version of OracleAS
MapViewer.

The optional <legend> element (see Section 3.2.11) is used to draw a legend (map
inset illustration) on top of a generated map, to make the visual aspects of the map
more meaningful to users.

The optional <themes> element (see Section 3.2.15) specifies predefined or
dynamically defined themes.

The optional <styles> element (see Section 3.2.13) specifies dynamically defined
styles.

The <geoFeature> element (see Section 3.2.5) can be used to specify any number of
individual geometries and their rendering attributes.

OracleAS MapViewer first draws the themes defined in a base map (if a base map is
specified as an attribute in the root element), then any user-provided themes, and
finally any geoFeature elements.

3.2.1.1 map_request Attributes
The root element <map_request> has a number of attributes, some required and the
others optional. The attributes are defined as follows:

<!ATTLIST map_request
 datasource CDATA #REQUIRED
 srid CDATA #IMPLIED
 basemap CDATA #IMPLIED
 width CDATA #IMPLIED
 height CDATA #IMPLIED
 antialiasing (TRUE|FALSE) "FALSE"
 imagescaling (TRUE|FALSE) "TRUE"
 format (GIF|GIF_URL|GIF_STREAM|JAVA_IMAGE|
 PNG_STREAM|PNG_URL|PNG8_STREAM|PNG8_URL|
 JPEG_STREAM|JPEG_URL|

Map Request DTD

3-20 Oracle Application Server MapViewer User’s Guide

 SVG_STREAM|SVGZ_STREAM|SVGTINY_STREAM|
 SVG_URL|SVGZ_URL|SVGTINY_URL) "GIF_URL"
 transparent (TRUE|FALSE) "FALSE"
 title CDATA #IMPLIED
 bgcolor (CDATA) "#A6CAF0"
 bgimage CDATA #IMPLIED
 zoomlevels CDATA #IMPLIED
 zoomfactor CDATA #IMPLIED
 zoomratio CDATA #IMPLIED
 initscale CDATA #IMPLIED
 navbar (TRUE|FALSE) "TRUE"
 infoon (TRUE|FALSE) "TRUE"
 onclick CDATA #IMPLIED
 onmousemove CDATA #IMPLIED
 rasterbasemap (TRUE|FALSE) "FALSE"
 onrectselect CDATA #IMPLIED
 onpolyselect CDATA #IMPLIED
>

datasource is a required attribute that specifies a data source. A data source
provides information to OracleAS MapViewer about where to fetch the user data (and
the mapping metadata) that is required to render a map.

srid is an optional attribute. If it is specified, it provides the SRID value of the
coordinate system (spatial reference system) for the map request. If necessary, theme
geometries will be converted to the specified coordinate system before being rendered,
although geometries with an undefined coordinate system will not be converted. If
this attribute is not specified, OracleAS MapViewer uses the coordinate system of the
first theme to be rendered as the coordinate system for the map request.

basemap is an optional attribute. When it is specified, OracleAS MapViewer renders
all themes that are specified for this base map. The definition of a base map is stored in
the user’s USER_SDO_MAPS view, as described in Section 2.8.1. Use this attribute if
you will always need a background map on which to plot your own themes and
geometry features.

width and height are optional attributes that together specify the size (in device
units) of the resulting map image. This size is different from the size specified in the
center element or box element, which is the range of the window into a user’s
source data. The default width and height values are 500 and 375 pixels, respectively.

antialiasing is an optional attribute. When its value is TRUE, OracleAS MapViewer
renders the map image in an antialiased manner. This usually provides a map with
better graphic quality, but it may take longer for the map to be generated. The default
value is FALSE (for faster map generation). (For backward compatibility, antialiase
is a synonym for antialiasing, but you are encouraged to use antialiasing.)

imagescaling is an optional attribute. When its value is TRUE (the default),
OracleAS MapViewer attempts to scale the images to fit the current querying window
and the generated map image size. When its value is FALSE, and if an image theme is
included directly or indirectly (such as through a base map), the images from the
image theme are displayed in their original resolution. This attribute has no effect
when no image theme is involved in a map request.

format is an optional attribute that specifies the file format of the returned map
image. The default value is GIF_URL, which is a URL to a GIF image stored on the
OracleAS MapViewer host system.

■ If you specify GIF, the generated GIF image data is embedded in a MapResponse
object and returned to the client. If you specify GIF_STREAM, the generated image

Map Request DTD

OracleAS MapViewer Map Request XML API 3-21

map content is returned directly to the client through the HTTP MIME type
image/gif.

■ If you specify JAVA_IMAGE, a Java 2D BufferedImage object with a color model
of TYPE_INT_RGB is embedded in a MapResponse object and returned to the
client.

■ If you specify PNG_STREAM, the stream of the image in nonindexed PNG format is
returned directly; if you specify PNG_URL, a URL to a nonindexed PNG image
stored on the OracleAS MapViewer host system is returned. (The PNG image
format has some advantages over the GIF format, including faster image encoding
and true color support.)

■ If you specify PNG8_STREAM, the stream of the image in indexed PNG format is
returned directly; if you specify PNG8_URL, a URL to an indexed PNG image
stored on the OracleAS MapViewer host system is returned. (The PNG image
format has some advantages over the GIF format, including faster image encoding
and true color support. The indexed PNG format limits the total number of colors
available for displaying the map to 256.)

■ If you specify JPEG_STREAM, the stream of the image in JPEG format is returned
directly; if you specify JPEG_URL, a URL to a JPEG image stored on the OracleAS
MapViewer host system is returned.

■ If you specify SVG_STREAM, the stream of the image in SVG Basic (SVGB) format
is returned directly; if you specify SVG_URL, a URL to an SVG Basic image stored
on the OracleAS MapViewer host system is returned.

■ If you specify SVGZ_STREAM, the stream of the image in SVG Compressed (SVGZ)
format is returned directly; if you specify SVGZ_URL, a URL to an SVG
Compressed image stored on the OracleAS MapViewer host system is returned.
SVG Compressed format can effectively reduce the size of the SVG map by 40 to
70 percent compared with SVG Basic format, thus providing better performance.

■ If you specify SVGTINY_STREAM, the stream of the image in SVG Tiny (SVGT)
format is returned directly; if you specify SVGTINY_URL, a URL to an SVG Tiny
image stored on the OracleAS MapViewer host system is returned. (The SVG Tiny
format is designed for devices with limited display capabilities, such as cell
phones.)

transparent is an optional attribute that applies to indexed PNG (PNG8_STREAM or
PNG8_URL) formats only. When its value is TRUE, OracleAS MapViewer makes the
map background color completely transparent. The default value is FALSE.

title is an optional attribute that specifies the map title to be displayed on the top of
the resulting map image.

bgcolor is an optional attribute that specifies the background color in the resulting
map image. The default is water-blue (RGB value #A6CAF0). It must be specified as a
hexadecimal value.

bgimage is an optional attribute that specifies the background image (GIF or JPEG
format only) in the resulting map image. The image is retrieved at run time when a
map request is being processed, and it is rendered before any other map features,
except that any bgcolor value is rendered before the background image.

zoomlevels is an optional attribute that specifies the number of zoom levels for an
SVG map. The default is 4.

zoomfactor is an optional attribute that specifies the zoom factor for an SVG map.
The zoom factor is the number by which to multiply the current zoom ratio for each
integer increment (a zoomin operation) in the zoom level. The inverse of the

Map Request DTD

3-22 Oracle Application Server MapViewer User’s Guide

zoomfactor value is used for each integer decrement (a zoomout operation) in the
zoom level. For example, if the zoomfactor value is 2 (the default), zooming in from
zoom level 4 to 5 will enlarge the detail by two; for example, if 1 inch of the map at
zoom level 4 represents 10 miles, 1 inch of the map at zoom level 5 will represent 5
miles. The zoom ratio refers to the relative scale of the SVG map, which in its original
size (zoom level 0) has a zoom ratio of 1.

zoomratio is an optional attribute that specifies the zoom ratio when an SVG map is
initially displayed. The default value is 1, which is the original map size (zoom level
0). Higher zoom ratio values show the map zoomed in, and lower values show the
map zoomed out.

initscale is an optional attribute that specifies the initial scale when an SVG map is
first displayed. The default value is 1, which is the original map size (zoom level 0).
Higher values will show the SVG map zoomed in when it is first displayed.

navbar is an optional attribute that specifies whether to display the built-in
navigation bar on an SVG map. If its value is TRUE (the default), the navigation bar is
displayed; if it is set to FALSE, the navigation bar is not displayed.

infoon is an optional attribute that specifies whether to display hidden information
when the mouse moves over features for which hidden information is provided. If its
value is TRUE (the default), hidden information is displayed when the mouse moves
over such features; if it is set to FALSE, hidden information is not displayed when the
mouse moves over such features. Regardless of the value, however, hidden
information is always rendered in an SVG map; this attribute only controls whether
hidden information can be displayed. (To specify the hidden information for a feature,
use the hidden_info attribute in the <geoFeature> element, as explained in
Section 3.2.5.)

onclick is an optional attribute that specifies the name of the JavaScript function to
be called when a user clicks on an SVG map. The JavaScript function must be defined
in the HTML document outside the SVG definition. This function must accept two
parameters: x and y, which specify the coordinates inside the SVG window where the
click occurred. The coordinates are defined in the local SVG window coordinate
system, which starts at (0, 0) at the upper-left corner and ends at (width, height) at the
lower-right corner. For information about using JavaScript functions with SVG maps,
see Appendix B.

onmousemove is an optional attribute that specifies the name of the JavaScript
function to be called when a user moves the mouse on an SVG map. The JavaScript
function must be defined in the HTML document outside the SVG definition. This
function must accept two parameters: x and y, which specify the coordinates inside the
SVG window where the move occurred. The coordinates are defined in the local SVG
window coordinate system, which starts at (0, 0) at the upper-left corner and ends at
(width, height) at the lower-right corner. For information about using JavaScript
functions with SVG maps, see Appendix B.

rasterbasemap is an optional attribute. If the map format is SVG and the value of
this attribute is TRUE, OracleAS MapViewer renders the base map as a raster image. In
this case, the base map image becomes the background image for the SVG map, and all
other vector features are rendered on top of it.

onrectselect is an optional attribute that specifies the name of the JavaScript
function to be called when a user draws a rectangular selection area by clicking and
dragging the mouse (to indicate two diagonally opposite corners) on an SVG map. The
JavaScript function must be defined in the HTML document outside the SVG
definition. This function must not accept any parameters. For information about using
JavaScript functions with SVG maps, see Appendix B.

Map Request DTD

OracleAS MapViewer Map Request XML API 3-23

onpolyselect is an optional attribute that specifies the name of the JavaScript
function to be called when a user draws a polygon-shaped selection area by clicking
and dragging the mouse (to indicate more than two vertices) on an SVG map. The
JavaScript function must be defined in the HTML document outside the SVG
definition. This function must not accept any parameters. For information about using
JavaScript functions with SVG maps, see Appendix B.

3.2.2 bounding_themes Element
The <bounding_themes> element has the following definition:

<!ELEMENT bounding_themes (#PCDATA) >
<!ATTLIST bounding_themes
 border_margin CDATA #IMPLIED
 preserve_aspect_ratio CDATA "TRUE"
>

You can specify one or more themes as the bounding themes when you cannot
predetermine the data size for a map. For example, you may have one dynamic theme
that selects all data points that meet certain criteria, and you then want to plot those
data points on a map that is just big enough to enclose all the selected data points. In
such cases, you can use the <bounding_themes> element to specify the names of
such dynamic themes. OracleAS MapViewer first processes any themes that are
specified in the <bounding_themes> element, generates a bounding box based on
the resulting features of the bounding themes, and then prepares other themes
according to the new bounding box.

The <bounding_themes> element is ignored if you specify the <box> or <center>
element in the map request.

border_margin is an optional attribute that specifies the percentage to be added to
each margin of the generated bounding box. For example, if you specify a value of
0.025, OracleAS MapViewer adds 2.5% of the width to the left and right margins of the
generated bounding box (resulting in a total 5% width expansion in the x-axis);
similarly, 2.5% of the height is added to the top and bottom margins. The default value
is 0.05, or 5% to be added to each margin.

preserve_aspect_ratio is an optional attribute that indicates whether or not the
bounding box generated after processing the bounding themes should be further
modified so that it has the same aspect ratio as the map image or device. The default is
TRUE, which modifies the bounding box to preserve the aspect ratio, so as not to
distort the resulting map image.

The element itself contains a comma-delimited list of names of the bounding themes.
The theme names must exactly match their names in the map request or the base map
used in the map request. The following example shows a map request with two
bounding themes, named theme1 and theme3, and with 2 percent (border_
margin="0.02") added to all four margins of the minimum bounding box needed to
hold features associated with the two themes:

<?xml version="1.0" standalone="yes"?>
<map_request
 title="bounding themes"
 datasource = "tilsmenv"
 basemap="qa_map"
 width="400"
 height="400"
 bgcolor="#a6cae0"
 antialiase="false"
 mapfilename="tilsmq202"

Map Request DTD

3-24 Oracle Application Server MapViewer User’s Guide

 format="PNG_STREAM">

 <bounding_themes border_margin="0.02">theme1, theme3</bounding_themes>

 <themes>
 <theme name="theme1" min_scale="5.0E7" max_scale="0.0">
 <jdbc_query
 datasource="tilsmenv"
 jdbc_srid="8265"
 spatial_column="geom" label_column="STATE"
 render_style="myPattern" label_style="myText"
 >SELECT geom, state from states where state_abrv='IL'</jdbc_query>
 </theme>
 <theme name="theme3" min_scale="5.0E7" max_scale="0.0">
 <jdbc_query
 datasource="tilsmenv"
 jdbc_srid="8265"
 spatial_column="geom" label_column="STATE"
 render_style="myPattern" label_style="myText"
 >SELECT geom,state from states where state_abrv='IN'</jdbc_query>
 </theme>

 </themes>

 <styles>
 <style name="myPattern">
 <svg width="1in" height="1in">
 <desc></desc>
 <g class="area"
 style="stroke:#0000cc;fill:#3300ff;fill-opacity:128;line-style:L.DPH">
 </g>
 </svg>
 </style>
 <style name="myText">
 <svg width="1in" height="1in">
 <g class="text" float-width="3.0"
 style="font-style:bold;font-family:Serif;font-size:18pt;fill:#000000">
 Hello World!
 </g>
 </svg>
 </style>
 </styles>
</map_request>

The preceding example displays a map in which the states of Illinois and Indiana are
displayed according to the specifications in the two <theme> elements, both of which
specify a rendering style named myPattern. In the myText style, the text "Hello
World!" is displayed only when the style is being previewed in a style creation tool,
such as the Map Definition Tool. When the style is applied to a map, it is supplied with
an actual text label that OracleAS MapViewer obtains from a theme.

Figure 3–2 shows the display from the preceding example.

Map Request DTD

OracleAS MapViewer Map Request XML API 3-25

Figure 3–2 Bounding Themes

3.2.3 box Element
The <box> element has the following definition:

<!ELEMENT box (coordinates) >
<!ATTLIST box
 ID CDATA #IMPLIED
 srsName CDATA #REQUIRED
>

The <box> element is used to specify the bounding box of a resulting map. It uses a
<coordinates> element to specify two coordinate value pairs that identify the
lower-left and upper-right corners of the rectangle. The coordinate values are
interpreted in terms of the user's data. For example, if the user's data is geodetic and is
specified in decimal degrees of longitude and latitude, a <coordinates>
specification of -72.84, 41.67, -70.88, 42.70 indicates a bounding box with
the lower-left corner at longitude-latitude coordinates (-72.84, 41.67) and the
upper-right corner at coordinates (-70.88, 42.70), which are in the New England region
of the United States. However, if the data is projected with meter as its unit of
measurement, the coordinate values are interpreted in meters.

3.2.4 center Element
The <center> element has the following definition:

<!ELEMENT center (geoFeature)>
<!ATTLIST center

Map Request DTD

3-26 Oracle Application Server MapViewer User’s Guide

 size CDATA #REQUIRED
>

The <center> element is used to specify the center of a resulting map. It has a
required attribute named size, which specifies the vertical span of the map in terms
of the original data unit. For example, if the user’s data is in decimal degrees, the size
attribute specifies the number of decimal degrees in latitude. If the user’s data is
projected with meter as its unit, OracleAS MapViewer interprets the size in meters.

The center itself must embed a <geoFeature> element, which is specified in
Section 3.2.5.

3.2.5 geoFeature Element
The <geoFeature> element has the following definition:

<!ELEMENT geoFeature (description?, property*,
 geometricProperty)>
<!ATTLIST geoFeature
 typeName CDATA #IMPLIED
 id CDATA #IMPLIED
 render_style CDATA #IMPLIED
 text_style CDATA #IMPLIED
 label CDATA #IMPLIED
 label_always_on (TRUE|FALSE) "FALSE"
 marker_size CDATA #IMPLIED
 radius CDATA #IMPLIED
 attribute_values CDATA #IMPLIED
 orient_x CDATA #IMPLIED
 orient_y CDATA #IMPLIED
 orient_z CDATA #IMPLIED
 selectable_in_svg (TRUE|FALSE) "FALSE"
 onclick CDATA #IMPLIED
 hidden_info CDATA #IMPLIED
>

<geoFeature> elements are used to provide individual geospatial entities to be
rendered on a map. The main part of a <geoFeature> element is the geometry
(<geometricProperty> element), which must be supplied in compliance with the
OGC GML v1.0 Geometry DTD (described in Section 3.6).

typeName is an optional attribute that is ignored by the current release of OracleAS
MapViewer.

id is an optional attribute that can be used to uniquely identify the feature among all
the geospatial features on the SVG map. (See the explanation of the selectable_in_
svg attribute.) Otherwise, this attribute is ignored by OracleAS MapViewer.

render_style is an optional attribute. When it is omitted, the geoFeature is not
rendered. If it is supplied, its value must be the name of a style stored in the user’s
USER_SDO_STYLES view.

text_style is an optional attribute. If it is supplied (and if the render_style and
label attributes are present and valid), it identifies the style to be used in labeling the
feature. If it is not specified, a default text style is used.

label is an optional attribute. If it is supplied (and if the render_style and label
attributes are present and valid), it identifies text that is used to label the feature.

label_always_on is an optional attribute. If it is set to TRUE, OracleAS MapViewer
labels the features even if two or more labels will overlap in the display of a theme.

Map Request DTD

OracleAS MapViewer Map Request XML API 3-27

(OracleAS MapViewer always tries to avoid overlapping labels.) If label_always_
on is FALSE (the default), when it is impossible to avoid overlapping labels, OracleAS
MapViewer disables the display of one or more labels so that no overlapping occurs.
The label_always_on attribute can also be specified for a theme (theme element,
described in Section 3.2.14). Specifying label_always_on as TRUE for a feature in
the geoFeature element definition gives you control over which features will have
their labels displayed if label_always_on is FALSE for a theme and if overlapping
labels cannot be avoided.

marker_size is an optional attribute. If it is supplied with a point feature, and if
render_style is a marker-type style, the specified size is used by OracleAS
MapViewer in rendering this feature. This provides a mechanism to override the
default value specified for a marker style.

radius is an optional attribute. If it is supplied, it specifies a number or a
comma-delimited list of numbers, with each number representing the radius of a circle
to be drawn centered on this feature. For geodetic data, the unit is meters; for
non-geodetic data, the unit is the unit of measurement associated with the data.

attribute_values is an optional attribute. If it is supplied, it specifies a value or a
comma-delimited list of values to be used with bucket ranges of an advanced style (for
example, values for pie chart segments or bucket values for variable markers).

orient_x and orient_y optionally specify a virtual end point to indicate an
orientation vector for rotating a marker symbol (such as a shield symbol to indicate a
highway) or text at a specified point. (orient_z is reserved for future use by Oracle.)
The value for each must be from -1 to 1. The orientation start point is assumed to be
(0,0), and it is translated to the location of the physical point to which it corresponds.

Figure 3–3 illustrates an orientation vector of approximately 34 degrees
(counterclockwise from the x-axis), resulting from specifying orient_x="0.3"
orient_y="0.2". (To have an orientation that more precisely matches a specific
angle, refer to the cotangent or tangent values in the tables in a trigonometry
textbook.)

Figure 3–3 Orientation Vector

selectable_in_svg is an optional attribute that specifies whether or not the feature
is selectable on an SVG map. The default is FALSE; that is, the feature is not selectable
on an SVG map. If this attribute is set to TRUE and if theme feature selection is
allowed, the feature can be selected by clicking on it. If the feature is selected, its color
is changed and its ID is recorded. You can get a list of the ID values of all selected
features by calling the JavaScript function getSelectedIdList() defined in the
SVG map. (For feature selection to work correctly, the id attribute value of the feature
must be set to a value that uniquely identifies it among all the geospatial features on
the SVG map.) For information about using JavaScript functions with SVG maps, see
Appendix B.

onclick is an optional attribute that specifies the name of the JavaScript function to
be called when a user clicks on the feature. The JavaScript function must be defined in
the HTML document outside the SVG definition. This function must accept only four

Map Request DTD

3-28 Oracle Application Server MapViewer User’s Guide

parameters: the theme name, the key of the feature, and x and y, which specify the
coordinates (in pixels) of the clicked point on the SVG map. For information about
using JavaScript functions with SVG maps, see Appendix B.

hidden_info is an optional attribute that specifies an informational note or tip to be
displayed when the mouse is moved over the feature. To specify multiple lines, use
"\n" between lines. For example, hidden_info="State park
with\nhistorical attractions" specifies a two-line tip. (To enable the display
of hidden information in the map, you must specify infoon="true" in the <map_
request> element, as explained in Section 3.2.1.1.)

The following example shows a <geoFeature> element specification for a restaurant
at longitude and latitude coordinates (-78.1234, 41.0346). In this case, the feature will
be invisible because the render_style and text_style attributes are not specified.

<geoFeature typeName="Customer" label="PizzaHut in Nashua">
 <geometricProperty>
 <Point srsName="SDO:8265">
 <coordinates>-78.1234,41.0346</coordinates>
 </Point>
 </geometricProperty>
</geoFeature>

The following example shows a <geoFeature> element specification for a point of
interest at longitude and latitude coordinates (-122.2615, 37.5266). The feature will be
rendered on the generated map because the render_style attribute is specified. The
example specifies some label text (A Place) and a text style for drawing the label text.
It also instructs OracleAS MapViewer to draw two circles, centered on this feature,
with radii of 1600 and 4800 meters. (In this case, the srsName attribute of the
<Point> element must be present, and it must specify an Oracle Spatial SRID value
using the format "SDO:<srid>". Because SRID value 8265 is associated with a
geodetic coordinate system, the radius values are interpreted as 1600 and 4800 meters.)

<geoFeature render_style="m.star"
 radius="1600,4800"
 label="A Place"
 text_style="T.Name">
 <geometricProperty>
 <Point srsName="SDO:8265">
 <coordinates>-122.2615, 37.5266</coordinates>
 </Point>
 </geometricProperty>
</geoFeature>

Figure 3–4 is a map drawn using the <geoFeature> element in the preceding
example. The feature is labeled with the text A Place, and it is represented by a red
star marker surrounded by two concentric circles.

Map Request DTD

OracleAS MapViewer Map Request XML API 3-29

Figure 3–4 Map with <geoFeature> Element Showing Two Concentric Circles

3.2.6 jdbc_georaster_query Element
The <jdbc_georaster_query> element, which is used to define a GeoRaster
theme, has the following definition:

<!ELEMENT jdbc_georaster_query (#PCDATA) >
<!ATTLIST jdbc_georaster_query
 asis (TRUE|FALSE) "FALSE"
 georaster_table CDATA #REQUIRED
 georaster_column CDATA #REQUIRED
 raster_id CDATA #IMPLIED
 raster_table CDATA #IMPLIED
 raster_pyramid CDATA #IMPLIED
 raster_bands CDATA #IMPLIED
 datasource CDATA #IMPLIED
 polygon_mask CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>

For detailed usage and reference information about GeoRaster themes, see
Section 2.3.6.

3.2.7 jdbc_image_query Element
The <jdbc_image_query> element, which is used to define an image theme
(described in Section 2.3.5), has the following definition:

<!ELEMENT jdbc_image_query (#PCDATA) >
<!ATTLIST jdbc_image_query
 asis (TRUE|FALSE) "FALSE"
 image_format CDATA #REQUIRED
 image_column CDATA #REQUIRED

Map Request DTD

3-30 Oracle Application Server MapViewer User’s Guide

 image_mbr_column CDATA #REQUIRED
 image_resolution CDATA #IMPLIED
 image_unit CDATA #IMPLIED
 datasource CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>

To define a theme dynamically, you must supply a valid SQL query as the content of
the <jdbc_image_query> element. You must specify the JDBC connection
information for an image theme (either datasource or the combination of jdbc_
host, jdbc_port, jdbc_sid, jdbc_user, and jdbc_password).

jdbc_srid is an optional attribute that specifies the coordinate system (SDO_SRID
value) of the data to be rendered.

jdbc_mode identifies the Oracle JDBC driver (thin or oci8) to use to connect to the
database.

asis is an optional attribute. If it is set to TRUE, OracleAS MapViewer does not
attempt to modify the supplied query string. If asis is FALSE (the default), OracleAS
MapViewer embeds the SQL query as a subquery of its spatial filter query. For
example, assume that you want a map centered at (-122, 37) with size 1, and the
supplied query is:

SELECT geometry, sales FROM crm_sales WHERE sales < 100000;

If asis is FALSE, the actual query that OracleAS MapViewer executes is similar to:

SELECT * FROM
 (SELECT geometry, sales FROM crm_sales WHERE sales < 100000)
WHERE sdo_filter(geometry, sdo_geometry(. . . -122.5, 36.5, -123.5, 37.5 . . .)
='TRUE';

In other words, the original query is further refined by a spatial filter query for the
current map window. However, if asis is TRUE, OracleAS MapViewer executes the
query as specified, namely:

SELECT geometry, sales FROM crm_sales WHERE sales < 100000;

image_format identifies the format (such as GIF or JPEG) of the image data. If the
image format is not supported by OracleAS MapViewer, you must create and register
a custom image renderer for the format, as explained in Appendix C.

image_column identifies the column of type BLOB where each image is stored.

image_mbr_column identifies the column of type SDO_GEOMETRY where the
footprint (minimum bounding rectangle, or MBR) of each image is stored.

image_resolution is an optional attribute that identifies the original image
resolution (number of image_unit units for each pixel).

image_unit is an optional attribute, except it is required if you specify the image_
resolution attribute. The image_unit attribute specifies the unit of the resolution,
such as M for meter. The value for this attribute must be one of the values in the SDO_
UNIT column of the MDSYS.SDO_DIST_UNITS table. In Example 2–13 in
Section 2.3.5.1, the image resolution is 2 meters per pixel.

Map Request DTD

OracleAS MapViewer Map Request XML API 3-31

For an example of using the <jdbc_image_query> element to specify an image
theme, see Example 3–6 in Section 3.1.6.

3.2.8 jdbc_network_query Element
The <jdbc_network_query> element, which is used to define a network theme, has
the following definition:

<!ELEMENT jdbc_network_query (#PCDATA) >
<!ATTLIST jdbc_network_query
 asis (TRUE|FALSE) "FALSE"
 network_name CDATA #REQUIRED
 network_level CDATA #IMPLIED
 link_style CDATA #IMPLIED
 direction_style CDATA #IMPLIED
 direction_position CDATA #IMPLIED
 direction_markersize CDATA #IMPLIED
 link_labelstyle CDATA #IMPLIED
 link_labelcolumn CDATA #IMPLIED
 node_style CDATA #IMPLIED
 node_markersize CDATA #IMPLIED
 node_labelstyle CDATA #IMPLIED
 node_labelcolumn CDATA #IMPLIED
 path_ids CDATA #IMPLIED
 path_styles CDATA #IMPLIED
 path_labelstyle CDATA #IMPLIED
 path_labelcolumn CDATA #IMPLIED
 analysis_algorithm CDATA #IMPLIED
 shortestpath_style CDATA #IMPLIED
 shortestpath_startnode CDATA #IMPLIED
 shortestpath_endnode CDATA #IMPLIED
 shortestpath_startstyle CDATA #IMPLIED
 shortestpath_endstyle CDATA #IMPLIED
 withincost_startnode CDATA #IMPLIED
 withincost_style CDATA #IMPLIED
 withincost_cost CDATA #IMPLIED
 withincost_startstyle CDATA #IMPLIED
 datasource CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>

For detailed usage and reference information about network themes, see Section 2.3.7.

3.2.9 jdbc_query Element
The <jdbc_query> element is used to define a theme dynamically. This element and
its associated <hidden_info> element have the following definitions:

<!ELEMENT jdbc_query (#PCDATA, hidden_info?)>
<!ATTLIST jdbc_query
 asis (TRUE|FALSE) "FALSE"
 spatial_column CDATA #REQUIRED
 key_column CDATA #IMPLIED
 label_column CDATA #IMPLIED

Map Request DTD

3-32 Oracle Application Server MapViewer User’s Guide

 label_style CDATA #IMPLIED
 render_style CDATA #IMPLIED
 datasource CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>
<!ELEMENT hidden_info (field+)>
<!ELEMENT field (#PCDATA)>
<!ATTLIST field
 column CDATA #REQUIRED
 name CDATA #IMPLIED
>

To define a theme dynamically, you must supply a valid SQL query as the content of
the <jdbc_query> element. You must specify the spatial_column (column of type
SDO_GEOMETRY) and the JDBC connection information for a dynamically defined
theme (either datasource or the combination of jdbc_host, jdbc_port, jdbc_
sid, jdbc_user, and jdbc_password).

If the selectable_in_svg attribute value is TRUE in the <theme> element, you
must use the key_column attribute in the <jdbc_query> element to specify the
name of a column that can uniquely identify each selected feature from the JDBC
query. The specified column must also appear in the SELECT list in the JDBC query.

render_style and label_style are optional attributes. For render_style, for
point features the default is a red cross rotated 45 degrees, for lines and curves it is a
black line 1 pixel wide, and for polygons it is a black border with a semitransparent
dark gray interior.

jdbc_srid is an optional attribute that specifies the coordinate system (SDO_SRID
value) of the data to be rendered.

jdbc_mode identifies the Oracle JDBC driver (thin or oci8) to use to connect to the
database.

asis is an optional attribute. If it is set to TRUE, OracleAS MapViewer does not
attempt to modify the supplied query string. If asis is FALSE (the default), OracleAS
MapViewer embeds the SQL query as a subquery of its spatial filter query. For
example, assume that you want a map centered at (-122, 37) with size 1, and the
supplied query is:

SELECT geometry, sales FROM crm_sales WHERE sales < 100000;

If asis is FALSE, the actual query that OracleAS MapViewer executes is similar to:

SELECT * FROM
 (SELECT geometry, sales FROM crm_sales WHERE sales < 100000)
WHERE sdo_filter(geometry, sdo_geometry(. . . -122.5, 36.5, -123.5, 37.5. . .)
='TRUE';

In other words, the original query is further refined by a spatial filter query using the
current map window. However, if asis is TRUE, OracleAS MapViewer executes the
query as specified, namely:

SELECT geometry, sales FROM crm_sales WHERE sales < 100000;

Map Request DTD

OracleAS MapViewer Map Request XML API 3-33

The <hidden_info> element specifies the list of attributes from the base table to be
displayed when the user moves the mouse over the theme’s features. The attributes
are specified by a list of <field> elements.

Each <field> element must have a column attribute, which specifies the name of the
column from the base table, and it can have a name attribute, which specifies the
display name of the column. (The name attribute is useful if you want a text string
other than the column name to be displayed.)

For examples of using the <jdbc_query> element to define a theme dynamically, see
Example 3–2 in Section 3.1.2 and Example 3–4 in Section 3.1.4.

3.2.10 jdbc_topology_query Element
The <jdbc_topology_query> element, which is used to define a topology theme,
has the following definition:

<!ELEMENT jdbc_topology_query (#PCDATA)>
<!ATTLIST jdbc_topology_query
 asis (TRUE|FALSE) "FALSE"
 topology_name CDATA #REQUIRED
 feature_table CDATA #REQUIRED
 spatial_column CDATA #REQUIRED
 label_column CDATA #IMPLIED
 label_style CDATA #IMPLIED
 render_style CDATA #IMPLIED
 datasource CDATA #IMPLIED
 edge_style CDATA #IMPLIED
 edge_marker_style CDATA #IMPLIED
 edge_marker_size CDATA #IMPLIED
 edge_label_style CDATA #IMPLIED
 node_style CDATA #IMPLIED
 node_label_style CDATA #IMPLIED
 face_style CDATA #IMPLIED
 face_label_style CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>

For detailed usage and reference information about topology themes, see Section 2.3.8.

3.2.11 legend Element
The <legend> element has the following definition:

<!ELEMENT legend column+ >
<!ATTLIST legend
 bgstyle CDATA #implied
 font CDATA #implied
 profile (MEDIUM|SMALL|LARGE) "MEDIUM"
 position (SOUTH_WEST|SOUTH_EAST|SOUTH|NORTH|
 NORTH_WEST|NORTH_EAST|EAST|WEST|CENTER) "SOUTH_WEST"
>
<!ELEMENT column entry+ >
<!ATTLIST entry

Map Request DTD

3-34 Oracle Application Server MapViewer User’s Guide

 is_title (true|false) "false"
 is_separator (true|false) "false"
 tab CDATA "0"
 style CDATA #implied
 text CDATA #implied
>

<legend> elements are used to draw a legend (map inset illustration) on top of a
generated map, to make the visual aspects of the map more meaningful to users. The
main part of a <legend> element is one or more <column> elements, each of which
defines a column in the legend. A one-column legend will have all entries arranged
from top to bottom. A two-column legend will have the two columns side by side,
with the first column on the left, and each column having its own legend entries.
Figure 2–6 in Section 2.4.2 shows a one-column legend. Figure 3–5 shows a
two-column legend.

Figure 3–5 Two-Column Map Legend

bgstyle is an optional attribute that specifies the overall background style of the
legend. It uses a string with syntax similar to scalable vector graphics (SVG) to specify
the fill and stroke colors for the bounding box of the legend. If you specify an opacity
(fill-opacity or stroke-opacity) value, the fill and stroke colors can be
transparent or partially transparent. The following example specifies a background
that is white and half transparent, and a stroke (for the legend box boundary) that is
red:

bgstyle="fill:#ffffff;fill-opacity:128;stroke:#ff0000"

font is an optional attribute that specifies the name of the font to be used for text that
appears in the legend image. You can specify a logical font name that is supported by
Java (serif, sansserif, monospaced, dialog, or dialoginput). You can also

Map Request DTD

OracleAS MapViewer Map Request XML API 3-35

specify the name of a physical font that is available on the system where the OracleAS
MapViewer server is running.

profile is an optional attribute that specifies a relative size of the legend on the map,
using one of the following keywords: SMALL, MEDIUM (the default), or LARGE.

position is an optional attribute that specifies where the legend should be drawn on
the map. The default is SOUTH_WEST, which draws the legend in the lower-left corner
of the resulting map.

is_title is an optional attribute of the <entry> element. When its value is TRUE,
the entry is used as the title for the column, which means that the description text
appears in a more prominent font than regular legend text, and any other style
attribute defined for the entry is ignored. The default is FALSE.

is_separator is an optional attribute of the <entry> element. When its value is
TRUE, the entry is used to insert a blank line for vertical spacing in the column. The
default is FALSE.

tab is an optional attribute of the <entry> element. It specifies the number of tab
positions to indent the entry from the left margin of the column. The default is 0 (zero),
which means no indentation.

style is an optional attribute of the <entry> element. It specifies the name of the
OracleAS MapViewer style (such as a color or an image) to be depicted as part of the
entry.

text is an optional attribute of the <entry> element. It specifies the description text
(for example, a short explanation of the associated color or image) to be included in
the entry.

The following example shows the <legend> element specification for the legend in
Figure 2–6 in Section 2.4.2.

<legend bgstyle="fill:#ffffff;fill-opacity:128;stroke:#ff0000"
 position="NORTH_WEST">
 <column>
 <entry text="Map Legend" is_title="true"/>
 <entry style="M.STAR" text="center point"/>
 <entry style="M.CITY HALL 3" text="cities"/>
 <entry is_separator="true"/>
 <entry style="C.ROSY BROWN STROKE" text="state boundary"/>
 <entry style="L.PH" text="interstate highway"/>
 <entry text="County population:"/>
 <entry style="V.COUNTY_POP_DENSITY" tab="1"/>
 </column>
</legend>

In the preceding example:

■ The background color has an opacity value of 128 (fill-opacity:128), which
means that the white background will be half transparent.

■ The legend boundary box will be red (stroke:#ff0000).

■ The legend boundary box will be positioned in the upper-left part of the display
(position="NORTH_WEST").

■ The legend will be the default size, because the profile attribute (which has a
default value of MEDIUM) is not specified.

■ The legend will have a single column, with entries arranged from top to bottom.

■ The first entry is the legend title, with the text Map Legend.

Map Request DTD

3-36 Oracle Application Server MapViewer User’s Guide

■ The fourth entry is a separator for adding a blank line.

■ The seventh entry is description text (County population:) that users of the
generated map will associate with the next (and last) entry, which specifies an
advanced style. The County population: text entry is helpful because advanced
styles usually have their own descriptive text, and you do not want users to
become confused about which text applies to which parts of the legend.

■ The last entry specifies an advanced style (style="V.COUNTY_POP_DENSITY"),
and it is indented one tab position (tab="1") so that the colors and text
identifying various population density ranges will be easy for users to distinguish
from the preceding County population: description text.

3.2.12 style Element
The <style> element has the following definition:

<!ELEMENT style (svg | AdvancedStyle)?>
<!ATTLIST style
 name CDATA #REQUIRED
>

The <style> element lets you specify a dynamically defined style. The style can be
either of the following:

■ An SVG description representing a color, line, marker, area, or text style

■ An advanced style definition (see Section A.6) representing a bucket, a color
scheme, or a variable marker style

The name attribute identifies the style name.

The following example shows an excerpt that dynamically defines two styles (a color
style and an advanced style) for a map request:

<map_request . . .>
 . . .
 <styles>
 <style name="color_red">
 <svg width="1in" height="1in">
 <g class="color"
 style="stroke:red;stroke-opacity:100;fill:red;fill-opacity:100">
 <rect width="50" height="50"/>
 </g>
 </svg>
 </style>

 <style name="ranged_bucket_style">
 <AdvancedStyle>
 <BucketStyle>
 <Buckets>
 <RangedBucket seq="0" label="less than 100k"
 high="100000.0" style="C.RB13_13"/>
 <RangedBucket seq="1" label="100k - 150k" low="100000.0"
 high="150000.0" style="C.RB13_1"/>
 <RangedBucket seq="2" label="150k - 250k" low="150000.0"
 high="250000.0" style="C.RB13_4"/>
 <RangedBucket seq="3" label="250k - 350k" low="250000.0"
 high="350000.0" style="C.RB13_7"/>
 <RangedBucket seq="4" label="350k - 450k" low="350000.0"
 high="450000.0" style="C.RB13_10"/>
 </Buckets>

Map Request DTD

OracleAS MapViewer Map Request XML API 3-37

 </BucketStyle>
 </AdvancedStyle>
 </style>
 </styles>
</map_request>

3.2.13 styles Element
The <styles> element has the following definition:

<!ELEMENT styles (style+) >

The <styles> element specifies one or more <style> elements (described in
Section 3.2.12).

3.2.14 theme Element
The <theme> element has the following definition:

<!ELEMENT theme (jdbc_query | jdbc_image_query | jdbc_georaster_query
 | jdbc_network_query | jdbc_topology_query)? >
<!ATTLIST theme
 name CDATA #REQUIRED
 datasource CDATA #IMPLIED
 max_scale CDATA #IMPLIED
 min_scale CDATA #IMPLIED
 label_always_on (TRUE|FALSE) "FALSE"
 fast_unpickle (TRUE|FALSE) "TRUE"
 mode CDATA #IMPLIED
 min_dist CDATA #IMPLIED
 fixed_svglabel (TRUE|FALSE) "FALSE"
 visible_in_svg (TRUE|FALSE) "TRUE"
 selectable_in_svg (TRUE|FALSE) "FALSE"
 part_of_basemap (TRUE|FALSE) "FALSE"
 onclick CDATA #IMPLIED
 onmousemove CDATA #IMPLIED
 onmouseover CDATA #IMPLIED
 onmouseout CDATA #IMPLIED
 workspace_name CDATA #IMPLIED
 workspace_savepoint CDATA #IMPLIED
 workspace_date CDATA #IMPLIED
 workspace_date_format CDATA #IMPLIED
>

The <theme> element lets you specify a predefined or dynamically defined theme.

■ For a predefined theme, whose definition is already stored in your USER_SDO_
THEMES view, only the theme name is required.

■ For a dynamically defined theme, you must provide the information in one of the
following elements: <jdbc_query> (described in Section 3.2.9), <jdbc_image_
query> (described in Section 3.2.7), <jdbc_georaster_query> (described in
Section 2.3.6), <jdbc_network_query> (described in Section 2.3.7), or <jdbc_
topology_query> (described in Section 2.3.8).

The name attribute identifies the theme name. For a predefined theme, the name must
match a value in the NAME column of the USER_SDO_THEMES view (described in
Section 2.8.2). For a dynamically defined theme, this is just a temporary name for
referencing the jdbc_query-based theme.

Map Request DTD

3-38 Oracle Application Server MapViewer User’s Guide

datasource is an optional attribute that specifies a data source for the theme. If you
do not specify this attribute, the data source for the map request is assumed (see the
datasource attribute explanation in Section 3.2.1.1). By specifying different data
sources for different themes, you can use multiple data sources in a map request.

The max_scale and min_scale attributes affect the visibility of this theme. If max_
scale and min_scale are omitted, the theme is always rendered, regardless of the
map scale. (See Section 2.4.1 for an explanation of max_scale and min_scale.)

label_always_on is an optional attribute. If it is set to TRUE, OracleAS MapViewer
labels all features of the theme even if two or more labels will overlap in the display.
(OracleAS MapViewer always tries to avoid overlapping labels.) If label_always_
on is FALSE (the default), when it is impossible to avoid overlapping labels, OracleAS
MapViewer disables the display of one or more labels so that no overlapping occurs.
The label_always_on attribute can also be specified for a map feature
(geoFeature element, described in Section 3.2.5), thus allowing you to control which
features will have their labels displayed if label_always_on is FALSE for a theme
and if overlapping labels cannot be avoided.

fast_unpickle is an optional attribute. If it is TRUE (the default), OracleAS
MapViewer uses its own fast unpickling (unstreaming) algorithm instead of the
generic JDBC conversion algorithm to convert SDO_GEOMETRY objects fetched from
the database into a Java object accessible to OracleAS MapViewer. This process
improves performance, but occasionally the coordinates may lose some precision
(around 0.00000005), which can be significant in applications where all precision digits
of each coordinate must be kept. If fast_unpickle is set to FALSE, OracleAS
MapViewer uses the generic JDBC conversion algorithm. This process is slower than
OracleAS MapViewer’s fast unpickling process, but there is never any loss of
precision.

mode is an optional attribute. For a topology theme, you can specify mode="debug"
to display edges, nodes, and faces, as explained in Section 2.3.8. The mode attribute is
ignored for other types of themes.

min_dist is an optional attribute. It specifies the minimum on-screen distance
(number of pixels) between two adjacent shape points on a line string or polygon for
rendering of separate shape points. If the on-screen distance between two adjacent
shape points is less than the min_dist value, only one shape point is rendered. The
default value is 0.5. You can specify higher values to reduce the number of shape
points rendered on an SVG map, and thus reduce the size of the resulting SVG file.
You can specify different values in different theme definitions, to allow for customized
levels of detail in SVG maps.

fixed_svglabel is an optional attribute that specifies whether to display the labels
on an SVG map using the original "fixed" labels, but having them appear larger or
smaller as the zoom level increases (zoomin) or decreases (zoomout), or to use
different labels with the same text but different actual sizes so that the apparent size of
each label remains the same at all zoom levels. If the fixed_svglabel value is
specified as TRUE, the same theme labels are displayed on the map at all zoom levels,
with the labels zoomed in and out as the map is zoomed in and out. If the value is
FALSE (the default), different theme labels are displayed at different zoom levels so
that the size of each displayed label appears not to change during zoomin and
zoomout operations.

visible_in_svg is an optional attribute that specifies whether or not to display the
theme on an SVG map. If its value is TRUE (the default), the theme is displayed; if it is
set to FALSE, the theme is not displayed. However, even if this attribute is set to
FALSE, the theme is still rendered to the SVG map: the theme is initially invisible, but
you can make it visible later by calling the JavaScript function showTheme() defined

Map Request DTD

OracleAS MapViewer Map Request XML API 3-39

in the SVG map. For information about using JavaScript functions with SVG maps, see
Appendix B.

selectable_in_svg is an optional attribute that specifies whether or not the theme
is selectable on an SVG map. The default is FALSE; that is, the theme is not selectable
on an SVG map. If this attribute is set to TRUE and if theme feature selection is
allowed, each feature of the theme displayed on the SVG map can be selected by
clicking on it. If the feature is selected, its color is changed and its ID (its rowid by
default) is recorded. You can get a list of the ID values of all selected features by calling
the JavaScript function getSelectedIdList() defined in the SVG map. For
information about using JavaScript functions with SVG maps, see Appendix B.

part_of_basemap is an optional attribute. If the map format is SVG and the value of
this attribute is TRUE, OracleAS MapViewer renders the theme as part of and on top of
the base map, which is rendered as a raster image.

onclick is an optional attribute that specifies the name of the JavaScript function to
be called when a user clicks on an SVG map and theme feature selection is allowed
(see the selectable_in_svg attribute explanation). The JavaScript function must be
defined in the HTML document that has the SVG map embedded. This function must
accept only four parameters: the theme name, the key of the feature, and x and y,
which specify the coordinates (in pixels) of the clicked point on the SVG map. For
information about using JavaScript functions with SVG maps, see Appendix B.

onmousemove is an optional attribute that specifies the name of the JavaScript
function to be called when a user moves the mouse on top of any feature of the theme
on an SVG map. The JavaScript function must be defined in the HTML document that
has the SVG map embedded. This function must accept only four parameters: the
theme name, the key of the feature, and x and y, which specify the coordinates (in
pixels) of the point for the move on the SVG map. For information about using
JavaScript functions with SVG maps, see Appendix B.

onmouseover is an optional attribute that specifies the name of the JavaScript
function to be called when a user moves the mouse into a feature of the theme on an
SVG map. (Unlike the onmousemove function, which is called whenever the mouse
moves inside the theme, the onmouseover function is called only once when the
mouse moves from outside a feature of the theme to inside a feature of the theme.) The
JavaScript function must be defined in the HTML document that has the SVG map
embedded. This function must accept only four parameters: the theme name, the key
of the feature, and x and y, which specify the coordinates (in pixels) of the point at
which the mouse moves inside a feature on the SVG map. For information about using
JavaScript functions with SVG maps, see Appendix B.

onmouseout is an optional attribute that specifies the name of the JavaScript function
to be called when a user moves the mouse out of a feature of the theme on an SVG
map. The JavaScript function must be defined in the HTML document that has the
SVG map embedded. This function must accept only four parameters: the theme
name, the key of the feature, and x and y, which specify the coordinates (in pixels) of
the point at which the mouse moves out of a feature on the SVG map. For information
about using JavaScript functions with SVG maps, see Appendix B.

workspace_name, workspace_savepoint, workspace_date, and workspace_
date_format are optional attributes related to support for Workspace Manager in
Mapviewer, which is explained in Section 2.7.

3.2.15 themes Element
The <themes> element has the following definition:

Information Request DTD

3-40 Oracle Application Server MapViewer User’s Guide

<!ELEMENT themes (theme+) >

The <themes> element specifies one or more <theme> elements (described in
Section 3.2.14). If you have specified a base map (basemap attribute of the map_
request element), any themes that you specify in a <themes> element are plotted
after those defined in the base map. If no base map is specified, only the specified
themes are rendered.

Inside this <themes> element there must be one or more <theme> child elements,
which are rendered in the order in which they appear.

3.3 Information Request DTD
In addition to issuing map requests (see Section 3.2) and administrative requests (see
Chapter 6), you can issue information requests to OracleAS MapViewer. An
information request is an XML request string that you can use to execute SQL queries
and obtain the result as an array of strings or an XML document. The SQL query must
be a SELECT statement and must select only primitive SQL types (for example, not
LOB types or user-defined object types).

The following is the DTD for an OracleAS MapViewer information request.

<!ELEMENT info_request (#PCDATA) >
<!ATTLIST info_request
 datasource CDATA #REQUIRED
 format (strict | non-strict) "strict"
>

datasource is a required attribute that specifies the data source for which to get the
information.

format is an optional attribute. If it is strict (the default), all rows are formatted
and returned in an XML document. If format is set to non-strict, all rows plus a
column heading list are returned in a comma-delimited text string.

Example 3–13 shows an information request to select the city, 1990 population, and
state abbreviation from the CITIES table, using the connection information in the
mvdemo data source and returning the information as an XML document
(format="strict").

Example 3–13 OracleAS MapViewer Information Request

<?xml version="1.0" standalone="yes"?>
<info_request datasource="mvdemo" format="strict">
 SELECT city, pop90 population, state_abrv state FROM cities
</info_request>

Example 3–13 returns an XML document that includes the following:

<?xml version="1.0" encoding="UTF-8"?>
 <ROWSET>
 <ROW num="1">
 <CITY>New York</CITY>
 <POPULATION>7322564</POPULATION>
 <STATE>NY</STATE>
 </ROW>
 <ROW num="2">
 <CITY>Los Angeles</CITY>
 <POPULATION>3485398</POPULATION>
 <STATE>CA</STATE>

OracleAS MapViewer Exception DTD

OracleAS MapViewer Map Request XML API 3-41

 </ROW>
 <ROW num="3">
 <CITY>Chicago</CITY>
 <POPULATION>2783726</POPULATION>
 <STATE>IL</STATE>
 </ROW>
 <ROW num="4">
 <CITY>Houston</CITY>
 <POPULATION>1630553</POPULATION>
 <STATE>TX</STATE>
 </ROW>
 . . .
 </ROWSET>

3.4 Map Response DTD
The following is the DTD for the map response resulting from normal processing of a
map request. (Section 3.5 shows the DTD for the response if there was an exception or
unrecoverable error.)

<!ELEMENT map_response (map_image)>
<!ELEMENT map_image (map_content, box, WMTException)>
<!ELEMENT map_content EMPTY>
<!ATTLIST map_content url CDATA #REQUIRED>
<!ELEMENT WMTException (#PCDATA)>
<!ATTLIST WMTException version CDATA "1.0.0"
 error_code (SUCCESS|FAILURE) #REQUIRED
>

The response includes the URL for retrieving the image, as well as any error
information. When a valid map is generated, its minimum bounding box is also
returned.

Example 3–14 shows a map response.

Example 3–14 Map Response

<?xml version="1.0" encoding="UTF-8" ?>
<map_response>
 <map_image>
 <map_content url="http://map.oracle.com/output/map029763.gif"/>
 <box srsName="default">
 <coordinates>-122.260443,37.531621 -120.345,39.543</coordinates>
 </box>
 <WMTException version="1.0.0" error_code="SUCCESS">
 </WMTException>
 </map_image>
</map_response>

3.5 OracleAS MapViewer Exception DTD
The following DTD is used by the output XML when an exception or unrecoverable
error is encountered while processing a map request:

<!ELEMENT oms_error (#PCDATA)>

The exception or error message is embedded in this element.

Geometry DTD (OGC)

3-42 Oracle Application Server MapViewer User’s Guide

3.6 Geometry DTD (OGC)
OracleAS MapViewer supports the Geometry DTD as defined in the Open Geospatial
Consortium (OGC) GML v1.0 specification. This specification and other, more recent,
versions are available at the following URL:

http://www.opengeospatial.org/specs/

This specification has the following copyright information:

Copyright © 2000 OGC All Rights Reserved.

This specification includes the following status information, although its current
official status is Deprecated Recommendation Paper:

This document is an OpenGIS® Consortium Recommendation Paper. It is similar to a
proposed recommendation in other organizations. While it reflects a public
statement of the official view of the OGC, it does not have the status of a OGC
Technology Specification. It is anticipated that the position stated in this
document will develop in response to changes in the underlying technology.
Although changes to this document are governed by a comprehensive review
procedure, it is expected that some of these changes may be significant.

The OGC explicitly invites comments on this document. Please send them to
gml.rfc@opengis.org

The following additional legal notice text applies to this specification:

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS
OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE;
THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR
IMPLEMENTATION OF THE CONTENTS THEREOF.

The OGC Geometry DTD in this specification is as follows:

<!-- == -->
<!-- G e o g r a p h y -->
<!-- M a r k u p -->
<!-- L a n g u a g e -->
<!-- -->
<!-- (G M L) -->
<!-- -->
<!-- G E O M E T R Y D T D -->
<!-- -->
<!-- Copyright (c) 2000 OGC All Rights Reserved. -->
<!-- == -->

<!-- the coordinate element holds a list of coordinates as parsed character
data. Note that it does not reference a SRS and does not constitute a proper
geometry class. -->
<!ELEMENT coordinates (#PCDATA) >
<!ATTLIST coordinates
 decimal CDATA #IMPLIED
 cs CDATA #IMPLIED
 ts CDATA #IMPLIED >

Geometry DTD (OGC)

OracleAS MapViewer Map Request XML API 3-43

<!-- the Box element defines an extent using a pair of coordinates and a SRS name.
-->
<!ELEMENT Box (coordinates) >
<!ATTLIST Box
 ID CDATA #IMPLIED
 srsName CDATA #REQUIRED >

<!-- == -->
<!-- G E O M E T R Y C L A S S D e f i n i t i o n s -->
<!-- == -->

<!-- a Point is defined by a single coordinate. -->
<!ELEMENT Point (coordinates) >
<!ATTLIST Point
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<!-- a LineString is defined by two or more coordinates, with linear
interoplation between them. -->
<!ELEMENT LineString (coordinates) >
<!ATTLIST LineString
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<!-- a Polygon is defined by an outer boundary and zero or more inner
boundaries. These boundaries are themselves defined by LinerRings. -->
<!ELEMENT Polygon (outerBoundaryIs, innerBoundaryIs*) >
<!ATTLIST Polygon
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT outerBoundaryIs (LinearRing) >
<!ELEMENT innerBoundaryIs (LinearRing) >

<!-- a LinearRing is defined by four or more coordinates, with linear
interpolation between them. The first and last coordinates must be
coincident. -->
<!ELEMENT LinearRing (coordinates) >
<!ATTLIST LinearRing
 ID CDATA #IMPLIED >

<!-- a MultiPoint is defined by zero or more Points, referenced through a
pointMember element. -->
<!ELEMENT MultiPoint (pointMember+) >
<!ATTLIST MultiPoint
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT pointMember (Point) >

<!-- a MultiLineString is defined by zero or more LineStrings, referenced
through a lineStringMember element. -->
<!ELEMENT MultiLineString (lineStringMember+) >
<!ATTLIST MultiLineString
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT lineStringMember (LineString) >

<!-- a MultiPolygon is defined by zero or more Polygons, referenced through a
polygonMember element. -->
<!ELEMENT MultiPolygon (polygonMember+) >
<!ATTLIST MultiPolygon

Geometry DTD (OGC)

3-44 Oracle Application Server MapViewer User’s Guide

 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT polygonMember (Polygon) >

<!-- a GeometryCollection is defined by zero or more geometries, referenced
through a geometryMember element. A geometryMember element may be any one of
the geometry classes. -->
<!ENTITY % GeometryClasses "(
 Point | LineString | Polygon |
 MultiPoint | MultiLineString | MultiPolygon |
 GeometryCollection)" >

<!ELEMENT GeometryCollection (geometryMember+) >
<!ATTLIST GeometryCollection
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT geometryMember %GeometryClasses; >

<!-- == -->
<!-- G E O M E T R Y P R O P E R T Y D e f i n i t i o n s -->
<!-- == -->

<!-- GML provides an 'endorsed' name to define the extent of a feature. The
extent is defined by a Box element, the name of the property is boundedBy. -->
<!ELEMENT boundedBy (Box) >

<!-- the generic geometryProperty can accept a geometry of any class. -->
<!ELEMENT geometryProperty (%GeometryClasses;) >

<!-- the pointProperty has three descriptive names: centerOf, location and
position. -->
<!ELEMENT pointProperty (Point) >
<!ELEMENT centerOf (Point) >
<!ELEMENT location (Point) >
<!ELEMENT position (Point) >

<!-- the lineStringProperty has two descriptive names: centerLineOf and
edgeOf. -->
<!ELEMENT lineStringProperty (LineString) >
<!ELEMENT centerLineOf (LineString)>
<!ELEMENT edgeOf (LineString)>

<!-- the polygonProperty has two descriptive names: coverage and extentOf. -->
<!ELEMENT polygonProperty (Polygon) >
<!ELEMENT coverage (Polygon)>
<!ELEMENT extentOf (Polygon)>

<!-- the multiPointProperty has three descriptive names: multiCenterOf,
multiLocation and multiPosition. -->
<!ELEMENT multiPointProperty (MultiPoint) >
<!ELEMENT multiCenterOf (MultiPoint) >
<!ELEMENT multiLocation (MultiPoint) >
<!ELEMENT multiPosition (MultiPoint) >

<!-- the multiLineStringProperty has two descriptive names: multiCenterLineOf
and multiEdgeOf. -->
<!ELEMENT multiLineStringProperty (MultiLineString) >
<!ELEMENT multiCenterLineOf (MultiLineString) >
<!ELEMENT multiEdgeOf (MultiLineString) >

Geometry DTD (OGC)

OracleAS MapViewer Map Request XML API 3-45

<!-- the multiPolygonProperty has two descriptive names: multiCoverage and
multiExtentOf. -->
<!ELEMENT multiPolygonProperty (MultiPolygon) >
<!ELEMENT multiCoverage (MultiPolygon) >
<!ELEMENT multiExtentOf (MultiPolygon) >

<!ELEMENT geometryCollectionProperty (GeometryCollection) >

<!-- == -->
<!-- F E A T U R E M E T A D A T A D e f i n i t i o n s -->
<!-- == -->

<!-- Feature metadata, included in GML Geometry DTD for convenience; name and
description are two 'standard' string properties defined by GML. -->

<!ELEMENT name (#PCDATA)>
<!ELEMENT description (#PCDATA)>

Geometry DTD (OGC)

3-46 Oracle Application Server MapViewer User’s Guide

OracleAS MapViewer JavaBean-Based API 4-1

4
OracleAS MapViewer JavaBean-Based API

This chapter describes the JavaBean-based OracleAS MapViewer API. This API
exposes all capabilities of OracleAS MapViewer through a single JavaBean,
oracle.lbs.mapclient.MapViewer. This bean is a lightweight client that handles
all communications with the actual OracleAS MapViewer service running on the
middle tier on behalf of a user making map requests.

All communications between the bean and the actual OracleAS MapViewer service
follow a request/response model. Requests are always sent as XML documents to the
service. Depending on the type and nature of a request, the response received by the
bean is either an XML document or some binary data. However, using the OracleAS
MapViewer bean is easier than manipulating XML documents for forming and
sending OracleAS MapViewer requests, as well as for extracting information from the
responses.

The bean delegates most of map data processing and rendering to the OracleAS
MapViewer service. All the bean does is formulate user requests into valid OracleAS
MapViewer XML requests and send them to an OracleAS MapViewer service for
processing.

This chapter contains the following major sections:

■ Section 4.1, "Usage Model for the OracleAS MapViewer JavaBean-Based API"

■ Section 4.2, "Preparing to Use the OracleAS MapViewer JavaBean-Based API"

■ Section 4.3, "Using the OracleAS MapViewer Bean"

4.1 Usage Model for the OracleAS MapViewer JavaBean-Based API
The OracleAS MapViewer bean can be created and used in either server-side objects
such as JavaServer Pages (JSP) and servlets, or in client-side objects such as Java
applets or standalone Java applications. The bean is a lightweight class that maintains
an active HTTP connection to the OracleAS MapViewer service and the current map
request and map response objects. In most cases, you will create only one OracleAS
MapViewer bean and use it for all subsequent tasks; however, you can create more
than one bean and use these beans simultaneously. For example, you may need to
create a Web page where a small overview map displays the whole world and a large
map image displays a more detailed map of the region that is selected on the overview
map. In this case, it is probably easier to create two OracleAS MapViewer beans, one
dedicated to the smaller overview map, and the other to the larger detail map.

Figure 4–1 shows some possible usage scenarios for the OracleAS MapViewer bean.

Usage Model for the OracleAS MapViewer JavaBean-Based API

4-2 Oracle Application Server MapViewer User’s Guide

Figure 4–1 OracleAS MapViewer Bean Usage Scenarios

The OracleAS MapViewer bean can communicate through the HTTP protocol with the
OracleAS MapViewer service in several usage scenarios, the following of which are
shown in Figure 4–1:

■ In a Java application

■ In a Java applet

■ In a servlet within a Java 2 Enterprise Edition (J2EE) container different from the
J2EE container that contains the OracleAS MapViewer service

■ In JavaServer Pages (JSP) code within the J2EE container that contains the
OracleAS MapViewer service

In all usage models, the same JavaBean class is used, and most of its methods apply.
However, some methods work or are useful only in a JSP HTML-based context, and
other methods work or are useful only in an interactive standalone Java application or
applet context (thick clients). For example, consider the following methods of the bean:

■ java.awt.Image getGeneratedMapImage

■ String getGeneratedMapImageURL

Both methods extract the generated map image information from a response received
from an OracleAS MapViewer service; however, the first method returns the actual
binary image data that is a java.awt.BufferedImage class, and the second method
returns an HTTP URL string to the generated map image that is stored in the host
running the OracleAS MapViewer service. Clearly, if your application is a JavaServer
Page, you should use the second method, because otherwise the JSP page will not
know how to handle the BufferedImage. However, if you are programming a
standalone Java application where you have a Java panel or window for displaying the
map, you can use the first method to get the actual image and render it inside your
panel or window, plus any other features that you may have created locally and want
to render on top of the map.

The set of methods that are only applicable in the thick client context, which are
designed to achieve optimal performance for such clients, are described in more detail
in Section 4.3.10.

MapViewer
Bean

MapViewer
Beans

MapViewer
Bean

MapViewer
Bean

Java Applications

Applets

Servlet

J2EE Container

JSP

MapViewer Service

J2EE Container

HTTP

HTTP

HTTP

HTTP

Using the OracleAS MapViewer Bean

OracleAS MapViewer JavaBean-Based API 4-3

4.2 Preparing to Use the OracleAS MapViewer JavaBean-Based API
Before you can use the OracleAS MapViewer JavaBean, the OracleAS MapViewer
mvclient.jar library must be in a directory that is included in the CLASSPATH
definition. After you deploy the mapviewer.ear file in OC4J or Oracle Application
Server, the mvclient.jar file is located in the $MAPVIEWER/web/WEB-INF/lib
directory. ($MAPVIEWER is the base directory that the mapviewer.ear file is
unpacked into by OC4J. In a typical OC4J installation, if you placed the
mapviewer.ear file in $OC4J_HOME/j2ee/home/applications, the base
directory for unpacked OracleAS MapViewer is $OC4J_
HOME/j2ee/home/applications/mapviewer.)

Before you use the OracleAS MapViewer JavaBean, you should examine the
Javadoc-generated API documentation and try the JSP demo:

■ Javadoc documentation for the OracleAS MapViewer bean API is available at a
URL with the following format:

http://host:port/mapviewer/mapclient

In this format, host and port indicate where OC4J or Oracle Application Server
listens for incoming requests.

■ A demo supplied with OracleAS MapViewer shows how to use the bean. After
you have set up the OracleAS MapViewer demo data set (which can be
downloaded from the Oracle Technology Network) by importing it into a database
and running all necessary scripts, you can try the JSP demo. The URL for the JSP
demo has the following format:

http://host:port/mapviewer/demo/mapinit.jsp

In this format, host and port indicate where OC4J or Oracle Application Server
listens for incoming requests. This JSP page confirms the OracleAS MapViewer
service URL and then proceeds to the real demo page, map.jsp.

4.3 Using the OracleAS MapViewer Bean
To use the OracleAS MapViewer bean, you must create the bean (see Section 4.3.1),
after which you can invoke methods to do the following kinds of operations:

■ Set up parameters of the current map request (see Section 4.3.2)

■ Add themes or features to the current map request (see Section 4.3.3)

■ Add dynamically defined styles to a map request (see Section 4.3.4)

■ Manipulate the themes in the current map request (see Section 4.3.5)

■ Send a request to the OracleAS MapViewer service (see Section 4.3.6)

■ Extract information from the current map response (see Section 4.3.7)

■ Obtain information about data sources (see Section 4.3.8)

■ Query nonspatial attributes in the current map window (see Section 4.3.9)

■ Use optimal methods for thick clients (see Section 4.3.10)

The sections about methods for kinds of operations provide introductory information
about what the bean can do. For detailed descriptions of each method, including its
parameters and return type, see the Javadoc-generated API documentation (described
in Section 4.2).

Using the OracleAS MapViewer Bean

4-4 Oracle Application Server MapViewer User’s Guide

4.3.1 Creating the OracleAS MapViewer Bean
The first step in any planned use of the OracleAS MapViewer bean is to create the
bean, as shown in the following example:

import oracle.lbs.mapclient.MapViewer;
MapViewer mv = new MapViewer("http://my_corp.com:8888/mapviewer/omserver");

The only parameter to the constructor is a URL to an actual OracleAS MapViewer
service. Unless you change it to something else using setServiceURL, the OracleAS
MapViewer service at this URL will receive all subsequent requests from this bean.
When an OracleAS MapViewer bean is created, it contains an empty current map
request. There are a few parameters in the current request that are initialized with
default values, such as the width and height of the map image and the background
color for maps. These default values are explained in the XML API element and
attribute descriptions in Chapter 3.

4.3.2 Setting Up Parameters of the Current Map Request
As explained in Chapter 3, a map request can have many parameters that affect the
final look of the generated map image. When you use the OracleAS MapViewer
JavaBean, such parameters can be set through a group of methods whose names start
with set. Many of these parameters have a corresponding method that starts with get.
For example, setAntiAliasing sets antialiasing on or off, and getAntiAliasing
returns the current antialiasing setting.

The methods for setting parameters of the current map request include the following:

■ setAntiAliasing(boolean aa) specifies whether or not the map should be
rendered using the antialiasing technique.

■ setBackgroundColor(java.awt.Color bg) sets the background color for
the map to be generated.

■ setBackgroundImageURL(java.lang.String bgImgUrl) sets the URL for
the background image to be rendered in the map.

■ setBaseMapName(java.lang.String name) sets the name of the base map
to be rendered before any explicitly added themes.

■ setBoundingThemes(String[] themeNames, double borderMargin,
boolean preserveAspectRatio) sets the bounding themes for the current
map request. Any previous center point and box settings will be cleared as a result
of calling this method.

■ setBox(double xmin, double ymin, double xmax, double ymax)
sets the map query window box in the data coordinate space. Any previous center
point and size settings will be lost as a result of calling this method.

■ setCenter(double cx, double cy) sets the center point for this map
request. The coordinates must be in the user data space.

■ setCenterAndSize(double cx, double cy, double size) sets the map
center and size for the map to be generated. All data must be in the user data
space.

■ setDataSourceName(java.lang.String name) sets the name of the data
source to be used when loading data for the map.

■ setDefaultStyleForCenter(java.lang.String defRenderStyleName,
java.lang.String defLabelStyleName, java.lang.String
defLabel, double[] defRadii) sets the default styling and labeling

Using the OracleAS MapViewer Bean

OracleAS MapViewer JavaBean-Based API 4-5

information for the center (point) of the map. Each subsequent map generated will
have its center point rendered and optionally labeled with circles of the specified
radii.

■ setDeviceSize(java.awt.Dimension dsz) sets the image dimension of the
map to be generated.

■ setFullExtent() tells the OracleAS MapViewer server not to impose any
center and size restriction for the next map request. This effectively removes the
current map center and size settings. The resulting map will be automatically
centered at the full extent of all features being displayed.

■ setImageFormat(int f) sets the image format that OracleAS MapViewer
should use when generating the map. For JSP pages, you should always set it to
FORMAT_PNG_URL or FORMAT_GIF_URL.

■ setImageScaling(boolean is) specifies whether images in an image theme
should automatically be rescaled to fit the current query window. The default is
TRUE. If you specify FALSE, the images will be rendered without any scaling by
OracleAS MapViewer; however, the original query window may be slightly
modified to allow other (vector) themes to overlay properly with the images. In all
cases, the map center is not changed.

■ setMapLegend(java.lang.String legendSpec) sets the map legend (in
XML format) to be plotted with current map. The legend must be specified in the
legendSpec parameter, in the format for the <legend> element that is
documented in Section 3.2.11.

■ setMapLegend(java.lang.String fill, java.lang.String
fillopacity, java.lang.String stroke, java.lang.String
profile, java.lang.String position, java.lang.String
fontFamily, java.lang.String[][][] legenddata) sets the map
request legend to be plotted with current map. The legenddata attribute
contains the legend items, and its structure is String [x][y][z] legenddata,
where x is the number of legend columns, y is the number of column items, and z
is the legend attributes (index 0 = legend text, index 1 = style name, index 2 = is
title or not, index 3 = tab, index 4 = is separator or not).

■ setMapLegend(java.lang.String fill, java.lang.String
fillopacity, java.lang.String stroke, java.lang.String
profile, java.lang.String position, java.lang.String[][][]
legenddata) is the same as the preceding method, but without the fontFamily
attribute.

■ setMapRequestSRID(int d) sets the map request output SRID, which must
match an SRID value in the MDSYS.CS_SRS table. Themes whose SRID value is
different from the map request SRID will be automatically converted to the output
SRID if the theme SRID is not null or not equal to 0. If no map request SRID is
defined (equal to zero), OracleAS MapViewer will use the theme’s SRID as
reference, but no transformation will be performed if the themes have different
SRID values.

■ setMapResultFileName(String mapFile) sets the name of the resulting
map image file on the server side. If the name is set to null (the default), OracleAS
MapViewer will generate map image files based on the prefix omsmap and a
counter value. You do not need to specify the extension (.gif or .png) when
specifying a custom map file name.

■ setMapTitle(java.lang.String title) sets the map title for the map to be
generated.

Using the OracleAS MapViewer Bean

4-6 Oracle Application Server MapViewer User’s Guide

■ setServiceURL(java.lang.String url) sets the OracleAS MapViewer
service URL.

■ setSize(double size) sets the height (size) in the user data space for the map
to be generated.

■ setShowSVGNavBar(boolean s) specifies whether or not to show the built-in
SVG navigation bar. The default value is TRUE (that is, show the navigation bar).

■ setSVGOnClick(java.lang.String onClick) sets the onClick function
for an SVG map. The onClick function is a JavaScript function defined in the
Web page in which the SVG map is embedded. The onClick function is called
whenever the SVG map is clicked if both theme feature selection and window
selection are disabled. For information about using JavaScript functions with SVG
maps, see Appendix B.

■ setSVGShowInfo(boolean info) specifies whether or not to display hidden
information when the mouse moves over features for which hidden information is
provided. If its value is TRUE (the default), hidden information is displayed when
the mouse moves over such features; if it is set to FALSE, hidden information is
not displayed when the mouse moves over such features. Regardless of the value,
however, hidden information is always rendered in an SVG map; this method only
controls whether hidden information can be displayed.

■ setSVGZoomFactor(double zfactor) sets the zoom factor for an SVG map.
The zoom factor is the number by which to multiply the current zoom ratio for
each integer increment (a zoomin operation) in the zoom level. The inverse of the
zoom factor value is used for each integer decrement (a zoomout operation) in the
zoom level. For example, if the zfactor value is 2 (the default), zooming in from
zoom level 4 to 5 will enlarge the detail by two; for example, if 1 inch of the map at
zoom level 4 represents 10 miles, 1 inch of the map at zoom level 5 will represent 5
miles. The zoom ratio refers to the relative scale of the SVG map, which in its
original size (zoom level 0) has a zoom ratio of 1.

■ setSVGZoomLevels(int zlevels) sets the number of zoom levels for an SVG
map.

■ setSVGZoomRatio(double s) sets the zoom factor to be used when an SVG
map is initially loaded. The default value is 1, which is the original map size
(zoom level 0). Higher zoom ratio values show the map zoomed in, and lower
values show the map zoomed out.

■ setWebProxy(java.lang.String proxyHost, java.lang.String
proxyPort) sets the Web proxy to be used when connecting to the OracleAS
MapViewer service. This is needed only if there is a firewall between the Web
service and this bean.

You can remove the map legend from the current map request by calling the
deleteMapLegend method.

4.3.3 Adding Themes or Features to the Current Map Request
Besides specifying a base map to be included in a map request, you can add themes or
individual point and linear features, such as a point of interest or a dynamically
generated route, to the current map request. The themes can be predefined themes
whose definitions are stored in the database, or dynamic themes where you supply the
actual query string when you add the theme to the current request.

There are several kinds of dynamic themes: to retrieve geometric data (JDBC theme),
to retrieve image data (image theme), to retrieve GeoRaster data (GeoRaster theme), to

Using the OracleAS MapViewer Bean

OracleAS MapViewer JavaBean-Based API 4-7

retrieve network data (network theme), and to retrieve topology data (topology
theme). For dynamic themes and features, you must explicitly specify the styles you
want to be used when rendering them. Being able to add dynamic themes and features
gives you flexibility in adapting to application development needs.

The methods for adding themes or features to the current map request have names
that start with add, and they include the following:

■ addGeoRasterTheme and its variants add GeoRaster data to the current map
request. In some cases you supply the query string to retrieve the raster data; in
other cases you supply the necessary GeoRaster information to retrieve a specific
image. (Section 2.3.6 explains GeoRaster themes.)

■ addImageTheme and its variants add an image theme, for which you must
supply the query string for retrieving the image data to be rendered as part of the
map. (Section 2.3.5 explains image themes.)

■ addJDBCTheme and its variants add a JDBC theme, for which you must supply
the query string for retrieving the geometric data. (Section 2.3.2 explains JDBC
themes.)

■ addLinearFeature and its variants add a single linear feature (line string) to the
current map request. You must specify a rendering style. You can specify the
labeling text and text style for drawing the label, and you can also specify if the
label will always be present regardless of any overlapping. The coordinates must
be in the user data space. There is no limit to the number of linear features that
you can add.

■ addLinksWithinCost adds a network theme to the current map request; the
theme will be a result of the within-cost analysis on network data. The within-cost
analysis finds all nodes that are within a specified cost, and generates the shortest
path to each node.

■ addNetworkLinks adds network links to the current map request as a network
theme, for which you must supply the rendering styles.

■ addNetworkNodes adds the network nodes to the current map request as a
network theme, for which you must supply the rendering styles.

■ addNetworkPaths adds the network paths to the current map request as a
network theme, for which you must supply the rendering styles.

■ addNetworkTheme and its variants add the network links, nodes, and paths to
the current map request as a network theme, for which you must supply the
rendering styles. (Section 2.3.7 explains network themes.)

■ addPointFeature and its variants add a single feature that is a point to the
current map request. This point will be rendered using the supplied rendering
style on the map after all themes have been rendered. You can optionally supply a
labeling text to be drawn alongside the point feature, and you can specify if the
label will always be present regardless of any overlapping. You can also supply an
array of radii (the units are always in meters), in which case a series of circles will
be drawn centering on the point. The coordinates x and y must be in the user data
space. You can assign attribute values to the point feature for use with an
advanced style. For oriented point features, you can specify orientation
parameters. There is no limit to the number of point features you can add.

■ addPredefinedTheme and its variants add a predefined theme to the current
map request.

Using the OracleAS MapViewer Bean

4-8 Oracle Application Server MapViewer User’s Guide

■ addShortestPath and its variants add a network theme to the current map
request; the theme will be a result of the shortest-path analysis on a network data.
You must supply the necessary parameters for the shortest-path algorithm.

■ addThemesFromBaseMap(java.lang.String basemap) adds all predefined
themes in the specified base map to the current map request. This has an
advantage over setBaseMapName, in that you can manipulate the themes for the
current map request, as explained in Section 4.3.5.

■ addTopologyDebugTheme and its variants add the topology data structure as a
topology debug-mode theme to the current map request. You must supply the
rendering styles for the edges, nodes, and faces. (Section 2.3.8 explains topology
themes, including the debug mode.)

■ addTopologyTheme adds the topology features as a topology theme to the
current map request. You must supply the query string. (Section 2.3.8 explains
topology themes.)

You can remove all added point and linear features by calling the
removeAllPointFeatures and removeAllLinearFeatures methods,
respectively.

4.3.4 Adding Dynamically Defined Styles to a Map Request
Besides the styles stored on the USER_SDO_STYLES view, you can also add
dynamically defined (temporary) styles to a map request. These dynamically defined
styles provide temporary information for the map request, and they should always be
added to the map request before it is sent to the server.

The methods for adding dynamically defined styles to the map request have names
that start with add, and they include the following:

■ addBucketStyle(java.lang.String name, java.lang.String low,
java.lang.String high, int nbuckets, java.lang.String
[]styleName) adds a bucket style with equal intervals, for which you specify
the range values, the number of buckets, and the style name for each bucket.

■ addCollectionBucketStyle(java.lang.String name,
java.lang.String []label, java.lang.String []styleName,
java.lang.String [][]value) adds a collection bucket style, for which you
specify the label, the style name, and the values for each bucket.

■ addColorSchemeStyle(java.lang.String name, java.lang.String
baseColor, java.lang.String strokeColor, java.lang.String
low, java.lang.String high, int nbuckets) adds a color scheme style
with equal intervals, for which you specify the color parameters, the range values,
and the number of buckets.

■ addColorSchemeStyle(java.lang.String name, java.lang.String
baseColor, java.lang.String strokeColor, java.lang.String
[]label, java.lang.String []low, java.lang.String []high) adds
a color scheme style, for which you specify the color parameters and the range
values.

■ addColorStyle(java.lang.String name, java.lang.String stroke,
java.lang.String fill, int strokeOpacity, int fillOpacity)
adds a color style with the specified color parameters.

■ addImageAreaStyleFromURL(java.lang.String styleName,
java.lang.String imgURL) adds a GIF or JPEG image as an area symbol to
the OracleAS MapViewer client.

Using the OracleAS MapViewer Bean

OracleAS MapViewer JavaBean-Based API 4-9

■ addImageAreaStyleFromURL(java.lang.String styleName,
java.lang.String imgURL, java.lang.String lineStyle) adds a GIF
or JPEG image as an area symbol to the OracleAS MapViewer client. You can also
specify parameters for stroking the boundary of the area being filled.

■ addImageMarkerStyleFromURL(java.lang.String styleName,
java.lang.String imgURL, java.lang.String strokeColor, float
strokeWidth, int strokeOpacity) adds a GIF image as a marker symbol to
the OracleAS MapViewer client.

■ addImageMarkerStyleFromURL(java.lang.String styleName,
java.lang.String imgURL) adds a GIF image as a marker symbol to the
OracleAS MapViewer client. You can also specify parameters for the desired width
and height of the image when applied to features on a map, as well as the font
properties of any text label that will go inside or on top of the marker.

■ addImageMarkerStyleFromURL(java.lang.String styleName,
java.lang.String imgURL) adds a GIF image as a marker symbol to the
OracleAS MapViewer client.

■ addImageMarkerStyleFromURL(java.lang.String styleName,
java.lang.String imgURL, int desiredWidth, int desiredHeight,
java.lang.String fontName, int fontSize, java.lang.String
fontStyle, java.lang.String fontWeight, java.lang.String
fontColor) adds a GIF image as a marker symbol to the OracleAS MapViewer
client. You can also specify parameters for the desired width and height of the
image when applied to features on a map, as well as the font properties of any text
label that will go inside or on top of the marker.

■ addLineStyle(java.lang.String name, java.lang.String fill,
java.lang.String strokeWidth, boolean hasBase,
java.lang.String baseFill, java.lang.String baseStroke,
java.lang.String baseDash, boolean hasParallel,
java.lang.String fillParallel, java.lang.String
strokeParallel, boolean hasHashMark, java.lang.String
fillHash, java.lang.String dashHash) adds a line style to the OracleAS
MapViewer client.

■ addLineStyle(java.lang.String name, java.lang.String fill,
java.lang.String strokeWidth, boolean hasBase,
java.lang.String baseFill, java.lang.String baseStroke,
java.lang.String baseDash, boolean hasParallel,
java.lang.String fillParallel, java.lang.String
strokeParallel, boolean hasHashMark, java.lang.String
fillHash, java.lang.String dashHash, java.lang.String
measureMarker, double measurePosition, int measureSize) adds a
line style to the OracleAS MapViewer client.

■ addMarkerStyle(java.lang.String name, int mktype,
java.lang.String strokeColor, java.lang.String fillColor,
java.lang.String markerWidth, java.lang.String markerHeight,
java.lang.String coords, java.lang.String radius) adds a vector
marker style with the given parameters. The available vector marker style types
are MARKER_POLYGON, MARKER_POLYLINE, MARKER_CIRCLE, and MARKER_
RECT.

■ addTextStyle(java.lang.String name, java.lang.String style,
java.lang.String family, java.lang.String size,

Using the OracleAS MapViewer Bean

4-10 Oracle Application Server MapViewer User’s Guide

java.lang.String weight, java.lang.String fill) adds a text style
with the specified parameters.

■ addVariableMarkerStyle(java.lang.String name,
java.lang.String []label, java.lang.String baseMarker, int
startSize,int increment, java.lang.String []low,
java.lang.String []high) adds a variable marker style, for which you
specify the parameters for the base marker, and also the label and the values for
each bucket.

You can remove a dynamically defined style from the current map request by calling
the deleteStyle(java.lang.String name) method, or you can remove all
dynamically defined styles from the current map request by calling the
removeAllDynamicStyles method.

4.3.5 Manipulating Themes in the Current Map Request
After you add themes using any of the methods that start with add, you can
manipulate them, performing such operations as listing their names, moving them up
or down in rendering order for the current request, and even disabling themes and
enabling themes that had been disabled. However, you cannot manipulate themes that
are implicitly included when you set a base map (using the setBaseMapName
method), because the list of themes in the base map is not actually included until the
OracleAS MapViewer service processes the request.

The methods for manipulating themes in the current map request include the
following:

■ deleteAllThemes deletes all added themes from the current map request.

■ deleteTheme(java.lang.String name) deletes an explicitly added theme
from the current map request.

■ enableThemes(java.lang.String[] themes) enables all themes whose
names appear in the supplied list.

■ getActiveTheme(double currentScale) gets the name of the active theme,
that is, the top theme on the current display map.

■ getEnabledThemes gets a list of all themes that are currently enabled.

■ getThemeEnabled(java.land.String themeName) determines whether or
not a specified theme is currently enabled.

■ getThemeNames returns an ordered list of names of themes that have been
explicitly added to the current map request.

■ getThemePosition(java.lang.String name) returns the position in the
rendering sequence of an explicitly added theme.

■ getThemeVisibleInSVG(java.lang.String name) determines whether or
not a specified theme is currently visible in an SVG map. (If the theme is not
visible, it is hidden.)

■ hasThemes checks to see if the current map request has any explicitly added
themes. For example, if you have only set the name of the base map in the current
request, but have not added any other theme through one of the add*Theme
methods, this method returns FALSE.

■ moveThemeDown(int index) moves a theme down one position in the list of
themes to be rendered, so that it is rendered later.

Using the OracleAS MapViewer Bean

OracleAS MapViewer JavaBean-Based API 4-11

■ moveThemeUp(int index) moves a theme up one position in the list of themes
to be rendered, so that it is rendered sooner.

■ setAllThemesEnabled(boolean v) sets all themes to be enabled or disabled.

■ setGeoRasterThemePolygonMask(java.lang.String name,double
[]coords) sets the polygon mask to be applied on the GeoRaster theme. The
GeoRaster area outside the polygon mask will be transparent. The coordinates are
defined as x1,y1,x2,y2, The mask coordinates must be in the data coordinate
space.

■ setLabelAlwaysOn(boolean labelAlwaysOn, java.lang.String
name) controls whether or not OracleAS MapViewer labels all features in a theme
even if two or more labels will overlap in the display of a theme. (OracleAS
MapViewer always tries to avoid overlapping labels.) If labelAlwaysOn is TRUE,
OracleAS MapViewer displays the labels for all features even if two or more labels
overlap. If labelAlwaysOn is FALSE, when it is impossible to avoid overlapping
labels, OracleAS MapViewer disables the display of one or more labels so that no
overlapping occurs.

■ setNetworkThemeLabels(java.lang.String name, java.lang.String
linkLabelStyle, java.lang.String linkLabelColumn,
java.lang.String nodeLabelStyle, java.lang.String
nodeLabelColumn, java.lang.String pathLabelStyle,
java.lang.String pathLabelColumn) sets network theme label parameters
for links, nodes, and paths. The attribute column name must be an existing
attribute of the link, node, and path tables.

■ setThemeAlpha(java.lang.String themeName, float alpha) sets the
transparency value for an image theme.

■ setThemeEnabled(boolean v, java.lang.String themeName) sets a
specified theme to be enabled or disabled in the current map request.

■ setThemeFastUnpickle(java.lang.String name, boolean
noUnpickler) specifies whether to use the OracleAS MapViewer fast unpickling
algorithm (TRUE, the default) or the generic JDBC conversion algorithm (FALSE)
to convert SDO_GEOMETRY objects fetched from the database into a Java object
accessible to OracleAS MapViewer. The OracleAS MapViewer fast unpickling
algorithm improves performance, but occasionally the coordinates may lose some
precision (around 0.00000005), which can be significant in applications where all
precision digits of each coordinate must be kept. The generic JDBC conversion
algorithm is slower than the OracleAS MapViewer fast unpickling process, but
there is never any loss of precision.

■ setThemeOnClickInSVG (java.lang.String theme,
java.lang.String onClickFunction) sets the theme’s onClick function
for an SVG map. The onClick function is a JavaScript function defined in the
Web page in which the SVG map is embedded. The onClick function is called
whenever the SVG map is clicked if both theme feature selection and window
selection are disabled. For information about using JavaScript functions with SVG
maps, see Appendix B.

■ setThemeScale(java.lang.String name, double minScale, double
maxScale) sets the minimum and maximum scale values for displaying a theme.

■ setThemeSelectableInSVG (java.lang.String theme, boolean sel)
sets the theme to be selectable (TRUE) or not selectable (FALSE) in an SVG map. If
the theme is set to selectable, any feature of the theme can be selected in the SVG
map by clicking on it. If the feature is selected, its color is changed and its ID (its

Using the OracleAS MapViewer Bean

4-12 Oracle Application Server MapViewer User’s Guide

rowid by default) is recorded. You can get a list of the ID values of all selected
features by calling the JavaScript function getSelectedIdList() defined in the
SVG map. For information about using JavaScript functions with SVG maps, see
Appendix B.

■ setThemeUnitAndResolution(java.lang.String themeName,
java.lang.String unit, double resolution) sets the unit and
resolution values for an image theme.

■ setThemeVisible(java.lang.String name, boolean vis) sets the
theme to be visible (TRUE) or hidden (FALSE) in an SVG map. If the theme is set
to be hidden, the theme will be still rendered, but will be invisible.

4.3.6 Sending a Request to the OracleAS MapViewer Service
As an application developer, you typically issue a new map request as a result of
certain user input (such as a mouse click on the currently displayed map) or after you
have modified some aspect of the map request (such as setting a new background
color). In fact, you can issue a map request any time you want, as long as you do not
overwhelm the middle-tier OracleAS MapViewer service with too many rapid
requests from the OracleAS MapViewer bean or beans. The OracleAS MapViewer
service tries to process requests in the order in which they arrive; if you send a second
request before receiving the response from the first one, OracleAS MapViewer
continues to process the first request completely before starting to process the second
request.

Any modifications to the current map request, such as changing to a new background
color or moving a theme down in the rendering sequence, do not take effect in the map
display until you send the map request, at which time the OracleAS MapViewer
service actually receives the request and processes it.

The methods for sending a map request to the OracleAS MapViewer service include
the following:

■ run sends the current map request to the OracleAS MapViewer service, and
obtains a map response as sent back by the OracleAS MapViewer service.

■ pan(int x, int y) pans to the specified device point. Each coordinate is in
the screen or display unit, in this case, pixel.

■ zoomIn(double factor) zooms in on the map without changing the other
map request parameters.

■ zoomIn(int x, int y, double factor) zooms in on the specified device
point.

■ zoomIn(int x1, int y1, int x2, int y2) zooms in on the specified
device rectangle.

■ zoomOut(double factor) zooms out on the current map without changing the
other map request parameters.

■ zoomOut(int x, int y, double factor) zooms out and recenters the
current map.

Each of these methods assembles a single XML map request document based on all
properties of the current map request, and then sends it to the OracleAS MapViewer
service. After the OracleAS MapViewer bean receives the response from the OracleAS
MapViewer service, the bean does any necessary postprocessing and makes the
response ready for your use.

Using the OracleAS MapViewer Bean

OracleAS MapViewer JavaBean-Based API 4-13

As an alternative to using these methods, you can formulate an XML request string
outside the bean, and then use the sendXMLRequest(java.lang.String req)
method to send the request to the OracleAS MapViewer service. However, if you use
this method, you are responsible for receiving and unpacking the response using the
getXMLResponse method, and for parsing and interpreting the response string
yourself. The state of the bean remains unchanged, because the methods are only
making use of the bean’s capability to open an HTTP connection to send and receive
documents over the connection.

All methods described in this section throw an exception if any unrecoverable error
occurs during the transmission of the request or response, or in the OracleAS
MapViewer service during processing. You are responsible for taking care of such
exceptions in any way you consider appropriate, such as by trying the request again or
by reporting the problem directly to the user.

4.3.7 Extracting Information from the Current Map Response
You can extract information, such as the generated map image or the URL for the
image, from the current map response. The methods for extracting information from
the map response include the following:

■ getGeneratedMapImage returns the actual map image data contained in the
response from the OracleAS MapViewer service. You must have set the image
format to FORMAT_RAW_COMPRESSED using the setImageFormat method. The
getGeneratedMapImage method is primarily used in thick clients, although you
may also use it in a JavaServer Page or a servlet (for example, to save the image in
a format that is not supported by OracleAS MapViewer).

■ getGeneratedMapImageURL returns the URL to the currently generated map
image in the application server. You must have set the image format to FORMAT_
PNG_URL or FORMAT_GIF_URL using the setImageFormat method.

■ getMapMBR returns the MBR (minimum bounding rectangle) for the currently
generated map, in the user's data space.

■ getMapResponseString returns the last map response in XML format.

4.3.8 Obtaining Information About Data Sources
The OracleAS MapViewer bean has methods that you can use to obtain information
about data sources. These methods include the following:

■ dataSourceExists(java.lang.String dsrc) checks if a given data source
exists in (that is, is known to) the OracleAS MapViewer service.

■ getDataSources() lists the currently available data sources in the server. This
method lists only the names and no other details about each data source (such as
database host or user login information).

4.3.9 Querying Nonspatial Attributes in the Current Map Window
It is often necessary to query nonspatial attributes that are associated with the spatial
features being displayed in the current map image. For example, assume that you just
issued a map request to draw a map of all customer locations within a certain county
or postal code. The next logical step is to find more information about each customer
being displayed in the resulting map image. In the JSP or HTML environment, because
you get only an image back from the OracleAS MapViewer service, you will need
another round-trip to the service to fetch the nonspatial information requested by the
user. This section describes a set of methods that can help you do just that. (You can,

Using the OracleAS MapViewer Bean

4-14 Oracle Application Server MapViewer User’s Guide

however, obtain both the nonspatial attribute values of a certain theme and the
resulting map image in a single request when the bean is used in a standalone Java
application or applet environment, as described in Section 4.3.10.)

A typical situation is that the user clicks on a feature on the displayed map and then
wants to find out more (nonspatial attributes) about the feature. This action can be
essentially implemented using a query with the desired nonspatial attributes in its
SELECT list, and a spatial filter as its WHERE clause. The spatial filter is an Oracle
Spatial SQL operator that checks if the geometries in a table column (the column of
type SDO_GEOMETRY in the customer table) spatially interact with a given target
geometry (in this case, the user’s mouse-click point). The spatial filter in the WHERE
clause of the query selects and returns only the nonspatial attributes associated with
the geometries that are being clicked on by the user.

You will need to call an Oracle Spatial operator to perform the filtering; however, you
can use the OracleAS MapViewer bean-based API to obtain information, and to
preassemble the spatial filter string to be appended to the WHERE clause of your
query. The identify method simplifies the task even further.

The methods for querying nonspatial attributes in the current map window include
the following:

■ doQuery and variants execute a supplied SQL query and return an array of
strings representing the result set. These are convenient methods to issue your
own query without manually opening a JDBC connection to the database from the
bean.

■ doQueryInMapWindow and variants are extensions of doQuery and its variants.
They automatically subject the user-supplied query to a spatial filtering process
using the current map window.

■ getSpatialFilter(java.lang.String spatialColumn, int srid,
boolean pre9i) returns a spatial filter string that can be used as a WHERE
clause condition in formulating your own queries in the current map window
context. The spatial filter evaluates to TRUE for any geometries that are being
displayed in the entire map window. You can use this method to obtain
information about every spatial feature of a theme that is being displayed.

■ getSpatialFilter(java.lang.String spatialColumn, int srid,
double xl, double yl, double xh, double yh, boolean pre9i)
returns a spatial filter string that can be used as a query condition in formulating
your queries in the given window. This filter evaluates to TRUE for all geometries
that interact with the supplied (xl,yl, xh,yh) data window. The window is
not in device or screen coordinate space, but in the user’s data space; therefore,
you must first call the getUserPoint method to convert the user’s mouse-click
point to a point in the user data space before using the getSpatialFilter
method.

■ getUserPoint(int x, int y) returns the user data space point
corresponding to the mouse click.

■ getUserPoint(int x, int y, java.lang.String dataSource, int
outSRID) returns the user data space point corresponding to the mouse click,
using the specified coordinate system (SRID value).

■ getUserPoint(int x, int y, java.lang.String dataSource,
java.lang.String themeName) returns the user data space point
corresponding to the mouse click, using the coordinate system (SRID value)
associated with the specified theme.

Using the OracleAS MapViewer Bean

OracleAS MapViewer JavaBean-Based API 4-15

■ getWhereClauseForAnyInteract(java.lang.String spatialColumn,
int srid, double x, double y) returns geometries that have any
interaction with a specified point in the user's data space. This provides a WHERE
clause string that will use a more precise spatial filtering method than the one
provided by the getSpatialFilter method.

■ getWhereClauseForAnyInteract(java.lang.String spatialColumn,
int srid, double xl, double yl, double xh, double yh) returns
the WHERE clause that can be used to find geometries that have any interaction
with the specified user space window. It is similar to the getSpatialFilter
method, but uses a more precise version of the Oracle Spatial filtering method.

■ identify and variants provide a convenient method for identifying nonspatial
attributes. This is desirable if you do not need more flexibility and control over
how a nonspatial attribute query should be formulated. As with the doQuery
methods, all identify methods return a double String array that contains the
result set of the query.

4.3.10 Using Optimal Methods for Thick Clients
When you use the OracleAS MapViewer bean in a JavaServer Page in an HTML file, a
second round-trip to the OracleAS MapViewer service is needed to obtain nonspatial
attributes of features being displayed. It is also true that with a JavaServer Page in an
HTML file, even if most themes remain unchanged from one map request to the next
(such as when zooming in to the center of a map), all themes must still be reprocessed
each time the OracleAS MapViewer service processes the page, which causes the data
for each theme to be retrieved again from the database. (This is mainly due to the
stateless nature of the OracleAS MapViewer service and the insufficient mechanism
provided in the JSP context for handling user interaction, which must be based on the
request/response model.)

However, when you are working in a thick client environment, such as with J2SE (Java
2 Platform Standard Edition) applications and applets, you can reduce the processing
and bandwidth overhead when using the bean. This is primarily because in such
environments you have greater control of how content (including the map) should be
displayed, you can better respond to the user’s interaction, and you can devote more
resources to maintaining the states on the client side.

A key optimization available only to the thick client context is live features. Basically,
a live feature is a spatial feature that originates from the OracleAS MapViewer service
but exists in the thick client. Each live feature contains the actual shape representing
the geometry data, and a set of nonspatial attributes that the user might be interested
in. To obtain live features, a thick client must set its parent theme to be clickable. When
a map request is sent to the OracleAS MapViewer service with a clickable theme,
OracleAS MapViewer does not attempt to render features for that theme in the
resulting map. Rather, the set of features that would have been drawn as part of the
map is returned to the requesting client as an array of live feature objects. The rest of
the map is still rendered and transmitted as a single image to the client. After the client
has received both the live features and the base image, it must render the live features
on top of the accompanying map image, using one of the methods described later in
this section.

One benefit of using live features is that the thick client will not need to issue a request
for the clickable theme every time a map request is sent. For example, if the request is
to zoom in to the current map, the client can determine for each live feature if it should
be displayed in the zoomed-in map image. Another, and probably more significant,
advantage is that the nonspatial attributes for all features displayed in the map are
now readily available to the user. For example, as the user moves the mouse over a

Using the OracleAS MapViewer Bean

4-16 Oracle Application Server MapViewer User’s Guide

range of features on the map, the thick client can immediately get the corresponding
nonspatial attributes and display them in a pop-up window that follows the mouse
trail. No round-trip to the OracleAS MapViewer service is needed for this type of
action, and the feedback to the user is more responsive.

The methods that are optimal for thick clients include the following:

■ drawLiveFeatures(java.awt.Graphics2D g2, java.awt.Color
stroke, java.awt.Color fill, double pointRadius, double
strokeWidth) draws all live features that are returned to this client from
OracleAS MapViewer.

■ getLiveFeatureAttrs(int x, int y, int tol) gets the nonspatial
attributes of the feature being clicked on by the user.

■ getNumLiveFeatures returns the number of live features currently available.

■ hasLiveFeatures checks if there are any live (clickable) features.

■ highlightFeatures and variants highlight all live features that are intersecting
the user-specified rectangle. These methods also let you specify the style for
highlighting features.

■ isClickable(java.lang.String themeName) checks if the specified theme
is clickable (that is, if users can click on the theme to get its attributes).

■ setClickable(boolean v, java.lang.String themeName) sets the
theme clickable (so that its features will be available to the client as live features
that users can click on and get attributes of).

To obtain a set of features and keep them live at the thick client, you must first call
setClickable to set the theme whose features you want to be live. Then, after you
issue the current map request, the bean processes the response from the OracleAS
MapViewer service, which (if it succeeded) contains both a base map image and an
array of LiveFeature instances. You can then call getGeneratedMapImage to get
and draw the base image, and use drawLiveFeatures to render the set of live
features on top of the base map. If the user clicks or moves the mouse over a certain
position on the map, you can use the highlightFeatures method to highlight the
touched features on the map. You can also use the getLiveFeatureAttrs method
to obtain the associated nonspatial attributes of the features being highlighted. You do
not have direct access to the LiveFeature instances themselves.

The behavior of calling the methods described in this section in the context of JSP
pages is not defined.

OracleAS MapViewer JSP Tag Library 5-1

5
OracleAS MapViewer JSP Tag Library

This chapter explains how to submit requests to OracleAS MapViewer using
JavaServer Pages (JSP) tags in an HTML file. Through an XML-like syntax, the JSP tags
provide a set of important (but not complete) OracleAS MapViewer capabilities, such
as setting up a map request, zooming, and panning, as well as identifying nonspatial
attributes of user-clicked features.

You can develop a location-based application by using any of the following
approaches:

■ Using the XML API (see Chapter 3)

■ Using the JavaBean-based API (see Chapter 4)

■ Using JSP files that contain XML or HTML tags, or both, and that include custom
Oracle-supplied JSP tags (described in this chapter)

Creating JSP files is often easier and more convenient than using the XML or
JavaBean-based API, although the latter two approaches give you greater flexibility
and control over the program logic. However, you can include calls to the Java API
methods within a JavaServer Page, as is done with the call to the getMapTitle
method in Example 5–1 in Section 5.3.

All OracleAS MapViewer JSP tags in the same session scope share access to a single
OracleAS MapViewer bean.

This chapter contains the following major sections:

■ Section 5.1, "Using OracleAS MapViewer JSP Tags"

■ Section 5.2, "OracleAS MapViewer JSP Tag Reference Information"

■ Section 5.3, "JSP Example (Several Tags) for OracleAS MapViewer"

5.1 Using OracleAS MapViewer JSP Tags
Before you can use OracleAS MapViewer JSP tags, you must perform one or two steps,
depending on whether or not the Web application that uses the tags will be deployed
in the same OC4J instance that is running OracleAS MapViewer.

Note: The OracleAS MapViewer JSP tag library will not work
with Oracle9iAS Release 9.0.2 or the standalone OC4J Release 9.0.2.
The minimum version required is Oracle9iAS Release 9.0.3 or the
standalone OC4J Release 9.0.3.

Using OracleAS MapViewer JSP Tags

5-2 Oracle Application Server MapViewer User’s Guide

1. If the Web application will be deployed in the same OC4J instance that is running
OracleAS MapViewer, skip this step and go to Step 2.

If the Web application will be deployed in a separate OC4J instance, you must
copy the mvclient.jar file (located in the $MAPVIEWER/web/WEB-INF/lib
directory) and the mvtaglib.tld file (located in the
$MAPVIEWER/web/WEB-INF directory) to that OC4J instance's application
deployment directory. Then you must define a <taglib> element in your
application's web.xml file, as shown in the following example:

<taglib>
 <taglib-uri>
 http://xmlns.oracle.com/spatial/mvtaglib
 </taglib-uri>
 <taglib-location>
 /WEB-INF/mvtaglib.tld
 </taglib-location>
 </taglib>

2. Import the tag library (as you must do with any JSP page that uses custom tags),
by using the taglib directive at the top of the JSP page and before any other
OracleAS MapViewer tags. For example:

<%@ taglib uri="http://xmlns.oracle.com/spatial/mvtaglib"
 prefix="mv" %>

The taglib directive has two parameters:

■ uri is the unique name that identifies the OracleAS MapViewer tag library,
and its value must be http://xmlns.oracle.com/spatial/mvtaglib,
because it is so defined in the OracleAS MapViewer web.xml initialization
file.

■ prefix identifies the prefix for tags on the page that belong to the OracleAS
MapViewer tag library. Although you can use any prefix you want as long as it
is unique in the JSP page, mv is the recommended prefix for OracleAS
MapViewer, and it is used in examples in this guide.

The following example shows the mv prefix used with the setParam tag:

<mv:setParam title="Hello World!" bgcolor="#ffffff"
 width="500" height="375" antialiasing="true"/>

The tags enable you to perform several kinds of OracleAS MapViewer operations:

■ To create the OracleAS MapViewer bean and place it in the current session, use the
init tag, which must come before any other OracleAS MapViewer JSP tags.

■ To set parameters for the map display and optionally a base map, use the setParam
tag.

■ To add themes and a legend, use the addPredefinedTheme, addJDBCTheme,
importBaseMap, and makeLegend tags.

■ To get information, use the getParam, getMapURL, and identify tags.

■ To submit the map request for processing, use the run tag.

OracleAS MapViewer JSP Tag Reference Information

OracleAS MapViewer JSP Tag Library 5-3

5.2 OracleAS MapViewer JSP Tag Reference Information
This section provides detailed information about the Oracle-supplied JSP tags that you
can use to communicate with OracleAS MapViewer. Table 5–1 lists each tag and briefly
describes the information specified by the tag.

Except where noted, you can use JSP expressions to set tag attribute values at run time,
using the following format:

<mv:tag attribute="<%= jspExpression %>" >

The following sections (in alphabetical order by tag name) provide reference
information for all parameters available for each tag: the parameter name, a
description, and whether or not the parameter is required. If a parameter is required, it
must be included with the tag. If a parameter is not required and you omit it, a default
value is used.

Short examples are provided in the reference sections for JSP tags, and a more
comprehensive example is provided in Section 5.3.

5.2.1 addJDBCTheme
The addJDBCTheme tag adds a dynamically defined theme to the map request. (It
performs the same operation as the <jdbc_query> element, which is described in
Section 3.2.9.)

Table 5–2 lists the addJDBCTheme tag parameters.

Table 5–1 JSP Tags for OracleAS MapViewer

Tag Name Explanation

init Creates the OracleAS MapViewer bean and places it in the
current session. Must come before any other OracleAS
MapViewer JSP tags.

setParam Specifies one or more parameters for the current map request.

addPredefinedTheme Adds a predefined theme to the current map request.

addJDBCTheme Adds a dynamically defined theme to the map request.

importBaseMap Adds the predefined themes that are in the specified base map to
the current map request.

makeLegend Creates a legend (map inset illustration) drawn on top of the
generated map.

getParam Gets the value associated with a specified parameter for the
current map request.

getMapURL Gets the HTTP URL for the currently available map image, as
generated by the OracleAS MapViewer service.

identify Gets nonspatial attribute (column) values associated with spatial
features that interact with a specified point or rectangle on the
map display, and optionally uses a marker style to identify the
point or rectangle.

run Submits the current map request to the OracleAS MapViewer
service for processing. The processing can be to zoom in or out,
to recenter the map, or to perform a combination of these
operations.

OracleAS MapViewer JSP Tag Reference Information

5-4 Oracle Application Server MapViewer User’s Guide

Table 5–2 addJDBCTheme Tag Parameters

Parameter
Name Description Required

name Name for the dynamically defined theme. Must be unique
among all themes already added to the associated OracleAS
MapViewer bean.

Yes

min_scale The value to which the display must be zoomed in for the
theme to be displayed, as explained in Section 2.4.1. If min_
scale and max_scale are not specified, the theme is
displayed for all map scales, if possible given the display
characteristics.

No

max_scale The value beyond which the display must be zoomed in for the
theme not to be displayed, as explained in Section 2.4.1. If
min_scale and max_scale are not specified, the theme is
displayed for all map scales, if possible given the display
characteristics.

No

spatial_
column

Column of type SDO_GEOMETRY containing geometry
objects for the map display

Yes

srid Coordinate system (SDO_SRID value) of the data to be
rendered. If you do not specify this parameter, a null
coordinate system is assumed.

No

datasource Name of the data source instance that contains information for
connecting to the database

Yes1

1 You must specify either datasource or the combination of jdbc_host, jdbc_port, jdbc_sid,
jdbc_user, and jdbc_password.

jdbc_host Host name for connecting to the database Yes1

jdbc_port Port name for connecting to the database Yes1

jdbc_sid SID for connecting to the database Yes1

jdbc_user User name for connecting to the database Yes1

jdbc_
password

Password for connecting to the database Yes1

jdbc_mode The Oracle JDBC driver (thin or oci8) to use to connect to
the database. The default is thin.

No

asis If set to TRUE, OracleAS MapViewer does not attempt to
modify the supplied query string. If FALSE (the default),
OracleAS MapViewer embeds the SQL query as a subquery of
its spatial filter query. (For more information and an example,
see Section 3.2.9.)

No

render_
style

Name of the style to be used to render the spatial data
retrieved for this theme. For point features the default is a red
cross rotated 45 degrees, for lines and curves it is a black line 1
pixel wide, and for polygons it is a black border with a
semitransparent dark gray interior.

No

label_style Name of the text style to be used to draw labeling text on the
spatial feature for this theme. If you specify label_style,
you must also specify label_column. If you do not specify
label_style, no label is drawn for the spatial feature of this
theme.

No

label_
column

The column in the SELECT list of the supplied query that
contains the labeling text for each feature (row). If label_
style is not specified, any label_column value is ignored.

No

OracleAS MapViewer JSP Tag Reference Information

OracleAS MapViewer JSP Tag Library 5-5

The following example creates a new dynamic theme named bigCities, to be
executed using the mvdemo data source and specifying the LOCATION column as
containing spatial data. Note that the greater-than (>) character in the WHERE clause
is valid here.

<mv:addJDBCTheme name="bigCities" datasource="mvdemo"
 spatial_column="location">
 SELECT location, name FROM cities WHERE pop90 > 450000
</mv:addJDBCTheme>

5.2.2 addPredefinedTheme
The addPredefinedTheme tag adds a predefined theme to the current map request.
(It performs the same operation as the <theme> element, which is described in
Section 3.2.14.) The predefined theme is added at the end of the theme list maintained
in the associated OracleAS MapViewer bean.

Table 5–3 lists the addPredefinedTheme tag parameters.

The following example adds the theme named THEME_DEMO_CITIES to the current
Map request:

<mv:addPredefinedTheme name="THEME_DEMO_CITIES"/>

5.2.3 getMapURL
The getMapURL tag gets the HTTP URL (uniform resource locator) for the currently
available map image, as generated by the OracleAS MapViewer service. This map
image URL is kept in the associated OracleAS MapViewer bean, and it does not
change until after the run tag is used.

The getMapURL tag has no parameters.

The following example displays the currently available map image, using the
getMapURL tag in specifying the source (SRC keyword value) for the image:

<IMG SRC="<mv:getMapURL/>" ALIGN="top">

Table 5–3 addPredefinedTheme Tag Parameters

Parameter
Name Description Required

name Name of the predefined theme to be added to the current map
request. This theme must exist in the USER_SDO_THEMES
view of the data source used by the associated OracleAS
MapViewer bean.

Yes

datasource Name of the data source from which the theme will be loaded.
If you do not specify this parameter, the default data source for
the map request is used.

No

min_scale The value to which the display must be zoomed in for the
theme to be displayed, as explained in Section 2.4.1. If min_
scale and max_scale are not specified, the theme is
displayed for all map scales, if possible given the display
characteristics.

No

max_scale The value beyond which the display must be zoomed in for the
theme not to be displayed, as explained in Section 2.4.1. If
min_scale and max_scale are not specified, the theme is
displayed for all map scales, if possible given the display
characteristics.

No

OracleAS MapViewer JSP Tag Reference Information

5-6 Oracle Application Server MapViewer User’s Guide

5.2.4 getParam
The getParam tag gets the value associated with a specified parameter for the current
map request.

Table 5–4 lists the getParam tag parameter.

The following example displays the value of the title parameter for the current map
request:

<P> The current map title is: <mv:getParam name="title"/> </P>

5.2.5 identify
The identify tag gets nonspatial attribute (column) values associated with spatial
features that interact with a specified point or rectangle on the map display, and it
optionally uses a marker style to identify the point or rectangle. For example, if the
user clicks on the map and you capture the X and Y coordinate values for the mouse
pointer when the click occurs, you can retrieve values of nonspatial columns
associated with spatial geometries that interact with the point. For example, if the user
clicks on a point in Chicago, your application might display the city name, state
abbreviation, and population of Chicago, and it might also display a "city" marker on
the map near where the click occurred.

The attributes are returned in a String[][] array of string arrays, which is exposed
by this tag as a scripting variable.

The list of nonspatial columns to fetch must be provided in the tag body, in a
comma-delimited list, which the OracleAS MapViewer bean uses to construct a
SELECT list for its queries.

You can optionally associate a highlighting marker with each feature that is identified
by using the style attribute and specifying a marker style. To display a new map that
includes the highlighting markers, use the getMapURL tag.

Table 5–5 lists the identify tag parameters.

Table 5–4 getParam Tag Parameter

Parameter
Name Description Required

name Name of the parameter whose value is to be retrieved. It must be
one of the valid parameter names for the setParam tag. The
parameter names are case-sensitive. (This attribute must have a
literal value; it cannot take a JSP expression value.)

Yes

Table 5–5 identify Tag Parameters

Parameter
Name Description Required

id Name for the scripting variable through which the returned
nonspatial attribute values will be exposed. The first array
contains the column names. (This attribute must have a literal
value; it cannot take a JSP expression value.)

Yes

datasource Name of the OracleAS MapViewer data source from which to
retrieve the nonspatial information.

No

table Name of the table containing the column identified in
spatial_column. (This attribute must have a literal value; it
cannot take a JSP expression value.)

Yes

OracleAS MapViewer JSP Tag Reference Information

OracleAS MapViewer JSP Tag Library 5-7

The following example creates an HTML table that contains a heading row and one
row for each city that has any spatial interaction with a specified point (presumably,
the city where the user clicked). Each row contains the following nonspatial data: city
name, population, and state abbreviation. The String[][] array of string arrays that
holds the nonspatial information about the associated city or cities is exposed through
the scripting variable named attrs. The scriptlet after the tag loops through the array
and outputs the HTML table (which in this case will contain information about one
city).

<mv:identify id="attrs" style="M.CYAN PIN"
 table="cities" spatial_column="location"
 x="100" y="200">
 City, Pop90 Population, State_abrv State
</mv:identify>

<%
 if(attrs!=null && attrs.length>0)
 {
 out.print("<CENTER> <TABLE border=\"1\">\n");
 for(int i=0; i<attrs.length; i++)
 {
 if(i==0) out.print("<TR BGCOLOR=\"#FFFF00\">");
 else out.print("<TR>\n");
 String[] row = attrs[i];
 for(int k=0; k<row.length; k++)
 out.print("<TD>"+row[k]+"</TD>");
 out.print("</TR>\n");
 }
 out.print("</TABLE></CENTER>");
 }
%>

spatial_
column

Column of type SDO_GEOMETRY containing geometry
objects to be checked for spatial interaction with the specified
point or rectangle. (This attribute must have a literal value; it
cannot take a JSP expression value.)

Yes

srid Coordinate system (SDO_SRID value) of the data in spatial_
column. If you do not specify this parameter, a null coordinate
system is assumed.

No

x The X ordinate value of the point; or the X ordinate value of the
lower-left corner of the rectangle if x2 and y2 are specified.

Yes

y The Y ordinate value of the point; or the Y ordinate value of the
lower-left corner of the rectangle if x2 and y2 are specified.

Yes

x2 The X ordinate value of the upper-right corner of the rectangle. No

y2 The Y ordinate value of the upper-right corner of the rectangle. No

style Name of the marker style to be used to draw a marker on
features that interact with the specified point or rectangle. To
display a new map that includes the highlighting markers, use
the getMapURL tag.

No

Table 5–5 (Cont.) identify Tag Parameters

Parameter
Name Description Required

OracleAS MapViewer JSP Tag Reference Information

5-8 Oracle Application Server MapViewer User’s Guide

5.2.6 importBaseMap
The importBaseMap tag adds the predefined themes that are in the specified base
map to the current map request. (This has the same effect as using the setParam tag
with the basemap attribute.)

Table 5–6 lists the importBaseMap tag parameter.

The following example adds the predefined themes in the base map named demo_map
at the end of the theme list for the current map request:

<mv:importBaseMap name="demo_map"/>

5.2.7 init
The init tag creates the OracleAS MapViewer bean and places it in the current
session. This bean is then shared by all other OracleAS MapViewer JSP tags in the
same session. The init tag must come before any other OracleAS MapViewer JSP
tags.

Table 5–7 lists the init tag parameters.

The following example creates a data source named mvdemo with an id value of
mvHandle:

<mv:init url="http://mycompany.com:8888/mapviewer/omserver"
 datasource="mvdemo" id="mvHandle"/>

Table 5–6 importBaseMap Tag Parameter

Parameter
Name Description Required

name Name of the base map whose predefined themes are to be
added at the end of the theme list for the current map
request. This base map must exist in the USER_SDO_MAPS
view of the data source used by the associated OracleAS
MapViewer bean.

Yes

Table 5–7 init Tag Parameters

Parameter
Name Description Required

url The uniform resource locator (URL) of the OracleAS
MapViewer service. It must be in the form
http://host:port/mapviewer/omserver, where host
and port identify the system name and port, respectively, on
which Oracle Application Server or OC4J listens.

Yes

datasource Name of the OracleAS MapViewer data source to be used
when requesting maps and retrieving mapping data. If you
have not already created the data source, you must do so
before using the init tag. (For information about creating a
data source, see Section 1.7.1.)

Yes

id Name that can be used to refer to the OracleAS MapViewer
bean created by this tag. (This attribute must have a literal
value; it cannot take a JSP expression value.)

Yes

OracleAS MapViewer JSP Tag Reference Information

OracleAS MapViewer JSP Tag Library 5-9

5.2.8 makeLegend
The makeLegend tag accepts a user-supplied XML legend specification and creates a
standalone map legend image. The legend image is generated by the OracleAS
MapViewer service, and a URL for that image is returned to the associated OracleAS
MapViewer bean. This tag exposes the URL as a scripting variable.

The body of the tag must contain a <legend> element. See Section 3.2.11 for detailed
information about the <legend> element and its attributes.

Table 5–8 lists the makeLegend tag parameters.

The following example creates a single-column legend with the id of myLegend, and
it displays the legend image.

<mv:makeLegend id="myLegend">
 <legend bgstyle="fill:#ffffff;stroke:#ff0000" profile="MEDIUM">
 <column>
 <entry text="Legend:" is_title="true"/>
 <entry style="M.STAR" text="center point"/>
 <entry style="M.CITY HALL 3" text="cities"/>
 <entry is_separator="true"/>
 <entry style="C.ROSY BROWN STROKE" text="state boundary"/>
 <entry style="L.PH" text="interstate highway"/>
 <entry text="County population density:"/>
 <entry style="V.COUNTY_POP_DENSITY" tab="1"/>
 </column>
 </legend>
</mv:makeLegend>

<P> Here is the map legend: <IMG SRC="<%=myLegend%>"> </P>

5.2.9 run
The run tag submits the current map request to the OracleAS MapViewer service for
processing. The processing can be to zoom in or out, to recenter the map, or to perform
a combination of these operations.

The run tag does not output anything to the JSP page. To display the map image that
OracleAS MapViewer generates as a result of the run tag, you must use the
getMapURL tag.

Table 5–9 lists the run tag parameters.

Table 5–8 makeLegend Tag Parameters

Parameter
Name Description Required

id Name for the scripting variable that can be used to refer to
the URL of the generated legend image. (This attribute must
have a literal value; it cannot take a JSP expression value.)

Yes

datasource Name of the OracleAS MapViewer data source from which to
retrieve information about styles specified in the legend
request

No

format Format of the legend image to be created on the server. If
specified, must be GIF_URL (the default) or PNG_URL.

No

OracleAS MapViewer JSP Tag Reference Information

5-10 Oracle Application Server MapViewer User’s Guide

The following example requests a zooming in on the map display (with the default
zoom factor of 2), and recentering of the map display at coordinates (100, 250) in the
device space.

<mv:run action="zoomin" x="100" y="250"/>

5.2.10 setParam
The setParam tag specifies one or more parameters for the current map request. You
can set all desired parameters at one time with a single setParam tag, or you can set
different parameters at different times with multiple setParam tags. Most of the
parameters have the same names and functions as the attributes of the <map_
request> root element, which is described in Section 3.2.1.1. The parameter names
are case-sensitive.

Table 5–10 lists the setParam tag parameters.

Table 5–9 run Tag Parameters

Parameter
Name Description Required

action One of the following values to indicate the map navigation action
to be taken: zoomin (zoom in), zoomout (zoom out), or
recenter (recenter the map).

For zoomin or zoomout, factor specifies the zoom factor; for all
actions (including no specified action), x and y specify the new
center point; for all actions (including no specified action), x2 and
y2 specify (with x and y) the rectangular area to which to crop the
resulting image.

If you do not specify an action, the map request is submitted for
processing with no zooming or recentering, and with cropping
only if x, y, x2, and y2 are specified.

No

x The X ordinate value of the point for recentering the map, or the X
ordinate value of the lower-left corner of the rectangular area to
which to crop the resulting image if x2 and y2 are specified

No

y The Y ordinate value of the point for recentering the map, or the Y
ordinate value of the lower-left corner of the rectangular area to
which to crop the resulting image if x2 and y2 are specified

No

x2 The X ordinate value of the upper-right corner of the rectangular
area to which to crop the resulting image

No

y2 The Y ordinate value of the upper-right corner of the rectangular
area to which to crop the resulting image

No

factor Zoom factor: a number by which the current map size is
multiplied (for zoomin) or divided (for zoomout). The default is
2. This parameter is ignored if action is not zoomin or
zoomout.

No

Table 5–10 setParam Tag Parameters

Parameter
Name Description Required

antialiasing When its value is TRUE, OracleAS MapViewer renders the
map image in an antialiased manner. This usually provides a
map with better graphic quality, but it may take longer for the
map to be generated. The default value is FALSE (for faster
map generation).

No

JSP Example (Several Tags) for OracleAS MapViewer

OracleAS MapViewer JSP Tag Library 5-11

The following example uses two setParam tags. The first setParam tag sets the
background color, width, height, and title for the map. The second setParam tag sets
the center point and vertical span for the map.

<mv:setParam bgcolor="#ff0000" width="800" height="600"
 title="My Map!"/>

<mv:setParam centerX="-122.35" centerY="37.85" size="1.5"/>

5.3 JSP Example (Several Tags) for OracleAS MapViewer
This section presents an example of using JSP code to perform several OracleAS
MapViewer operations.

Example 5–1 initializes an OracleAS MapViewer bean, sets up map request
parameters, issues a request, and displays the resulting map image. It also obtains the
associated OracleAS MapViewer bean and places it in a scripting variable (myHandle),
which is then accessed directly in the statement:

Displaying map: <%=myHandle.getMapTitle()%>

basemap Base map whose predefined themes are to be rendered by
OracleAS MapViewer. The definition of a base map is stored
in the user’s USER_SDO_MAPS view, as described in
Section 2.8.1. Use this parameter if you will always need a
background map on which to plot your own themes and
geometry features.

No

bgcolor The background color in the resulting map image. The
default is water-blue (RGB value #A6CAF0). It must be
specified as a hexadecimal value.

No

bgimage The background image (GIF or JPEG format only) in the
resulting map image. The image is retrieved at run time when
a map request is being processed, and it is rendered before
any other map features, except that any bgcolor value is
rendered before the background image.

No

centerX X ordinate of the map center in the data coordinate space No

centerY Y ordinate of the map center in the data coordinate space No

height The height (in device units) of the resulting map image No

imagescaling When its value is TRUE (the default), OracleAS MapViewer
attempts to scale the images to fit the current querying
window and the generated map image size. When its value is
FALSE, and if an image theme is included directly or
indirectly (such as through a base map), the images from the
image theme are displayed in their original resolution. This
parameter has no effect when no image theme is involved in
a map request.

No

size Vertical span of the map in the data coordinate space No

title The map title to be displayed on the top of the resulting map
image

No

width The width (in device units) of the resulting map image No

Table 5–10 (Cont.) setParam Tag Parameters

Parameter
Name Description Required

JSP Example (Several Tags) for OracleAS MapViewer

5-12 Oracle Application Server MapViewer User’s Guide

Example 5–1 OracleAS MapViewer Operations Using JSP Tags

<%@ page contentType="text/html" %>
<%@ page session="true" %>
<%@ page import="oracle.lbs.mapclient.MapViewer" %>

<%@ taglib uri="http://xmlns.oracle.com/spatial/mvtaglib"
 prefix="mv" %>
<HTML>
<BODY>
Initializing client OracleAS MapViewer bean. Save the bean in the session
using key "mvHandle"....<P>
 <mv:init url="http://my_corp.com:8888/mapviewer/omserver"
 datasource="mvdemo" id="mvHandle"/>

Setting OracleAS MapViewer parameters...<P>
<mv:setParam title="Hello World!" bgcolor="#ffffff" width="500" height="375"
antialiasing="true"/>

Adding themes from a base map...<P>
<mv:importBaseMap name="density_map"/>

Setting initial map center and size...<P>
<mv:setParam centerX="-122.0" centerY="37.8" size="1.5"/>

Issuing a map request... <P>
<mv:run/>

<%
 // Place the OracleAS MapViewer bean in a Java variable.
 MapViewer myHandle = (MapViewer) session.getAttribute("mvHandle");
%>

Displaying map: <%=myHandle.getMapTitle()%>
<IMG SRC="<mv:getMapURL/>" ALIGN="top"/>
</BODY>
</HTML>

OracleAS MapViewer Administrative Requests 6-1

6
OracleAS MapViewer Administrative

Requests

The main use of OracleAS MapViewer is for processing various map requests.
However, OracleAS MapViewer also accepts various administrative (non-map)
requests, such as to add a data source, through its XML API. For all OracleAS
MapViewer administrative requests except for those that list base maps, themes, or
styles, you must log in to the OracleAS MapViewer administration (Admin) page, for
which there is a link on the main OracleAS MapViewer page. This section describes
the format for each administrative request and its response.

All administrative requests are embedded in a <non_map_request> element, while
all administrative responses are embedded in a <non_map_response> element,
unless an exception is thrown by OracleAS MapViewer, in which case the response is
an <oms_error> element (described in Section 3.5).

The administrative requests are described in sections according to the kinds of tasks
they perform:

■ Managing Data Sources

■ Listing All Maps

■ Listing Themes

■ Listing Styles

■ Managing Cache

■ Editing the OracleAS MapViewer Configuration File

■ Restarting the OracleAS MapViewer Server

6.1 Managing Data Sources
You can add, remove, redefine, and list data sources. (For information about data
sources and how to define them, see Section 1.7.1.)

6.1.1 Adding a Data Source
The <add_data_source> element has the following definition:

<!ELEMENT non_map_request add_data_source>
<!ELEMENT add_data_source EMPTY>
 <!ATTLIST add_data_source
 name CDATA #REQUIRED
 container_ds CDATA #IMPLIED
 jdbc_tns_name CDATA #IMPLIED

Managing Data Sources

6-2 Oracle Application Server MapViewer User’s Guide

 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_mode (oci8 | thin) #IMPLIED
 number_of_mappers INTEGER #REQUIRED
 >

The name attribute identifies the data source name. The name must be unique among
OracleAS MapViewer data sources. (Data source names are not case-sensitive.)

You must specify a container data source name, a net service name (TNS name), or all
necessary connection information. That is, you must specify only one of the following:

■ container_ds

■ jdbc_tns_name

■ jdbc_host, jdbc_port, jdbc_sid, jdbc_mode, jdbc_user, and jdbc_
password

The container_ds attribute identifies a data source name that is defined in the J2EE
container's Java Naming and Directory Interface (JNDI) namespace. For OC4J, it
should be the ejb-location attribute of the data source defined in the
data-source.xml file.

The jdbc_tns_name attribute identifies a net service name that is defined in the
tnsnames.ora file.

The jdbc_host attribute identifies the database host system name.

The jdbc_port attribute identifies the TNS listener port number.

The jdbc_sid attribute identifies the SID for the database.

The jdbc_user attribute identifies the user to connect to (map).

The jdbc_password attribute identifies the password for the user specified with the
jdbc_user attribute.

The jdbc_mode attribute identifies the JDBC connection mode: thin or oci8. If you
specify oci8, you must have Oracle Client installed in the middle tier in which
OracleAS MapViewer is running. You do not need Oracle Client if thin is used for all
of your data sources.

The number_of_mappers attribute identifies the number of map renderers to be
created (that is, the number of requests that OracleAS MapViewer can process at the
same time) for this data source. Any unprocessed map requests are queued and
eventually processed. For example, if the value is 3, OracleAS MapViewer will be able
to process at most three mapping requests concurrently. If a fourth map request comes
while three requests are being processed, it will wait until OracleAS MapViewer has
finished processing one of the current requests. The maximum number of mappers for
a single data source is 64.

Example 6–1 adds a data source named mvdemo by specifying all necessary connection
information.

Example 6–1 Adding a Data Source by Specifying Detailed Connection Information

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <add_data_source
 name="mvdemo"

Managing Data Sources

OracleAS MapViewer Administrative Requests 6-3

 jdbc_host="elocation.us.oracle.com"
 jdbc_port="1521"
 jdbc_sid="orcl"
 jdbc_user="scott"
 jdbc_password="tiger"
 jdbc_mode="thin"
 number_of_mappers="5"/>
</non_map_request>

Example 6–2 adds a data source named mvdemo by specifying the container data
source name.

Example 6–2 Adding a Data Source by Specifying the Container Data Source

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <add_data_source
 name="mvdemo"
 container_ds="jdbc/OracleDS"
 number_of_mappers="5"/>
</non_map_request>

The DTD for the response to an add_data_source request has the following format:

<!ELEMENT non_map_response add_data_source>
<!ELEMENT add_data_source EMPTY>
<!ATTLIST add_data_source
 succeed (true | false) #REQUIRED
 comment CDATA #IMPLIED
>

The comment attribute appears only if the request did not succeed, in which case the
reason is in the comment attribute. In the following example, succeed="true"
indicates that the user request has reached the server and been processed without any
exception being raised regarding its validity. It does not indicate whether the user's
intended action in the request was actually fulfilled by the OracleAS MapViewer
server. In this example, the appearance of the comment attribute indicates that the
request failed, and the string associated with the comment attribute gives the reason
for the failure ("data source already exists").

<?xml version="1.0" ?>
 <non_map_response>
 <add_data_source succeed="true" comment="data source already exists"/>
</non_map_response>

6.1.2 Removing a Data Source
The <remove_data_source> element has the following definition:

<!ELEMENT non_map_request remove_data_source>
<!ELEMENT remove_data_source EMPTY>
<!ATTLIST remove_data_source
 data_source CDATA #REQUIRED
 jdbc_password CDATA #REQUIRED
>

The data_source attribute identifies the name of the data source to be removed.

The jdbc_password attribute identifies the login password for the database user in
the data source. jdbc_password is required for security reasons (to prevent people
from accidentally removing data sources from OracleAS MapViewer).

Managing Data Sources

6-4 Oracle Application Server MapViewer User’s Guide

Removing a data source only affects the ability of OracleAS MapViewer to use the
corresponding database schema; nothing in that schema is actually removed.

Example 6–3 removes a data source named mvdemo.

Example 6–3 Removing a Data Source

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <remove_data_source data_source="mvdemo" jdbc_password="tiger"/>
</non_map_request>

The DTD for the response to a remove_data_source request has the following
format:

<!ELEMENT non_map_response remove_data_source>
<!ELEMENT remove_data_source EMPTY>
<!ATTLIST remove_data_source
 succeed (true | false) #REQUIRED
>

For example:

<?xml version="1.0" ?>
 <non_map_response>
 <remove_data_source succeed="true"/>
</non_map_response>

6.1.3 Redefining a Data Source
For convenience, OracleAS MapViewer lets you redefine a data source. Specifically, if a
data source with the same name already exists, it is removed and then added using the
new definition. If no data source with the name exists, a new data source is added. If
an existing data source has the same name, host, port, SID, user name, password,
mode, and number of mappers as specified in the request, the request is ignored.

The <redefine_data_source> element has the following definition:

<!ELEMENT non_map_request redefine_data_source>
<!ELEMENT redefine_data_source EMPTY>
<!ATTLIST redefine_data_source
 name CDATA #REQUIRED
 container_ds CDATA #IMPLIED
 jdbc_tns_name CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_mode (oci8 | thin) #IMPLIED
 number_of_mappers INTEGER #REQUIRED
>

The attributes and their explanations are the same as for the <add_data_source>
element, which is described in Section 6.1.1.

The DTD for the response to a redefine_data_source request has the following
format:

<!ELEMENT non_map_response redefine_data_source>
<!ELEMENT redefine_data_source EMPTY>
<!ATTLIST redefine_data_source

Managing Data Sources

OracleAS MapViewer Administrative Requests 6-5

 succeed (true | false) #REQUIRED
>

For example:

<?xml version="1.0" ?>
 <non_map_response>
 <redefine_data_source succeed="true"/>
</non_map_response>

6.1.4 Listing All Data Sources
The <list_data_sources> element lists all data sources known to the currently
running OracleAS MapViewer. It has the following definition:

<!ELEMENT non_map_request list_data_sources>
<!ELEMENT list_data_sources EMPTY>

For example:

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <list_data_sources/>
</non_map_request>

The DTD for the response to a list_data_sources request has the following
format:

<!ELEMENT non_map_response map_data_source_list>
<!ELEMENT map_data_source_list (map_data_source*) >
<!ATTLIST map_data_source_list
 succeed (true|false) #REQUIRED
>
<!ELEMENT map_data_source EMPTY>
<!ATTLIST map_data_source
 name CDATA #REQUIRED
 container_ds CDATA #IMPLIED
 host CDATA #IMPLIED
 sid CDATA #IMPLIED
 port CDATA #IMPLIED
 user CDATA #IMPLIED
 mode CDATA #IMPLIED
 numMappers CDATA #REQUIRED
 >

For each data source, all data source information except the password for the database
user is returned.

The following example is a response that includes information about two data sources.

<?xml version="1.0" ?>
<non_map_response>
<map_data_source_list succeed="true">
 <map_data_source name="mvdemo" host="elocation.us.oracle.com"
 sid="orcl" port="1521" user="scott" mode="thin" numMappers="3"/>
 <map_data_source name="geomedia" host="geomedia.us.oracle.com"
 sid="orcl" port="8160" user="scott" mode="oci8" numMappers="7"/>
</map_data_source_list>
</non_map_response>

Listing All Maps

6-6 Oracle Application Server MapViewer User’s Guide

6.1.5 Checking the Existence of a Data Source
The <data_source_exists> element lets you find out if a specified data source
exists. It has the following definition:

<!ELEMENT non_map_request data_source_exists>
<!ELEMENT data_source_exists EMPTY>
<!ATTLIST data_source_exists
 data_source CDATA #REQUIRED
>

For example:

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <data_source_exists data_source="mvdemo"/>
</non_map_request>

The DTD for the response to a data_source_exists request has the following
format:

<!ELEMENT non_map_response data_source_exists>
<!ELEMENT data_source_exists EMPTY>
<!ATTLIST data_source_exists
 succeed (true | false) #REQUIRED
 exists (true | false) #REQUIRED
>

The succeed attribute indicates whether or not the request was processed
successfully.

The exists attribute indicates whether or not the data source exists.

For example:

<?xml version="1.0" ?>
<non_map_response>
 <data_source_exists succeed="true" exists="true"/>
</non_map_response>

6.2 Listing All Maps
The <list_maps> element lists all base maps in a specified data source. It has the
following definition:

<!ELEMENT non_map_request list_maps>
<!ELEMENT list_maps EMPTY>
<!ATTLIST list_maps
 data_source CDATA #REQUIRED
>

The following example lists all base maps in the data source named mvdemo.

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <list_maps data_source="mvdemo"/>
</non_map_request>

The DTD for the response to a list_maps request has the following format:

<!ELEMENT non_map_response map_list>
<!ELEMENT map_list (map*) >
<!ATTLIST map_list

Listing Themes

OracleAS MapViewer Administrative Requests 6-7

 succeed (true | false) #REQUIRED
>
<!ATTLIST map
 name CDATA #REQUIRED
>

The succeed attribute indicates whether or not the request was processed
successfully.

The name attribute identifies each map.

For example:

<?xml version="1.0" ?>
<non_map_response>
<map_list succeed="true">
 <map name="DEMO_MAP"/>
 <map name="DENSITY_MAP"/>
</map_list>
</non_map_response>

6.3 Listing Themes
The <list_predefined_themes> element lists either all themes defined in a
specified data source or all themes defined in a specified data source for a specified
map.

The DTD for requesting all themes defined in a data source regardless of the map
associated with a theme has the following definition:

<!ELEMENT non_map_request list_predefined_themes>
<!ELEMENT list_predefined_themes EMPTY>
<!ATTLIST list_predefined_themes
 data_source CDATA #REQUIRED
>

The following example lists all themes defined in the data source named mvdemo.

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <list_predefined_themes data_source="mvdemo"/>
</non_map_request>

The DTD for requesting all themes defined in a data source and associated with a
specific map has the following definition:

<!ELEMENT non_map_request list_predefined_themes>
<!ELEMENT list_predefined_themes EMPTY>
<!ATTLIST list_predefined_themes
 data_source CDATA #REQUIRED
 map CDATA #REQUIRED
>

The following example lists all themes defined in the data source named tilsmenv
and associated with the map named QA_MAP.

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <list_predefined_themes data_source="tilsmenv" map="QA_MAP"/>
</non_map_request>

Listing Styles

6-8 Oracle Application Server MapViewer User’s Guide

The DTD for the response to a list_predefined_themes request has the following
format:

<!ELEMENT non_map_response predefined_theme_list>
<!ELEMENT predefined_theme_list (predefined_theme*) >
<!ATTLIST predefined_theme_list
 succeed (true | false) #REQUIRED
>
<!ELEMENT predefined_theme EMPTY>
<!ATTLIST predefined_theme
 name CDATA #REQUIRED
>

The succeed attribute indicates whether or not the request was processed
successfully.

The name attribute identifies each theme.

For example:

<?xml version="1.0" ?>
<non_map_response>
<predefined_theme_list succeed="true">
 <predefined_theme name="THEME_DEMO_CITIES"/>
 <predefined_theme name="THEME_DEMO_BIGCITIES"/>
 <predefined_theme name="THEME_DEMO_COUNTIES"/>
 <predefined_theme name="THEME_DEMO_COUNTY_POPDENSITY"/>
 <predefined_theme name="THEME_DEMO_HIGHWAYS"/>
 <predefined_theme name="THEME_DEMO_STATES"/>
 <predefined_theme name="THEME_DEMO_STATES_LINE"/>
</predefined_theme_list>
</non_map_response>

Note that the order of names in the returned list is unpredictable.

6.4 Listing Styles
The <list_styles> element lists styles defined for a specified data source. It has the
following definition:

<!ELEMENT non_map_request list_styles>
<!ELEMENT list_styles EMPTY>
<!ATTLIST list_styles
 data_source CDATA #REQUIRED
 style_type (COLOR|LINE|MARKER|AREA|TEXT|ADVANCED) #IMPLIED
>

If you specify a value for style_type, only styles of that type are listed. The possible
types of styles are COLOR, LINE, MARKER, AREA, TEXT, and ADVANCED. If you do not
specify style_type, all styles of all types are listed.

The following example lists only styles of type COLOR:

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <list_styles data_source="mvdemo" style_type="COLOR"/>
</non_map_request>

The DTD for the response to a list_styles request has the following format:

<!ELEMENT non_map_response style_list>
<!ELEMENT style_list (style*) >

Managing Cache

OracleAS MapViewer Administrative Requests 6-9

<!ATTLIST style_list
 succeed (true | false) #REQUIRED
>
<!ELEMENT style EMPTY>
<!ATTLIST style
 name CDATA #REQUIRED
>

The following example shows the response to a request for styles of type COLOR:

<?xml version="1.0" ?>
 <non_map_response>
 <style_list succeed="true">
 <style name="SCOTT:C.BLACK"/>
 <style name="SCOTT:C.BLACK GRAY"/>
 <style name="SCOTT:C.BLUE"/>
 <style name="SCOTT:C.CRM_ADMIN_AREAS"/>
 <style name="SCOTT:C.CRM_AIRPORTS"/>
</style_list>
</non_map_response>

Each style name in the response has the form OWNER:NAME (for example,
SCOTT:C.BLACK), where OWNER is the schema user that owns the style.

6.5 Managing Cache
OracleAS MapViewer uses two types of cache:

■ Metadata cache for mapping metadata, such as style, theme, and base map
definitions

■ Spatial data cache for theme data (the geometric and image data used in
generating maps)

The use of these caches improves performance by preventing OracleAS MapViewer
from accessing the database for the cached information; however, the OracleAS
MapViewer displays might reflect outdated information if that information has
changed since it was placed in the cache.

If you want to use the current information without restarting OracleAS MapViewer,
you can clear (invalidate) the content of either or both of these caches. If a cache is
cleared, the next OracleAS MapViewer request will retrieve the necessary information
from the database, and will also store it in the appropriate cache.

6.5.1 Clearing Metadata Cache for a Data Source
As users request maps from a data source, OracleAS MapViewer caches such mapping
metadata as style, theme, and base map definitions for that data source. This prevents
OracleAS MapViewer from unnecessarily accessing the database to fetch the mapping
metadata. However, modifications to the mapping metadata do not take effect until
OracleAS MapViewer is restarted.

If you want to use the changed definitions without restarting OracleAS MapViewer,
you can request that OracleAS MapViewer clear (that is, remove from the cache) all
cached mapping metadata for a specified data source. Clearing the metadata cache
forces OracleAS MapViewer to access the database for the current mapping metadata.

The <clear_cache> element clears the OracleAS MapViewer metadata cache. It has
the following definition:

<!ELEMENT non_map_request clear_cache>

Managing Cache

6-10 Oracle Application Server MapViewer User’s Guide

<!ELEMENT clear_cache EMPTY>
<!ATTLIST clear_cache
 data_source CDATA #REQUIRED
>

The data_source attribute specifies the name of the data source whose metadata is
to be removed from the OracleAS MapViewer metadata cache.

The following example clears the metadata for the mvdemo data source from the
OracleAS MapViewer metadata cache:

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <clear_cache data_source="mvdemo"/>
</non_map_request>

The DTD for the response to a clear_cache request has the following format:

<!ELEMENT non_map_response clear_cache>
<!ELEMENT clear_cache EMPTY>
<!ATTLIST clear_cache
 succeed (true | false) #REQUIRED
>

For example:

<?xml version="1.0" ?>
<non_map_response>
 <clear_cache succeed="true"/>
</non_map_response>

6.5.2 Clearing Spatial Data Cache for a Theme
OracleAS MapViewer caches spatial data (geometries or georeferenced images) for a
predefined theme as it loads the data from the database into memory for rendering,
unless it is told not to do so. (OracleAS MapViewer does not cache dynamic or JDBC
themes.) Thus, if a predefined theme has been frequently accessed, most of its data is
probably in the cache. However, if the spatial data for the theme is modified in the
database, the changes will not be visible on maps, because OracleAS MapViewer is
still using copies of the data from the cache. To view the modified theme data without
having to restart OracleAS MapViewer, you must first clear the cached data for that
theme.

The <clear_theme_cache> element clears the cached data of a predefined theme. It
has the following definition:

<!ELEMENT non_map_request clear_theme_cache>
<!ELEMENT clear_theme_cache EMPTY>
<!ATTLIST clear_theme_cache
 data_source CDATA #REQUIRED
 theme CDATA #REQUIRED
>

The data_source attribute specifies the name of the data source. The theme
attribute specifies the name of the predefined theme in that data source.

The following example clears the cached spatial data for the predefined theme named
STATES in the mvdemo data source:

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <clear_theme_cache data_source="mvdemo" theme="STATES"/>

Restarting the OracleAS MapViewer Server

OracleAS MapViewer Administrative Requests 6-11

</non_map_request>

The DTD for the response to a clear_theme_cache request has the following
format:

<!ELEMENT non_map_response clear_theme_cache>
<!ELEMENT clear_theme_cache EMPTY>
<!ATTLIST clear_theme_cache
 succeed (true | false) #REQUIRED
>

For example:

<?xml version="1.0" ?>
<non_map_response>
 <clear_theme_cache succeed="true"/>
</non_map_response>

6.6 Editing the OracleAS MapViewer Configuration File
The <edit_config_file> element lets you edit the OracleAS MapViewer
configuration file (mapViewerConfig.xml). It has the following definition:

<!ELEMENT non_map_request edit_config_file>
<!ELEMENT edit_config_file EMPTY>

Specify the request as follows:

<?xml version="1.0" standalone="yes">
<non_map_request>
 <edit_config_file/>
</non_map_request>

After you submit the request, you are presented with an HTML form that contains the
current contents of the OracleAS MapViewer configuration file. Edit the form to make
changes to the content, and click the Save button to commit the changes. However, the
changes will not take effect until you restart the OracleAS MapViewer server (see
Section 6.7).

6.7 Restarting the OracleAS MapViewer Server
In general, the safest method for restarting the OracleAS MapViewer server is to
restart its containing OC4J instance. However, if you are running OracleAS
MapViewer in a standalone OC4J environment, or if the OC4J instance is not clustered
and it has only one Java process started, you can use the <restart> element to restart
OracleAS MapViewer quickly without restarting the entire OC4J instance. The
<restart> element has the following definition:

<!ELEMENT non_map_request edit_config_file>
<!ELEMENT restart EMPTY>

Specify the request as follows:

Note: Use the <edit_config_file> element only if you are
running OracleAS MapViewer in the standalone OC4J environment or
in a nonclustered OC4J instance with only one process started.
Otherwise, the modifications that you make will be applied only to
one OracleAS MapViewer instance, and inconsistencies may occur.

Restarting the OracleAS MapViewer Server

6-12 Oracle Application Server MapViewer User’s Guide

<?xml version="1.0" standalone="yes">
<non_map_request>
 <restart/>
</non_map_request>

Map Definition Tool 7-1

7
Map Definition Tool

This chapter describes the graphical interface to the Oracle Map Definition Tool. This
tool is a standalone application that lets you create and manage mapping metadata
that is stored in the database. This mapping metadata can be used by applications that
use OracleAS MapViewer to generate customized maps.

To use the Map Definition Tool effectively, you must understand the OracleAS
MapViewer concepts explained in Chapter 2 and the information about map requests
in Chapter 3.

The Map Definition Tool is shipped as a JAR file (mapdef.jar). You can run it as a
standalone Java application in a Java Development Kit (J2SE SDK) 1.4 or later
environment, as follows (all on a single command line):

% java [-classpath <path>] [-Dhost= <host>] [-Dsid=<sid>] [-Dport=<port>]
[-Duser=<user>] [-Dpassword=<password>] oracle.eLocation.console.GeneralManager

In the preceding command-line format:

■ <path> specifies the path that the Java interpreter uses to find the mapdef.jar
file and the JDBC classes12.zip file. This overrides the default value of the
CLASSPATH environment variable, if it is set. Files are separated by colons on
UNIX systems and by semicolons on Windows systems.

■ <host> specifies the name or IP address of the local computer that hosts the target
database.

■ <sid> specifies the database instance identifier.

■ <port> specifies the listener port for client connections to the database listener.

■ <user> specifies the user name for connecting to the database.

■ <password> specifies the password for the specified user for connecting to the
database.

Note: The Map Definition Tool is currently an unsupported tool,
and to use it you must download the software from the Oracle
Technology Network at

http://www.oracle.com/technology/

The information in this chapter reflects the Map Definition Tool
interface at the time this guide was published. The online help for
the Map Definition Tool may contain additional or more recent
information.

Overview of the Map Definition Tool

7-2 Oracle Application Server MapViewer User’s Guide

If you include any of the connection options in your command line, their values will
be used as the defaults for the corresponding fields in the connection box on the
Connection page (described in Section 7.2); otherwise, you must specify their values in
the connection box to connect to the database.

The following example (which must be entered all on a single command line) starts the
Map Definition Tool on a UNIX system. (Note the use of the colon to separate files in
the CLASSPATH specification on UNIX systems.)

%java -classpath
/usr/lbs/lib/mapdef.jar:/private/oracle/ora90/jdbc/lib/classes12.zip
-Dhost="127.0.0.1" -Dsid="orcl" -Dport="1521" -Duser="scott" -Dpassword="tiger"
oracle.eLocation.console.GeneralManager

This chapter contains the following major sections:

■ Section 7.1, "Overview of the Map Definition Tool"

■ Section 7.2, "Connection Page"

■ Section 7.3, "Styles: Color Page"

■ Section 7.4, "Styles: Marker Page"

■ Section 7.5, "Styles: Line Page"

■ Section 7.6, "Styles: Area Page"

■ Section 7.7, "Styles: Text Page"

■ Section 7.8, "Styles: Advanced Page"

■ Section 7.9, "Themes Page"

■ Section 7.9, "Themes Page"

■ Section 7.10, "Maps Page"

7.1 Overview of the Map Definition Tool
The Map Definition Tool lets you create, modify, and delete styles, themes, and base
maps. For example, you can enter the design information for a new line style, see a
preview of the style, modify your design if you wish, and then click Insert to insert
your style definition in XML format into the database. The tool uses the information
that you entered to generate the XML document for the style definition.

The styles, themes, and base maps for a user are maintained in that user’s USER_
SDO_STYLES, USER_SDO_THEMES, and USER_SDO_MAPS views, respectively.
These views are created by MDSYS so that you can access your mapping metadata.
You can create your new mapping metadata in these views. However, the styles that
you create in your USER_SDO_STYLES view will be shared by all other database
users.

These views are described in Section 2.8.

Whenever possible, you should use the Map Definition Tool instead of directly
modifying OracleAS MapViewer metadata views to create, modify, and delete
information about styles, themes, and maps. The Map Definition Tool always checks
and maintains the referential integrity between objects. If you perform these
operations by using SQL procedures or SQL*Plus statements, the referential integrity
of the mapping metadata may become corrupted if you are not careful. For example, if
you delete a style using SQL*Plus, a theme may still be referencing the name of that
style.

Connection Page

Map Definition Tool 7-3

However, some OracleAS MapViewer features are not available through the Map
Definition Tool. For example, you cannot use the tool to create or modify image
themes, GeoRaster themes, topology themes, or network themes. For features not
supported by the tool, you must use SQL procedures or SQL*Plus statements to
modify the appropriate OracleAS MapViewer metadata views.

The tool consists of pages grouped under the following categories:

■ Connection: a page for connecting to the database

■ Styles: a page for each type of style

■ Themes: a page for themes

■ Maps: a page for maps

For detailed information about the options on each page, see later sections in this
chapter or click Help on that page when using the Map Definition Tool.

For all Name fields, any entry that you type is automatically converted to and stored
in uppercase. (Names of mapping metadata objects are not case-sensitive.)

7.2 Connection Page
Figure 7–1 shows the Connection page after the user has clicked the Connect To
button.

Figure 7–1 Connection Page

Currently connected to: Contains information about your database connection, or
contains Not connected if you are not currently connected to an Oracle database.

Connect To: Click this button to display a JDBC database connection dialog box, in
which you specify the host, SID, port, user, password, and mapping metadata views.

Styles: Color Page

7-4 Oracle Application Server MapViewer User’s Guide

You can change your connection at any time; the old connection is disconnected when
you click OK for a new connection.

Map Metadata: For maps and themes, you must use the USER_SDO_MAPS and
USER_SDO_THEMES views, respectively.

For styles, if you select the ALL_SDO_STYLES view, you can see all styles that all
users have created, but you cannot create, modify, or delete any styles. (The Insert, New,
Update, and Delete buttons are disabled.) The ALL_SDO_xxx views are for read-only
access. If you select the USER_SDO_STYLES view, you can see only the styles that you
have created, but you can create, modify, and delete these styles.

For example, you might connect using the ALL_SDO_STYLES view to see all available
styles and get design ideas, and then connect again later using the USER_SDO_
STYLES view to create and modify your own styles. However, with either styles view,
you have access to all styles defined on your system when you create or edit themes.

To exit the Map Definition Tool: Select Close from the application window menu
(upper-left corner), or click the "X" box (upper-right corner).

7.3 Styles: Color Page
Figure 7–2 shows the Color page under the Styles category.

Figure 7–2 Color Page

Name and Preview columns: List currently defined color styles, with a preview of
each. (The styles listed depend on whether you selected the ALL_SDO_STYLES or
USER_SDO_STYLES view at connection time.)

Name: Name of the style. Must be unique within a schema.

Description: Optional descriptive text about the style.

Stroke Color (for the border) and Fill Color:

Styles: Marker Page

Map Definition Tool 7-5

■ The rectangle button displays the current color in its foreground text. You can click
the rectangle button to display a dialog box to specify a new color by a swatch,
HSB (hue-saturation-brightness) value, or RGB (red-green-blue) value.

■ Opacity: A value from 0 (transparent) to 255 (solid, or completely opaque).

■ Apply: If checked, the color is used; if not checked, the color is not used. For
example, you might specify a fill color, but not use any border (stroke) color.

Buttons: New lets you enter information for a new style; Insert inserts a new style
using the specified information; Update updates the style using the specified
information; Delete removes the style; Cancel clears any information that you have
entered for a new style.

7.4 Styles: Marker Page
Figure 7–3 shows the Marker page under the Styles category.

Figure 7–3 Marker Page

Name and Preview columns: List currently defined marker styles, with a preview of
each. (The styles listed depend on whether you selected the ALL_SDO_STYLES or
USER_SDO_STYLES view at connection time.)

Name: Name of the style. Must be unique within a schema.

Description: Optional descriptive text about the style.

Preferred Width: Number of screen pixels for the preferred width of the marker. If no
value is specified, the actual width of the marker is used; no scaling is performed.

Preferred Height: Number of screen pixels for the preferred height of the marker. If no
value is specified, the actual height of the marker is used; no scaling is performed.

Marker Type: Raster Marker for an image marker, or Vector Marker for a vector
graphics marker.

Raster Marker (for image graphics):

■ Import Image: Click this button to display a dialog box for specifying the file for
the image to be used for the marker.

Styles: Line Page

7-6 Oracle Application Server MapViewer User’s Guide

■ Preview: Shows a sample of the style as it would look with the imported image.
However, no changes are made to the style until you click the New, Insert, or
Update button.

Vector Marker (for vector graphics):

■ Type: POLYGON (simple polygon only), POLYLINE (line string with one or more
segments), CIRCLE, or RECTANGLE.

■ Stroke (border) and Fill colors: The rectangle button displays the current color in
its foreground text. You can click the rectangle button to display a dialog box to
specify a new color by a swatch, HSB value, or RGB value.

■ Coordinates or Radius: Coordinates for each vertex of a polygon or polyline, or
for the upper-left corner, width, and height of a rectangle; or the number of screen
pixels for the radius of a circle.

Buttons: New lets you enter information for a new style; Insert inserts a new style
using the specified information; Update updates the style using the specified
information; Delete removes the style; Cancel clears any information that you have
entered for a new style.

7.5 Styles: Line Page
Figure 7–4 shows the Line page under the Styles category.

Figure 7–4 Line Page

Name and Preview columns: List currently defined line styles, with a preview of each.
(The styles listed depend on whether you selected the ALL_SDO_STYLES or USER_
SDO_STYLES view at connection time.)

Name: Name of the style. Must be unique within a schema.

Styles: Line Page

Map Definition Tool 7-7

Description: Optional descriptive text about the style.

Overall Style:

■ Width: Number of screen pixels for the width of the line.

■ The rectangle button displays the current color in its foreground text. You can click
the rectangle button to display a dialog box to specify a new color by a swatch,
HSB value, or RGB value.

■ Opacity: A value from 0 (transparent) to 255 (solid, or completely opaque).

■ End Style: Style to be used at each end of the line: ROUND, BUTT, or SQUARE.

■ Join Style: Style to be used at each vertex of the line: ROUND, BEVEL, or MITER.

Base Line: If applied, specifies attributes for the center line of the linear feature (for
example, of a highway or river).

■ Width: Number of screen pixels for the width of the center line.

■ The rectangle button displays the current color in its foreground text. You can click
the rectangle button to display a dialog box to specify a new color by a swatch,
HSB value, or RGB value.

■ Dash: Pattern to be used for drawing a dashed line, using the number of screen
pixels for solid and the number of screen pixels for space (separated by a comma)
for each segment. Example: 5.0,3.0 means a 5-pixel solid line followed by a 3-pixel
space (gap).

■ Apply: If checked, causes this feature to be applied to the style; if unchecked,
causes the feature not to be applied to the style.

Parallel Lines: If applied, specifies attributes for the edges of the linear feature. Edges
are two parallel lines, each an equal distance from the center line.

■ Width: Number of screen pixels for the width of each edge.

■ The rectangle button displays the current color in its foreground text. You can click
the rectangle button to display a dialog box to specify a new color by a swatch,
HSB value, or RGB value.

■ Dash: Pattern to be used for drawing a dashed line, using the number of screen
pixels for solid and the number of screen pixels for space (separated by a comma)
for each segment. Example: 5.0,3.0 means a 5-pixel solid line followed by a 3-pixel
space (gap).

■ Apply: If checked, causes this feature to be applied to the style; if unchecked,
causes the feature not to be applied to the style.

Hashmark on Base Line: If applied, specifies attributes for hash marks on each side of
the center line of the linear feature.

■ Length: Number of screen pixels for the length of each hash mark.

■ The rectangle button displays the current color in its foreground text. You can click
the rectangle button to display a dialog box to specify a new color by a swatch,
HSB value, or RGB value.

■ Gap: Number of screen pixels for the distance between each hash mark.

■ Apply: If checked, causes this feature to be applied to the style; if unchecked,
causes the feature not to be applied to the style.

Styles: Area Page

7-8 Oracle Application Server MapViewer User’s Guide

Preview: Shows a sample of the style as it would look with the current specifications.
However, no changes are made to the style until you click the New, Insert, or Update
button.

Buttons: New lets you enter information for a new style; Insert inserts a new style
using the specified information; Update updates the style using the specified
information; Delete removes the style; Cancel clears any information that you have
entered for a new style.

7.6 Styles: Area Page
Figure 7–5 shows the Area page under the Styles category.

Figure 7–5 Area Page

Name and Preview columns: List currently defined area styles, with a preview of each.
(The styles listed depend on whether you selected the ALL_SDO_STYLES or USER_
SDO_STYLES view at connection time.)

Name: Name of the style. Must be unique within a schema.

Description: Optional descriptive text about the style.

Stroke Color (for the border) and Fill Color:

■ The rectangle button displays the current color in its foreground text. You can click
the rectangle button to display a dialog box to specify a new color by a swatch,
HSB value, or RGB value.

■ Apply: If checked, the color is used; if unchecked, the color is not used. For
example, you might specify an image, but not use any border (stroke) color.

Import Image: Click this button to display a dialog box for specifying the file for the
image to be used as a pattern for the area.

Preview: Shows a sample of the style as it would look with the imported image.
However, no changes are made to the style until you click the New, Insert, or Update
button.

Buttons: New lets you enter information for a new style; Insert inserts a new style
using the specified information; Update updates the style using the specified

Styles: Text Page

Map Definition Tool 7-9

information; Delete removes the style; Cancel clears any information that you have
entered for a new style.

7.7 Styles: Text Page
Figure 7–6 shows the Text page under the Styles category.

Figure 7–6 Text Page

Name and Preview columns: List currently defined text styles, with a preview of each.
(The styles listed depend on whether you selected the ALL_SDO_STYLES or USER_
SDO_STYLES view at connection time.)

Name: Name of the style. Must be unique within a schema.

Description: Optional descriptive text about the style.

Bold: If checked, displays the text in bold.

Italic: If checked, displays the text in italic.

Size: Font size.

Family: Font family. (Currently, only Java native font families are supported.)

Foreground Color: The rectangle button displays the current text foreground color in
its foreground text. You can click the rectangle button to display a dialog box to specify
a new color by a swatch, HSB value, or RGB value.

Preview Sample: Shows a sample of the style as it would look with the current
information. However, no changes are made to the style until you click the New,
Insert, or Update button.

Buttons: New lets you enter information for a new style; Insert inserts a new style
using the specified information; Update updates the style using the specified
information; Delete removes the style; Cancel clears any information that you have
entered for a new style.

Styles: Advanced Page

7-10 Oracle Application Server MapViewer User’s Guide

7.8 Styles: Advanced Page
Figure 7–7 shows the Advanced page under the Styles category. (For a discussion of
thematic mapping using advanced styles, including several examples, see
Section 2.3.3.)

To create and modify advanced styles, you must understand the types of advanced
styles, which are explained in detail (with XML examples) in Section A.6.

Figure 7–7 Advanced Page

Name and Preview columns: List currently defined advanced styles, with a preview of
each. (The styles listed depend on whether you selected the ALL_SDO_STYLES or
USER_SDO_STYLES view at connection time.)

Name: Name of the style. Must be unique within a schema.

Description: Optional descriptive text about the style.

Style: Type of style:

■ BucketStyleRange: individual range-based buckets

■ BucketStyleCollection: collection-based buckets with discrete values

■ ColorSchemeStyle: color scheme style

■ VariableMarkerStyle: variable marker style

Range: Equal if the style contains a series of buckets that contain an equally divided
range of a master range; Variable if the style contains a series of buckets that do not
necessarily contain an equally divided range of a master range.

Bucket Definition: (Options and content vary depending on Style and Range settings.)

Themes Page

Map Definition Tool 7-11

Icon Buttons: Insert an Empty Row inserts an empty row above the selected row;
Delete a Row removes the selected row; Move to Top moves the selected row to the
first row position; Move Up One Row moves the selected row above the row that is
currently above it; Move Down One Row moves the selected row below the row that
is currently below it; Move to Bottom moves the selected row to the last row position.

Buttons: New lets you enter information for a new style; Insert inserts a new style
using the specified information; Update updates the style using the specified
information; Delete removes the style; Cancel clears any information that you have
entered for a new style.

7.9 Themes Page
Figure 7–8 shows the Themes page.

Figure 7–8 Themes Page

Theme Name column: Lists the names of currently defined themes.

Name: Name of the theme. Must be unique within a schema.

Description: Optional descriptive text about the theme.

Base Table: Name of the table or view that has the spatial geometry column to be
associated with this theme. You can enter the name, or you can select from a list of
tables. (The list contains all tables with entries in your USER_SDO_GEOM_
METADATA view.)

Maps Page

7-12 Oracle Application Server MapViewer User’s Guide

Geometry Column: Name of the geometry column in the table or view to be
associated with the theme. You can enter the name, or you can select from a list of
columns. (The list contains all geometry columns in the selected table or view.)

Theme Type: Optional descriptive text to identify a type for the theme. Examples:
political, demographic, nature.

Styling Rules: A tabular visual representation of the XML styling rules to be used
with the theme.

For more information about theme definition, see Section 2.3, especially Section 2.3.1.1,
"Styling Rules in Predefined Spatial Geometry Themes".

Attr Col: Name of the attribute column (not of type SDO_GEOMETRY) in the table or
view, or a SQL expression that references an attribute column in the table or view (for
example, to specify a label that is a substring of the value in the column), to use with
the bucket ranges or values in the advanced feature style (identified in the Feature Style
column). If this column is empty or contains an asterisk (*), no attribute column is used
with the feature style.

Feature Style: Name of the style to use for the styling rule.

Feature Query: A SQL condition to select rows from the table or view to use the
feature style specified in the same row. You should use XML internal entities to
identify special characters in the query (for example, < instead of <). Examples:

name like 'I-%' and length(name) < 6
name_class='U'
name_class in ('A', 'B', 'C')

Label Col: Name of the label column (not of type SDO_GEOMETRY) in the table or
view, or a SQL expression that references one or more columns (not of type SDO_
GEOMETRY) in the table or view (for example, to specify a label that is a substring of
the value in the column), to use for text labels.

Label Style: Name of the text style to be used for the labels.

Label Func: A SQL expression or a value to determine whether or not the feature will
be identified using the value in the label column. If the specified value or the value
returned by the specified function is less than or equal to zero, the feature will not be
identified. Examples:

0
1
8-length(label)

Icon Buttons: Insert an Empty Row inserts an empty row above the selected row;
Delete a Row removes the selected row; Move to Top moves the selected row to the
first row position; Move Up One Row moves the selected row above the row that is
currently above it; Move Down One Row moves the selected row below the row that
is currently below it; Move to Bottom moves the selected row to the last row position.

Buttons: New lets you enter information for a new theme; Insert inserts a new theme
using the specified information; Update updates the theme using the specified
information; Delete removes the theme; Cancel clears any information that you have
entered for a new theme.

7.10 Maps Page
Figure 7–9 shows the Maps page.

Maps Page

Map Definition Tool 7-13

Figure 7–9 Maps Page

Map Name column: Lists the names of currently defined base maps.

Name: Name of the base map. Must be unique within a schema.

Description: Optional descriptive text about the base map.

Map Definition: A tabular visual representation of the XML definition of the base
map. The order in which the themes are listed determines the order in which they are
rendered, with the last listed theme on top.

For more information about base map definition, see Section 2.4; for information about
the minimum and maximum scale values, see Section 2.4.1.

Theme Name: Name of the theme to use for a layer in the base map.

Min Scale: Minimum value of the scale range for the theme.

Max Scale: Maximum value of the scale range for the theme.

Icon Buttons: Insert an Empty Row inserts an empty row above the selected row;
Delete a Row removes the selected row; Move to Top moves the selected row to the
first row position; Move Up One Row moves the selected row above the row that is
currently above it; Move Down One Row moves the selected row below the row that
is currently below it; Move to Bottom moves the selected row to the last row position.

Buttons: New lets you enter information for a new base map; Insert inserts a new base
map using the specified information; Update updates the base map using the specified
information; Delete removes the base map; Cancel clears any information that you
have entered for a new base map.

Maps Page

7-14 Oracle Application Server MapViewer User’s Guide

XML Format for Styles, Themes, and Base Maps A-1

A
XML Format for Styles, Themes, and Base

Maps

This appendix describes the XML format for defining style, themes, and base maps
using the OracleAS MapViewer metadata views described in Section 2.8.

The metadata views for OracleAS MapViewer styles (USER_SDO_STYLES and related
views) contain a column named DEFINITION. For each style, the DEFINITION
column contains an XML document that defines the style to the rendering engine.

Each style is defined using a syntax that is similar to SVG (scalable vector graphics). In
the OracleAS MapViewer syntax, each style's XML document must contain a single
<g> element, which must have a class attribute that indicates the type or class of the
style. For example, the following defines a color style with a filling color component:

<?xml version="1.0" standalone="yes"?>
 <svg width="1in" height="1in">
 <desc> red </desc>
 <g class="color" style="fill:#ff1100"/>
 </svg>

Note that the OracleAS MapViewer XML parser looks only for the <g> element in a
style definition; other attributes such as the <desc> element are merely informational
and are ignored.

The metadata views for OracleAS MapViewer themes (USER_SDO_THEMES and
related views) contain a column named STYLING_RULES. For each theme in these
views, the STYLING_RULES column contains an XML document (a CLOB value) that
defines the styling rules of the theme.

The metadata views for OracleAS MapViewer base maps (USER_SDO_MAPS and
related views) contain a column named DEFINITION. For each base map in these
views, the DEFINITION column contains an XML document (a CLOB value) that
defines the base map.

The following sections describe the XML syntax for each type of mapping metadata:

■ Section A.1, "Color Styles"

■ Section A.2, "Marker Styles"

■ Section A.3, "Line Styles"

■ Section A.4, "Area Styles"

■ Section A.5, "Text Styles"

■ Section A.6, "Advanced Styles"

■ Section A.7, "Themes: Styling Rules"

Color Styles

A-2 Oracle Application Server MapViewer User’s Guide

■ Section A.8, "Base Maps"

A.1 Color Styles
A color style has a fill color, a stroke color, or both. When applied to a shape or
geometry, the fill color (if present) is used to fill the interior of the shape, and the
stroke color (if present) is used to draw the boundaries of the shape. Either color can
also have an alpha value, which controls the transparency of that color.

For color styles, the class attribute of the <g> element must be set to "color". The
<g> element must have a style attribute, which specifies the color components and
their optional alpha value. For example:

■ <g class="color" style="fill:#ff0000"> specifies a color style with
only a fill color (whose RGB value is #ff0000).

■ <g class="color" style="fill:#ff0000;stroke:blue"> specifies a
color style with a fill color and a stroke color (blue).

You can specify a color value using either a hexadecimal string (such as #00ff00) or a
color name from the following list: black, blue, cyan, darkGray, gray, green, lightGray,
magenta, orange, pink, red, white, yellow.

To specify transparency for a color style, you can specify fill-opacity and
stroke-opacity values from 0 (completely transparent) to 255 (opaque). The
following example specifies a fill component with half transparency:

<g class="color" style="fill:#ff00ff;fill-opacity:128">

The following example specifies both stroke and fill opacity:

<g class="color" style= "stroke:red;stroke-opacity:70;
 fill:#ff00aa;fill-opacity:129">

The syntax for the style attribute is a string composed of one or more name:value
pairs delimited by semicolons. (This basic syntax is used in other types of styles as
well.)

For stroke colors, you can define a stroke width. The default stroke width when
drawing a shape boundary is 1 pixel. To change that, add a stroke-width:value
pair to the style attribute string. The following example specifies a stroke width of 3
pixels:

<g class="color" style="stroke:red;stroke-width:3">

A.2 Marker Styles
A marker style represents a marker to be placed on point features or on label points of
area and linear features. A marker can be either a vector marker or raster image
marker. A marker can also have optional notational text. For a vector marker, the
coordinates of the vector elements must be defined in its XML document. For a marker
based on a raster image, the XML document for the style indicates that the style is
based on an external image.

The marker XML document specifies the preferred display size: the preferred width
and height are defined by the width:value;height:value pairs in the style
attribute of the <g> element. The class attribute must be set to "marker". Some
markers must be overlaid with some notational text, such as a U.S. interstate highway
shield marker, which, when rendered, must also have a route number plotted on top of
it. The style for such notational text is a style attribute with one or more of the

Marker Styles

XML Format for Styles, Themes, and Base Maps A-3

following name-value pairs: font-family:value, font-style:value,
font-size:value, and font-weight:value.

The following example defines an image-based marker that specifies font attributes
(shown in bold) for any label text that may be drawn on top of the marker:

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
<desc></desc>
<g class="marker"
 style="width:20;height:18;font-family:sans-serif;font-size:9pt;fill:#ffffff">
 <image x="0" y="0" width="9999" height="9999" type="gif"
 href="dummy.gif"/>
</g>
</svg>

In the preceding example, when the marker is applied to a point feature with a
labeling text, the label text is drawn centered on top of the marker, using the specified
font family and size, and with the fill color (white in this case) as the text foreground.
The label text (495) in Figure A–1 in Section A.2.3 has the text attributes specified in
this example.

A.2.1 Vector Marker Styles
A vector marker can be a simple polygon, an optimized rectangle (defined using two
points), a single polyline, or a circle, but not any combination of them. For each type of
vector marker, its <g> element must contain a corresponding subelement that specifies
the geometric information (coordinates for the polygon, optimized rectangle, or
polyline, or radius for the circle):

■ A polygon definition uses a <polygon> element with a points attribute that
specifies a list of comma-delimited coordinates. For example:

<g class="marker">
 <polygon points="100,20,40,50,60,80,100,20"/>
</g>

■ An optimized rectangle definition uses a <rect> element with a points attribute
that specifies a list of comma-delimited coordinates. For example:

<g class="marker">
 <rect points="0,0, 120,120"/>
</g>

■ A polyline definition uses a <polyline> element with a points attribute that
specifies a list of comma-delimited coordinates. For example:

<g class="marker">
 <polyline points="100,20,40,50,60,80"/>
</g>

■ A circle definition uses a <circle> element with an r attribute that specifies the
radius of the circle. For example:

<g class="marker">
 <circle r="50"/>
</g>

You can specify a stroke or fill color, or both, for any vector-based marker. The syntax
is the same as for the style attribute for a color style. The following example defines a

Marker Styles

A-4 Oracle Application Server MapViewer User’s Guide

triangle marker that has a black border and that is filled with a half-transparent
yellow:

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
<g class="marker" style="stroke:#000000;fill:#ffff00;fill-opacity:128">
 <polygon points="201.0,200.0, 0.0,200.0, 101.0,0.0"/>
</g>
</svg>

A.2.2 Image Marker Styles
For an image marker, its XML document contains an <image> element that identifies
the marker as based on an image. The image must be in GIF format, and is stored in
the IMAGE column in the styles metadata views.

The following example is an XML document for an image marker:

<?xml version="1.0" standalone="yes"?>
<svg>
 <g class="marker"
 style="width:20;height:18;font-family:sansserif;font-size:9pt">
 <image x="0" y="0" width="9999" height="9999" type="gif" href="dummy.gif"/>
 </g>
</svg>

Note that in the preceding example, it would be acceptable to leave the <image>
element empty (that is, <image/>) to create a valid definition with the image to be
specified later.

A.2.3 Using Marker Styles on Lines
Marker styles are usually applied to point features, in which case the marker style is
rendered on the point location that represents the feature. However, with line (line
string) features such as highways, the marker must be placed at some point along the
line to denote some information about the feature, such as its route number. For
example, on maps in the United States, a shield symbol is often placed on top of a
highway, with a route number inside the symbol, as shown with Route 495 in
Figure A–1.

Figure A–1 Shield Symbol Marker for a Highway

To achieve the result shown in Figure A–1, you must do the following:

1. Choose a marker style, and add a text style definition (font family, font size, fill
color, and so on), as shown in the example in Section A.2.

Line Styles

XML Format for Styles, Themes, and Base Maps A-5

2. Specify the marker style as the labeling style in the styling rules for the theme. The
following example shows the XML document with the styling rules for a theme to
show highways. A marker style (shown in bold in the example) is specified. The
label text (495 in Figure A–1) is a value from the label column, which is named
LABEL in this example.

<?xml version="1.0" standalone="yes"?>
<styling_rules theme_type="political">
<rule>
 <features style="L.PH"> (name_class = 'I' and TOLL=0) </features>
 <label column="label" style="M.SHIELD1">1</label>
</rule>
<styling_rules>

OracleAS MapViewer automatically determines the optimal position on the line for
placement of the marker style (the shield in this example).

A.3 Line Styles
A line style is applicable only to a linear feature, such as a road, railway track, or
political boundary. In other words, line styles can be applied only to Oracle Spatial
geometries with an SDO_GTYPE value ending in 2 (line) or 6 (multiline). (For
information about the SDO_GEOMETRY object type and SDO_GTYPE values, see
Oracle Spatial User's Guide and Reference.)

When OracleAS MapViewer draws a linear feature, a line style tells the rendering
engine the color, dash pattern, and stroke width to use. A line style can have a base
line element which, if defined, coincides with the original linear geometry. It can also
define two edges parallel to the base line. Parallel line elements can have their own
color, dash pattern, and stroke width. If parallel lines are used, they must be located to
each side of the base line, with equal offsets to it.

To draw railroad-like lines, you need to define a third type of line element in a line
style called hashmark. For a <line> element of class hashmark, the first value in the
dash array indicates the gap between two hash marks, and the second value indicates
the length of the hash mark to either side of the line. The following example defines a
hash mark line with a gap of 8.5 screen units and a length of 3 screen units at each side
of the base line:

<line class="hashmark" style="fill:#003333" dash="8.5,3.0"/>

The following example defines a complete line style.

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
 <g class="line" style="fill:#ffff00;stroke-width:5">
 <line class="parallel" style="fill:#ff0000;stroke-width:1.0"/>
 <line class="base" style="fill:black;stroke-width:1.0" dash="10.0,4.0"/>
 </g>
</svg>

In the preceding example, class="line" identifies the style as a line style. The
overall fill color (#ffff00) is used to fill any space between the parallel lines and the
base line. The overall line width (5 pixels) limits the maximum width that the style can
occupy (including that of the parallel lines).

The line style in the preceding example has both base line and parallel line elements.
The parallel line element (class="parallel") is defined by the first <line>
element, which defines its color and width. (Because the definition does not provide a

Area Styles

A-6 Oracle Application Server MapViewer User’s Guide

dash pattern, the parallel lines or edges will be solid.) The base line element
(class="base") is defined by the second <line> element, which defines its color,
width, and dash pattern.

A marker (such as a direction marker) can be defined for a line style. The
marker-name parameter specifies the name of a marker style, the
marker-position parameter specifies the proportion (from 0 to 1) of the distance
along the line from the start point at which to place the marker, and the marker-size
parameter specifies the number of display units for the marker size. The marker
orientation follows the orientation of the line segment on which the marker is placed.

The following example defines a line style with direction marker:

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
 <g class="line" style="fill:#33a9ff;stroke-width:4;
 marker-name:M.IMAGE105_BW;marker-position:0.15;marker-size=8">
 <line class="parallel" style="fill:red;stroke-width:1.0"/>
 </g>
</svg>

A.4 Area Styles
An area style defines a pattern to be used to fill an area feature. In the current release,
area styles must be image-based. That is, when you apply an area style to a geometry,
the image defining the style is plotted repeatedly until the geometry is completely
filled.

The definition of an area style is similar to that of an image marker style, which is
described in Section A.2.2.

The following example defines an area style:

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
 <g class="area" style="stroke:#000000">
 <image/>
 </g>
</svg>

In the preceding example, class="area" identifies the style as an area style. The
stroke color (style="stroke:#000000") is the color used to draw the geometry
boundary. If no stroke color is defined, the geometry has no visible boundary, although
its interior is filled with the pattern image.

You can also specify any line style to be used as the boundary for an area style. The
following area style definition uses the line-style keyword (shown in bold in the
example) to specify a line style to be used for the borders of features:

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
 <g class="area" style="line-style:L.DPH">
 <image x="0" y="0" width="9999" height="9999" type="gif" href="dummy.gif"/>
 </g>
</svg>

As with the image marker style, the image for an area style must be stored in a
separate column (identified in the IMAGE column in the USER_SDO_STYLES and
ALL_SDO_STYLES metadata views, which are described in Section 2.8.3).

Advanced Styles

XML Format for Styles, Themes, and Base Maps A-7

A.5 Text Styles
A text style defines the font and color to be used in labeling spatial features. The
class attribute must have the value "text". For the font, you can specify its style
(plain, italic, and so on), font family, size, and weight. To specify the foreground color,
you use the fill attribute.

The following example defines a text style:

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
 <g class="text" style="font-style:plain; font-family:Dialog; font-size:14pt;
 font-weight:bold; fill:#0000ff">
 Hello World!
 </g>
</svg>

In the preceding example, the text "Hello World!" is displayed only when the style
itself is being previewed in a style creation tool, such as the Map Definition Tool.
When the style is applied to a map, it is always supplied with an actual text label that
OracleAS MapViewer obtains from a theme.

A text style can provide a floating white background around the rendered text, to
make the labels easier to read on a map that has many features. Figure A–2 shows the
label Vallejo with a white background wrapping tightly around the letters.

Figure A–2 Text Style with White Background

To achieve the result shown in Figure A–2, you must specify the float-width
attribute in the <g> element of the text style definition. The following example uses
the float-width attribute (shown in bold in the example) to specify a white
background that extends 3.5 pixels from the boundary of each letter. (The Hello World!
text is ignored when the style is applied to the display of labels.)

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
<desc></desc>
<g class="text" float-width="3.5"
 style="font-style:plain; font-family:Dialog; font-size:12pt; font-weight:bold;
 fill:#000000">
 Hello World!
</g>
</svg>

A.6 Advanced Styles
Advanced styles are structured styles made from simple styles. Advanced styles are
used primarily for thematic mapping. The core advanced style is the bucket style
(BucketStyle), and every advanced style is a form of bucket style. A bucket style is a
one-to-one mapping between a set of primitive styles and a set of buckets. Each bucket
contains one or more attribute values of features to be plotted. For each feature, one of
its attributes is used to determine which bucket it falls into or is contained within, and
then the style assigned to that bucket is applied to the feature.

Advanced Styles

A-8 Oracle Application Server MapViewer User’s Guide

Two special types of bucket styles are also provided: color scheme (described in
Section A.6.2) and variable marker (described in Section A.6.3).

A.6.1 Bucket Styles
A bucket style defines a set of buckets, and assigns one primitive style to each bucket.
The content of a bucket can be either of the following:

■ A collection of discrete values (for example, a bucket for all counties with a
hurricane risk code of 1 or 2, a bucket for all counties with a hurricane risk code of
3, and so on).

■ A continuous range of values (for example, a bucket for all counties with average
family income less than $30,000, a bucket for all counties with average family
income from $30,000 through $39,999, and so on). In this case, the ranges of a
series of buckets can be individually defined (each defined by an upper-bound
value and lower-bound value) or equally divided among a master range.

The following code excerpt shows the basic format of a bucket style:

<?xml version="1.0" ?>
<AdvancedStyle>
 <BucketStyle>
 <Buckets>
 . . .
 </Buckets>
 </BucketStyle>
</AdvancedStyle>

In contrast with the other (primitive) styles, an advanced style always has a root
element identified by the <AdvancedStyle> tag.

For bucket styles, a <BucketStyle> element is the only child of the
<AdvancedStyle> element. Each <BucketStyle> element has one or more
<Buckets> child elements, whose contents vary depending on the type of buckets.

A.6.1.1 Collection-Based Buckets with Discrete Values
If each bucket of a bucket style contains a collection of discrete values, use a
<CollectionBucket> element to represent each bucket. Each bucket contains one or
more values. The values for each bucket are listed as the content of the
<CollectionBucket> element, with multiple values delimited by commas. The
following example defines three buckets.

<?xml version="1.0" ?>
 <AdvancedStyle>
 <BucketStyle>
 <Buckets>
 <CollectionBucket seq="0" label="commercial"
 style="10015">commercial</CollectionBucket>
 <CollectionBucket seq="1" label="residential"
 style="10031">residential, rural</CollectionBucket>
 <CollectionBucket seq="2" label="industrial"
 style="10045">industrial, mining, agriculture</CollectionBucket>
 </Buckets>
 </BucketStyle>
</AdvancedStyle>

In the preceding example:

Advanced Styles

XML Format for Styles, Themes, and Base Maps A-9

■ The values for each bucket are one or more strings; however, the values can also be
numbers.

■ The name of the style associated with each bucket is given.

■ The label attribute for each <CollectionBucket> element (commercial,
residential, or industrial) is used only in a label that is compiled for the advanced
style.

■ The order of the <CollectionBucket> elements is significant. However, the
values in the seq (sequence) attributes are informational only; OracleAS
MapViewer determines sequence only by the order in which elements appear in a
definition.

Although not shown in this example, if you want a bucket for all other values (if any
other values are possible), you can create a <CollectionBucket> element with
#DEFAULT# as its attribute value. It should be placed after all other
<CollectionBucket> elements, so that its style will be rendered last.

To apply label styles to collection-based buckets with discrete values, see Section 2.2.1.

A.6.1.2 Individual Range-Based Buckets
If each bucket of a bucket style contains a value range that is defined by two values,
use a <RangedBucket> element to represent each bucket. Each bucket contains a
range of values. The following example defines four buckets.

<?xml version="1.0" ?>
 <AdvancedStyle>
 <BucketStyle>
 <Buckets>
 <RangedBucket high="10" style="10015"/>
 <RangedBucket low="10" high="40" style="10024"/>
 <RangedBucket low="40" high="50" style="10025"/>
 <RangedBucket low="50" style="10029"/>
 </Buckets>
 </BucketStyle>
</AdvancedStyle>

Note that for individual range-based buckets, the lower-bound value is inclusive,
while the upper-bound value is exclusive (except for the range that has values greater
than any value in the other ranges; its upper-bound value is inclusive). No range is
allowed to have a range of values that overlaps values in other ranges.

For example, the second bucket in this example (low="10" high="40") will contain
any values that are exactly 10, as well as values up to but not including 40 (such as 39
and 39.99). Any values that are exactly 40 will be included in the third bucket.

As with the <CollectionBucket> element, the style associated with each
<RangedBucket> element is specified as an attribute.

To apply label styles to individual range-based buckets, see Section 2.2.1.

A.6.1.3 Equal-Ranged Buckets
If a bucket style contains a series of buckets that contain an equally divided range of a
master range, you can omit the use of <RangedBucket> elements, and instead
specify in the <Buckets> element the master upper-bound value and lower-bound
value for the overall range, the number of buckets in which to divide the range, and a
list of style names (with one for each bucket). The following example defines five
buckets (nbuckets=5) of equal range between 0 and 29:

Advanced Styles

A-10 Oracle Application Server MapViewer User’s Guide

<?xml version="1.0" ?>
<AdvancedStyle>
 <BucketStyle>
 <Buckets low="0" high="29" nbuckets="5"
 styles="10015,10017,10019,10021,10023"/>
 </BucketStyle>
 </AdvancedStyle>

In the preceding example:

■ If all values are integers, the five buckets hold values in the following ranges: 0 to
5, 6 to 11, 12 to 17, 18 to 23, and 24 to 29.

■ The first bucket is associated with the style named 10015, the second bucket is
associated with the style named 10017, and so on.

The number of style names specified must be the same as the value of the nbuckets
attribute. The buckets are arranged in ascending order, and the styles are assigned in
their specified order to each bucket.

A.6.2 Color Scheme Styles
A color scheme style automatically generates individual color styles of varying
brightness for each bucket based on a base color. The brightness is equally spaced
between full brightness and total darkness. Usually, the first bucket is assigned the
brightest shade of the base color and the last bucket is assigned the darkest shade.

You can also include a stroke color to be used by the color style for each bucket. The
stroke color is not part of the brightness calculation. So, for example, if a set of
polygonal features is rendered using a color scheme style, the interior of each polygon
is filled with the color (shade of the base color) for each corresponding bucket, but the
boundaries of all polygons are drawn using the same stroke color.

The following example defines a color scheme style with a black stroke color and four
buckets associated with varying shades of the base color of blue.

<?xml version="1.0" ?>
<AdvancedStyle>
 <ColorSchemeStyle basecolor="blue" strokecolor="black">
 <Buckets>
 <RangedBucket label="<10" high="10"/>
 <RangedBucket label="10 - 20" low="10" high="20"/>
 <RangedBucket label="20 - 30" low="20" high="30"/>
 <RangedBucket label=">=30" low="30"/>
 </Buckets>
 </ColorSchemeStyle>
</AdvancedStyle>

Note: For the following special characters, use escape sequences
instead.

For <, use: <

For >, use: >

For &, use: &

Themes: Styling Rules

XML Format for Styles, Themes, and Base Maps A-11

A.6.3 Variable Marker Styles
A variable marker style generates a series of marker styles of varying sizes for each
bucket. You specify the number of buckets, the start (smallest) size for the marker, and
the size increment between two consecutive markers.

Variable marker styles are conceptually similar to color scheme styles in that both base
buckets on variations from a common object: with a color scheme style the brightness
of the base color varies, and with a variable marker style the size of the marker varies.

The following example creates a variable marker style with four buckets, each
associated with different sizes (in increments of 4) of a marker (m.circle). The
marker for the first bucket has a radius of 10 display units, the marker for the second
bucket has a radius of 14 display units, and so on. This example assumes that the
marker named m.circle has already been defined.

 <?xml version="1.0" ?>
<AdvancedStyle>
 <VariableMarkerStyle basemarker="m.circle" startsize="10" increment="4">
 <Buckets>
 <RangedBucket label="<10" high="10"/>
 <RangedBucket label="10 - 20" low="10" high="20"/>
 <RangedBucket label="20 - 30" low="20" high="30"/>
 <RangedBucket label=">=30" low="30"/>
 </Buckets>
 </VariableMarkerStyle>
</AdvancedStyle>

A.7 Themes: Styling Rules
A theme consists of one or more styling rules. These styling rules are specified in the
STYLING_RULES column of the USER_SDO_THEMES metadata view, using the
following DTD:

<!ELEMENT styling_rules (rule+, hidden_info?)>
<!ATTLIST styling_rules theme_type CDATA #IMPLIED
 key_column CDATA #IMPLIED
 caching CDATA #IMPLIED "NORMAL"
 image_format CDATA #IMPLIED
 image_column CDATA #IMPLIED
 image_resolution CDATA #IMPLIED
 image_unit CDATA #IMPLIED
 raster_id CDATA #IMPLIED
 raster_table CDATA #IMPLIED
 raster_pyramid CDATA #IMPLIED
 raster_bands CDATA #IMPLIED
 polygon_mask CDATA #IMPLIED
 network_name CDATA #IMPLIED
 network_level CDATA #IMPLIED
 topology_name CDATA #IMPLIED>

<!ELEMENT rule (features, label?)>
<!ATTLIST rule column CDATA #IMPLIED>

<!ELEMENT features (#PCDATA?, link?, node?, path?)>
<!ATTLIST features style CDATA #REQUIRED>

<!ELEMENT label (#PCDATA?, link?, node?, path?)>
<!ATTLIST label column CDATA #REQUIRED
 style CDATA #REQUIRED>

Themes: Styling Rules

A-12 Oracle Application Server MapViewer User’s Guide

<!ELEMENT link (#PCDATA)>
<!ATTLIST link style CDATA #REQUIRED
 direction_style CDATA #IMPLIED
 direction_position CDATA #IMPLIED
 direction_markersize CDATA #IMPLIED
 column CDATA #REQUIRED>

<!ELEMENT node (#PCDATA)>
<!ATTLIST node style CDATA #REQUIRED
 markersize CDATA #IMPLIED
 column CDATA #REQUIRED>

<!ELEMENT path (#PCDATA)>
<!ATTLIST path ids CDATA #REQUIRED
 styles CDATA #REQUIRED
 style CDATA #REQUIRED
 column CDATA #REQUIRED>

<!ELEMENT hidden_info (field+)>

<!ELEMENT field (#PCDATA)>
<!ATTLIST field column CDATA #REQUIRED
 name CDATA #IMPLIED
>

The <styling_rules> element contains one or more <rule> elements and an
optional <hidden_info> element.

The <styling_rules> element can have a theme_type attribute, which is used
mainly for certain types of predefined themes. (The default theme_type attribute
value is geometry, which indicates that the theme is based on spatial geometries.)
The theme_type attribute values for these special types of predefined themes are as
follows:

■ image specifies an image theme. You must also specify the image_format and
image_column attributes, and you can specify the image_resolution and
image_unit attributes. Image themes are explained in Section 2.3.5.

■ georaster specifies a GeoRaster theme. To use specified GeoRaster data (but not
if you use a query condition to retrieve the GeoRaster data), you must also specify
the raster_id and raster_table attributes. You can also specify the raster_
pyramid, raster_bands, and polygon_mask attributes. GeoRaster themes are
explained in Section 2.3.6.

■ network specifies a network theme. You must also specify the network_name
attribute. You can specify the network_level attribute, but the default value (1)
is the only value currently supported. Network themes are explained in
Section 2.3.7.

■ topology specifies a topology theme. You must also specify the topology_name
attribute. Topology themes are explained in Section 2.3.8.

The <styling_rules> element can have a key_column attribute. This attribute is
needed only if the theme is defined on a join view (a view created from multiple
tables). In such a case, you must specify a column in the view that will serve as the key
column to uniquely identify the geometries or images in that view. Without this key
column information, OracleAS MapViewer will not be able to cache geometries or
images in a join view.

Themes: Styling Rules

XML Format for Styles, Themes, and Base Maps A-13

The <styling_rules> element can have a caching attribute, which specifies the
caching scheme for each predefined theme. The caching attribute can have one of the
following values: NORMAL (the default), NONE, or ALL.

■ NORMAL causes OracleAS MapViewer to try to cache the geometry data that was
just viewed, to avoid repeating the costly unpickling process when it needs to
reuse the geometries. Geometries are always fetched from the database, but they
are not used if unpickled versions are already in the cache.

■ NONE means that no geometries from this theme will be cached. This value is
useful when you are frequently editing the data for a theme and you need to
display the data as you make edits.

■ ALL causes OracleAS MapViewer to pin all geometry data of this theme entirely in
the cache before any viewing request. In contrast to the default value of NORMAL, a
value of ALL caches all geometries from the base table the first time the theme is
viewed, and the geometries are not subsequently fetched from the database.

For detailed information about the caching of predefined themes, see Section 2.3.1.2.

Each <rule> element must have a <features> element and can have a <label>
element.

The optional column attribute of a <rule> element specifies one or more attribute
columns (in a comma-delimited list) from the base table to be put in the SELECT list of
the query generated by OracleAS MapViewer. The values from such columns are
usually processed by an advanced style for this theme. The following example shows
the use of the column attribute:

<?xml version="1.0" standalone="yes"?>
<styling_rules >
 <rule column="TOTPOP">
 <features style="V.COUNTY_POP_DENSITY"> </features>
 </rule>
</styling_rules>

In the preceding example, the theme's geometry features will be rendered using an
advanced style named V.COUNTY_POP_DENSITY. This style will determine the color
for filling a county geometry by looking up numeric values in the column named
TOTPOP in the base table for this theme.

Each <features> element for a network theme must have a <link>, <node>, or
<path> element, or some combination of them. (The <link>, <node>, and <path>
elements apply only to network themes, which are explained in Section 2.3.7.) The
following example shows the styling rules for a network theme to render links and
nodes.

<?xml version="1.0" standalone="yes"?>
<styling_rules theme_type="network"
 network_name="LRS_TEST" network_level="1">
 <rule>
 <features>
 <link style="C.RED"
 direction_style="M.IMAGE105_BW"
 direction_position="0.85"
 direction_markersize="8"></link>
 <node style="M.CIRCLE" markersize="5"></node>
 </features>
 </rule>
</styling_rules>

Base Maps

A-14 Oracle Application Server MapViewer User’s Guide

A <label> element must have a SQL expression as its element value for determining
whether or not a label will be applied to a feature. The column attribute specifies a
SQL expression for text values to label features, and the style attribute specifies a
text style for rendering labels.

The <hidden_info> element specifies the list of attributes from the base table to be
displayed when the user moves the mouse over the theme’s features. The attributes
are specified by a list of <field> elements.

Each <field> element must have a column attribute, which specifies the name of the
column from the base table, and it can have a name attribute, which specifies the
display name of the column. (The name attribute is useful if you want a text string
other than the column name to be displayed.)

See Section 2.3.1.1 for more information about styling rules and for an example.

A.8 Base Maps
A base map definition consists of one or more themes. The XML definition of a base
map is specified in the DEFINITION column of the USER_SDO_MAPS metadata view,
using the following DTD:

<!ELEMENT map_definition (theme+)>

<!ELEMENT theme EMPTY>
<!ATTLIST theme name CDATA #REQUIRED
 min_scale CDATA #IMPLIED
 max_scale CDATA #IMPLIED
 label_always_on (TRUE|FALSE) "FALSE"
 visible_in_svg (TRUE|FALSE) "TRUE"
 selectable_in_svg (TRUE|FALSE) "FALSE"
 onclick CDATA #IMPLIED
>

The <map_definition> element contains one or more <theme> elements. Themes
are rendered on a map on top of each other, in the order in which they are specified in
the definition.

Each <theme> element must have a <name> element, and it can have a scale range
(<min_scale> and <max_scale> elements) and a requirement to display labels even
if some labels overlap. Each theme name must be unique. If both the <min_scale>
and the <max_scale> elements are specified for a theme, the <min_scale> value
must be greater than the <max_scale> value. The default for the <min_scale>
element is positive infinity, and the default for the <max_scale> element is negative
infinity. If no scale values are specified for a theme, the theme will always be rendered.

label_always_on is an optional attribute. If it is set to TRUE, OracleAS MapViewer
labels all features of the theme even if two or more labels will overlap in the display.
(OracleAS MapViewer always tries to avoid overlapping labels.) If label_always_
on is FALSE (the default), when it is impossible to avoid overlapping labels, OracleAS
MapViewer disables the display of one or more labels so that no overlapping occurs.
The label_always_on attribute can also be specified for a map feature
(geoFeature element, described in Section 3.2.5), thus allowing you to control which
features will have their labels displayed if label_always_on is FALSE for a theme
and if overlapping labels cannot be avoided.

visible_in_svg is an optional attribute that specifies whether or not to display the
theme on an SVG map. If its value is TRUE (the default), the theme is displayed; if it is
set to FALSE, the theme is not displayed. However, even if this attribute is set to

Base Maps

XML Format for Styles, Themes, and Base Maps A-15

FALSE, the theme is still rendered to the SVG map: the theme is initially invisible, but
you can make it visible later by calling the JavaScript function showTheme() defined
in the SVG map. For information about using JavaScript functions with SVG maps, see
Appendix B.

selectable_in_svg is an optional attribute that specifies whether or not the theme
is selectable on an SVG map. The default is FALSE; that is, the theme is not selectable
on an SVG map. If this attribute is set to TRUE and if theme feature selection is
allowed, each feature of the theme displayed on the SVG map can be selected by
clicking on it. If the feature is selected, its color is changed and its ID (its rowid by
default) is recorded. You can get a list of the ID values of all selected features by calling
the JavaScript function getSelectedIdList() defined in the SVG map. For
information about using JavaScript functions with SVG maps, see Appendix B.

onclick is an optional attribute that specifies the name of the JavaScript function to
be called when a user clicks on an SVG map. The JavaScript function must be defined
in the HTML document outside the SVG definition. This function must accept only
two parameters, x and y, which specify the coordinates (in pixels) of the clicked point
on the SVG map. For information about using JavaScript functions with SVG maps,
see Appendix B.

See Section 2.4 for more information about defining base maps and for an example.

Base Maps

A-16 Oracle Application Server MapViewer User’s Guide

JavaScript Functions for SVG Maps B-1

B
JavaScript Functions for SVG Maps

This appendix describes the OracleAS MapViewer JavaScript application
programming interface (API) for SVG maps. This API contains predefined functions
that can be called from outside the SVG map, typically from the HTML document in
which the SVG map is embedded. In addition, you can create JavaScript functions to
be called when certain mouse-click actions occur. The predefined and user-defined
functions can be used to implement sophisticated client-side interactive features, such
as customized navigation.

If you use any of the JavaScript functions described in this appendix, end users must
use Microsoft Internet Explorer to view the SVG maps, and Adobe SVG Viewer 3.0 or a
later release must be installed on their systems.

This appendix contains the following major sections:

■ Section B.1, "Navigation Control Functions"

■ Section B.2, "Display Control Functions"

■ Section B.3, "Mouse-Click Event Control Functions"

■ Section B.4, "Other Control Functions"

B.1 Navigation Control Functions
The OracleAS MapViewer JavaScript functions for controlling navigation include the
following:

■ recenter(x, y) sets the center point of the current SVG map.

The input x and y values specify the coordinates (in pixels) of the new center
point, which is the point inside the SVG map to be displayed at the center of the
SVG viewer window. The SVG viewer window is the graphical area in the Web
browser displayed by the SVG viewer. The coordinates of the center point are
defined in the SVG map screen coordinate system, which starts from (0, 0) at the
upper-left corner of the map and ends at (width, height) at the lower-right corner.

■ setZoomRatio(zratio) sets the current map display zoom ratio.

This function can be used to zoom in or zoom out in the SVG map. (It does not
change the center point of the map.) The original map zoom ratio without any
zooming is 1, and higher zoom ratio values show the SVG map zoomed in. The
map zoom ratio should be set to those values that fit predefined zoom levels. For
example, if the zoomlevels value is 4 and zoomfactor value is 2, map zoom
ratios at zoom level 0, 1, 2, and 3 will be 1, 2, 4, and 8, respectively; thus, in this
example the zratio parameter value should be 1, 2, 4, or 8. For more information

Display Control Functions

B-2 Oracle Application Server MapViewer User’s Guide

about predefined zoom levels, see the descriptions of the zoomlevels,
zoomfactor, and zoomratio attributes in Section 3.2.1.1.

B.2 Display Control Functions
OracleAS MapViewer provides functions to enable and disable the display of
informational tips, the map legend, hidden themes, and the animated loading bar. The
display control functions include the following:

■ switchInfoStatus() enables or disables the display of informational tips.
(Each call to the function reverses the previous setting.)

You can control the initial display of informational tips by using the <hidden_
info> element in theme styling rule definition (see Section A.7) and the infoon
attribute in a map request (see Section 3.2.1.1). The switchInfoStatus()
function toggles (reverses) the current setting for the display of informational tips.

■ switchLegendStatus() enables or disables the display of the map legend.
(Each call to the function reverses the previous setting.) The legend is initially
hidden when the map is displayed.

■ showTheme(theme) sets the specified theme to be visible on the map, and
hideTheme(theme) sets the specified theme to be invisible on the map.

■ showLoadingBar() displays the animated loading bar. The animated loading
bar provides a visible indication that the loading of a new map is in progress. The
bar is removed from the display when the loading is complete.

B.3 Mouse-Click Event Control Functions
OracleAS MapViewer provides several predefined mouse-click event control
functions, which are explained in Section B.3.1. You can also create user-defined mouse
event control functions, as explained in Section B.3.2.

B.3.1 Predefined Mouse-Click Control Functions
OracleAS MapViewer provides functions to enable and disable theme feature,
rectangle, and polygon selection in SVG maps. It also provides functions to get
information about selections and to toggle the selection status on and off. The
functions for customizing mouse-click event control on an SVG map include the
following:

■ enableFeatureSelect() enables theme feature selection, and
disableFeatureSelect() disables theme feature selection.

Theme feature selection can be enabled if the selectable_in_svg attribute in
the <theme> element is TRUE either in the map request (see Section 3.2.14) or in
the base map (see Section A.8) definition. If the theme is selectable and theme
feature selection is enabled, each feature of the theme displayed on the SVG map
can be selected by clicking on it. If the feature is selected, its color is changed and
its ID (rowid by default) is recorded. Clicking on an already selected feature
deselects the feature. The list of IDs of all selected features can be obtained by
calling the getSelectedIdList() function, described in this section.

When theme feature selection is enabled, polygon selection and rectangle selection
are automatically disabled.

■ enablePolygonSelect() enables polygon selection, and
disablePolygonSelect() disables polygon selection.

Mouse-Click Event Control Functions

JavaScript Functions for SVG Maps B-3

If polygon selection is enabled, a polygon selection area can be defined by clicking
and moving the mouse on the SVG map. Each click creates a shape point for the
polygon. The coordinates of the polygon are recorded, and can be obtained by
calling the getSelectPolygon() function, described in this section.

When polygon selection is enabled, theme feature selection and rectangle selection
are automatically disabled.

■ enableRectangleSelect() enables rectangle selection, and
disableRectangleSelect() disables rectangle selection.

If rectangle selection is enabled, a rectangular selection window can be defined by
clicking and dragging the mouse on the SVG map. The coordinates of the
rectangle are recorded, and can be obtained by calling the
getSelectRectangle() function, described in this section.

When rectangle selection is enabled, theme feature selection and polygon selection
are automatically disabled.

■ getInfo(theme, key) returns the informational note or tip string of the feature
identified by theme name and key.

■ getSelectedIdList(theme) returns an array of all feature IDs that are
selected on the SVG map.

■ getSelectPolygon() returns an array of the coordinates of all shape points of
the selection polygon, using the coordinate system associated with the original
user data.

■ getSelectRectangle() returns an array of the coordinates of the upper-left
corner and the lower-right corner of the selection rectangle, using the coordinate
system associated with the original user data.

■ selectFeature(theme, key) toggles the selection status of a feature
(identified by its key value) in a specified theme.

■ setSelectPolygon(poly) sets the coordinates of all shape points of the
selection polygon, using the coordinate system associated with the original user
data. The coordinates are stored in the array poly. Calling this function after
enablePolygonSelect() draws a polygon on the SVG map.

■ setSelectRectangle(rect) sets the coordinates of the upper-left corner and
the lower-right corner of the selection rectangle, using the coordinate system
associated with the original user data. The coordinates are stored in the array
rect. Calling this function after enableRectangleSelect() draws a rectangle
on the SVG map.

B.3.2 User-Defined Mouse Event Control Functions
User-defined JavaScript mouse-event control functions can be combined with
predefined JavaScript functions (described in Section B.3.1) to implement further
interactive customization. You can create map-level, theme-level, and selection event
control functions.

B.3.2.1 Map-Level Functions
Map-level mouse event control functions can be defined for mouse-click events and
mouse-move events.

A mouse-click event function is called whenever a click occurs anywhere in the SVG
map, if both theme feature selection and window selection are disabled. The name of

Mouse-Click Event Control Functions

B-4 Oracle Application Server MapViewer User’s Guide

the function is defined by the onclick attribute in the map request (see
Section 3.2.1.1).

A mouse-move event function is called whenever the mouse moves anywhere in the
SVG map. The name of the function is defined by the onmousemove attribute in the
map request (see Section 3.2.1.1).

These JavaScript functions must be defined in the Web page that has the SVG map
embedded. Mouse-click and mouse-move event functions must accept two
parameters, x and y, which specify the coordinates inside the SVG viewer window
where the mouse click or move occurred. The coordinate is defined in the local SVG
viewer window coordinate system, which starts from (0,0) at the upper-left corner and
ends at (width, height) at the lower-right corner.

B.3.2.2 Theme-Level Functions
Theme-level mouse event control functions can be defined for mouse-click,
mouse-move, mouse-over, and mouse-out events.

A mouse-click event control function is called when theme feature selection is enabled
and a feature of the theme is clicked. Each theme in the map can have its own
mouse-click event control function. A theme-level mouse-click event control function
is specified by the onclick attribute in the <theme> element in the map request or
base map definition.

A mouse-move event control function is called whenever the mouse moves inside any
feature of the theme. Each theme in the map can have its own mouse-move event
control function. A theme-level mouse-move event control function is specified by the
onmousemove attribute in the <theme> element in the map request or base map
definition.

A mouse-over event control function is called whenever the mouse moves from
outside a feature of the theme to inside a feature of the theme. Each theme in the map
can have its own mouse-over event control function. A theme-level mouse-over event
control function is specified by the onmouseover attribute in the <theme> element in
the map request or base map definition.

A mouse-out event control function is called whenever the mouse moves out of a
feature of the theme. Each theme in the map can have its own mouse-out event control
function. A theme-level mouse-out event control function is specified by the
onmouseout attribute in the <theme> element in the map request or base map
definition.

These JavaScript functions must be defined in the Web page that has the SVG map
embedded. They take the following parameters:

■ Theme name

■ Key of the feature

■ X-axis value of the point in the SVG viewer window where the mouse click
occurred

■ Y-axis value of the point in the SVG viewer window where the mouse click
occurred

The key of the feature is the value of the key column from the base table, which is
specified by the key_column attribute of the <theme> element in the map request or
base map definition. ROWID is used as the default key column. For example, if the
onclick attribute is set to selectCounty for the COUNTY theme, the following
JavaScript function call is executed if the feature with rowid

Other Control Functions

JavaScript Functions for SVG Maps B-5

AAAHQDAABAAALk6Abm of the COUNTY theme is clicked on the SVG map at
(100,120): selectCounty('COUNTY', 'AAAHQDAABAAALk6Abm', 100, 120).

The x-axis and y-axis values specify the coordinates inside the SVG viewer window
where the mouse event occurred. The coordinate is defined in the local SVG viewer
window coordinate system, which starts from (0,0) at the upper-left corner and ends at
(width, height) at the lower-right corner.

B.3.2.3 Selection Event Control Functions
You can define a selection event control function for rectangle selection or polygon
selection, or for both.

A rectangle selection event control function is called whenever rectangle selection is
enabled and a rectangular selection area has been created by clicking and dragging the
mouse (to indicate two diagonally opposite corners) on an SVG map. The function is
called immediately after the selection of the rectangle is completed and the mouse key
is released. The function name is specified with the onrectselect attribute in the
map request (see Section 3.2.1.1).

A polygon selection event control function is called whenever polygon selection is
enabled and a polygon-shaped selection area has been created by clicking and
dragging the mouse at least four times on an SVG map, with the last click on the same
point as the first click to complete the polygon. The function is called immediately
after the selection of the polygon is completed. The function name is specified with the
onpolyselect attribute in the map request (see Section 3.2.1.1).

B.4 Other Control Functions
OracleAS MapViewer provides other useful functions for working with SVG maps.
These functions include the following:

■ getUserCoordinate(x,y) converts the screen coordinates into the original
map data coordinates. This function returns the converted result in an array. The
first element of the array is the converted X coordinate, and the second element of
the array is the converted Y coordinate.

■ getScreenCoordinate(x,y) converts the original map data coordinates into
the screen coordinates. This function returns the converted result in an array. The
first element of the array is the converted X coordinate, and the second element of
the array is the converted Y coordinate.

Other Control Functions

B-6 Oracle Application Server MapViewer User’s Guide

Creating and Registering a Custom Image Renderer C-1

C
Creating and Registering a Custom Image

Renderer

This appendix explains how to implement and register a custom image renderer for
use with an image theme. (Image themes are described in Section 2.3.5.)

If you want to create a map request specifying an image theme with an image format
that is not supported by OracleAS MapViewer, you must first implement and register
a custom image renderer for that format. For example, the ECW format in Example 3–6
in Section 3.1.6 is not supported by OracleAS MapViewer; therefore, for that example
to work, you must first implement and register an image renderer for ECW format
images.

The interface oracle.sdovis.CustomImageRenderer is defined in the package
sdovis.jar, which is located in the $ORACLE_HOME/lbs/lib directory in an
Oracle Application Server environment. If you performed a standalone installation of
OC4J, sdovis.jar is unpacked into $MAPVIEWER/web/WEB-INF/lib. The
following is the source code of this interface.

/**
 * An interface for a custom image painter that supports user-defined image
 * formats. An implementation of this interface can be registered with
 * OracleAS MapViewer to support a custom image format.
 */
public interface CustomImageRenderer
{
 /**
 * The method is called by OracleAS MapViewer to find out the image format
 * supported by this renderer.

 * This format string must match the one specified in a custom image renderer
 * element defined in the configuration file (mapViewerConfig.xml).
 */
 public String getSupportedFormat() ;

 /**
 * Renders the given images. OracleAS MapViewer calls this method
 * to tell the implementor the images to render, the current map
 * window in user space, and the MBR (in the same user space) for each
 * image.
 *

 * The implementation should not retain any reference to the parameters
 * permanently.
 * @param g2 the graphics context to draw the images onto.
 * @param images an array of image data stored in byte array.
 * @param mbrs an array of double[4] arrays containing one MBR for each
 * image in the images array.
 * @param dataWindow the data space window covered by the current map.

C-2 Oracle Application Server MapViewer User’s Guide

 * @param deviceView the device size and offset.
 * @param at the AffineTransform using which you can transform a point
 * in the user data space to the device coordinate space. You can
 * ignore this parameter if you opt to do the transformation
 * yourself based on the dataWindow and deviceView information.
 * @param scaleImage a flag passed from OracleAS MapViewer to indicate whether
 * the images should be scaled to fit the current device window.
 * If it is set to false, render the image as-is without
 * scaling it.
 */
 public void renderImages(Graphics2D g2, byte[][] images, double[][] mbrs,
 Rectangle2D dataWindow, Rectangle2D deviceView,
 AffineTransform at, boolean scaleImage) ;
}

After you implement this interface, you must place your implementation class in a
directory that is part of the OracleAS MapViewer CLASSPATH definition, such as the
$MAPVIEWER/web/WEB-INF/lib directory. If you use any native libraries to perform
the actual rendering, you must ensure that any other required files (such as .dll and
.so files) for these libraries are accessible to the Java virtual machine (JVM) that is
running OracleAS MapViewer.

After you place your custom implementation classes and any required libraries in the
OracleAS MapViewer CLASSPATH, you must register your class with OracleAS
MapViewer in its configuration file, mapViewerConfig.xml (described in
Section 1.5). Examine, and edit as appropriate, the following section of the file, which
tells OracleAS MapViewer which class to load if it encounters a specific image format
that it does not already support.

 <!-- ** -->
 <!-- ******************** Custom Image Renderers ********************** -->
 <!-- ** -->
 <!-- Uncomment and add as many custom image renderers as needed here,
 each in its own <custom_image_renderer> element. The "image_format"
 attribute specifies the format of images that are to be custom
 rendered using the class with the full name specified in "impl_class".
 You are responsible for placing the implementation classes in the
 OracleAS MapViewer classpath.
 -->
 <!--
 <custom_image_renderer image_format="ECW"
 impl_class="com.my_corp.image.ECWRenderer"/>
 -->

In this example, for any ECW formatted image data loaded through the <jdbc_
image_query> element of an image theme, OracleAS MapViewer will load the class
com.my_corp.image.ECWRenderer to perform the rendering.

Example C–1 is an example implementation of the
oracle.sdovis.CustomImageRenderer interface. This example implements a
custom renderer for the ECW image format. Note that this example is for illustration
purposes only, and the code shown is not necessarily optimal or even correct for all
system environments. This implementation uses the ECW Java SDK, which in turn
uses a native C library that comes with it. For OracleAS MapViewer to be able to locate
the native dynamic library, you may need to use the command-line option
-Djava.library.path when starting the OC4J instance that contains OracleAS
MapViewer.

Creating and Registering a Custom Image Renderer C-3

Example C–1 Custom Image Renderer for ECW Image Format

package com.my_corp.image;
import java.io.*;
import java.util.Random;
import java.awt.*;
import java.awt.geom.*;
import java.awt.image.BufferedImage;

import oracle.sdovis.CustomImageRenderer;
import com.ermapper.ecw.JNCSFile; // from ECW Java SDK

public class ECWRenderer implements CustomImageRenderer
{
 String tempDir = null;
 Random random = null;

 public ECWRenderer()
 {
 tempDir = System.getProperty("java.io.tmpdir");
 random = new Random(System.currentTimeMillis());
 }

 public String getSupportedFormat()
 {
 return "ECW";
 }

 public void renderImages(Graphics2D g2, byte[][] images,
 double[][] mbrs,
 Rectangle2D dataWindow,
 Rectangle2D deviceView,
 AffineTransform at)
 {
 // Taking the easy way here; you should try to stitch the images
 // together here.
 for(int i=0; i<images.length; i++)
 {
 String tempFile = writeECWToFile(images[i]);
 paintECWFile(tempFile, g2, mbrs[i], dataWindow, deviceView,at);
 }
 }

 private String writeECWToFile(byte[] image)
 {
 long l = Math.abs(random.nextLong());
 String file = tempDir + "ecw"+l+".ecw";
 try{
 FileOutputStream fos = new FileOutputStream(file);
 fos.write(image);
 fos.close();
 return file;
 }catch(Exception e)
 {
 System.err.println("cannot write ecw bytes to temp file: "+file);
 return null;
 }
 }

 private void paintECWFile(String fileName, Graphics2D g,
 double[] mbr,

C-4 Oracle Application Server MapViewer User’s Guide

 Rectangle2D dataWindow,
 Rectangle2D deviceView,
 AffineTransform at)
 {
 JNCSFile ecwFile = null;
 boolean bErrorOnOpen = false;
 BufferedImage ecwImage = null;
 String errorMessage = null;

 try {
 double dFileAspect, dWindowAspect;
 double dWorldTLX, dWorldTLY, dWorldBRX, dWorldBRY;
 int bandlist[];
 int width = (int)deviceView.getWidth(),
 height = (int)deviceView.getHeight();
 int line, pRGBArray[] = null;

 ecwFile = new JNCSFile(fileName, false);

 // Work out the correct aspect for the setView call.
 dFileAspect = (double)ecwFile.width/(double)ecwFile.height;
 dWindowAspect = deviceView.getWidth()/deviceView.getHeight();

 if (dFileAspect > dWindowAspect) {
 height =(int)((double)width/dFileAspect);
 } else {
 width = (int)((double)height*dFileAspect);
 }

 // Create an image of the ecw file.
 ecwImage = new BufferedImage(width, height,
 BufferedImage.TYPE_INT_RGB);
 pRGBArray = new int[width];

 // Set up the view parameters for the ecw file.
 bandlist = new int[ecwFile.numBands];
 for (int i=0; i< ecwFile.numBands; i++) {
 bandlist[i] = i;
 }
 dWorldTLX = ecwFile.originX;
 dWorldTLY = ecwFile.originY;
 dWorldBRX = ecwFile.originX +
 (double)(ecwFile.width-1)*ecwFile.cellIncrementX;
 dWorldBRY = ecwFile.originY +
 (double)(ecwFile.height-1)*ecwFile.cellIncrementY;

 dWorldTLX = Math.max(dWorldTLX, dataWindow.getMinX());
 dWorldTLY = Math.max(dWorldTLY, dataWindow.getMinY());
 dWorldBRX = Math.min(dWorldBRX, dataWindow.getMaxX());
 dWorldBRY = Math.min(dWorldBRY, dataWindow.getMaxY());

 // Set the view.
 ecwFile.setView(ecwFile.numBands, bandlist, dWorldTLX,
 dWorldTLY, dWorldBRX, dWorldBRY, width, height);

 // Read the scan lines.
 for (line=0; line < height; line++) {
 ecwFile.readLineRGBA(pRGBArray);
 ecwImage.setRGB(0, line, width, 1, pRGBArray, 0, width);
 }

Creating and Registering a Custom Image Renderer C-5

 } catch(Exception e) {
 e.printStackTrace(System.err);
 bErrorOnOpen = true;
 errorMessage = e.getMessage();
 g.drawString(errorMessage, 0, 50);
 }

 // Draw the image (unscaled) to the graphics context.
 if (!bErrorOnOpen) {
 g.drawImage(ecwImage, 0, 0, null);
 }

 }
}

C-6 Oracle Application Server MapViewer User’s Guide

OGC WMS Support in OracleAS MapViewer D-1

D
OGC WMS Support in OracleAS MapViewer

OracleAS MapViewer supports the rendering of data delivered using the Open GIS
Consortium (OGC) Web Map Service (WMS) protocol, specifically the WMS 1.1.1
implementation specification. OracleAS MapViewer supports the GetMap,
GetFeatureInfo, and GetCapabilities requests as defined in the OGC document
01-068r3.

OracleAS MapViewer does not currently support the optional Styled Layer Descriptor
capability, and OracleAS MapViewer will not function as a Cascading Map Server in
this release.

This appendix contains the following major sections:

■ Section D.1, "Setting Up the WMS Interface for OracleAS MapViewer"

■ Section D.2, "WMS Specification and Corresponding OracleAS MapViewer
Concepts"

■ Section D.3, "Adding a WMS Map Theme"

D.1 Setting Up the WMS Interface for OracleAS MapViewer
The WMS interface is implemented as a servlet filter. It essentially translates the
required and supported features of a GetMap, GetFeatureInfo, or GetCapabilities
request into an OracleAS MapViewer XML request.

The servlet filter is specified in the OracleAS MapViewer web.xml file. The default
location of this file is in the web/WEB-INF/ directory of the OracleAS MapViewer
installation. For example, if the mapviewer.ear file was placed in $OC4J_
HOME/lbs, the web.xml file is in $OC4J_HOME/lbs/mapviewer/web/WEB-INF.

The supplied web.xml file includes lines related to the WMS servlet filter: <filter>
and <filter-mapping> elements for the WMS filter, and a <servlet-mapping>
element for the Open GIS WMS specification. These lines are shown in bold in
Example D–1.

Example D–1 WMS Servlet Filter Entries in the web.xml File

<?xml version = '1.0'?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <display-name>MapViewer</display-name>
 <description>Oracle Application Server MapViewer</description>
 <!-- PDK logging info -->

Setting Up the WMS Interface for OracleAS MapViewer

D-2 Oracle Application Server MapViewer User’s Guide

 <context-param>
 <param-name>oracle.portal.log.LogLevel</param-name>
 <param-value>4</param-value>
 </context-param>

 <!-- WMS1.1 filter -->
 <filter>
 <filter-name>WMS11</filter-name>
 <filter-class>
 oracle.lbs.webmapserver.WMSServletFilter
 </filter-class>
 </filter>

 <filter-mapping>
 <filter-name>WMS11</filter-name>
 <url-pattern>/wms</url-pattern>
 </filter-mapping>

 <!-- MapViewer Servlet -->
 <servlet>
 <servlet-name>oms</servlet-name>
 <servlet-class>oracle.lbs.mapserver.oms</servlet-class>
 <load-on-startup>1</load-on-startup>

 <!-- role name used in code -->
 <security-role-ref>
 <role-name>map_admin</role-name>
 <role-link>map_admin_role</role-link>
 </security-role-ref>

 </servlet>

 <!-- MapViewer Portlet Provider -->
 <servlet>
 <servlet-name>SOAPServlet</servlet-name>
 <description>Extended Portal SOAP Server</description>
 <servlet-class>
 oracle.webdb.provider.v2.adapter.SOAPServlet
 </servlet-class>
 </servlet>

 <!-- MapViewer Servlet Mapping for normal requests -->
 <servlet-mapping>
 <servlet-name>oms</servlet-name>
 <url-pattern>/omserver</url-pattern>
 </servlet-mapping>

 <!-- MapViewer mapping for secure administrative requests -->
 <servlet-mapping>
 <servlet-name>oms</servlet-name>
 <url-pattern>/mapadmin</url-pattern>
 </servlet-mapping>

 <!-- MapViewer mapping for Open GIS WMS specification-->
 <servlet-mapping>
 <servlet-name>oms</servlet-name>
 <url-pattern>/wms</url-pattern>
 </servlet-mapping>
. . .

WMS Specification and Corresponding OracleAS MapViewer Concepts

OGC WMS Support in OracleAS MapViewer D-3

</web-app>

In Example D–1, the URL pattern /wms is mapped to the filter named WMS11, which
uses the oracle.lbs.webmapserver.WMSServletFilter class. WMS requests, therefore,
must use URLs of the form http://host:port/mapviewer/wms. For example, if a
standalone OC4J-based OracleAS MapViewer installation is on the same system
(localhost) as the originating request, the following URL (entered on a single line)
makes a GetCapabilities request:

http://localhost:8888/mapviewer/wms?REQUEST=GetCapabilities&SERVICE=WMS&VERSION=1.
1.1

D.1.1 Required Files
The following files are required for OracleAS MapViewer WMS support:
WMSFilter.jar and classgen.jar.

■ The servlet filter and its required classes are packaged in WMSFilter.jar. This
should be located in the $MAPVIEWER_HOME/web/WEB-INF/lib directory.

■ The servlet filter also requires classgen.jar, which is part of the XML
Developer’s Kit (XDK) for Java. A standalone OC4J installation usually does not
have this file; however, an Oracle Database or full Oracle Application Server
installation will already have this file.

If your system does not already have the classgen.jar file, use a
classgen.jar file from the same XDK for Java version as the one that ships with
your standalone OC4J version. Place this file in the $MAPVIEWER_
HOME/web/WEB-INF/lib directory or in a directory that is in the library path for
OC4J.

The classgen.jar and xmlparserv2.jar files must be from the same XDK
release, because the classgen.jar file depends on the xmlparserv2.jar file.
Also, the XDK release for both files must be OC4J 10.0.0.3 or later, and preferably
10.1.2 or later.

D.2 WMS Specification and Corresponding OracleAS MapViewer
Concepts

This section describes the association between, or interpretation of, terms and concepts
used in the WMS 1.1.1 specification and OracleAS MapViewer. It also includes some
parameters that are specific to OracleAS MapViewer but that are not in the WMS 1.1.1
specification.

D.2.1 Supported GetMap Request Parameters
This section describes the supported GetMap request parameters and their
interpretation by OracleAS MapViewer. (Parameters that are specific to OracleAS
MapViewer and not mentioned in the WMS 1.1.1 specification are labeled OracleAS
MapViewer-Only.) The supported parameters are in alphabetical order, with each in a
separate subsection. Example D–2 shows a GetMap request.

Note: All WMS requests must be on a single line, so ignore any line
breaks that might appear in WMS request examples.

WMS Specification and Corresponding OracleAS MapViewer Concepts

D-4 Oracle Application Server MapViewer User’s Guide

Example D–2 GetMap Request

http://localhost:8888/mapviewer/wms?REQUEST=GetMap&VERSION=1.1.1&FORMAT=image/gif&
SERVICE=WMS&BBOX=-121,37,-119,35&SRS=EPSG:4326&LAYERS=theme_demo_states,theme_
demo_counties,theme_demo_highways,theme_demo_cities&WIDTH=580&HEIGHT=500

The default data source for a GetMap request is WMS. That is, if you do not specify the
DATASOURCE parameter in a GetMap request, it is assumed that a data source named
WMS was previously created using the <add_data_source> element (described in
Section 6.1.1) in an OracleAS MapViewer administrative request.

The following optional GetMap parameters are not supported in the current release of
OracleAS MapViewer:

■ TIME (time dimension)

■ ELEVATION (elevation dimension)

■ SLD and WFS URLs

The OracleAS MapViewer-only parameters must contain valid XML fragments.
Because these are supplied in an HTTP GET request, they must be appropriately
encoded using a URL encoding mechanism. For example, replace each space () with
%20 and each pound sign (#) with %23. The following example shows the use of such
encoding:

http://localhost:8888/mapviewer/wms?request=GetMap&version=1.1.1&srs=none&bbox=-12
2,36,-121,37&width=600&height=400&format=image/png&layers=theme_us_
states&mvthemes=<themes><theme%20name="theme_us_counties"/><theme%20name="theme_
us_road1"/></themes>&legend_
request=<legend%20bgstyle="fill:%23ffffff;stroke:%23ff0000"%20profile="medium"%20p
osition="SOUTH_EAST"><column><entry%20style="v.rb1"%20tab="1"/></column></legend>&

D.2.1.1 BASEMAP Parameter (OracleAS MapViewer-Only)
The BASEMAP parameter specifies a named base map for the specified (or default) data
source. If you specify both the BASEMAP and LAYERS parameters, all themes specified
in the LAYERS parameters are added to the base map. Therefore, if you just want to get
a map using a named base map, specify the BASEMAP parameter but specify an empty
LAYERS parameter, as in the following example:

REQUEST=GetMap&VERSION=1.1.1&BASEMAP=demo_
map&LAYERS=&WIDTH=500&HEIGHT=560&SRS=SDO:8307&BBOX=-122,36,-120,38.5&FORMAT=image/
png

D.2.1.2 BBOX Parameter
The BBOX parameter specifies the lower-left and upper-right coordinates of the
bounding box for the data from the data source to be displayed. It has the format
BBOX=minX,minY,maxX,maxY. For example: BBOX=-122,36,-120,38.5

D.2.1.3 BGCOLOR Parameter
The BGCOLOR parameter specifies background color for the map display using the
RBG color value. It has the format 0xHHHHHH (where each H is a hexadecimal value
from 0 to F). For example: BGCOLOR=0xF5F5DC (beige).

D.2.1.4 DATASOURCE Parameter (OracleAS MapViewer-Only)
The DATASOURCE parameter specifies the name of the data source for the GetMap or
GetFeatureInfo request. The default value is WMS. The specified data source must exist
prior to the GetMap or GetFeatureInfo request. That is, it must have been created

WMS Specification and Corresponding OracleAS MapViewer Concepts

OGC WMS Support in OracleAS MapViewer D-5

using the <add_data_source> OracleAS MapViewer administrative request or
defined in the OracleAS MapViewer configuration file (mapViewerConfig.xml).

D.2.1.5 DYNAMIC_STYLES Parameter (OracleAS MapViewer-Only)
The DYNAMIC_STYLES parameter specifies a <styles> element as part of the
GetMap request. For information about the <styles> element, see Section 3.2.13.

D.2.1.6 EXCEPTIONS Parameter
For the EXCEPTIONS parameter, the only supported value is the default:
EXCEPTIONS=application/vnd.ogc.se_xml. That is, only Service Exception
XML is supported. The exception is reported as an XML document conforming to the
Service Exception DTD available at

http://schemas.opengis.net/wms/1.1.1/WMS_exception_1_1_1.dtd

The application/vnd.ogc.se_inimage (image overwritten with Exception
message), and application/vnd.ogc.se_blank (blank image because Exception
occurred) options are not supported.

D.2.1.7 FORMAT Parameter
The FORMAT parameter specifies the image format. The supported values are
image/gif, image/jpeg, image/png, image/png8, and image/svg+xml.

The default value is image/png.

D.2.1.8 HEIGHT Parameter
The HEIGHT parameter specifies the height for the displayed map in pixels.

D.2.1.9 LAYERS Parameter
The LAYERS parameter specifies a comma-delimited list of predefined theme names to
be used for the display. The specified values are considered to a be a case-sensitive,
ordered, comma-delimited list of predefined theme names in a default data source
(named WMS) or in a named data source specified by the parameter
DATASOURCE=<name>. For example, LAYERS=THEME_DEMO_STATES,theme_demo_
counties,THEME_demo_HIGHWAYS translates to the following <themes> element
in an OracleAS MapViewer map request:

<themes>
<theme name="THEME_DEMO_STATES"/>
<theme name="theme_demo_counties"/>
<theme name="THEME_demo_HIGHWAYS"/>
</themes>

If you want to specify both a base map and one or more LAYERS values, see the
information about the BASEMAP parameter in Section D.2.1.1.

D.2.1.10 LEGEND_REQUEST Parameter (OracleAS MapViewer-Only)
The LEGEND_REQUEST parameter specifies a <legend> element as part of the
GetMap request. For information about the <legend> element, see Section 3.2.11.

D.2.1.11 MVTHEMES Parameter (OracleAS MapViewer-Only)
The MVTHEMES parameter specifies a <themes> element as part of the GetMap
request. For information about the <themes> element, see Section 3.2.15. The primary
purpose for the MVTHEMES parameter is to support JDBC themes in an OracleAS

WMS Specification and Corresponding OracleAS MapViewer Concepts

D-6 Oracle Application Server MapViewer User’s Guide

MapViewer request. The MVTHEMES parameter is not a substitute or synonym for the
LAYERS parameter; you still must specify the LAYERS parameter.

D.2.1.12 REQUEST Parameter
The REQUEST parameter specifies the type of request. The value must be GetMap,
GetFeatureInfo, or GetCapabilities.

D.2.1.13 SERVICE Parameter
The SERVICE parameter specifies the service name. The value must be WMS.

D.2.1.14 SRS Parameter
The SRS parameter specifies the spatial reference system (coordinate system) for
OracleAS MapViewer to use. The value must be one of the following:
SDO:srid-value (where srid-value is a numeric Oracle Spatial SRID value),
EPSG:4326 (equivalent to SDO:8307), or none (equivalent to SDO:0).

Except for EPSG:4326 (the standard WGS 84 longitude/latitude coordinate system),
EPSG numeric identifiers are not supported. The namespace AUTO, for projections that
have an arbitrary center of projection, is not supported.

D.2.1.15 STYLES Parameter
The STYLES parameter is ignored. Instead, use the LAYERS parameter to specify
predefined themes for the display.

D.2.1.16 TRANSPARENT Parameter
The TRANSPARENT=TRUE parameter (for a transparent image) is supported for PNG
images, that is, with FORMAT=image/png, or FORMAT=image/png8 for indexed
(8-bit) PNG format. OracleAS MapViewer does not support transparent GIF (GIF89)
images.

D.2.1.17 VERSION Parameter
The VERSION parameter specifies the WMS version number. The value must be
1.1.1.

D.2.1.18 WIDTH Parameter
The WIDTH parameter specifies the width for the displayed map in pixels.

D.2.2 Supported GetCapabilities Request and Response Features
A WMS GetCapabilities request to OracleAS MapViewer should specify only the
following parameters:

■ REQUEST=GetCapabilities

■ VERSION=1.1.1

■ SERVICE=WMS

For example:

http://localhost:8888/mapviewer/wms?REQUEST=GetCapabilities&VERSION=1.1.1&SERVICE=
WMS

The response is an XML document conforming to the WMS Capabilities DTD available
at

WMS Specification and Corresponding OracleAS MapViewer Concepts

OGC WMS Support in OracleAS MapViewer D-7

http://schemas.opengis.net/wms/1.1.1/WMS_MS_Capabilities.dtd

However, the current release of OracleAS MapViewer returns an XML document
containing the <Service> and <Capability> elements with the following
information:

■ The <Service> element is mostly empty, with just the required value of OGC:WMS
for the <Service.Name> element. Support for more informative service
metadata is planned for a future release of OracleAS MapViewer.

■ The <Capability> element has <Request>, <Exception>, and <Layer>
elements.

■ The <Request> element contains the GetCapabilities and GetMap elements that
describe the supported formats and URL for an HTTP GET or POST operation.

■ The <Exception> element defines the exception format. The Service Exception
XML is the only supported format in this release. The <Exception> element
returns an XML document compliant with the Service Exception DTD, but it does
not report exceptions as specified in the implementation specification. The current
release simply uses the CDATA section of a <ServiceException> element to
return the OMSException returned by the OracleAS MapViewer server.

■ The <Layer> element contains a nested set of <Layer> elements. The first
(outermost) layer contains a name (WMS), a title (Oracle WebMapServer
Layers by data source), and one <Layer> element for each defined data
source. Each data source layer contains a <Layer> element for each defined base
map and one entry for each valid theme (layer) not listed in any base map. Each
base map layer contains a <Layer> element for each predefined theme in the base
map.

Themes that are defined in the USER_SDO_THEMES view, that have valid entries
in the USER_SDO_GEOM_METADATA view for the base table and geometry
column, and that are not used in any base map will be listed after the base maps
for a data source. These themes will have no <ScaleHint> element. They will
have their own <LatLonBoundingBox> and <BoundingBox> elements.

The Content-Type of the response is set to application/vnd.ogc.wms_xml, as
required by the WMS implementation specification.

Because the list of layers is output by base map, a given layer or theme can appear
multiple times in the GetCapabilities response. For example, the theme THEME_DEMO_
STATES, which is part of the base maps named DEMO_MAP and DENSITY_MAP,
appears twice in Example D–3, which is an excerpt (reformatted for readability) from a
GetCapabilities response.

Example D–3 GetCapabilities Response (Excerpt)

<Title>Oracle WebMapServer Layers by data source</Title>
<Layer>
 <Name>mvdemo</Name>
 <Title>Datasource mvdemo</Title>
 <Layer>
 <Name>DEMO_MAP</Name>
 <Title>Basemap DEMO_MAP</Title>
 <SRS>SDO:8307</SRS>
 <LatLonBoundingBox>-180,-90,180,90</LatLonBoundingBox>
. . .
 <Layer>
 <Name>DENSITY_MAP</Name>
 <Title>Basemap DENSITY_MAP</Title>

WMS Specification and Corresponding OracleAS MapViewer Concepts

D-8 Oracle Application Server MapViewer User’s Guide

 <SRS>SDO:8307</SRS>
 <LatLonBoundingBox>-180,-90,180,90</LatLonBoundingBox>
 <Layer>
 <Name>THEME_DEMO_STATES</Name>
 <Title>THEME_DEMO_STATES</Title>
 <SRS>SDO:8307</SRS>
 <BoundingBox SRS="SDO:8307" minx="-180" miny="-90" maxx="180"
 maxy="90" resx="0.5" resy="0.5"/>
 <ScaleHint min="50.0" max="4.0"/>
 </Layer>
. . .
 </Layer>
 <Layer>
 <Name>IMAGE_MAP</Name>
 <Title>Basemap IMAGE_MAP</Title>
 <SRS>SDO:41052</SRS>
 <LatLonBoundingBox>-180,-90,180,90</ LatLonBoundingBox>
 <Layer>
 <Name>IMAGE_LEVEL_2</Name>
 <Title>IMAGE_LEVEL_2</Title>
 <SRS>SDO:41052</SRS>
 <BoundingBox SRS="SDO:41052" minx="200000" miny="500000" maxx="750000"
 maxy="950000" resx="0.5" resy="0.5"/>
 <ScaleHint min="1000.0" max="0.0"/>
 </Layer>
. . .
 </Layer>

In Example D–3, the innermost layer describes the IMAGE_LEVEL_2 theme. The
<ScaleHint> element lists the min_scale and max_scale values, if any, for that
theme in the base map definition. For example, the base map definition for IMAGE_
MAP is as follows:

SQL> select definition from user_sdo_maps where name='IMAGE_MAP';

DEFINITION
--
<?xml version="1.0" standalone="yes"?>
<map_definition>
 <theme name="IMAGE_LEVEL_2" min_scale="1000.0" max_scale="0.0"/>
 <theme name="IMAGE_LEVEL_8" min_scale="5000.0" max_scale="1000.0"/>
 <theme name="MA_ROAD3"/>
 <theme name="MA_ROAD2"/>
 <theme name="MA_ROAD1"/>
 <theme name="MA_ROAD0"/>
</map_definition>

In the innermost layer, the <SRS> and <BoundingBox> elements identify the SRID
and the DIMINFO information for that theme’s base table, as shown in the following
Spatial metadata query:

SQL> select srid, diminfo from user_sdo_geom_metadata, user_sdo_themes
 2 where name='IMAGE_LEVEL_2' and
 3 base_table=table_name and
 4 geometry_column=column_name ;

 SRID

DIMINFO(SDO_DIMNAME, SDO_LB, SDO_UB, SDO_TOLERANCE)
--
 41052

WMS Specification and Corresponding OracleAS MapViewer Concepts

OGC WMS Support in OracleAS MapViewer D-9

SDO_DIM_ARRAY(SDO_DIM_ELEMENT('X', 200000, 500000, .5), SDO_DIM_ELEMENT('Y', 750
000, 950000, .5))

In Example D–3, the <Layer> element for a base map has an <SRS> element and a
<LatLonBoundingBox> element. The <SRS> element is empty if all layers in the
base map definition do not have the same SRID value specified in the USER_SDO_
GEOM_METADATA view. If they all have the same SRID value (for example, 41052),
the SRS element contains that value (for example, SDO:41052). The required
<LatLonBoundingBox> element currently has default values (-180,-90,180,90).
When this feature is supported by OracleAS MapViewer, this element will actually be
the bounds specified in the DIMINFO column of the USER_SDO_GEOM_METADATA
view for that layer, converted to geodetic coordinates if necessary and possible.

All layers are currently considered to be opaque and queryable. That is, all layers are
assumed to be vector layers, and not GeoRaster, logical network, or image layers.

D.2.3 Supported GetFeatureInfo Request and Response Features
This section describes the supported GetFeatureInfo request parameters and their
interpretation by OracleAS MapViewer. Example D–4 shows a GetFeatureInfo request.

Example D–4 GetFeatureInfo Request

http://localhost:8888/mapviewer/wms?REQUEST=GetFeatureInfo&VERSION=1.1.1&BBOX=0,-0
.0020,0.0040&SRS=EPSG:4326&LAYERS=cite:Lakes,cite:Forests&WIDTH=200&HEIGHT=100&INF
O_FORMAT=text/xml&QUERY_LAYERS=cite:Lakes,cite:Forests&X=60&Y=60

The response is an XML document and the Content-Type of the response is text/xml.
Example D–5 is a response to the GetFeatureInfo request in Example D–4.

Example D–5 GetFeatureInfo Response

<?xml version="1.0" encoding="UTF-8" ?>
<GetFeatureInfo_Result>
 <ROWSET name="cite:Lakes">
 <ROW num="1">
 <ROWID>AAAK22AAGAAACUiAAA</ROWID>
 </ROW>
 </ROWSET>
 <ROWSET name="cite:Forests">
 <ROW num="1">
 <FEATUREID>109</FEATUREID>
 </ROW>
 </ROWSET>
</GetFeatureInfo_Result>

Most of the following sections describe parameters supported for a GetFeatureInfo
request. (Parameters that are specific to OracleAS MapViewer and not mentioned in
the WMS 1.1.1 specification are labeled OracleAS MapViewer-Only.) Section D.2.3.10
explains how to query attributes in a GetFeatureInfo request.

D.2.3.1 GetMap Parameter Subset for GetFeatureInfo Requests
A GetFeatureInfo request contains a subset of a GetMap request (BBOX, SRS, WIDTH,
HEIGHT, and optionally LAYERS parameters). These parameters are used to convert
the X, Y point from screen coordinates to a point in the coordinate system for the
layers being queried. It is assumed all layers are in the same coordinate system, the
one specified by the SRS parameter.

WMS Specification and Corresponding OracleAS MapViewer Concepts

D-10 Oracle Application Server MapViewer User’s Guide

D.2.3.2 EXCEPTIONS Parameter
The only supported value for the EXCEPTIONS parameter is the default:
application/vnd.ogc.se_xml. That is, only Service Exception XML is supported.
The exception is reported as an XML document conforming to the Service Exception
DTD available at

http://schemas.opengis.net/wms/1.1.1/WMS_exception_1_1_1.dtd

D.2.3.3 FEATURE_COUNT Parameter
The FEATURE_COUNT parameter specifies the maximum number of features in the
result set. The default value is 1. If more features than the parameter's value interact
with the query point (X, Y), then an arbitrary subset (of the size of the parameter's
value) of the features is returned in the result set. That is, a GetFeatureInfo call
translates into a query of the following general form:

SELECT <info_columns> FROM <layer_table>
 WHERE SDO_RELATE(<geom_column>,
 <query_point>, 'mask=ANYINTERACT')='TRUE'
 AND ROWNUM <= FEATURE_COUNT;

D.2.3.4 INFO_FORMAT Parameter
The value of the INFO_FORMAT parameter is always text/xml.

D.2.3.5 QUERY_LAYERS Parameter
The QUERY_LAYERS parameter specifies a comma-delimited list of layers to be
queried. If the LAYERS parameter is specified, the QUERY_LAYERS specification must
be a subset of the list specified in the LAYERS parameter.

If the QUERY_LAYERS parameter is specified, any BASEMAP parameter value is
ignored.

D.2.3.6 QUERY_TYPE Parameter (OracleAS MapViewer-Only)
The QUERY_TYPE parameter limits the result set to a subset of possibly qualifying
features by specifying one of the following values:

■ at_point: returns only the feature at the specified point.

■ nn: returns only the nearest neighbor features, with the number of results
depending on the value of the FEATURE_COUNT parameter value (see
Section D.2.3.3). The result set is not ordered by distance.

■ within_radius (or within_distance, which is a synonym): returns only
results within the distance specified by the RADIUS parameter value (see
Section D.2.3.7), up to the number matching the value of the FEATURE_COUNT
parameter value (see Section D.2.3.3). The result set is an arbitrary subset of the
answer set of potential features within the specified radius. The result set is not
ordered by distance.

D.2.3.7 RADIUS Parameter (OracleAS MapViewer-Only)
The RADIUS parameter specifies the radius of the circular search area for a query in
which the QUERY_TYPE parameter value is within_radius (see Section D.2.3.6). If
you specify the RADIUS parameter, you must also specify the UNIT parameter (see
Section D.2.3.8).

Adding a WMS Map Theme

OGC WMS Support in OracleAS MapViewer D-11

D.2.3.8 UNIT Parameter (OracleAS MapViewer-Only)
The UNIT parameter specifies the unit of measurement for the radius of the circular
search area for a query in which the QUERY_TYPE parameter value is within_
radius (see Section D.2.3.6). The value must be a valid linear measure value from the
SHORT_NAME column of the SDO_UNITS_OF_MEASURE table, for example:
meter, km, or mile.

If you specify the UNIT parameter, you must also specify the RADIUS parameter (see
Section D.2.3.7).

D.2.3.9 X and Y Parameters
The X and Y parameters specify the x-axis and y-axis coordinate values (in pixels),
respectively, of the query point.

D.2.3.10 Specifying Attributes to Be Queried for a GetFeatureInfo Request
In a GetFeatureInfo request, the styling rule for each queryable layer (theme) must
contain a <hidden_info> element that specifies which attributes are queried and
returned in the XML response. The <hidden_info> element is the same as the one
used for determining the attributes returned in an SVG map request.

An example of such a styling rule as follows:

SQL> select styling_rules from user_sdo_themes where name='cite:Forests';

STYLING_RULES
--
<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <hidden_info>
 <field column="FID" name="FeatureId"/>
 </hidden_info>
 <rule>
 <features style="C.PARK FOREST"> </features>
 <label column="NAME" style="T.PARK NAME"> 1 </label>
 </rule>
</styling_rules>

This styling rule specifies that if cite:Forests is one of the QUERY_LAYERS
parameter values in a GetFeatureInfo request, the column named FID is queried, and
its tag in the response document will be <FEATUREID>. The tag is always in
uppercase. If no <hidden_info> element is specified in the styling rules for the
theme's query layer, then the rowid is returned. In Example D–5, the styling rule for
the cite:Lakes layer has no <hidden_info> element; therefore, the default
attribute ROWID is returned in the XML response. The cite:Forests layer,
however, does have a <hidden_info> element, which specifies that the attribute
column is FID, and that its tag name, in the response document, should be
<FEATUREID>.

D.3 Adding a WMS Map Theme
You can add a WMS map theme to the current map request. The WMS map theme is
the result of a GetMap request, and it becomes an image layer in the set of layers
(themes) rendered by OracleAS MapViewer.

To add a WMS map theme, use the WMS-specific features of either the XML API (see
Section D.3.1) or the JavaBean-based API (see Section D.3.2).

Adding a WMS Map Theme

D-12 Oracle Application Server MapViewer User’s Guide

D.3.1 XML API for Adding a WMS Map Theme
To add a WMS map theme to the current map request using the OracleAS MapViewer
XML API, use the <wms_getmap_request> element in a <theme> element.

For better performance, the <wms_getmap_request> element should be used only to
request a map image from a Web map server (WMS) implementation. That is, the
<service_url> element in a <wms_getmap_request> element should specify a
WMS implementation, not an OracleAS MapViewer instance. If you want to specify an
OracleAS MapViewer instance (for example, specifying <service_url> with a value
of http://mapviewer.mycorp.com:8888/mapviewer/wms), consider using an
OracleAS MapViewer predefined theme or a JDBC theme in the <themes> element
instead of using a <wms_getmap_request> element.

The following example shows the general format of the <wms_getmap_request>
element within a <theme> element, and it includes some sample element values and
descriptive comments:

<themes>
 <theme>
 <wms_getmap_request isBackgroundTheme="true">
 <!-- The wms_getmap_request theme is rendered in the order it
 appears in the theme list unless isBackgroundTheme is "true".
 -->
 <service_url> http://wms.mapsrus.com/mapserver </service_url>
 <version> 1.1.1 </version>
 <!-- version is optional. Default value is "1.1.1".
 -->
 <layers> Administrative+Boundaries,Topography,Hydrography </layers>
 <!— layers is a comma-delimited list of names.
 If layer names contain spaces, use '+' instead of a space -->
 <!— styles is optional. It is a comma-delimited list, and it must
 have the same number of names as the layer list, if specified.
 If style names contain spaces, use '+' instead of a space -->
 <styles/>
 <srs> EPSG:4326 </srs>
 <format> image/png </format>
 <transparent> true </transparent>
 <bgcolor> 0xffffff </bgcolor>
 <exceptions> application/vnd.ogc.se_inimage </exceptions>
 <vendor_specific_parameters>
 <!-- one or more <vsp> elements each containing
 a <name> <value> pair -->
 <vsp>
 <name> datasource </name>
 <value> mvdemo </value>
 </vsp>
 <vendor_specific_parameters>
 <wms_getmap_request>
 </theme>
</themes>

The following attribute and elements are available with the <wms_getmap_request>
element:

■ The isBackgroundTheme attribute specifies whether or not this theme should be
rendered before the vector layers. The default value is false.

■ The <service_url> element specifies the URL (without the service parameters)
for the WMS service. Example: http://my.webmapserver.com/wms

Adding a WMS Map Theme

OGC WMS Support in OracleAS MapViewer D-13

■ The <version> element specifies the WMS version number. The value must be
one of the following: 1.0.0, 1.1.0, or 1.1.1 (the default).

■ The <layers> element specifies a comma-delimited list of layer names to be
included in the map request.

■ The <styles> element specifies a comma-delimited list of style names to be
applied to the layer names in layers.

■ The <srs> element specifies the coordinate system (spatial reference system)
name. The default value is EPSG:4326.

■ The <format> element specifies the format for the resulting map image. The
default value is image/png.

■ The <transparent> element specifies whether or not the layer or layers being
added should be transparent in the resulting map image . The default value is
false. To make the layer or layers transparent, specify true.

■ The <bgcolor> element specifies the RGB value for the map background color.
Use hexadecimal notation for the value, for example, 0xAE75B1. The default
value is 0xFFFFFF (that is, white).

■ The <exceptions> element specifies the format for server exceptions. The
default value is application/vnd.ogc.se_inimage.

■ The <vendor_specific_parameters> element contains one or more <vsp>
elements, each of which contains a <name> element specifying the parameter
name and a <value> element specifying the parameter value.

Example D–6 shows the <wms_getmap_request> element in a map request.

Example D–6 Adding a WMS Map Theme (XML API)

<?xml version="1.0" standalone="yes"?>
<map_request
 title="Raster WMS Theme and Vector Data"
 datasource="mvdemo" srid="0"
 width="500"
 height="375"
 bgcolor="#a6caf0"
 antialiase="true"
 mapfilename="wms_georaster” format="PNG_URL">
 <center size="185340.0">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>596082.0,8881079.0</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <themes>
 <theme name="WMS_TOPOGRAPHY" user_clickable="false" >
 <wms_getmap_request isBackgroundTheme="true">
 <service_url> http://wms.mapservers.com:8888/mapserver/wms </service_url>
 <layers> TOPOGRAPHY </layers>
 <srs> EPSG:29190 </srs>
 <format> image/png </format>
 <bgcolor> 0xa6caf0 </bgcolor>
 <transparent> true </transparent>
 <vendor_specific_parameters>
 <vsp>

Adding a WMS Map Theme

D-14 Oracle Application Server MapViewer User’s Guide

 <name> ServiceType </name>
 <value> mapserver </value>
 </vsp>
 </vendor_specific_parameters>
 </wms_getmap_request>
 </theme>
 <theme name="cl_theme" user_clickable="false">
 <jdbc_query spatial_column="geom" render_style="ltblue"
 jdbc_srid="82279" datasource="mvdemo"
 asis="false">select geom from classes where vegetation_type = 'forests'
 </jdbc_query>
 </theme>
 </themes>
 <styles>
 <style name="ltblue">
 <svg width="1in" height="1in">
 <g class="color"
 style="stroke:#000000;stroke-opacity:250;fill:#33ffff;fill-opacity:100">
 <rect width="50" height="50"/>
 </g>
 </svg>
 </style>
 </styles>
</map_request>

D.3.2 JavaBean-Based API for Adding a WMS Map Theme
To add a WMS map theme to the current map request using the OracleAS MapViewer
JavaBean-based API, use the addWMSMapTheme method.

This method should be used only to request a map image from a Web map server
(WMS) implementation. That is, the serviceURL parameter should specify a WMS
implementation, not an OracleAS MapViewer instance.

The addWMSMapTheme method has the following format:

addWMSMapTheme(String name, String serviceURL, String isBackgroundTheme,
 String version, String[] layers, String[] styles,
 String srs, String format, String transparent,
 String bgcolor, String exceptions,
 Object[] vendor_specific_parameters
);

The name parameter specifies the theme name.

The serviceURL parameter specifies the URL (without the service parameters) for
the WMS service. Example: http://my.webmapserver.com/wms

The isBackgroundTheme parameter specifies whether or not this theme should be
rendered before the vector layers. The default value is false.

The version parameter specifies the WMS version number. The value must be one of
the following: 1.0.0, 1.1.0, or 1.1.1 (the default).

The layers parameter specifies a comma-delimited list of layer names to be included
in the map request.

The styles parameter specifies a comma-delimited list of style names to applied to
the layer names in layers.

The srs parameter specifies the coordinate system (spatial reference system) name.
The default value is EPSG:4326.

Adding a WMS Map Theme

OGC WMS Support in OracleAS MapViewer D-15

The format parameter specifies the format for the resulting map image. The default
value is image/png.

The transparent parameter specifies whether or not the layer or layers being added
should be transparent in the resulting map image. The default value is false. To
make the layer or layers transparent, specify true.

The bgcolor parameter specifies the RGB value for the map background color. Use
hexadecimal notation for the value, for example, 0xAE75B1. The default value is
0xFFFFFF (that is, white).

The exceptions parameter specifies the format for server exceptions. The default
value is application/vnd.ogc.se_inimage.

The vendor_specific_parameters parameter specifies a list of vendor-specific
parameters. Each element in the object array is a String array with two strings:
parameter name and value. Example: vsp = new Object[]{new
String[]{"DATASOURCE", "mvdemo"}, //param 1 new
String[]{"antialiasing", "true"} //param 2

Adding a WMS Map Theme

D-16 Oracle Application Server MapViewer User’s Guide

Index-1

Index

A
active theme

getting, 4-10
add_data_source element, 6-1
addBucketStyle method, 4-8
addCollectionBucketStyle method, 4-8
addColorSchemeStyle method, 4-8
addColorStyle method, 4-8
addGeoRasterTheme method, 4-7
addImageAreaStyleFromURL method, 4-8, 4-9
addImageMarkerStyleFromURL method, 4-9
addImageTheme method, 4-7
adding themes to a map, 2-35
addJDBCTheme method, 4-7
addJDBCTheme tag, 5-3
addLinearFeature method, 4-7
addLineStyle method, 4-9
addLinksWithinCost method, 4-7
addMarkerStyle method, 4-9
addNetworkLinks method, 4-7
addNetworkNodes method, 4-7
addNetworkPaths method, 4-7
addNetworkTheme method, 4-7
addPointFeature method, 4-7
addPredefinedTheme method, 4-7
addPredefinedTheme tag, 5-5
addShortestPath method, 4-8
addTextStyle method, 4-9
addThemesFromBaseMap method, 4-8
addTopologyDebugTheme method, 4-8
addTopologyTheme method, 4-8
addVariableMarkerStyle method, 4-10
addWMSMapTheme method, D-14
administrative requests, 6-1

restricting, 1-23
Workspace Manager support, 2-42

advanced style, 2-2
pie chart example, 3-9
thematic mapping and, 2-12
XML format for defining, A-7

ALL_SDO_MAPS view, 2-43, 2-44
ALL_SDO_STYLES view, 2-43, 2-45
ALL_SDO_THEMES view, 2-43, 2-44
allow_local_adjustment attribute, 1-25
animated loading bar, B-2

antialiasing
attribute of map request, 3-20
setAntiAliasing method, 4-4
setParam tag parameter, 5-10

APIs
OracleAS MapViewer JavaBean, 4-1

adding a WMS map theme, D-14
OracleAS MapViewer JavaScript for SVG

maps, B-1
OracleAS MapViewer XML, 3-1

adding a WMS map theme, D-12
appearance

attributes affecting theme appearance, 2-18
area style, 2-2

XML format for defining, A-6
asis attribute, 3-32
aspect ratio

preserving, 3-23
autostarting OracleAS MapViewer, 1-13
AWT headless mode support, 1-4
azimuthal equidistant projection

used by OracleAS MapViewer for globular map
projection, 1-25

B
background color

for WMS requests, D-4
setting, 4-4

background image URL
setting, 4-4

base maps, 2-35
adding themes from base map to current map

request, 4-8
definition (example), 2-35
for WMS requests, D-4
importing, 5-8
listing for a data source, 6-6
part_of_basemap attribute for theme, 3-39
setting name of, 4-4
XML format for defining, A-14

basemap
attribute of map request, 3-20
setParam tag parameter, 5-11

BASEMAP parameter (WMS), D-4
BBOX parameter (WMS), D-4

Index-2

bean
OracleAS MapViewer API for, 4-1

bgcolor
attribute of map request, 3-21
setParam tag parameter, 5-11

BGCOLOR parameter (WMS), D-4
bgimage

attribute of map request, 3-21
setParam tag parameter, 5-11

border margin
for bounding themes, 3-23

bounding box
for WMS requests, D-4
specifying for map, 3-25

bounding themes
specifying for map, 3-23, 4-4

bounding_themes element, 3-23
box element, 3-25
bucket style

adding to map request, 4-8
specifying labels for buckets, 2-3
XML format for defining, A-8

C
cache

metadata, 2-39, 6-9
spatial data, 1-25, 6-10
with predefined themes, 2-10

caching attribute
for predefined theme, 2-10, A-13

center element, 3-25
center point

setting, 4-4
centerX

setParam tag parameter, 5-11
centerY

setParam tag parameter, 5-11
classes12.zip file, 7-1
classgen.jar file, D-3
clear_cache element, 6-9
clear_theme_cache element, 6-10
clickable (live) features, 4-15
cluster

deploying OracleAS MapViewer on middle-tier
cluster, 1-28

collection bucket style
adding to map request, 4-8
with discrete values, A-8

color scheme style
adding to map request, 4-8
XML format for defining, A-10

color style, 2-2
adding to map request, 4-8
XML format for defining, A-2

configuring OracleAS MapViewer, 1-16, 6-11
connection information

for adding a data source, 6-2
connections, maximum number of, 1-27
container data source, 1-27, 6-2

container_ds attribute, 1-27, 6-2
coordinate system, 2-35

conversion by OracleAS MapViewer for map
request, 3-8

coordinate system ID
See SRID

cost analysis
of network nodes, 4-7

custom image renderer, C-1

D
data source methods

using, 4-13
data sources

adding, 6-1
checking existence of, 4-13, 6-6
clearing metadata cache, 6-9
container_ds attribute, 1-27, 6-2
defining, 1-29
explanation of, 2-38
for WMS requests, D-4
listing, 6-5
listing base maps in, 6-6
listing names of, 4-13
listing themes in, 6-7
permanent, 1-26
redefining, 6-4
removing, 6-3
setting name of, 4-4
using multiple data sources in a map request

(datasource attribute for theme), 3-38
data_source_exists element, 6-6
datasource

attribute of map request, 3-20
attribute of theme specification in a map

request, 3-38
DATASOURCE parameter (WMS), D-4
dataSourceExists method, 4-13
DBA_SDO_STYLES view, 2-45
debug mode

topology themes, 2-33
adding theme, 4-8

decorative aspects
attributes affecting theme appearance, 2-18

defaultstyles.sql file, 1-14
default-web-site.xml file, 1-13
deleteAllThemes method, 4-10
deleteMapLegend method, 4-6
deleteStyle method, 4-10
deleteTheme method, 4-10
demo

OracleAS MapViewer JavaBean API, 4-3
deploying OracleAS MapViewer, 1-4
disableFeatureSelect function, B-2
disablePolygonSelect function, B-2
disableRectangleSelect function, B-3
doQuery method, 4-14
doQueryInMapWindow method, 4-14
drawLiveFeatures method, 4-16

Index-3

DTD
exception, 3-41
Geometry (Open GIS Consortium), 3-42
information request, 3-40
map request, 3-14

examples, 3-2
map response, 3-41

dynamic themes
adding to map request, 4-6

DYNAMIC_STYLES parameter (WMS), D-5
dynamically defined styles, 2-3, 3-36

adding to map request, 4-8
for WMS requests, D-5
removing, 4-10

dynamically defined themes, 2-10, 3-31, 3-37
See also JDBC themes

E
edit_config_file element, 6-11
enableFeatureSelect function, B-2
enablePolygonSelect function, B-2
enableRectangleSelect function, B-3
enableThemes method, 4-10
EPSG

in SRS parameter (WMS), D-6
example programs using OracleAS MapViewer

Java, 3-11
PL/SQL, 3-13

exception DTD, 3-41
EXCEPTIONS parameter (WMS)

for GetFeatureInfo request, D-10
for GetMap request, D-5

F
fast_unpickle attribute, 3-38
feature selection

enabling and disabling, B-2
FEATURE_COUNT parameter (WMS), D-10
features

new, xv
field element

for hidden information, 3-33, A-14
filter (spatial)

getting, 4-14
fixed_svglabel attribute, 3-38
format

attribute of map request, 3-20
FORMAT parameter (WMS), D-5

G
geodetic data

projecting to local non-geodetic coordinate
system, 1-25

geoFeature element, 3-26
Geometry DTD (Open GIS Consortium), 3-42
GeoRaster themes, 2-21

adding to current map request, 4-7
defining with jdbc_georaster_query element, 3-29

library files needed, 1-4
setting polygon mask, 2-22, 4-11
theme_type attribute in styling rules, A-12

getActiveTheme method, 4-10
getAntiAliasing method, 4-4
GetCapabilities request and response, D-6
getDataSources method, 4-13
getEnabledThemes method, 4-10
GetFeatureInfo request

specifying attributes to be queried, D-11
supported features, D-9

getGeneratedMapImage method, 4-13
getGeneratedMapImageURL method, 4-13
getInfo function, B-3
getLiveFeatureAttrs method, 4-16
GetMap request

parameters, D-3
getMapMBR method, 4-13
getMapResponseString method, 4-13
getMapURL tag, 5-5
getNumLiveFeatures method, 4-16
getParam tag, 5-6
getScreenCoordinate function, B-5
getSelectedIdList function, B-3
getSelectPolygon function, B-3
getSelectRectangle function, B-3
getSpatialFilter method, 4-14
getThemeEnabled method, 4-10
getThemeNames method, 4-10
getThemePosition method, 4-10
getThemeVisibleInSVG method, 4-10
getUserCoordinate function, B-5
getUserPoint method, 4-14
getWhereClauseForAnyInteract method, 4-15
getXMLResponse method, 4-13
GIF format, 3-20
GIF_STREAM format, 3-20
GIF_URL format, 3-20
globular map projection, 1-25

H
hasLiveFeatures method, 4-16
hasThemes method, 4-10
headless AWT mode support, 1-4
height

attribute of map request, 3-20
setParam tag parameter, 5-11

HEIGHT parameter (WMS), D-5
hidden information (SVG maps)

displaying when mouse moves over, 3-22, 4-6
hidden_info element, 3-31, 3-33, A-14

hidden themes
getThemeVisibleInSVG method, 4-10
setThemeVisible method, 4-12

hidden_info attribute, 3-28
hidden_info element, 3-31, 3-33, A-14
hideTheme function, B-2
high availability

using OracleAS MapViewer with, 1-28

Index-4

highlightFeatures method, 4-16
http-web-site.xml file, 1-13

I
identify method, 4-15
identify tag, 5-6
image area style

adding to map request, 4-8, 4-9
image format

for WMS requests, D-5
setting, 4-5

image marker style
adding to map request, 4-9
XML format for defining, A-4

image renderer
creating and registering, C-1

image scaling
setting automatic rescaling, 4-5

image themes, 2-19
adding, 4-7
defining with jdbc_image_query element, 3-29
example, 3-6
setting scale values, 4-11
setting transparency value, 4-11
setting unit and resolution values, 4-12
theme_type attribute in styling rules, A-12

imagescaling
attribute of map request, 3-20
setParam tag parameter, 5-11

importBaseMap tag, 5-8
indexed PNG format support, 3-21
INFO_FORMAT parameter (WMS), D-10
info_request element, 3-40
infoon attribute, 3-22
information request DTD, 3-40
init tag, 5-8
initial scale, 3-22
initscale attribute, 3-22
installing OracleAS MapViewer, 1-4
isClickable method, 4-16

J
jai_codec.jar file, 1-4
jai_core.jar file, 1-4
Java example program using OracleAS

MapViewer, 3-11
JAVA_IMAGE format, 3-20
JavaBean-based API for OracleAS MapViewer, 4-1

demo, 4-3
Javadoc, 4-3

Javadoc
OracleAS MapViewer JavaBean API, 4-3

JavaScript functions for SVG maps, B-1
JavaServer Pages (JSP)

tag library for OracleAS MapViewer, 5-1
JDBC themes, 2-10

adding, 4-7, 5-3
saving complex SQL queries, 2-11

using a pie chart style, 3-10
jdbc_georaster_query element, 3-29
jdbc_host attribute, 6-2
jdbc_image_query element, 3-29
jdbc_mode attribute, 6-2
jdbc_network_query element, 3-31
jdbc_password attribute, 6-2
jdbc_port attribute, 6-2
jdbc_query element, 3-31
jdbc_sid attribute, 6-2
jdbc_tns_name attribute, 6-2
jdbc_topology_query element, 3-33
jdbc_user attribute, 6-2
join view

key_column styling rule attribute required for
theme defined on join view, A-12

JPEG image format support, 3-21
JSP tag library for OracleAS MapViewer, 5-1

K
key_column attribute

for theme defined on a join view, A-12

L
label attribute, 2-14
label_always_on attribute, 3-38
labeling of spatial features, 2-9

label styles for individual buckets, 2-3
LAYERS parameter (WMS), D-5
legend, 2-37

creating, 5-9
deleting, 4-6
element, 3-33
example, 2-37
setting, 4-5

LEGEND_REQUEST parameter (WMS), D-5
legends

for WMS requests, D-5
legendSpec parameter, 4-5
line style, 2-2

adding to map request, 4-9
XML format for defining, A-5

linear features
adding, 4-7
removing, 4-8

list_data_sources element, 6-5
list_maps element, 6-6
list_predefined_themes element, 6-7
list_styles element, 6-8
list_workspace_name element, 2-42
list_workspace_session element, 2-42
live features, 4-15
load balancer

using OracleAS MapViewer with, 1-29
loading bar, B-2
local geodetic data adjustment

specifying for map, 1-25
logging element, 1-21

Index-5

logging information, 1-21
logo

specifying for map, 1-24
longitude/latitude coordinate system, 2-35

M
makeLegend tag, 5-9
Map Definition Tool, 7-1
map image file information, 1-22
map legend, 2-37

creating, 5-9
deleting, 4-6
example, 2-37
legend element, 3-33
setting, 4-5

map logo, 1-24
map note, 1-24
map request DTD, 3-14

examples, 3-2
map requests

getting parameter value, 5-6
sending to OracleAS MapViewer service, 4-12
setting parameters for, 5-10
submitting using run JSP tag, 5-9
XML API, 3-1

map response
extracting information from, 4-13

map response DTD, 3-41
map response string

getting, 4-13
map result file name

setting, 4-5
map size

setting, 4-6
map title, 1-24

setting, 4-5
map URL

getting, 5-5
map_data_source element, 1-26
map_request element, 3-19

attributes, 3-19
mapdefinition.sql file, 1-14, 2-44
mapdef.jar file, 7-1
map-level mouse-click event control functions, B-3
mappers (renderers), 2-39

number of, 1-27, 6-2
mapping profile, 2-2
maps, 2-35

creating by adding themes and rendering, 2-35
explanation of, 2-35
how they are generated, 2-39
listing, 6-6
metadata view, 2-43
scale, 2-36
size, 2-36
XML format, A-1

mapViewerConfig.xml configuration file
customizing, 1-16
editing, 6-11

sample, 1-17
mapviewer.ear file, 1-5, 1-7, 1-12
marker style, 2-2

adding to map request, 4-9
orienting, 2-6
using on lines, A-4
XML format for defining, A-2

max_connections attribute, 1-27
max_scale attribute, 2-36
MBR

getting for map, 4-13
metadata cache, 2-39

clearing, 6-9
metadata views, 2-43

mapdefinition.sql file, 2-44
middle-tier cluster

deploying OracleAS MapViewer on, 1-28
min_dist attribute, 3-38
min_scale attribute, 2-36
minimum bounding rectangle (MBR)

getting for map, 4-13
mode attribute, 3-38
mouse click

event control functions for SVG maps, B-2
getting point associated with, 4-14

mouse-click event control function, 3-39, B-4
mouse-move event control function, 3-39, B-4
mouse-out event control function, 3-39, B-4
mouse-over event control function, 3-39, B-4
moveThemeDown method, 4-10
moveThemeUp method, 4-11
multiprocess OC4J instance

deploying OracleAS MapViewer on, 1-28
mvclient.jar file, 5-2
mvtaglib.tld file, 5-2
MVTHEMES parameter (WMS), D-5

N
navbar attribute, 3-22
navigation bar (SVG map), 3-22, 4-6
network analysis

shortest-path, 2-31, 4-8
within-cost, 2-32, 4-7

network connection information
for adding a data source, 6-2

network themes, 2-28
adding, 4-7
defining with jdbc_network_query element, 3-31
library files needed, 1-4
setting labels, 4-11
theme_type attribute in styling rules, A-12

networked drives
using OracleAS MapViewer with, 1-28

new features, xv
non_map_request element, 6-1
non_map_response element, 6-1
non-map requests

See administrative requests
nonspatial attributes

Index-6

getting values, 5-6
identifying, 4-15
querying, 4-13

note
specifying for map, 1-24

number_of_mappers attribute, 1-27, 2-39, 6-2

O
OC4J configuration files, 1-13
OGC (Open GIS Consortium)

Geometry DTD, 3-42
WMS support by OracleAS MapViewer, D-1

oms_error element, 3-41
onclick attribute, 3-27, 3-39

map request, 3-22
onClick function (SVG map), 4-6, 4-11
onmousemove attribute, 3-39

map request, 3-22
onmouseout attribute, 3-39
onmouseover attribute, 3-39
onpolyselect attribute, B-5

map request, 3-23
onrectselect attribute, B-5

map request, 3-22
Open GIS Consortium

Geometry DTD, 3-42
WMS support by OracleAS MapViewer, D-1

OracleAS MapViewer bean
creating, 5-8

OracleAS MapViewer configuration file
customizing, 1-16
editing, 6-11
sample, 1-17

OracleAS MapViewer exception DTD, 3-41
OracleAS MapViewer information request

DTD, 3-40
OracleAS MapViewer server

restarting, 6-11
starting automatically, 1-13

orientation vector, 3-27
using with an oriented point, 2-5

oriented points
pointing label or marker in direction of orientation

vector, 2-5
orion-web.xml script, 1-16

P
pan method, 4-12
parameter value for map request

getting, 5-6
parameters for map request

setting, 5-10
part_of_basemap attribute, 3-39
permanent data sources

defining, 1-26
pickling

fast_unpickle theme attribute, 3-38
setThemeFastUnpickle method, 4-11

pie chart
map request using, 3-9

PL/SQL example program using OracleAS
MapViewer, 3-13

PNG image format support, 3-21
PNG8 (indexed) image format support, 3-21
point features

adding, 4-7
removing, 4-8

polygon mask
setting for GeoRaster theme, 2-22, 4-11

polygon selection
enabling and disabling, B-2

polygon_mask attribute, 2-22
predefined mouse-click event control functions, B-2
predefined themes, 2-8, 3-37

adding, 4-7, 5-5
caching of, 2-10
LAYERS parameter (WMS), D-5
listing, 6-7

prerequisite software for using OracleAS
MapViewer, 1-3

preserve_aspect_ratio attribute, 3-23
progress indicator

loading of map, B-2
projection of geodetic data to local non-geodetic

coordinate system, 1-25
proxy (Web) for OracleAS MapViewer service

setting, 4-6

Q
query type

for WMS requests, D-10
query window

setting, 4-4
QUERY_LAYERS parameter (WMS), D-10
QUERY_TYPE parameter (WMS), D-10

R
radius

for WMS requests, D-10
RADIUS parameter (WMS), D-10
rasterbasemap attribute, 3-22
recenter function, B-1
rectangle selection

enabling and disabling, B-3
redefine_data_source element, 6-4
remove_data_source element, 6-3
removeAllDynamicStyles method, 4-10
removeAllLinearFeatures method, 4-8
removeAllPointFeatures method, 4-8
renderer

creating and registering custom image
renderer, C-1

renderers (mappers), 2-39
number_of_mappers attribute, 1-27, 6-2

rendering a map, 2-35
REQUEST parameter (WMS)

Index-7

GetMap or GetCapabilities, D-6
required software for using OracleAS

MapViewer, 1-3
resolution

setThemeUnitAndResolution method, 4-12
response string for map

getting, 4-13
restart element, 6-11
restarting the OracleAS MapViewer server, 6-11
rules

styling, 2-8
run method, 4-12
run tag, 5-9

S
save_images_at element, 1-22
scale of map, 2-36

setting for theme, 4-11
scaling

of image, 3-20, 5-11
sdoapi.jar file, 1-5, 1-6
sdonm.jar file, 1-4
sdoutl.jar file, 1-5, 1-6
sdovis.jar file, 1-5, 1-6
selectable themes (SVG map), 4-11
selectable_in_svg attribute, 3-27, 3-39
selectFeature function, B-3
selection event mouse-click event control

functions, B-5
sendXMLRequest method, 4-13
seq attribute, 2-14
server.xml file, 1-13
SERVICE parameter (WMS), D-6
setAllThemesEnabled method, 4-11
setAntiAliasing method, 4-4
setBackgroundColor method, 4-4
setBackgroundImageURL method, 4-4
setBaseMapName method, 4-4
setBoundingThemes method, 4-4
setBox method, 4-4
setCenter method, 4-4
setCenterAndSize method, 4-4
setClickable method, 4-16
setDataSourceName method, 4-4
setDefaultStyleForCenter method, 4-4
setDeviceSize method, 4-5
setFullExtent method, 4-5
setGeoRasterThemePolygonMask method, 4-11
setImageFormat method, 4-5
setImageScaling method, 4-5
setLabelAlwaysOn method, 4-11
setMapLegend method, 4-5
setMapRequestSRID method, 4-5
setMapResultFileName method, 4-5
setMapTitle method, 4-5
setNetworkThemeLabels method, 4-11
setParam tag, 5-10
setSelectPolygon function, B-3
setSelectRectangle function, B-3

setServiceURL method, 4-6
setShowSVGNavBar method, 4-6
setSize method, 4-6
setSVGOnClick method, 4-6
setSVGShowInfo method, 4-6
setSVGZoomFactor method, 4-6
setSVGZoomLevels method, 4-6
setSVGZoomRatio method, 4-6
setThemeAlpha method, 4-11
setThemeEnabled method, 4-11
setThemeFastUnpickle method, 4-11
setThemeOnClickInSVG method, 4-11
setThemeScale method, 4-11
setThemeSelectableInSVG method, 4-11
setThemeUnitAndResolution method, 4-12
setThemeVisible method, 4-12
setWebProxy method, 4-6
setZoomRatio function, B-1
shortest-path analysis, 2-31

addShortestPath method, 4-8
showLoadingBar function, B-2
showTheme function, B-2
size (map)

setting, 4-6
size of map, 2-36
spatial data cache

clearing, 6-10
customizing, 1-25

spatial filter
getting, 4-14

spatial reference ID
See SRID

spatial_data_cache element, 1-25
SRID

conversion by OracleAS MapViewer for map
request, 3-8

setting, 4-5
srid

attribute of map request, 3-20
SRS parameter (WMS), D-6
starting OracleAS MapViewer automatically, 1-13
style element, 3-36
styles, 2-2

advanced, 2-2
pie chart example, 3-9
thematic mapping and, 2-12
XML format for defining, A-7

area, 2-2
XML format for defining, A-6

bucket
adding to map request, 4-8
specifying labels for buckets, 2-3
XML format for defining, A-8

color, 2-2
adding to map request, 4-8
XML format for defining, A-2

color scheme
adding to map request, 4-8
XML format for defining, A-10

dynamically defined, 2-3, 3-36

Index-8

adding to map request, 4-8
image marker

adding to map request, 4-9
XML format for defining, A-4

label styles for buckets, 2-3
line, 2-2

adding to map request, 4-9
XML format for defining, A-5

listing, 6-8
marker, 2-2

adding to map request, 4-9
XML format for defining, A-2

metadata view, 2-43
removing, 4-10
text, 2-2

adding to map request, 4-9
XML format for defining, A-7

variable marker
adding to map request, 4-10
XML format for defining, A-11

vector marker
adding to map request, 4-9
XML format for defining, A-3

XML format, A-1
styles element, 3-37
STYLES parameter (WMS), D-6
styling rules, 2-8, A-1

XML format for specifying, A-11
SVG Basic (SVGB) image format support, 3-21
SVG Compressed (SVGZ) image format

support, 3-21
SVG maps

display control functions, B-2
fixed_svglabel attribute, 3-38
hidden themes, 4-12
hidden_info attribute, 3-28
infoon attribute, 3-22
initscale attribute, 3-22
JavaScript functions, B-1
mouse-click event control functions, B-2
navbar attribute, 3-22
navigation bar, 4-6
navigation control functions, B-1
onclick attribute, 3-22, 3-27, 3-39
onClick function, 4-6, 4-11
onmousemove attribute, 3-22, 3-39
onmouseout attribute, 3-39
onmouseover attribute, 3-39
onpolyselect attribute, 3-23, B-5
onrectselect attribute, 3-22, B-5
other control functions, B-5
part_of_basemap attribute, 3-39
rasterbasemap attribute, 3-22
selectable themes, 4-11
selectable_in_svg attribute, 3-27, 3-39
setSVGShowInfo method, 4-6
setSVGZoomFactor method, 4-6
setSVGZoomLevels method, 4-6
setSVGZoomRatio method, 4-6
setThemeOnClickInSVG method, 4-11

setThemeSelectableInSVG method, 4-11
setThemeVisible method, 4-12
SVG_STREAM and SVG_URL format attribute

values, 3-21
SVGTINY_STREAM and SVGTINY_URL format

attribute values, 3-21
SVGZ_STREAM and SVGZ_URL format attribute

values, 3-21
visible themes, 4-12
visible_in_svg attribute, 3-38
zoomfactor attribute, 3-21
zoomlevels attribute, 3-21
zoomratio attribute, 3-22

SVG Tiny (SVGT) image format support, 3-21
switchInfoStatus function, B-2
switchLegendStatus function, B-2

T
taglib directive, 5-2
temporary styles

See dynamically defined styles
text style, 2-2

adding to map request, 4-9
orienting, 2-5
XML format for defining, A-7

thematic mapping, 2-12
theme element, 3-37
theme_type attribute

for certain types of predefined themes, A-12
theme-level mouse-event control functions, B-4
themes, 2-7

adding to a map, 2-35
attributes affecting appearance, 2-18
based on views, 2-7
checking for, 4-10
clearing spatial data cache, 6-10
deleting, 4-10
disabling, 4-11
dynamic

adding to map request, 4-6
dynamically defined, 2-10, 3-31, 3-37
enabling, 4-10, 4-11
fast unpickling, 3-38, 4-11
feature selection

enabling and disabling, B-2
fixed SVG label, 3-38
for WMS requests, D-5
GeoRaster, 2-21

adding to current map request, 4-7
defining with jdbc_georaster_query

element, 3-29
library files needed, 1-4
setting polygon mask, 2-22, 4-11
theme_type attribute in styling rules, A-12

getting, 4-10
hidden information display, 3-22
image, 2-19

adding, 4-7
defining with jdbc_image_query element, 3-29

Index-9

setting transparency value, 4-11
setting unit and resolution values, 4-12
theme_type attribute in styling rules, A-12

initial scale, 3-22
JavaScript function to call on click, 3-27, 3-39
JavaScript function to call on mouse-move

event, 3-39
JavaScript function to call on mouse-out

event, 3-39
JavaScript function to call on mouse-over

event, 3-39
JavaScript function to call on polygon

selection, B-5
JavaScript function to call on rectangle

selection, B-5
JDBC, 2-10
listing, 4-10, 6-7
metadata view, 2-43
minimum distance, 3-38
moving down, 4-10
moving up, 4-11
navigation bar, 3-22
network, 2-28

adding, 4-7
defining with jdbc_network_query

element, 3-31
library file needed, 1-4
setting labels, 4-11
theme_type attribute in styling rules, A-12

part of base map, 3-39
predefined, 2-8, 3-37
raster base map, 3-22
resolution value

setting, 4-12
selectable in SVG maps, 3-27, 3-39, 4-11
setting GeoRaster theme polygon mask, 2-22,

4-11
setting labels always on, 3-38, 4-11
setting network theme labels, 4-11
setting scale values, 4-11
setting visible or hidden, 4-12
styling rules, A-11
topology, 2-32

adding, 4-8
debug mode, 2-33
debug mode (adding theme), 4-8
defining with jdbc_topology_query

element, 3-33
theme_type attribute in styling rules, A-12

unit value
setting, 4-12

visibility in SVG maps, 3-38
WMS map

adding, D-11
adding (JavaBean-based API), D-14
adding (XML API), D-12

Workspace Manager support, 2-40
XML format, A-1
zoom factor, 3-21
zoom levels, 3-21

zoom ratio, 3-22
themes element, 3-39
thick clients

using optimal OracleAS MapViewer bean methods
for, 4-15

tiny SVG images
SVG Tiny (SVGT) image format support, 3-21

tips
specifying using hidden_info attribute, 3-28

title
attribute of map request, 3-21
setParam tag parameter, 5-11
specifying for map, 1-24

topology themes, 2-32
adding, 4-8
debug mode, 2-33

adding theme, 4-8
defining with jdbc_topology_query element, 3-33
theme_type attribute in styling rules, A-12

transparency
setThemeAlpha method, 4-11

transparent
attribute of map request, 3-21

TRANSPARENT parameter (WMS)
supported for PNG format, D-6

U
unit

setThemeUnitAndResolution method, 4-12
unit of measurement

for WMS requests, D-11
UNIT parameter (WMS), D-11
unpickling

fast_unpickle theme attribute, 3-38
setThemeFastUnpickle method, 4-11

use_globular_projection option, 1-25
USER_SDO_GEOM_METADATA view

entry for predefined theme based on a view, 2-8
inserting row into, 2-8

USER_SDO_MAPS view, 2-43, 2-44
USER_SDO_STYLES view, 2-43, 2-45
USER_SDO_THEMES view, 2-43, 2-44
user-defined mouse event control functions, B-3

theme-level, B-4
user-defined mouse-click event control functions

map-level, B-3
selection event, B-5

V
variable marker style

adding to map request, 4-10
XML format for defining, A-11

vector marker style
adding to map request, 4-9
XML format for defining, A-3

VERSION parameter (WMS), D-6
views

key_column styling rule attribute required for

Index-10

theme defined on join view, A-12
metadata, 2-43
themes based on views, 2-7

visible themes
getThemeVisibleInSVG method, 4-10
setThemeVisible method, 4-12

visible_in_svg attribute, 3-38

W
Web Map Service (WMS) protocol, D-1

adding a WMS map theme, D-11
setting up for OracleAS MapViewer, D-1
See also entries starting with "WMS"

Web proxy for OracleAS MapViewer service
setting, 4-6

WGS 84 coordinate system, 2-35
WHERE clause

getting, 4-15
width

attribute of map request, 3-20
setParam tag parameter, 5-11

WIDTH parameter (WMS), D-6
within-cost analysis, 2-32

addLinksWithinCost method, 4-7
WMS data source

default for GetMap requests, D-4
WMS map themes

adding, D-11
JavaBean-based API, D-14
XML API, D-12

wms_getmap_request element, D-12
WMSFilter.jar file, D-3
Workspace Manager

support in OracleAS MapViewer, 2-40
workspace_date attribute, 2-41
workspace_date_format attribute, 2-41
workspace_date_nlsparam attribute, 2-41
workspace_date_tswtz attribute, 2-41
workspace_name attribute, 2-41
workspace_savepoint attribute, 2-41

X
X parameter (WMS), D-11
X11 DISPLAY variable

no need to set when using AWT headless
mode, 1-4

XML
API for OracleAS MapViewer, 3-1
format for maps, A-1
format for styles, A-1
format for themes, A-1

xmlparserv2.jar file, D-3

Y
Y parameter (WMS), D-11

Z
zoom factor, 3-21, 4-6
zoom levels, 3-21, 4-6
zoom ratio, 3-22, 4-6

setting, B-1
zoomfactor attribute, 3-21
zoomIn method, 4-12
zoomlevels attribute, 3-21
zoomOut method, 4-12
zoomratio attribute, 3-22

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	New and Changed Features
	Enhanced SVG Mouse Event Support
	Oracle Spatial GeoRaster Support
	Oracle Spatial Network Data Model Support
	Oracle Spatial Topology Data Model Support
	Workspace Manager Support
	Multiple Data Sources in a Map Request
	Maps in SVG Formats (Basic, Compressed, and Tiny)
	Dynamic Coordinate System Transformation in a Map Request
	OGC WMS Protocol Support
	JPEG Format and Transparent PNG Map Support
	Container Data Source as the Map Data Source
	OracleAS MapViewer Configuration File Moved Inside the web.war File
	Label Styles in a Bucket-Based Advanced Style
	Style Enhancements
	Dynamically Defined (Temporary) Styles
	Bounding Themes Option for Restricting Displayed Data
	Performance Enhancements and Bug Fixes
	High Availability and OracleAS MapViewer
	Flash Map Support Deprecated

	1 Introduction to OracleAS MapViewer
	1.1 Overview of OracleAS MapViewer
	1.1.1 Basic Flow of Action with OracleAS MapViewer
	1.1.2 OracleAS MapViewer Architecture

	1.2 Getting Started with OracleAS MapViewer
	1.3 Prerequisite Software for OracleAS MapViewer
	1.4 Installing and Deploying OracleAS MapViewer
	1.4.1 Deploying OracleAS MapViewer in an Oracle Application Server Environment
	1.4.1.1 URL Mappings for the Web Modules Page
	1.4.1.2 Summary Page
	1.4.1.3 Pages for Completing the Deployment
	1.4.1.4 Configuring a Secure Administrator User for OracleAS MapViewer

	1.4.2 Installing OracleAS MapViewer with a Standalone Installation of OC4J
	1.4.2.1 Editing the OC4J Configuration Files to Autostart OracleAS MapViewer
	1.4.2.2 Restarting OC4J
	1.4.2.3 Running SQL Scripts, If Necessary
	1.4.2.4 Verifying That the Deployment Was Successful
	1.4.2.5 Checking the OracleAS MapViewer Administrator User Account

	1.5 Configuring OracleAS MapViewer
	1.5.1 Specifying Logging Information
	1.5.2 Specifying Map File Storage and Life Cycle Information
	1.5.3 Restricting Administrative (Non-Map) Requests
	1.5.4 Specifying a Web Proxy for Background Image URLs
	1.5.5 Specifying Global Map Configuration Options
	1.5.6 Customizing the Spatial Data Cache
	1.5.7 Defining Permanent Map Data Sources

	1.6 High Availability and OracleAS MapViewer
	1.6.1 Deploying OracleAS MapViewer on a Multiprocess OC4J Instance
	1.6.2 Deploying OracleAS MapViewer on a Middle-Tier Cluster

	1.7 Getting Started Using OracleAS MapViewer
	1.7.1 Dynamically Defining OracleAS MapViewer Data Sources
	1.7.2 Example JSP File That Uses OracleAS MapViewer
	1.7.3 Additional JSP Example Files

	2 OracleAS MapViewer Concepts
	2.1 Overview of OracleAS MapViewer
	2.2 Styles
	2.2.1 Specifying a Label Style for a Bucket
	2.2.2 Orienting Text Labels and Markers
	2.2.2.1 Controlling Text Style Orientation
	2.2.2.2 Controlling Marker Orientation

	2.3 Themes
	2.3.1 Predefined Themes
	2.3.1.1 Styling Rules in Predefined Spatial Geometry Themes
	2.3.1.2 Caching of Predefined Themes

	2.3.2 JDBC Themes
	2.3.2.1 Storing Complex JDBC Themes in the Database

	2.3.3 Thematic Mapping
	2.3.4 Attributes Affecting Theme Appearance
	2.3.5 Image Themes
	2.3.5.1 Creating Predefined Image Themes

	2.3.6 GeoRaster Themes
	2.3.6.1 Creating Predefined GeoRaster Themes

	2.3.7 Network Themes
	2.3.7.1 Creating Predefined Network Themes
	2.3.7.2 Using OracleAS MapViewer for Network Analysis

	2.3.8 Topology Themes
	2.3.8.1 Creating Predefined Topology Themes

	2.4 Maps
	2.4.1 Map Size and Scale
	2.4.2 Map Legend

	2.5 Data Sources
	2.6 How a Map Is Generated
	2.7 Workspace Manager Support in OracleAS MapViewer
	2.8 OracleAS MapViewer Metadata Views
	2.8.1 xxx_SDO_MAPS Views
	2.8.2 xxx_SDO_THEMES Views
	2.8.3 xxx_SDO_STYLES Views

	3 OracleAS MapViewer Map Request XML API
	3.1 Map Request Examples
	3.1.1 Simple Map Request
	3.1.2 Map Request with Dynamically Defined Theme
	3.1.3 Map Request with Base Map, Center, and Additional Predefined Theme
	3.1.4 Map Request with Center, Base Map, Dynamically Defined Theme, and Other Features
	3.1.5 Map Request for Point Features with Attribute Value and Dynamically Defined Variable Marker Style
	3.1.6 Map Request with an Image Theme
	3.1.7 Map Request for Image of Map Legend Only
	3.1.8 Map Request with SRID Different from Data SRID
	3.1.9 Map Request Using a Pie Chart Theme
	3.1.10 Java Program Using OracleAS MapViewer
	3.1.11 PL/SQL Program Using OracleAS MapViewer

	3.2 Map Request DTD
	3.2.1 map_request Element
	3.2.1.1 map_request Attributes

	3.2.2 bounding_themes Element
	3.2.3 box Element
	3.2.4 center Element
	3.2.5 geoFeature Element
	3.2.6 jdbc_georaster_query Element
	3.2.7 jdbc_image_query Element
	3.2.8 jdbc_network_query Element
	3.2.9 jdbc_query Element
	3.2.10 jdbc_topology_query Element
	3.2.11 legend Element
	3.2.12 style Element
	3.2.13 styles Element
	3.2.14 theme Element
	3.2.15 themes Element

	3.3 Information Request DTD
	3.4 Map Response DTD
	3.5 OracleAS MapViewer Exception DTD
	3.6 Geometry DTD (OGC)

	4 OracleAS MapViewer JavaBean-Based API
	4.1 Usage Model for the OracleAS MapViewer JavaBean-Based API
	4.2 Preparing to Use the OracleAS MapViewer JavaBean-Based API
	4.3 Using the OracleAS MapViewer Bean
	4.3.1 Creating the OracleAS MapViewer Bean
	4.3.2 Setting Up Parameters of the Current Map Request
	4.3.3 Adding Themes or Features to the Current Map Request
	4.3.4 Adding Dynamically Defined Styles to a Map Request
	4.3.5 Manipulating Themes in the Current Map Request
	4.3.6 Sending a Request to the OracleAS MapViewer Service
	4.3.7 Extracting Information from the Current Map Response
	4.3.8 Obtaining Information About Data Sources
	4.3.9 Querying Nonspatial Attributes in the Current Map Window
	4.3.10 Using Optimal Methods for Thick Clients

	5 OracleAS MapViewer JSP Tag Library
	5.1 Using OracleAS MapViewer JSP Tags
	5.2 OracleAS MapViewer JSP Tag Reference Information
	5.2.1 addJDBCTheme
	5.2.2 addPredefinedTheme
	5.2.3 getMapURL
	5.2.4 getParam
	5.2.5 identify
	5.2.6 importBaseMap
	5.2.7 init
	5.2.8 makeLegend
	5.2.9 run
	5.2.10 setParam

	5.3 JSP Example (Several Tags) for OracleAS MapViewer

	6 OracleAS MapViewer Administrative Requests
	6.1 Managing Data Sources
	6.1.1 Adding a Data Source
	6.1.2 Removing a Data Source
	6.1.3 Redefining a Data Source
	6.1.4 Listing All Data Sources
	6.1.5 Checking the Existence of a Data Source

	6.2 Listing All Maps
	6.3 Listing Themes
	6.4 Listing Styles
	6.5 Managing Cache
	6.5.1 Clearing Metadata Cache for a Data Source
	6.5.2 Clearing Spatial Data Cache for a Theme

	6.6 Editing the OracleAS MapViewer Configuration File
	6.7 Restarting the OracleAS MapViewer Server

	7 Map Definition Tool
	7.1 Overview of the Map Definition Tool
	7.2 Connection Page
	7.3 Styles: Color Page
	7.4 Styles: Marker Page
	7.5 Styles: Line Page
	7.6 Styles: Area Page
	7.7 Styles: Text Page
	7.8 Styles: Advanced Page
	7.9 Themes Page
	7.10 Maps Page

	A XML Format for Styles, Themes, and Base Maps
	A.1 Color Styles
	A.2 Marker Styles
	A.2.1 Vector Marker Styles
	A.2.2 Image Marker Styles
	A.2.3 Using Marker Styles on Lines

	A.3 Line Styles
	A.4 Area Styles
	A.5 Text Styles
	A.6 Advanced Styles
	A.6.1 Bucket Styles
	A.6.1.1 Collection-Based Buckets with Discrete Values
	A.6.1.2 Individual Range-Based Buckets
	A.6.1.3 Equal-Ranged Buckets

	A.6.2 Color Scheme Styles
	A.6.3 Variable Marker Styles

	A.7 Themes: Styling Rules
	A.8 Base Maps

	B JavaScript Functions for SVG Maps
	B.1 Navigation Control Functions
	B.2 Display Control Functions
	B.3 Mouse-Click Event Control Functions
	B.3.1 Predefined Mouse-Click Control Functions
	B.3.2 User-Defined Mouse Event Control Functions
	B.3.2.1 Map-Level Functions
	B.3.2.2 Theme-Level Functions
	B.3.2.3 Selection Event Control Functions

	B.4 Other Control Functions

	C Creating and Registering a Custom Image Renderer
	D OGC WMS Support in OracleAS MapViewer
	D.1 Setting Up the WMS Interface for OracleAS MapViewer
	D.1.1 Required Files

	D.2 WMS Specification and Corresponding OracleAS MapViewer Concepts
	D.2.1 Supported GetMap Request Parameters
	D.2.1.1 BASEMAP Parameter (OracleAS MapViewer-Only)
	D.2.1.2 BBOX Parameter
	D.2.1.3 BGCOLOR Parameter
	D.2.1.4 DATASOURCE Parameter (OracleAS MapViewer-Only)
	D.2.1.5 DYNAMIC_STYLES Parameter (OracleAS MapViewer-Only)
	D.2.1.6 EXCEPTIONS Parameter
	D.2.1.7 FORMAT Parameter
	D.2.1.8 HEIGHT Parameter
	D.2.1.9 LAYERS Parameter
	D.2.1.10 LEGEND_REQUEST Parameter (OracleAS MapViewer-Only)
	D.2.1.11 MVTHEMES Parameter (OracleAS MapViewer-Only)
	D.2.1.12 REQUEST Parameter
	D.2.1.13 SERVICE Parameter
	D.2.1.14 SRS Parameter
	D.2.1.15 STYLES Parameter
	D.2.1.16 TRANSPARENT Parameter
	D.2.1.17 VERSION Parameter
	D.2.1.18 WIDTH Parameter

	D.2.2 Supported GetCapabilities Request and Response Features
	D.2.3 Supported GetFeatureInfo Request and Response Features
	D.2.3.1 GetMap Parameter Subset for GetFeatureInfo Requests
	D.2.3.2 EXCEPTIONS Parameter
	D.2.3.3 FEATURE_COUNT Parameter
	D.2.3.4 INFO_FORMAT Parameter
	D.2.3.5 QUERY_LAYERS Parameter
	D.2.3.6 QUERY_TYPE Parameter (OracleAS MapViewer-Only)
	D.2.3.7 RADIUS Parameter (OracleAS MapViewer-Only)
	D.2.3.8 UNIT Parameter (OracleAS MapViewer-Only)
	D.2.3.9 X and Y Parameters
	D.2.3.10 Specifying Attributes to Be Queried for a GetFeatureInfo Request

	D.3 Adding a WMS Map Theme
	D.3.1 XML API for Adding a WMS Map Theme
	D.3.2 JavaBean-Based API for Adding a WMS Map Theme

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

