ORACLE

Oracle® Application Server TopLink
Mapping Workbench User’s Guide

10g Release 2 (10.1.2)
Part No. B15900-01

April 2005

Oracle Application Server TopLink Mapping Workbench User’s Guide, 10g Release 2 (10.1.2)
Part No. B15900-01

Copyright © 2000, 2005, Oracle. All rights reserved.

Contributing Author: Jacques-Antoine Dubé, Rick Sapir, Peter Purich, Ellen Siegal (Editor)

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

SeNA US YOUF COMMEBNES ... et e e e v s ee s s es e eees s saeeesessassesessenenen Xi
PlOIACE ...ttt ettt e et e et e s e e e s s s s ee s s s s s s s s s s s s as s s s s ess s s ssasnenenns xiii

1 Understanding the OracleAS TopLink Mapping Workbench

Starting the OracleAS TopLink Mapping Workbench................ccccccoiiniinii, 1-2
Working with the OracleAS TopLink Mapping Workbench...............ccccoevvvnnnnnnnnnnnne. 1-2
USING the METIUSouiiiiiii e 1-4
Menu Bar MENUS ..o s 1-4
POP-UP MENUS ..ottt 1-5

USING the TOOIDATSeuiiiiiiiiiiccc e 1-5
Standard TOOIDATccccocviiiiiiiiiiiiii s 1-5
Mapping TOOIDATccceuiiiiiiiiic e 1-7
OracleAS TopLink Sessions Editor Navigator Toolbar...........ccccccccvceiiiiccccncccnennns 1-8

Using the Navigator Pane...........ccooiiii e 1-8
Using the Editor Pane..........ccccociiiiiiiiiiic s 1-10
Working with Workbench Preferences...............ccccccooooiiiiiiiininiiiiiis 1-10
General Preferences ... 1-10
ClaSS PrefereIiCeSvvieiieiiceiiieict ettt ettt 1-14

EJB PreferEniCeS ...c..eoveeiuienieieteie ettt ettt ettt ettt ettt bbb st aan 1-15
Database Preferences ... 1-16
Help PIeferencesccciiiiiiiiiiiiiiicicici s 1-17
Working with the OracleAS TopLink Mapping Workbench in a Team Environment........... 1-18
Using a Source Control Management SyStemcccoueeiiiiiicieieiiiciceccce e 1-19
MeTGING FilEScocuiiiiiiiiiiiciccii s 1-19
Merging Project FAles ... 1-20
Merging Table, Descriptor, and Class Filesccccooiiiieiiiiiiic 1-21
Sharing Project ODJECtSccccciiiiiiiiiiiiiiic s 1-22
Managing the ejb-jar.xml File ... 1-23
Working with Locked Files..........cccccoviiiiiiiiiiiiiiiiiics 1-23

2 Understanding Projects

Working With Projects...........cccoooiiiiiiiiiiiii s 2-1
Creating NewW Projects ..o 2-1
Opening Existing Projects........c.cccoiiiiiiiiiiciec 2-2

SAVING PrOJECES......oiiiiiieeet e 2-4

Refreshing the Navigator Pane ... 2-4
Generating the Project Status RePOTtccocuiiiiiiiiiiiiiiiiiiccccrree e 2-4
Working with Project Properties............ccccoooviiiiiiiiiiii 2-5
Working with General Project Properties............ccoceuoiiiiiiiiiiiiiiiccecci e 2-5
Mapping EJB 2.0 ENtities.......cccccoviiiiiiiiiiiiiiic s 2-7
Working with Sequencing Properties ... 2-8
Working with Default Properties ..o 2-9
Renaming PacKagescccccuiuiiiiiiiiiiiiiiiiccieicceeee et 2-10
Working with Project Options..........cccocoiviiiiiiiiic s 2-10
Setting Default Advanced Properties............cooooiiiiiiiiicccc 2-12
Working with Classes.............ccooiiiiiiiiiiniii s 2-13
Creating ClasSesccceuiiuiieiiicicie s 2-13
Updating Classes.........cueuiiurieiiiicieie i 2-14
Refreshing Descriptors with Dependent Classesc.ccccceceuiiicieieiiieeeeeeeeeeeeeenens 2-15
Exporting Project INformation ... 2-16
Exporting Project to Java SOUICE..........ccceuiiiiiiiiiiiiic s 2-16
Exporting Deployment XIMLc.ccccccciiiiiiiiiiceeeieeeeieieie e esesese e senenens 2-17
Exporting Table Creator Files............ccoiiiiiiiiiiiiii 2-17
Exporting Java Model SOUICe ..o 2-17
Working with the ejb-jar.xml File..........ccccccocooiinniii 2-18
Writing to the ejb-jarXml File.........cccccocoviiiiniis 2-19
Reading from the ejb-jarXml File..........cccoouiiiiiiiii 2-20

3 Understanding Databases

Working with Databases.............ccccccoviiiiiiiiiiiiii s 3-1
Database PTOPETIties ... 3-1
Logging into the Databasecoiiiiiii 3-3

Working with Database Tables in the Editor Paneccccccocoiiiiinnnne, 3-3
Working with Field Properties. ... 3-4
Setting a Primary Key for Database Tablescccooiiiiiiiiiiiii 3-5
Working with Reference Properties ... 3-6

Creating Table Referencescccoccuiiiiiiiiiiiiiriecieceeeee et 3-6
Creating Field References ... 3-7

Generating Data from Database Tables................ccccccccciiiiiiiiiies 3-8
Generating SQL Creation SCIipts........cccoiviiiiiiiiiiiiiii e 3-8
Generating Descriptors and Classes from Database Tablescccocooiiiiiiiiiiiiic 3-9
Generating EJB Entities from Database Tables.............ccccoooeriiininiiciicccce 3-11
Generating Tables on the Databaseccoccociiiiiiiiiiicceeeeeee s 3-13

4 Understanding Descriptors

Working with Descriptors ... 4-1
Understanding Persistent Classescooccuoiiiriiiiiiiei e 4-2
Specifying Descriptor TYPES.......ccciiiiiiiiiiiiiiiiiiiciiicicei s 4-2
Mapping DeSCIiPtorScooviiiiiiiiiiiiii e 4-3
Automapping DeSCIiPIOTSc.coiiiiiiiiiiiieec s 4-3
Generating Java Code for Descriptorscooeueieiiriiiniicieieceece e 4-4

Working with Descriptor Properties ... 4-5

Setting Descriptor INfOrmation ... 4-5
Setting Class INfOrmMation..........c.ccceucuiiiiiiiiiiiiiccccc e 4-7
CLaSS TAD ...ovviiiiiie s 4-8
ATIDULES Tab ... 4-9
Methods Tab ... 4-11
Specifying Queries and Named Finders..........c.ccocooriiiiiiiiiiiii e, 4-12
CUStOM SQL QUETIESc.uviiiiieiieiiecieerteeteeiteste et e srteesteesbeesbeebeessseeseesssessseenssessseenssesssesnses 4-13

INAMEA QUETIES ...ceveevvereeeieerece ettt ettt ettt ettt ev e et eteereeeteeaeeeseessenseesseseesseseesseseensenseens 4-14
Building EXPIeSSioNScccueiiiieiicieiici et 4-20
Adding ATZUMENES.......cooiieiieiiicci et 4-22

QUETY KEYS...oiiiiiiiiic s 4-24
Specifying QUeTy Keys.......oooiiiiiiii 4-24
Displaying EJB descriptor Information...............cooooiiiiiec 4-25
Working with Advanced Properties.............cccoviiiiiiiiiinies 4-26
Amending Descriptors After Loadingcccoeuevoiiiieiiiiicicc 4-27
Specifying BVENLSooviiiei e 4-28
Specifying Identity Mapping........cccococccuceuiiiiiimieieiieieeeeeeeieiee et nees 4-29
Specifying INNeTItANCec.cvoviiecii 4-30
Creating @ ROOt Classoeuiiiiiieicc s 4-30
Creating Branch and Leaf Classescccoouvirrriiinirrnnirirrereer e 4-32
Specifying Optimistic LOCKINGc.oviuiiiiiiiiieieic 4-33
Specifying an Interface ALAs.........c.coiiiiiiiiiciic e 4-34
Working with Primary Keys ... 4-35
Setting a Primary Key for Descriptors ... 4-35
Working with Sequencing............cccooviiiiiiiii 4-36
Using Sequence Numbers with Entity Beans...........ccocooiiiiiiiiiiiiiiicceceeceeees 4-37
Using Native SEqUENCING.........couiuriiiiiiiciieecte s 4-37
Using Sequence Tables ... 4-38
Pre-allocating Sequence NUMDETS............ccccciiiiiiiieeeeeeeeie et seneseaeeees 4-38
Creating the Sequence Table on the Database............c.ccooooeiiiiiiiii 4-39
Working with INheritance ..o 4-39
Using Inheritance With EJBScccooioiiiiiiiiiiiiiiiccccecceee s 4-40
Mapping Inherited Attributes in One Descriptor ... 4-40
Supporting Inheritance Using One Table.............ccooooeiiiiiiiiiiice e, 4-41
Supporting Inheritance Using Multiple Tables ... 4-42
FINdINg SUDCIASSES ...ttt 4-43
Providing a Class Indicator Field ... 4-43
Understanding Root, Branch, and Leaf Classes in an Inheritance Hierarchy........................ 4-44
Specifying Primary Keys in an Inheritance Hierarchy ..., 4-44
Mapping Inherited Attributes in a SUDCIaSSccccoeueieiiiiininiccc e, 4-45
Working with Interfaces ... 4-45
Understanding Interface Descriptors..........cooocuoiiiicieiiiiicice 4-46
Single Implementor INterfaces ..o 4-48
Implementing an INtErface........c.cccvueiiiiiiiiiriiiiiecccccee s 4-48
Working with Multiple Tables.............ccccccooiiiiiiiiiii s 4-49
Specifying Multi-table INOccccccoiiiiiiiiiiiiiii s 4-50

Primary Keys Match........ccccooviiiiiiiiic s 4-51

Primary Keys are Named Differentlycccoooiiiii 4-52

Tables are Related by Foreign Key in Primary Tablecccccceeveiiinniiciiccne 4-52
Working with @ Copy POLiCYcccccoeviiiiiiiiiiiiiiiicccc s 4-52
Setting the COPY POLICY ..o 4-52
Working with Instantiation Policy ... 4-53
Setting Instantiation POLCYcoovruiiiiiiii 4-54
Working with a Wrapper Policy ... 4-55
Setting the Wrapper Policy Using Java Codec.cccoceiuiiiiciiiiiiccccceeceereeeeeeenenens 4-56
Working with Optimistic LOCKINgG...........cccocovviiiiiiiis 4-56
Using Version Locking POLICIES..........cooeuiiiiiiicieiici s 4-57
Using Field Locking POLCIES ..ot 4-57
Specifying Advanced Optimistic Locking Policiescccooueuiieiiiiiiiiiiiccc, 4-58
Working with Identity Maps ..o 4-59
Identity Map SIZec.coviviiiiiiiiiiiiiic s 4-59
Design GUIAEINEScvviiiiii 4-60
Using Object Identityccccccuiiiiiiiiiiiiiiiii s 4-60
CaChing ODJECESvuuiiiiiiicieieiccccee ettt 4-61
Working with Query Keys...........cccccoviiiiiiiiiiiiiiicccccc s 4-61
Automatically-generating Query Keys...........ccoooiiiiiiiiiiicc e 4-61
Using Query Keys in Interface DeScriptors..........cccccuiicucuiiiiiiiiiiicereeecereeceeeeeeeeeeeeenes 4-62
Relationship QUeTy Keyscooiuiiiiiii 4-63
Defining Relationship Query Keys by Amending a Descriptorc.cccccoooveieiiircnennes 4-64
Working With EVents ..o 4-64
Registering an Event with @ Descriptorcoccuiiiiiiiiiiiic e, 4-65
Registering an EVent ... 4-66
Supported EVENts..........ccooiiiiiiiiiiiiii s 4-66
Working With FINAersccccccooiiiiiiiiiic s 4-67
Working with Object-relational Descriptors...............ccccoceviviiiiniiiiiniiiiiii 4-67
Effect on OracleAS TOPLINKoooiiiiiiiiiiiiccceeee e 4-68
Databases OracleAS TopLink SUPPOIES.......ccccciiiiiiiiiiieiiiiicic s 4-68
Defining Object-Relational Descriptorscccovviiiriviviiiiiiiiniiniiriciinresccees 4-69
Working with Mappings..........ccccciiiiiiiiiiii s 4-69
Working with Common Mapping Properties...........ccccooviiiiiiiiiiniiiccceeeeeenes 4-70
Specifying Direct Access and Method Access..........ccoovireiiiiiciiinicic e, 4-71
Setting the ACCESS TYPE....cucuimiiiiiiiiiciericece e 4-72
Specifying Read-Only Settings..........cccooeurueioiiiiiiiiiiic e 4-72
Defaulting NUll VAlUes.........cccccviviviiiiiiiiiiiiiiiicccc s 4-73
Maintaining Bidirectional Relationshipscccccciiiiiiiiiiiiicccecceeecccceeeeeeeeeees 4-73
Specifying Field Names and Multiple Tablesccccooooiiiiiiiiii, 4-73
Specifying Collection Properties...........cccocviiviviviiiiiiiiiiiniiiiiicrciiceeeceesess s 4-73
Specifying Mapping information in ejb-jar.xml File.........cccooiviiiiiiiiiiiiiccene 4-74

5 Understanding Direct Mappings

Working with Direct Mappings ... 5-1
Working with Direct-to-Field Mappings...........cccccocovviniininininiii, 5-2
Creating Direct-to-Field Mappings ..o 5-4

vi

Working with Type Conversion Mappingsccocoviviniiininniin s 5-5

Creating Type Conversion Mappings........c.cccceeeicieiiiiinicicicie e 5-5
Working with Object Type Mappingscccccccviiiiiininiiiiiiic e 5-6
Creating Object Type Mappingscccceeiiniiiiiiiniiiiiiiiiiiii s 5-7
Working with Serialized Object Mappings...........ccccovviiiiiiiiniiins 5-8
Creating Serialized Object Mappings........cccccccueueiriiieieniriniriicrireeeeeeeeeeeeeses e 5-8
Working with Transformation Mappings.............ccocovvininiiniin e, 5-9
Creating Transformation Mappings..........cccooeeueiiiiiiiiiiiciciecce s 5-10
Specifying Advanced Features Available by Amending the Descriptor-...........ccccccevueuvuencee. 5-12

6 Understanding Relationship Mappings

Working with Relationship Mappings..........cccovviiiiniiiiiiies 6-2
Specifying Private or Independent Relationships..........cccccoceveiiiiiiiiiiiiiiiiis 6-2
Working with Foreign Keys ..o 6-3
Understanding FOreign KeYS ... eeenenes 6-3
Specifying Foreign Keys........cccouiiiiiiiiiiiicii 6-4
Working with a Container POLicy..........cccoviiiiiiiiii s 6-4
Overriding the Default Container POLICY........ccccovvviviiiirirriirrccre e 6-5
Working with Indirection ... 6-5
Understanding INAirectionc.oooiiiiiii e 6-6
Using Value Holder INireCtion...........ccouvueiririeiiirininniiinnrcicnr e 6-7
Value Holder INireCtionccccovvviiiiiiiiiiniiiiiiiii e 6-7
Specifying INAIireCtion.........couoieiiiiiiie e e 6-8
Changing Java Classes to Use INAIirectioncccceeueuiuriririiiiiiniririrrrrcerrr e 6-9
Working with Transparent Indirection...............ccccooviiiiiii 6-11
Specifying Transparent INdireCtion...........ooceuoioiiiiiiiiiiicic 6-11
Working with Proxy INdirection ... 6-12
Implementing Proxy Indirection in Javacccccoieieiiiiiiiii 6-14
Optimizing for QUETIes.............ccoiiiiiiiii e 6-15
... 6-15
Working with Aggregate Object Mappings...........cccocoviiiiiiiiiiiiiiiiniiics 6-16
Creating a Target DeScriptorcccoviiiiiiiiiic s 6-18
Creating an Aggregate Object Mapping.......c.cccccevrirririirrnnieereeeereeeeeeeeeeeeseeeee e 6-19
Working with One-to-One Mappings..........cccccoeiiiiiiiiiiiiiii s 6-21
Creating One-to-One Mappingscccceevvviiiiiniiiiiiiiiccccc s 6-23
Specifying Advanced Features Available by Amending the Descriptor-...........cccccceeuvuvennncne. 6-24
Working with Variable One-to-One Mappings...........cccocvvviiiiiiniiiiiiicies 6-25
Specifying Class INAICAtOT...........ccovuviiiriiiriiiiiiiiiiic s 6-25
Specifying Unique Primary Key ... 6-26
Creating Variable One-to-One Mappingscococeueiiineiiiicieieeccse 6-27
Working with Direct Collection Mappingscccccccevvvviiiiiiininiiiiiiiiicnencsneseesess 6-30
Creating Direct Collection Mappingscccoceoeiviriiiiiiiiniiiiiiciecceec s 6-31
Working with Aggregate Collection Mappings...........cccocovviiiiiiiniiiiiics 6-32
Working with One-to-Many Mappings...........ccccccovviiiiininiiiinniiincsieess s 6-33
Creating One-to-Many Mappingscccccoviiiiiiniiiiiiiniic s 6-34
Working with Many-to-Many Mappingscccccccvviiniiininiiiiiiises 6-36
Creating many-to-many Mappingscccccoeeivniiiininniiic s 6-37

vii

Specifying Advanced Features by Amending the Descriptor..........ccccoooiiiiiiiiciiininnnan, 6-39
Working with Custom Relationship Mappings...........ccccocvivviiiiiiniiiii 6-40
Creating Custom Mapping Queries in Java Code..........ccccceviiniiiiiiniiiniiiic 6-40

7 Understanding Object-Relational Mappings

Working with Object-Relational Mappingscccccovviiiiiiiiiiiiiiiiecnes 7-2
Working with Array Mappings ..o s 7-2
Implementing Array Mappings in Java.......cooouoieieiiiicieeccc e 7-3
REfETOICE ... 7-3
Working with Object Array Mappings ... 7-4
Implementing Object Array Mappings in Java.......ccccoceueiiiiecicieiiiicceeccieecie e 7-4
REfETOINCE ... s 7-5
Working with Structure Mappings...........cccooovviiiiiiiiiii 7-5
Implementing Structure Mappings in JavVaccccoeeueiiiieiiiicceccee e 7-6
REfETOICE ... s 7-7
Working with Reference Mappingscccccocoviiiiniiiiiniiii s 7-8
Implementing Reference Mappings in Javacccceueiiiieiiiiiiicicieccc 7-8
REfETOINCE ... s 7-8
Working with Nested Table Mappingscccocovviviiiiiininiiiinii s 7-9
Implementing Nested Table Mappings in Javaccccooceeiiiicieieicicecce e 7-10
REfETOINCE ...t 7-10

8 Understanding the OracleAS TopLink Sessions Editor

Starting the OracleAS TopLink Sessions Editor.............cccccoovviiiiiii, 8-1
OracleAS TopLink Sessions Editor Preferences ... 8-2
Working with the OracleAS TopLink Sessions Editor.............cccccoviiiiiiinnnne, 8-2
Using the Navigator Pane...........cooiiiiiiiiiiii e 8-2
Renaming ElemMentscoccuoiiiiiiiiiiic e 8-3
Understanding Configurations..............ccocooiviiiiiiiii 8-3
Working with Configurationscocviiiiinnnn e 8-3
Creating New Configurations............cocoeueueiiiieiiiicice e 8-3
Opening Existing Configurations.............ccccceeiiiiiiiiiiiiceceeeeeeeeeeeeeees 8-4

Saving CONfIGUIAtIONS.c.ceuiuiueuiiiiiieieieicieeieeie ettt 8-4
Working with Session Brokers ... 8-5
Working With SESSIONSccoiiiiiiiiiiiii e 8-6
Working with Session Properties........ccoo i 8-7
Setting General Properties ...t 8-7

Setting Logging Properties ... 8-9
Working with Advanced Session Properties ... 8-10
Setting Login Properties. ..ot 8-10

Setting Clustering Properties ... s 8-14
Working with Connection POOIS ... 8-16
Setting General Properties..........ooooiicieiiicicic s 8-17

Setting Login Properties.........couiiiiiiiiiiiiiccc e 8-17
Working with the Source..............ccooii 8-18

viii

A Object Model Requirements

Persistent Class Requirementscccccocoiiiiiiiiiiiiiii e A-1
Constructor REQUITEINENLS.cc.ociviiiiiiriiiiccccee ettt A-2
Remote Session ReqUIT@MENtSc.coccceviiiriiiniiiniiinieieietececeetet ettt A-2

B Tutorials

Introductory Tutorial ... s B-1
OVEIVIEW .t B-2
Creating the Database Schemaccccooooiiinii B-2
Creating a New Project ... B-4
Setting the Project’s Classpath ..o B-6
Enabling Your Java Classes ... s B-8
Generating the Class Definitionsccccouiiiiiiiiiiiii B-10
Logging Into the Database..............cccccoooiiiiiiiiiiii e B-12
Creating Tables...........cccoooiiiiiiiii s B-14
Creating Tables Using the OracleAS TopLink Mapping Workbench............c.ccccooeinii. B-14
Creating the Table Definitionscccoooiiiiiiiiiii B-14
Creating the Tables on the Database..........c.cccccoceiiiiiiinniiccccrrerc e B-15
Importing Tables from the Database............cccoouoviiioiiiiii B-16
Mapping Classes and Tables in the Descriptorcccccovviiiiiiiii, B-18
IMAPPINGS.c.eiiiiiiii s B-18
DESCIIPLOTS ..ottt s B-18
Mapping Classes to Tables ..o B-18
Preparing the Primary KeYs ... seees B-20
Setting the Sequence Table ..o B-21
Implementing Direct-to-Field Mappings........ccccoviiueueiiiinieiiiicce e B-23
Setting the SequeNnCce NAIMEc.ccoeuiiiiiiiiiiiiecccee e B-24
Creating One-to-One Mappings Between Objectscccccovvvviniiiiiiiiiiiicc, B-25
Foreign Key References.............oooouiiiiiiiiici e B-27
Creating One-to-Many Mappingscccccoviiiiiiniiiiiiiniic s B-29
Setting Up Database SeSSions. ... B-31
Logging Into a Databaseccccccuciiiiiiiiiiiiiiiiicc s B-32
Creating the Tables iN Code ... s B-32
Using Descriptors in an Application ... B-33
Transactions and Units of WOTKccccciiiiiiiiiices B-33
Reading and Writing Java Class INStances...........cccccceueueueicrrriniiinnrrcrrerceecreeeeeeseeeeeaes B-34
Using a Unit of Work to Write an Object...........coieiiiiiiii e, B-35
Using a Session to Read an Object...........ooiiiiiiiiccccc B-36
CONCIUSION ...ttt a et ettt s ettt se sttt B-37
Advanced Tutorial............ccocoeiiiiiiiiiiiiii s B-37
Creating the Database Schema ... B-39
Creating a NeW Project...........cccocoiiiiiiiiiiiiii s B-43
Mapping Classes t0 Tables ... B-44
Using the Automap ToOL..........cccccoiiiiiiiiiiiiii s B-45
Implementing INdirection ... B-46
Preparing Java Code for INdirectionccceiiiiieiiiiiiiic e, B-46

Implementing Indirection in the OracleAS TopLink Mapping Workbench........................... B-47

Implementing Indirection in the Tutorial............ccccccoeiiiiiiiiniiiii B-48
Implementing a One-to-One Self Relationshipcccccocoooiii B-49

Creating Other One-to-one Mappingsccccueeviiieieiiiiiiiinee s B-51
Implementing a One-to-Many Self-Relationship.............ccccoooii B-51

Creating Other One-to-Many MappPingscccceevueerurreririrerrireeeeiereeeeeeeeseeeeeseeesseeeeesseeees B-53
Using Multiple Tables...........ccccccooviiiiiiiiiiiiii s B-53
Implementing Object Type Mappingcccoiiiiiiiiiiiiiiiicccee e B-54
Implementing an Aggregate Objectccooiiiiniiiiiiiii B-56
Implementing a Direct Collection Mapping...........ccccoooiiiiiiiiiiiiiiicicceee e B-57
Implementing a Many-to-Many Mapping ... B-58
Implementing Inheritance...............ccooniiii B-60
Implementing a Transformation Mappingcccoeiiiiiiiiiiiii e B-62
Mapping the Remaining Attributesccocoviiiiiiiii B-63
Completing the Tutorials............ccccocoiiiiiiii s B-64

Generating Code ..o s B-64

C Troubleshooting

EXTOT IMIESSAZESovvniiniieet ettt bbbttt C-1
ClassPath ISSUES..........ooiiimiiiiii e C-15
Database CONNECtioNS ..ot C-16
Troubleshooting Descriptorsccccoviiiiiiiiiiiiiiiiiic s C-17
Troubleshooting Known ISSUESccccovuviiiiiiiiiiiiiniii s C-17
LCOM SIZE .. C-18
Improper Set Method for Array Type Attributes..........cccooevvveiiiiiieciiiiiiccc C-18
Changes to the Interface Descriptor do not Update Properlyccoooooiiiiiiiiiicinnnn, C-18
Using the JAWS Screen Reader ..o senenes C-18
Index

Send Us Your Comments

Oracle Application Server TopLink Mapping Workbench User’s Guide, 10g Release 2 (10.1.2)

Part No. B10316-01

Oracle Corporation welcomes your comments and suggestions on the quality and
usefulness of this document. Your input is an important part of the information
used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?

What features did you like most?

If you find any errors or have any other suggestions for improvement, please
indicate the document title and part number, and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

Electronic mail: appserverdocs_us@oracle.com

FAX: (650) 506-7225 Attn: Java Platform Group, Information Development
Manager

Postal service:

Oracle Corporation

Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 40p978

Redwood Shores, CA 94065

USA

xi

If you would like a reply, please give your name, address, telephone number, and
(optionally) electronic mail address.

If you have problems with the software, please contact your local Oracle Support
Services.

Xii

Preface

This guide includes the concepts necessary for using the Oracle Application Server
TopLink Mapping Workbench, a standalone application that creates and manages
your descriptors and mappings for a project. This document includes information
on each OracleAS TopLink Mapping Workbench function and option.

This preface contains the following topics:
» Intended Audience

s Documentation Accessibility

s Organization

= Related Documentation

s Conventions

Intended Audience

This document is intended for OracleAS TopLink users who are familiar with the
object-oriented programming and Java development environments.

This document assumes that you are familiar with the concepts of object-oriented
programming, the Enterprise JavaBeans (E]B) specification, and with your own
particular Java development environment.

The document also assumes that you are familiar with your particular operating
system (such as Windows, UNIX, or other). The general operation of any operating
system is described in the user documentation for that system, and is not repeated
in this manual.

xiii

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Accessibility standards will
continue to evolve over time, and Oracle is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For more information, visit
the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation Screen readers may not always
correctly read the code examples in this document. The conventions for writing
code require that closing braces should appear on an otherwise empty line;
however, some screen readers may not always read a line of text that consists solely
of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services Oracle provides dedicated Text
Telephone (TTY) access to Oracle Support Services within the United States of
America 24 hours a day, seven days a week. For TTY support, call 800.446.2398.

Organization

Xiv

This document includes the following chapters:

Chapter 1, "Understanding the OracleAS TopLink Mapping Workbench"

This chapter introduces the OracleAS TopLink Mapping Workbench — a tool to
graphically configure descriptors and map your OracleAS TopLink project.

Chapter 2, "Understanding Projects"

This chapter contains instructions for creating and maintaining OracleAS TopLink
project files, including workbench preferences and team development.

Chapter 3, "Understanding Databases"

This chapter describes how to create database sessions and import/export database
tables to and from your OracleAS TopLink project.

Chapter 4, "Understanding Descriptors"

This chapter summarizes OracleAS TopLink descriptors, including standard and
advanced properties and mappings.

Chapter 5, "Understanding Direct Mappings"

This chapter summarizes the direct mapping types supported by OracleAS
TopLink.

Chapter 6, "Understanding Relationship Mappings"

This chapter summarizes the relational mapping types supported by OracleAS
TopLink.

Chapter 7, "Understanding Object-Relational Mappings"

This chapter summarizes the object relational mapping types supported in
OracleAS TopLink.

Chapter 8, "Understanding the OracleAS TopLink Sessions Editor"

This chapter contains information on using the OracleAS TopLink Sessions Editor
to create and maintain OracleAS TopLink sessions.

Appendix A, "Object Model Requirements"
This section summarizes OracleAS TopLink object model requirements.

Appendix B, "Tutorials"

This section includes a basic and advanced tutorials that provide step-by-step
instructions for using the OracleAS TopLink Mapping Workbench.

Appendix C, "Troubleshooting"

This section contains information on the types of errors that may occur and how to
correct them.

XV

Related Documentation

For more information, see these Oracle resources:

» Oracle Application Server 10g Release Notes

» Oracle Application Server TopLink Release Notes

» Oracle Application Server TopLink Getting Started Guide

» Oracle Application Server TopLink Application Developer’s Guide

» Oracle Application Server TopLink API Reference

Printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs

Conventions

XVi

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

s Conventions in Text

= Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention

Meaning

Example

Bold

Italics

UPPERCASE
monospace

(fixed-width)
font

lowercase
monospace

(fixed-width)
font

lowercase
italic
monospace
(fixed-width)
font

Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

Italic typeface indicates book titles or
emphasis.

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents placeholders or variables.

When you specify this clause, you create an
index-organized table.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE NAME column in the USER

TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

Enter sqlplus to open SQL*Plus.
The password is specified in the orapwd file.

Back up the datafiles and control files in the
/diskl/oracle/dbs directory.

The department _id, department name,
and location_id columns are in the
hr.departments table.

Set the QUERY REWRITE ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

You can specify the parallel clause.

Run Uold release.SQL where old
release refers to the release you installed
prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

Xvii

SELECT username FROM dba_users WHERE username =

'MIGRATE' ;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention

Meaning

Example

[]

{

Other notation

Italics

UPPERCASE

xviii

Brackets enclose one or more optional
items. Do not enter the brackets.

Braces enclose two or more items, one of
which is required. Do not enter the
braces.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

= That we have omitted parts of the
code that are not directly related to
the example

s That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

DECIMAL (digits [

{ENABLE | DISABLE}

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

CREATE TABLE AS subguery;

SELECT coll,
employees;

colz, ... ,

acctbal NUMBER(11,2) ;

acct CONSTANT NUMBER (4)

CONNECT SYSTEM/system password

DB_NAME = database_name

SELECT last name,
employees;

SELECT * FROM USER TABLES;
DROP TABLE hr.employees;

, precision 1)

coln FROM

3;

employee id FROM

Convention

Meaning

Example

lowercase

Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last name, employee id FROM
employees;

sqglplus hr/hr

CREATE USER mjones IDENTIFIED BY
ty3MU9;

Xix

XX

1

Understanding the OracleAS TopLink
Mapping Workbench

The Oracle Application Server TopLink Mapping Workbench is a separate
component from Oracle Application Server TopLink — it allows you to graphically
configure descriptors and map your project. The OracleAS TopLink Mapping
Workbench can verify the descriptor options, access the data source, and create the
database schema. With the OracleAS TopLink Mapping Workbench you can define
OracleAS TopLink descriptors without using code.

This chapter includes the following subjects:

s Starting the OracleAS TopLink Mapping Workbench

= Working with the OracleAS TopLink Mapping Workbench
s Working with Workbench Preferences

= Working with the OracleAS TopLink Mapping Workbench
in a Team Environment

To Use the OracleAS TopLink Mapping Workbench in a Java Application:

1. Define an object model (a set of Java classes) to describe and solve your
problem domain.

2. Use the OracleAS TopLink Mapping Workbench to create a project, import your
Java classes and relational tables, and specify descriptors to describe how the
classes map to your relational model.

3. Inyour Java application, create an OracleAS TopLink session and register your
descriptors. Add logic to your application to use the session to retrieve and
store objects from and to the database.

Understanding the OracleAS TopLink Mapping Workbench 1-1

Starting the OracleAS TopLink Mapping Workbench

Figure 1-1 Using the OracleAS TopLink Mapping Workbench

Java Application

Persiztert Impiott classes -
Class 1 o

Persistent
Class 2

Session

Descriptor 1 | Generate Project File

| OracleAS ToplLink

Mapping Workhench

Descriptor 2
Store Persistent Classes using JOBC

Relational
Datahase

Starting the OracleAS TopLink Mapping Workbench

Use this procedure to start the OracleAS TopLink Mapping Workbench.

To Start the OracleAS TopLink Mapping Workbench:
Use one of the following methods to start the OracleAS TopLink Mapping

Workbench:

s For Windows environments: From the Start menu, choose Program Files >
OracleAS TopLink > Mapping Workbench.

= For non-Windows environments: Execute the <ORACLE HOME>\toplink\

bin\workbench. sh file.

The splash screen appears, followed by the OracleAS TopLink Mapping Workbench

window.

Working with the OracleAS TopLink Mapping Workbench

The OracleAS TopLink Mapping Workbench window includes these parts:

s Menu

Pull-down menus for each OracleAS TopLink Mapping Workbench function.
Some objects also contain context-sensitive pop-up menus. See "Using the
Menus" on page 1-4 for more information.

s Toolbars

Shortcuts to specific functions. See "Using the Toolbars" on page 1-5 for more

information.

1-2 Oracle Application Server TopLink Mapping Workbench User’s Guide

Working with the OracleAS TopLink Mapping Workbench

= Navigator pane

The project tree for all open projects (see "Using the Navigator Pane" on

page 1-8). Click the plus or minus (+/-) next to an object (or double-click the
object) to expand/collapse the tree. When you select an object in the Navigator
pane, its properties appear in the Editor pane.

» Editor pane

Specific property sheets and option tabs for the currently selected object. See
"Using the Editor Pane" on page 1-10 for more information.

s Status bar

Provides instant information regarding the status of projects, descriptors, and
mappings.

Figure 1-2 OracleAS TopLink Mapping Workbench

tw OracledS TopLink Mapping Workbench
File Selected Tools Window Help

n - —
e{@lﬁajﬂ%ﬁj_‘f“j@& 2)

™ Mavigator [/ Editar
o = employes
o @ examples.sessions, B employes
e—— B H# Address : :
B fef Ernployee General l Sequencing Defaults Options
©- £ PhoneMumber Project Save Location: =
o~ @8 DemoDatabase Ci0racleHometoplinkiexamplesiutorialsiintro

FH ADDRESS
FA EMPLOYEE Persistence Type

0 FH LPROJECT ® Java Ohjects
% E:g.T_EEMP " Entity Beans using CMP 1.1
A PROJECT " Entity Beans using CMF 2.0
FH RESPONS " Entity Beans using BMP
EA SALARY L :
7 SEQUENGE ejb-jarxml Location:

| Erowse...
Class Path:
CAdraHometoplinkiexamplesifoundationthrestiersta . Add Entry...
Rermaoye
Up
4 » =z

Understanding the OracleAS TopLink Mapping Workbench 1-3

Working with the OracleAS TopLink Mapping Workbench

Figure 1-2 calls out the following user-interface components.
1. Menu bar

2. Toolbars

3. Navigator pane
4. Editor pane
5

Status bar

Using the Menus
The OracleAS TopLink Mapping Workbench contains two types of menus:
= Menu Bar Menus

s Pop-Up Menus

Menu Bar Menus

The menu bar provides pull-down menus for each OracleAS TopLink Mapping
Workbench function. Some menus (such as Selected) are context-sensitive — the
available options may vary, depending on the currently selected object.

Figure 1-3 Sample Menu Bar Menu

@ll=W Selected Tools Window Help

& MewProject.. ctren [T TN @ g 2
= open... Crl+ 0
Reopen 3
= i Editar
| Close Ctrl+L
7 Cloze Al 3 advanced
Ust Delete Project...
= General l Sequencing Defaults Qptions
o Save Ctrl+5
=l Save As... cirl+p | Project Save Lacation: =
Il Save Al Crl+A |C:10racIeHume‘ttoplinKLexamplesltutnrialsladv

B Expoart e... Cirl+E

Refresh Tree Cirl+T Cirl+D
[Exit Alt+F 4 Td] Table Creator Java Source... Cirl+Shift+E

_j Model Java Source... Cirl+AIT+E

" Entity Beans using BWMP
4] [

1-4 Oracle Application Server TopLink Mapping Workbench User’s Guide

Working with the OracleAS TopLink Mapping Workbench

Pop-Up Menus

When you right-click objects in the Navigator pane, a pop-up menu appears with
functions specific to the selected object.

Figure 1-4 Sample Pop-up Menu

:\; OracleAS TopLink Mapping Workbench

File Selected Tools MWindow Help

- = -
a2 RO ND M 2
M Navigator [Editar
5, E}employee
o B evaranlas sessions @ examples.sessionsthreetiermadel
® &> Refresh Classes Ctrl+R
® 'Q'E Add or Refresh Classes. Ctrl+Shift+R
® Create MNe g Cirl+B
©

Unmap All Classes in Package
Eﬁ Set Advanced Properties Default...

% Auto-hlap

_j Export Model Java Source...

ER RESPONS
4] | [

Using the Toolbars
The OracleAS TopLink Mapping Workbench contains two types of toolbars:
= Standard Toolbar
= Mapping Toolbar
s OracleAS TopLink Sessions Editor Navigator Toolbar

Use these toolbars to select options and functions.

Standard Toolbar

The standard toolbar furnishes quick access to the standard (File, Edit, Selected,
and so on) menu options.

Understanding the OracleAS TopLink Mapping Workbench 1-5

Working with the OracleAS TopLink Mapping Workbench

Button Description
o Exit
= Preferences
) New project
= Open project
= Save
= Save all
| Save as

5l Close
9 Close all
= Export Java source

Export deployment XML

]

Add or refresh classes

Ea

Remove class

&

Add table

P Add or update existing tables from database
& Remove table

2 Login to database

2 Logout of database

2 Online help

1-6 Oracle Application Server TopLink Mapping Workbench User’s Guide

Working with the OracleAS TopLink Mapping Workbench

Mapping Toolbar

The mapping toolbar provides quick access to create mapping and descriptor types.
You can specify a mapping or descriptor type by selecting the object in the
Navigator pane, then clicking the appropriate button on the mapping toolbar.

You can also right-click the object and choose the appropriate mapping from the
pop-up menu.

Button Description

e Direct-to-Field mapping
-~ One-to-One mapping

o Variable One-to-One mapping
< One-to-Many mapping

£ Many-to-Many mapping
o Object Type mapping

2 Aggregate mapping

P Direct Collection mapping
= Transformation mapping
o Type conversion mapping
ey Serialized mapping
s Unmap

2 Aggregate descriptor

'EZ! Class descriptor

& EJB descriptor

Understanding the OracleAS TopLink Mapping Workbench 1-7

Working with the OracleAS TopLink Mapping Workbench

OracleAS TopLink Sessions Editor Navigator Toolbar

The OracleAS TopLink Sessions Editor contains a toolbar that appears in the
Navigator pane and offers quick access to create and modify configurations,
sessions, and connection pools.

Button Description
B Caching
2 Login

Connection Pool

|5&

Rename

EY

Session

Session Broker

[E]

Using the Navigator Pane

OracleAS TopLink displays each project’s descriptors, mappings, and database
tables in the Navigator pane on the left side of the workbench.

Figure 1-5 Sample Navigator Pane

™ Navigator
o = employee] o
5} B examples.sessions.threetie
S Hf Address
% city
*¥ country

*Fid 7—6)
*% postalCode
*¥ province
*% street
= Hf Employee
= H@ PhoneNumber
o B DemoDatabasei_—a
FA ADDRESS
BR emPLOVEE———————— ()
FA LPROJECT -
4 | [

1-8 Oracle Application Server TopLink Mapping Workbench User’s Guide

Working with the OracleAS TopLink Mapping Workbench

Figure 1-5 identifies the following user-interface components:
1. Project

2. Descriptor

3. Attribute/mapping
4. Database

5. Database table

Click the +/- symbol next to the item, or double-click the item name to expand and
collapse the item.

When you select an item in the Navigator pane, its properties appear in the Editor
pane (see "Using the Editor Pane" on page 1-10). You can perform specific functions
for an item by selecting the item in the Navigator pane and:

= Right-clicking on the object and selecting the function from the pop-up menu
(see "Pop-Up Menus" on page 1-5).

s Choosing a function from the Selected menu (see "Menu Bar Menus" on
page 1-4).

Inactive descriptors appear dimmed in the Navigator pane. Inactive descriptors are
not registered with the session when the project is loaded into Java. This feature
allows you to define and test subsets of descriptors. To activate or inactivate a
descriptor, right-click the descriptor and select Activate/Deactivate Descriptor from
the pop-up menu.

Figure 1-6 Sample Active/inactive Descriptors

™1 Mavigatar

- Emplayee

5 B aracle toplink.demos.emp
o_ s Address

E-Hf Employes

=g PhoneMumber
=88 INTRO_TUTORIAL_DB

1| | 3

Figure 1-6 shows the following user-interface components.
1. Inactive descriptor

2. Active descriptor

Understanding the OracleAS TopLink Mapping Workbench 1-9

Working with Workbench Preferences

If an element in the project (such as a descriptor mapping), contains an error or
deficiency (sometimes called neediness), a warning icon appears beside the element
icon in the Navigator pane, and a message displays in the status bar detailing the
error. Appendix C, "Troubleshooting" contains complete information on each
OracleAS TopLink Mapping Workbench error message.

Using the Editor Pane

The Editor pane, on the right side of the OracleAS TopLink Mapping Workbench
(see Figure 1-2), displays the property sheet associated with the currently selected
item in the Navigator pane.

Working with Workbench Preferences

This section includes information on customizing the following aspects of the
OracleAS TopLink Mapping Workbench:

General Preferences
Class Preferences
EJB Preferences
Database Preferences

Help Preferences

General Preferences

Use the General preferences to customize the “look and feel” (the graphical user
interface) of the OracleAS TopLink Mapping Workbench.

To Change the General Preferences:

&'

3.

Click the Preferences button on the toolbar. The Preferences dialog appears.

You can also display the Preferences dialog box by choosing Tools >
Preferences from the menu.

Select General in the Category pane.

1-10 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Workbench Preferences

Figure 1-7 General Preferences

T:\:;:-Preferences

General

Location

Setgeneral application preferences.

Categaory: Text Editor; Browse...
General
Warning Look and Feel: | Oracle v|
Class Size of Recently Opened Documents List: [4 g
Ei?abase W Log Unit ofwiork Messages and SQL
Help

D |ChadraHome itoplinkimw, - Browse..

Il This option applies only
for the Sessions Editor.

4. Use this table to enter data in each field and click OK.

Field

Description

Text Editor

Look and Feel

Size of Recently Opened
Documents List

Log Unit of Work
Messages and SQL

Click Browse and select a text editor (used when viewing the
session configuration source). See "Working with the Source" on
page 8-18 for more information.

Note: This field appears for the OracleAS TopLink Sessions
Editor only.

Select the “look and feel” to use for the OracleAS TopLink
Mapping Workbench. See Figure 1-8 for a sample of each
option.

Select the number of projects to maintain in the File > Reopen

option. See "Opening Existing Projects" on page 2-2 for more
information.

Specify if the OracleAS TopLink Mapping Workbench logs
runtime messages to help troubleshoot projects.

Click Browse to select a filename (default mw_xml. txt) and
Location.

You must restart the OracleAS TopLink Mapping Workbench to apply the changes.

Understanding the OracleAS TopLink Mapping Workbench 1-11

Working with Workbench Preferences

Figure 1-8 Look and Feel Samples

o E.'gs:-l:real:e Mew Projeck e @ Create New Project

Database Mame: [yawDatahase @ Datahase Name:
Platfarm: Oracle Rlalionn: I:I D

o [o |

e "’ Create New Project

@ Database Mame: |
Platfarm: J

Ok | Cancel |

Figure 1-8 shows the following “look and feel” samples:
» Oracle

= Windows

s Metal (Java)

= CDE/Motif

Warning and Confirmation Preferences

Use the Warnings preferences to specify if the OracleAS TopLink Mapping
Workbench displays certain warning and confirmation dialog boxes.

To Specify Warnings Preferences:

:

Click the Preferences button on the toolbar. The Preferences dialog box appears.

You can also display the Preferences dialog box by choosing Tools >
Preferences from the menu.

2. Select Warning in the Category pane.

1-12 Oracle Application Server TopLink Mapping Workbench User’s Guide

Working with Workbench Preferences

Figure 1-9 Warning Preferences

T:\:;:-Preferences

Warning
Show confirmation and warning dialogs if TopLink finds: °
Category:
General W Show All Warning And Confirmation Dialogs
harning v Descriptors Without an Associated Table
Class ¥ Direct Mappings Without a Database Field
Ei?abase v tMappings Without a Reference Descriptor
Help v Agorenate Descriptors YWithout Mapped Attributes
IV tappings Without a Relation Table
¥ Define Reference Descriptor First
¥ Document Gontains Invalid or Incomplete Data

3. Use this table to enter data in each field and click OK.

Field

Description

Show All Warning and
Confirmation Dialogs

Descriptors Without an
Associated Table

Direct Mappings
Without a Database
Field

Mappings Without a
Reference Descriptor

Aggregate Descriptors
Without Mapped
Attributes

Specify which (if any) of the following confirmation and
warning messages are displayed.

Specify if the OracleAS TopLink Mapping Workbench displays a
warning message if you attempt to create a table reference before
defining the descriptor’s associated table.

Specify if the OracleAS TopLink Mapping Workbench displays a
warning message if you attempt to create a table reference for a
direct collection mapping before mapping’s direct field and
target table.

Specify if the OracleAS TopLink Mapping Workbench displays a
warning message if you attempt to create a mapping before
defining a reference descriptor.

Specify if the OracleAS TopLink Mapping Workbench displays a
warning message if you attempt to create field references for an
aggregate mapping before mapping the aggregate descriptor’s
attributes.

Understanding the OracleAS TopLink Mapping Workbench 1-13

Working with Workbench Preferences

Field Description

Mappings Without a Specify if the OracleAS TopLink Mapping Workbench displays a

Relation Table warning message if you attempt to create a table reference for a
many-to-many mapping before defining the mapping’s relation
table.

Define Reference Specify if the OracleAS TopLink Mapping Workbench displays a

Descriptor First warning message if you attempt to create a table reference before

defining the mapping’s reference descriptor.

Invalid or Incomplete Specify if the OracleAS TopLink Sessions Editor displays a
Data warning message if your session configuration contains invalid
or incomplete data.

Class Preferences

Use this procedure to specify how the OracleAS TopLink Mapping Workbench
imports and edits classes. See "Working with Classes" on page 2-13 for more
information.

To Specify Class Import Options:
1. Click the Preferences button on the toolbar. The Preferences dialog box appears.

&'

You can also display the Preferences dialog box by choosing Tools >
Preferences from the menu.

2. Select Class in the Category pane.
3. Click the Importing Classes tab.

Figure 1-10 Class Preferences — Importing Classes

E:_:\:Is:-Preferem:es

Class Q
Set preferences farimpoting and editing classes.

Category:
General Imparting Classes l Editing Classes
Warning _)
I Mever Verify Classes in Chooser,
Class
EJBE Mote: This should he left unchecked unless problems
Database are encountered building Class choaser lists.

Help

1-14 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Workbench Preferences

1. Select Never Verify Classes in Chooser if you do not want to verify the classes
when performing an Add or Refresh.

Caution: By default, the OracleAS TopLink Mapping Workbench
always verifies the classes. Select this option only if you encounter
errors when displaying classes in the Select Classes dialog box.

2. C(Click the Editing Classes tab.

Figure 1-11 Class Preferences — Editing Classes

?::\:s:-Preferences

Class 0
Set preferences for imporing and editing classes.
Category:
General Impating Classes Editing Classes l
't(-':\flarnmg Maintain a Zero-argument constructor while editing classes
ass
EJE If an existing zero-argument constructor is renamed or a
Datahase parameter is added to it, the Mapping Workbench will add
Help another zero-argument constructor to the class.
" Yeg
" Mo
® Prompt

3. Specify how the OracleAS TopLink Mapping Workbench maintains classes
when renaming or editing a zero-argument constructor.

4. Click OK.

EJB Preferences

Use this procedure to specify how the OracleAS TopLink Mapping Workbench
updates the ejb-jar.xml file when saving projects.

To Specify EJB Preferences:

1. Click the Preferences button on the toolbar. The Preferences dialog box appears.

Understanding the OracleAS TopLink Mapping Workbench 1-15

Working with Workbench Preferences

You can also display the Preferences dialog box by choosing Tools >
Preferences from the menu.

2. Select E]JB in the Category pane.

Figure 1-12 EJB Preferences

E::\--'Is:-Prel'erenl:es

EJB

General EJB Preferences

Category:
General O Always Wirite ejb-jarxml on Project Save
Warning O Mever Write ejb-jarxml on Project Save
EESS @ Always Prompt to Write ejb-jarxml on Froject Save
Database

Help

3. Specify whether the OracleAS TopLink Mapping Workbench prompts before
updating the ejb-jar.xml file when you save the project.

4. Click OK.

Database Preferences

Use the Database preferences to specify custom database divers and connection
URLS for the OracleAS TopLink Mapping Workbench. These drivers and URLs can
then be used when defining database logins.

To Specify Database Preferences:
1. Click the Preferences button on the toolbar. The Preferences dialog appears.

&'

You can also display the Preferences dialog box by choosing Tools >
Preferences from the menu.

2. Select Database in the Category pane.

1-16 Oracle Application Server TopLink Mapping Workbench User’s Guide

Working with Workbench Preferences

Figure 1-13 Database Preferences

T:\:;:-Preferences

Database

Setuser defined database drivers and connection URLs. =
Category:
EeEu=tay Database Drivers:
General
Warning Add
Clazs By
EJB
Database Edit
Help
Connection URLS:
Ad
Fermuowe
Edit

3. Use this table to enter data in each field and click OK.

Field Description
Database Drivers Click Add to add a custom database driver.
Connection URLs Select a Database Driver, then click Add to add a custom

database connection URL.

To edit or remove an existing driver or URL, select the driver or URL and click
Remove or Edit.

Help Preferences

Use the Help preferences to select a Web browser to use the online help and
Web-based support.

To Specify the Help Preferences:
1. Click the Preferences button on the toolbar. The Preferences dialog box appears.

&'

You can also display the Preferences dialog box by choosing Tools >
Preferences from the menu.

Understanding the OracleAS TopLink Mapping Workbench 1-17

Working with the OracleAS TopLink Mapping Workbench in a Team Environment

2. Select Help in the Category pane.

Figure 1-14 Help Preferences

E::\--'Is:-Prel'erem:es

Help

Setlocation of Web browser for use with the online help.
Category:

2)
General Web Browser: Browse...

Warning
Class
EJB
Database
Help

3. Use this table to enter data in each field and click OK.

Field Description

Web Browser Click Browse and select the location of your default Web
browser. You must specify a Web browser to use the online help
and Web-based support.

Working with the OracleAS TopLink Mapping Workbench
in a Team Environment

When using an OracleAS TopLink Mapping Workbench project in a team
environment, you must synchronize your changes with other developers. See
"Merging Files" on page 1-19 for more information.

You can use the OracleAS TopLink Mapping Workbench with a source control
system (see "Using a Source Control Management System" on page 1-19) to facilitate
enterprise-level team development. If you have a small development team, you can
manage the changes from within XML files (see "Sharing Project Objects" on

page 1-22).

1-18 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with the OracleAS TopLink Mapping Workbench in a Team Environment

Using a Source Control Management System

Merging Files

If you use an enterprise, file-based, source control management system to manage
your Java source files, you can use the same system with your OracleAS TopLink
Mapping Workbench project files. These project files are maintained by the
OracleAS TopLink Mapping Workbench and written in XML file format.

The source control system’s check in and out mechanism defines how to manage the
source (the XML source and OracleAS TopLink Mapping Workbench project file) in
a multi-user environment.

To Check Out and In OracleAS TopLink Mapping Workbench Project Files:

Although your actual development process will vary, depending on your SCM tool,
a typical process involves:

1. Determine (based on your SCM system) which files to retrieve from the source
management system.

2. Edit the project using the OracleAS TopLink Mapping Workbench.

3. Save the edited project. If the OracleAS TopLink Mapping Workbench displays
the Read Only Files dialog (see Figure 1-15 on page 1-23), make a note of these
files, they must be unlocked and possibly merged.

4. Merge the required project files. See "Merging Files" on page 1-19 for details.

5. Check in the modified files, then retrieve from the repository any files that have
been added or modified for this OracleAS TopLink Mapping Workbench
project.

The most difficult aspect of team development is merging changes from two (or
more) members that have simultaneously edited the same file. If one developer
checks in his or her changes, a merge condition exists. Use a file comparison tool to
determine the merged aspects of the project. The files to edit will vary, depending
on the type of merge:

= Merging Project Files
s Merging Projects
See Example 1-1 and Example 1-2.

Understanding the OracleAS TopLink Mapping Workbench 1-19

Working with the OracleAS TopLink Mapping Workbench in a Team Environment

Merging Project Files
Project files contain references to the objects in the project. Generally, your project
<projectName>.mwp contains:
» Database information — <database>
= Database tables — <tables>
s Descriptors — <descriptors>
s Repository — <repositorys>
s Classes — <classpath-entriess

Changes in these parts of the . mwp file are normally caused by adding, deleting, or
renaming project elements.

To Merge Project Files:

Generally, you will need to merge a project file if another developer has added or
removed a descriptor, table, or class, and checked in the project while you were
adding or removing descriptors, tables, or classes from the same project. Use this
procedure to merge the project’s . mwp file:

1. Perform a file comparison between the <projectName>.mwp file in the
repository and the your local copy. The file comparison shows the addition or
removal of an element inside the owner (i.e., <database>, <descriptorss>,
or <repositorys).

2. Insert or delete the XML into your local <projectName>.mwp file (inside the
corresponding owner element). This brings your local code up to date to the
current code in the code repository.

3. Retrieve any updated files, as indicated by your source control system. Your
local source now matches the repository.

Example 1-1 Merging Projects

Another developer has added and checked in a new Employee class descriptor to
the com.demo package while you were working with the same OracleAS TopLink
Mapping Workbench project. To merge your work with the newly changed project:

1. Perform a file comparison on the <projectName>.mwp to determine the
differences between your local file and the file in the repository. Your SCM
system may show the file in merge status.

1-20 Oracle Application Server TopLink Mapping Workbench User’s Guide

Working with the OracleAS TopLink Mapping Workbench in a Team Environment

The file comparison shows the addition of the <package-descriptor> tag and a
<name> element inside that tag:

<package-descriptors>
<name>com.demo.Employee.ClassDescriptor</name>
</package-descriptor>

2. Insert this XML into your <projectName>.mwp file (inside the <descriptors>
element) to bring it up to date to the current files the source repository.

3. Retrieve any new or updated files from your source control system. This
includes the newly added Employee class descriptor.

4, Check in files that you have modified

Merging Table, Descriptor, and Class Files

Developers who concurrently modify the same existing table, descriptor, or class
file will create a merge condition for the following files:

s Table - <tableName>.xml (one for each table)

s Descriptor - <descriptorName. type>.xml (one for each descriptor)

s Class — <className>.xml (one for each class)

The OracleAS TopLink Mapping Workbench changes these files when saving a
project if you have changed any of the contents within them (such as adding a
mapping to a descriptor, adding an attribute to a class, or a changing a field
reference in a table).

To Merge a Table, Descriptor, or Class File:

If another developer has changed an attribute in a table, descriptor, or class, while
you were changing a different mapping on that same descriptor, you will need to
merge your project.

1. Perform a file comparison on the specific . xm1 file(s) in merge status (i.e., table,

descriptor, or class). The file comparison shows the addition or removal of an
XML element.

2. Insert or remove the XML into your local .xm1 file to bring it up to date to the
current files the source repository.

Understanding the OracleAS TopLink Mapping Workbench 1-21

Working with the OracleAS TopLink Mapping Workbench in a Team Environment

Example 1-2 Merging Files Sharing Project Objects

Another developer has added and checked in the firstName mapping to the
Employee class descriptor while you were changing a different mapping on that
same descriptor. To merge your work with the newly changed project:

Perform a file comparison on the com.demo . Employee.ClassDescriptor.xml
file located in <projectRoot>/Descriptor/ thatis in merge status.

The file comparison shows the addition of the <mapping> tag and the elements
inside that tag:

<mapping>
<uses-method-accessing>false</uses-method-accessing>
<inherited>false</inherited>
<read-only>false</read-only>
<instance-variable-name>firstName</instance-variable-name>
<default-field-names>
<default-field-name>direct field=</default-field-name>
</default-field-names>
<field-handle>
<field-handle>
<table>EMPLOYEE</table>
<field-name>F NAME</field-name>
</field-handle>
</field-handle>
<mapping-class>MWDirectToFieldMapping </mapping-class>
</mapping>

Insert this XML block into your local
com.demo.Employee.ClassDescriptor.xml file (inside the existing
<mappings> element) to bring it up to date to the current files in the source
repository.

Retrieve any new files noted as missing by your source control system. This
includes any tables or descriptors that may be referenced by the new mapping.

Check in files that you have modified.

Sharing Project Objects

You can also share project objects by copying the table or descriptor file(s) into the
appropriate directories in the target project.

1-22 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with the OracleAS TopLink Mapping Workbench in a Team Environment

After copying the file(s), insert a reference to the table, descriptor, or class in the
appropriate place in the <projectName>.mwp file. All references contained within
the project file must refer to an existing object in the project.

Managing the ejb-jar.xml File

When working in a team environment, manage the ejb-jar.xml file similarly
to the . xml project files. The OracleAS TopLink Mapping Workbench edits and
updates the ejb-jar.xml file, if necessary, when working with an EJB project.

If you use a version control system, perform the same check in and check out
procedures. For merge conditions, use a file comparison tool to determine which
elements have been added or removed. Modify the file as necessary and check in
the file to version control your work.

Working with Locked Files

When working in a team environment, your source control system may lock
files when you retrieve them from the repository. If the OracleAS TopLink Mapping

Workbench attempts to save a locked file, the Version Control Assistance dialog box
appears, showing the locked files.

Figure 1-15 Version Control Assistance

E:_\;;:-\\'ersil:ln Control Assistance

The following files are marked Read-COnly. Please check-out or unlock the
following files from your wersion control system to continue. Press the Save
hutton once the files have been unlocked.

Read-0nly files

ChadraHome1toplinkiexamplesifoundationtthreetierimwidescriptonexamples.session
ChdraHometoplinkiexamplesifoundationtthreetiefimwides criptofiexamples.session
ChadraHome1toplinkiexamplesifoundationtthreetierimwidescriptonexamples.session

1| | [

Select one of the following methods to save your project:

= Use your source control system to unlock the files, then click Save.

= Click Save As to save the project to a new location.

Understanding the OracleAS TopLink Mapping Workbench 1-23

Working with the OracleAS TopLink Mapping Workbench in a Team Environment

See "Saving Projects” on page 2-4 for more information.

1-24 Oracle Application Server TopLink Mapping Workbench User's Guide

2

Understanding Projects

The Oracle Application Server TopLink Mapping Workbench project (. mwp file)
stores the information about how classes map to database tables. These are
language-independent XML files, different from the deployment XML files
generated by the OracleAS TopLink Mapping Workbench, that are read in by the
application using the XMLProjectReader class.

Working with Projects
You can edit each component of the project, including;:
= Project settings, such as the project classpath and sequence information
s Database information, such as driver, URL, and login information
s Table schema information for the database
= Packages and classes associated with the project
s Descriptor information for each class

The OracleAS TopLink Mapping Workbench displays projects and their contents in
the Navigator pane. When you select a project, its attributes display in the Editor
pane. The OracleAS TopLink Mapping Workbench can log runtime XML calls (in
the mw_xml . log file) to help troubleshoot projects (see "General Preferences" on
page 1-10 for more information).

Creating new Projects
Use this procedure to create a new OracleAS TopLink Mapping Workbench project.

Understanding Projects 2-1

Working with Projects

To Create a New Project:

1. Click the Create New Project button on the toolbar. The Create New Project
dialog box appears.

You can also create a new project by choosing File > New Project.

Figure 2—-1 Create New Project

E.'_:\;s:-l:reate New Project

Database Mame: |newhatahase

Platfarm: Oracle

2. Enter the database name and platform for the new project and click OK. The
Save As dialog box appears.

To select a different database, click Browse. See "Working with Databases" on
page 3-1 for more information.

3. Select a location in which to save the project and click Save.

Note: Always use a new folder to save a project. After creating
the . mwp project, do not rename the file. See "Saving Projects" on
page 2-4 to save your project with a different name.

The OracleAS TopLink Mapping Workbench window appears, showing the
project name in the Navigator pane. Continue with "Working with Project
Properties” on page 2-5.

Opening Existing Projects

Use this procedure to open an existing project.

2-2 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Projects

Caution: To upgrade from a previous version of OracleAS
TopLink, you must follow specific upgrade procedures and use
the Package Rename tool. Refer to the Oracle Application Server
TopLink Release Notes and Oracle Application Server TopLink Getting
Started Guide for more information.

To Open an Existing Project:

1. Click the Open Project button on the toolbar. The Choose a File dialog box
appears. You can also open a project by choosing File > Open Project from the
menu.

Note: The File > Reopen menu option contains a list of recently
opened projects. You can select one of these projects to open.

2. Select the OracleAS TopLink Mapping Workbench project file (. mwp) to open
and click Open. The OracleAS TopLink Mapping Workbench displays the
project information. If you open an OracleAS TopLink Mapping Workbench
version 3.x project that contains EJBs, the Potential EJB Descriptors dialog box
appears.

Figure 2-2 Potential EJB Descriptors

E::\;;:-Potenl:ial EJB Descriptors...

The following class descriptors may he EJE descriptors.
Please selectwhich descriptors you would like to be
imported as EJE descriptors,

[H# AddressEJB

[H# EmployeeBean
[H# ProjectBean

Select All Select Mone

[~ Generate EJE 1.1 specification compliant methods
and atftributes that are not found in the current class
descriptors.

Project Persistence Type
" Bean Managed Persistence (BMP)

® Container Managed Persistence (CMP 113

Understanding Projects 2-3

Working with Projects

3. Select which of the descriptors should be imported as E]JB descriptors, the
project persistence type, and click OK.

You can also specify whether the OracleAS TopLink Mapping Workbench
generates methods and attributes that comply with the EJB specification if they
are not found within the current class descriptor(s).

Saving Projects

The OracleAS TopLink Mapping Workbench does not automatically save your
project. Be sure to save your project often to avoid losing data.

To Save Your Project(s):

Click the Save Selected Project button or Save All Projects button to save your
project(s). You can also save a project by choosing File > Save Project or File > Save
All from the menu.

=

To Save Your Project with a Different Name or Location:
1. Choose File > Save As. The Save As dialog box appears.

2. Browse to the directory in which to save the project. In the File Name field, type
the name of the project and click Save.

Caution: Do not rename the . mwp file outside of the OracleAS
TopLink Mapping Workbench; instead use the Save As option.

Refreshing the Navigator Pane

If the OracleAS TopLink Mapping Workbench interface becomes corrupt, use the
Refresh Tree option to refresh the Navigator pane.

To Refresh the Navigator:
Choose File > Refresh from the menu, or press Ctrl+T.

Generating the Project Status Report

Use the Project Status Report to display a list of all warnings and errors in the
OracleAS TopLink Mapping Workbench project. This report will quickly identify
any incomplete mappings and indicate the project’s current status.

2-4 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Project Properties

To Generate the Status Report:

Choose Tools > Generate Project Status Report from the menu. The Project Status
Report dialog box appears, displaying the status of each OracleAS TopLink
Mapping Workbench project.

Figure 2-3 Project Status Report

T:\:;:-Project Status Report

QracleAS Toplink Mapping Workbench Status Report;
Froject emp -= One ofthe packages is incomplete.
Project emp -= The database is incomplete.

Database EMPLOYEE_DB -= One ofthe takles is incomplete.
Tahle EMPLOYEE -= A key pair has not been completely specifi
Tahle PROJECT -= A key pair has not heen completely specifie

Package test.oracle.models.employee -= One ofthe descriptors|—
Descriptor Employee -= Some mappings are incomplete. -

q i »

See "Error Messages" on page C-1 for information on each reported error.

To copy the report to another application (such as a text editor or e-mail message),
click Copy.

Working with Project Properties

Each project in the Navigator pane contains different editable parameters. To edit
the project’s properties, select the project object in the Navigator pane. The
following tabs appear in the Editor pane.

= General project properties (persistence type and classpath)
= Sequencing table defaults

= Default project properties (identity map, existence checking, and field access
method)

= Options (when generating Java source and creating Java information)

Working with General Project Properties

Use the project’s General tab to specify the default persistence type and classpath
information. Each OracleAS TopLink project uses a classpath — a set of

Understanding Projects 2-5

Working with Project Properties

directories, . jar files, and . zip files — when importing Java classes and defining
object types.

To create a descriptor for a persistent class, the OracleAS TopLink Mapping
Workbench reads a compiled Java .class file to read its attributes and relationships.

To Specify the General Properties:
1. Select the project object in the Navigator pane.

2. Select the General tab in the Editor pane. The General tab appears.

Figure 2-4 General Tab

General

FProject Save Location:
|C:10racIeHome‘ttonlink‘texamnles‘ttutorialslintro

Persistence Type

i Java Ohjects

i Entity Beans using ChP 1.1
i Entity Beans using CWMP 2.0
i Entity Beans using EMP

ejb-jarxml Location:

| Browse...

Class Path:

Add Entries...

Remove

Dowin

dd Al

3. Use this table to enter data in each field:

Field Description

Project Save Location Location of the project’s . mwp file and associated folders. This
field is for display only. All relative locations are based on the
Project Save Location.

Persistence Type Specify the project’s persistence type. For EJB projects, specify
the location of the ejb-jar.xml file.

2-6 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Project Properties

Field Description

ejb-jar.xml Location Location of the ejb-jar.xml file for this project. See "Mapping
EJB 2.0 Entities" on page 2-7 and "Working with the ejb-jar.xml
File" on page 2-18 for more information.

Note: This field applies for EJB projects only.

Classpath Location of the classes and packages for this project. See
"Working with Classes" on page 2-13 for information.

= Toadd anew classpath entry, click Add Entries and select
the directory, . jar file, or .zip file to add.

= Toremove a classpath entry, select the entry and click
Remove.

= To change the order of the entries, select the entry and click
Up or Down.

To create a relative classpath, select an entry and edit the path,
as necessary. The path will be relative to the Project Save
Location.

Mapping EJB 2.0 Entities

You can create an OracleAS TopLink Mapping Workbench project based on
information in the ejb-jar.xml file. Use this file to map the EJB 2.0 Container
Managed Persistence (CMP) entity beans’ virtual fields (called Container Managed
Fields, defined by <cmp-£field> tag) or relationships (called Container Managed
Relationship, defined by <cmr-field> tag) to database tables. You must specify
an .xml file or a . jar file that contains an ejb-jar.xml file.

The OracleAS TopLink Mapping Workbench defines all descriptors for entity
classes (as defined in the ejb-jar.xml file) as E]B descriptors. The OracleAS
TopLink Mapping Workbench does not create (or remove) descriptors for the
interfaces and primary key class for the entity when refreshing from the
ejb-jar.xml.

Note: The OracleAS TopLink Mapping Workbench creates class
descriptors for entity classes not defined in the ejb-jar.xml file.
You must manually change the descriptor type (see "Specifying
Descriptor Types" on page 4-2).

To update your project from the . xm1l file, right-click an EJB descriptor and select
Update Descriptors from ejb-jar.xml. You can also update the project by choosing

Understanding Projects 2-7

Working with Project Properties

Selected > Update Descriptors from ejb-jar.xml from the menu. See "Working
with the ejb-jar.xml File" on page 2-18 for more information.

Working with Sequencing Properties

Sequence numbers are artificial keys that uniquely identify the records in a table.
Use the project’s Sequencing tab to specify default sequencing properties for all

descriptors in the project. See "Working with Sequencing" on page 4-36 for more

information.

To Specify Default Sequencing Properties:
1. Select the project object in the Navigator pane.

2. Click the Sequencing tab in the Editor pane. The Sequencing tab displays.

Figure 2-5 Sequencing Tab

Sequencingl

Sequencing Preallocation Size: |50 j

w Lse Default Sequence Table
T Use Mative Sequencing (Mot Supported for DB2)

T Use Custom Sequence Takble:

Mame:

|
Sequence Marme Figld: | v|
|

Sequence Counter Field:

3. Use this table to enter data in each field:

Field Description

Sequencing Default preallocation size. Default is 50.
Preallocation Size

Sequencing Type Specify whether the project uses:
s OracleAS TopLink Default sequencing
s The database’s Native sequencing

= Custom sequencing table

2-8 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Project Properties

Field Description

Custom Sequence Use these fields to specify a sequence name, the name field, and

Table Information counter field. These fields apply only you select Use Custom
Sequencing Table.

Working with Default Properties

Use the project’s Default tab to specify the default identity map, existence checking,
and field access method.

Use the project’s Default tab to specify the default:

Identity map and existence checking policy for descriptors (if they do not have a
specific identity policy)

Field accessing applied to newly created descriptors

To Specify Default Project Properties:
1. Select the project object in the Navigator pane.

2. Select the Defaults tab in the Editor pane. The Defaults tab displays.

Figure 2-6 Defaults Tab

Defaults l

Identity Map

Type: |SoﬂCacheWeakldentityMap ~
L)

Size: (100 -

Existence Checking Field Accessing

W Check Cache " Use Method Accessing

" Check Database @ Lse Direct Field Accessing

" Assume Existence

" Assume Non-Existence
Mamed Gueries

[" Cache All Statements
[Bind All Parameters

3. Use this table to enter data in each field:

Understanding Projects 2-9

Working with Project Properties

Field Description

Identity Map Use the Type drop-down list to select the default identity map
and its Size for descriptors in this project (see "Working with
Identity Maps" on page 4-59).

Existence Checking Specify the type of existence checking to use.

Field Accessing Specify whether the descriptors use Method or Direct field
accessing (see "Specifying Direct Access and Method Access" on
page 4-71).

Named Queries Specify if OracleAS TopLink Caches All Statements or Binds

All Parameters for named queries. See "Named Queries" on
page 4-14 for more information, including how to override this
setting for specific queries.

Renaming Packages

To rename your packages, you must edit each of the project’s associated .xml files
in the following subdirectories:

= Class

= ClassRepository
s Descriptor

= Package

You must also edit the package and class names in the . mwp file. After changing the
package names in all files, open the project in the OracleAS TopLink Mapping
Workbench. OracleAS TopLink now uses the new package name.

Working with Project Options

Use the project’s Options tab to specify the default file names, class names, and
directories, when exporting or generating Java source code and deployment XML.
In addition, you can specify the primary key name and primary key search pattern
(database schema) to use when generating tables. The resulting tables and columns
will conform to the naming restrictions of the project’s target database.

To Specify Project Options:
1. Select the project object in the Navigator pane.

2. Click the Options tab in the Editor pane. The Options tab displays.

2-10 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Project Properties

Figure 2-7 Options Tab

Deployment and Java Source Code Generation

Project Java Source

Options l

Class Mame: |

Root Directory: . Erowse...

Froject Deployment XML

File Mame: |

xml

Directany: |

Table Creatar Java Source

Browse...

Class Mame: |

Root Directory: Erowse...

Model Java Source

Root Directory: ' Browese...

Table Generation

Default Primary Key: |ID

Primary Kew Search Pattern: |*ID

3. Use this table to enter data in each field:

Field

Description

Deployment and Java
Source Code Generation
Project Java Source

Project Deployment XML

Table Creator Java Source

Specify the defaults to use when exporting project
information. Directories are relative to the project location
and will contain folders for each generated package.

Java class name and project root directory when generating
Java source. See "Exporting Project to Java Source" on
page 2-16 for more information.

Filename (* . xm1) and directory when generating Java
source. See "Exporting Deployment XML" on page 2-17 for
more information.

Java class name and project root directory when generating
table source. See "Exporting Table Creator Files" on page 2-17
for more information.

Understanding Projects 2-11

Working with Project Properties

Field Description

Model Java Source Project root directory when generating Java model source.
See "Generating Java Code for Descriptors" on page 4-4 for
more information.

Table Generation
Default Primary Key Name Default name to use when generating primary keys.

Primary Key Search Pattern Default search pattern to use when generating primary keys.

Setting Default Advanced Properties

In addition to a descriptor’s standard property tabs, you can specify advanced
properties for each descriptor (see "Working with Advanced Properties" on
page 4-26 for more information). You can also specify which of these advanced
properties appear, by default, for new descriptors.

To Specify the Default Advanced Properties for Descriptors:

1. Right-click the project object in the Navigator pane and choose Set Advanced
Property Defaults from the pop-up menu. The Advanced Property Defaults
dialog box appears.

You can also set the default advanced properties by choosing the project object
and choosing Selected > Set Advanced Property Defaults from the menu.

Figure 2-8 Advanced Property Default

T_:\:;:-Advanced Property Defaults

Selectthe properties that you want to he
added by default to new descriptors.

[Copy
[Descriptor After Loading
[Descriptor Events

[Identity

[Inheritance

[Instantiation

[Interface Alias

[Descriptor Locking

[Multi-Table Infa

2-12 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Classes

2. Select each advanced property to display, by default, when creating and editing
descriptors.

3. Click OK.

Working with Classes

This section describes how to create descriptors from Java classes and packages and
includes information on the following:

s Creating Classes
= Updating Classes
= Refreshing Descriptors with Dependent Classes

Creating Classes

Use this procedure to create new classes and packages from within the OracleAS
TopLink Mapping Workbench.

To Create a New Class:

1. Right-click the project in the Navigator pane and choose Create New Class
from the pop-up menu.

You can also choose Selected > Create New Class from the menu.

Figure 2-9 Add New Class

E:_:\--'Is:-.l"\dd New Class

Package Marme: |

Mew Class Mame: JNBWClaSS

2. Use the Package Name drop-down list to choose a package or enter a new
package name.

3. Inthe New Class Name field enter a class name and click OK. The OracleAS
TopLink Mapping Workbench adds the new class to your project in the
Navigator pane.

Understanding Projects 2-13

Working with Classes

Note: The Class Name must be unique within the package.

Updating Classes

Use this procedure to update or refresh the classes in the OracleAS TopLink

Mapping Workbench project.

Note: If the class exists on both the system classpath and the
project classpath, the OracleAS TopLink Mapping Workbench will
update the class from the system classpath. To update or refresh
from the project classpath, remove the class from the system
classpath and restart the OracleAS TopLink Mapping Workbench.

To Update Classes:

1.

classes and packages.

You can also update the classes by choosing Selected > Add/Refresh Classes

from the menu.

Figure 2-10 Select Classes

E:_:\.-"s:-Selet:I: Classes

Awailable PackagesiClasses:

ig examples.sessions threetier)

examples.sessions threetier, 4]

Selected Classes:

2.

the Navigator pane.

2-14 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Define the available class(es) and package(s) for the project on the General tab.
See "Working with General Project Properties” on page 2-5 for information on

Select the package(s) and/or class(es) to add to the project and click OK. The
OracleAS TopLink Mapping Workbench adds the new classes to your project in

Working with Classes

Note: The OracleAS TopLink Mapping Workbench creates class
descriptors for each package/class. See "Specifying Descriptor
Types" on page 4-2 for to change the descriptor type.

To Remove a Class from a Project:

E‘ Select on the descriptor and click the Remove Class button, or choose Selected >
Remove Class from the menu.

Note: If you change a descriptor to an interface or abstract class in
code (outside of OracleAS TopLink Mapping Workbench), and
then refresh the class in OracleAS TopLink Mapping Workbench,
you may receive an ExternalClassNotFoundException.

For example:

A project contains two descriptors: Employee and
Employeelnterface. Both are classes and Employee extends
Employeelnterface. Outside of OracleAS TopLink Mapping
Workbench you edit the Employeelnterface code to change it to an
interface and make Employee implement the interface. When you
refresh the classes in OracleAS TopLink Mapping Workbench, you
will receive the error.

To avoid this situation, refresh Employeelnterface first, then
refresh Employee.

Refreshing Descriptors with Dependent Classes

If you refresh a descriptor, the OracleAS TopLink Mapping Workbench does not
refresh dependent classes if they are not included in the OracleAS TopLink
Mapping Workbench project.

For example, if you define a descriptor with an after load class and method which is
not included in the OracleAS TopLink Mapping Workbench project and you change
the after load class outside of the OracleAS TopLink Mapping Workbench, when
you refresh the descriptor, the OracleAS TopLink Mapping Workbench does not
pick up the change.

To work around this issue, add all dependent classes to the OracleAS TopLink
Mapping Workbench project. Because you do not map them, right-click each

Understanding Projects 2-15

Exporting Project Information

dependent class and uncheck the Activate Descriptor option. When you refresh the
project, the OracleAS TopLink Mapping Workbench refreshes both descriptors and
dependent classes.

Exporting Project Information

To use your project with the Oracle Application Server TopLink Foundation
Library, you must either generate deployment XML or export the project to Java
source code. The OracleAS TopLink Mapping Workbench can generate and export
the following project information:

s Exporting Project to Java Source
s Exporting Deployment XML
= Exporting Table Creator Files

= Exporting Java Model Source

Note: When exporting Java source and deployment XML, the
OracleAS TopLink Mapping Workbench writes the password using
JCE encryption (when using JDK 1.4). Refer to the Oracle Application
Server TopLink Getting Started Guide for information on using
password encryption with pre-JDK 1.3.

Use the OracleAS TopLink Sessions Editor to specify custom
password encryption (see "Setting Login Properties” on page 8-10).

Exporting Project to Java Source

Use this procedure to convert the project to Java code. Generally, this generated
code executes faster and deploys easier than XML files.

To Export the Project to Java Source Code:
Right-click the project in the Navigator pane and choose Export > Project to Java
Source from the pop-up menu.

You can also click the Export to Java Source button, or choose File > Export >
Export to Java Source or Selected > Export > Export to Java Source from the menu.

If you have not defined deployment and source code generation defaults (see
"Working with Project Options" on page 2-10) the OracleAS TopLink Mapping
Workbench prompts for a project class name and source directory.

2-16 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Exporting Project Information

Note: If your OracleAS TopLink Mapping Workbench project
uses UTF-8 character set, you must use a compatible JDK when
compiling the exported Java source.

Exporting Deployment XML

Use this procedure to generate XML files from your project that can be read by the
OracleAS TopLink Foundation Library. Using this option reduces development
time by eliminating the need to regenerate and recompile Java code each time the
project changes.

To Export Deployment XML:

Right-click the project in the Navigator pane and choose Export > Deployment
XML from the pop-up menu.

You can also click the Export to Deployment XML button

or choose File > Export > Generate Deployment XML or Selected > Export >
Generate Deployment XML from the menu.

If you have not defined deployment and source code generation defaults (see
"Working with Project Options" on page 2-10) the OracleAS TopLink Mapping
Workbench prompts for a filename and directory.

Exporting Table Creator Files

Use this procedure to create Java source code to generate database tables.

To Export Table Creator Files:

Right-click the project in the Navigator pane and choose Export > Export Table
Creator Java Source from the pop-up menu.

You can also choose File > Export > Table Creator Java Source or Selected >
Export > Table Creator Java Source from the menu.

If you have not defined deployment and source code generation defaults (see
"Working with Project Options" on page 2-10) the OracleAS TopLink Mapping
Workbench prompts for a class name and root directory.

Exporting Java Model Source

Use this procedure to generate the project model’s Java source.

Understanding Projects 2-17

Working with the ejb-jar.xml File

To Export Java Model Source:

Right-click the project, package, or specific descriptor in the Navigator pane and
choose Export > Export Java Model Source from the pop-up menu. The OracleAS
TopLink Mapping Workbench creates a . java file for each selected descriptor.

You can also choose File > Export > Export Java Model Source or Selected >
Export > Java Model Source from the menu.

If you have not defined deployment and source code generation defaults (see
"Working with Project Options" on page 2-10) the OracleAS TopLink Mapping
Workbench prompts for a root directory.

Note: If your OracleAS TopLink Mapping Workbench project
uses UTF-8 character set, you must use a compatible JDK when
compiling the exported Java source.

Working with the ejb-jar.xml File

For OracleAS TopLink Mapping Workbench projects that use EJB 2.0 CMP
persistence, use the ejb-jar.xml file to store persistence information for the
application server. With the OracleAS TopLink Mapping Workbench, you can
import information from an existing ejb-jar.xml file into your project, or you
can create/update the ejb-jar.xml from your project.

Each OracleAS TopLink Mapping Workbench project uses a single ejb-jar.xml
file. For each entity from the file, you should have an EJB descriptor in the project.
All entities must use the same persistence type.

As you make changes in your project, you can update the ejb-jar.xml file to
reflect your project. Additionally, if you edit the ejb-jar.xml file outside the
OracleAS TopLink Mapping Workbench, you can update your project to reflect the
current file.

Table 2-1 describes how fields in the ejb-jar.xml file correspond to specific
functions in the OracleAS TopLink Mapping Workbench:

Table 2—1 ejb-jar.xml Fields and the OracleAS TopLink Mapping Workbench

ejb-jar.xml OracleAS TopLink Mapping Workbench

primkey Bean attribute mapped to the primary key in the database
table (see "Setting Descriptor Information” on page 4-5)

2-18 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with the ejb-jar.xml File

Table 2-1 (Cont.) ejb-jar.xml Fields and the OracleAS TopLink Mapping Workbench

ejb-jar.xml OracleAS TopLink Mapping Workbench

ejb-name, EJB descriptor information on the EJB Info tab (see
prim-key-class, local, 'Displaying E]JB descriptor Information" on page 4-25)
local-home, remote,

home, and ejb-class

abstract-schema-name Descriptor Alias field on the Name Queries tab (see
"Named Queries" on page 4-14)

cmp-field Nonrelational attributes on the Descriptor Info tab (see
"Setting Descriptor Information" on page 4-5)

cmp-version Persistence Type field on the General tab (see "Working
with General Project Properties" on page 2-5)

The persistence-type is set to container.

query Queries listed in Queries tab (see "Specifying Queries and
Named Finders" on page 4-12)

Note: The findByPrimaryKey query is not in the
ejb-jar.xml file, as per the EJB 2.0 specification.

relationships One-to-one, one-to-many, and many-to-many mappings
(see "Working with Relationship Mappings" on page 6-2)

Writing to the ejb-jar.xml File

Use this procedure to update the ejb-jar.xml file, based on the current
OracleAS TopLink Mapping Workbench information. Use the E]B preferences to
specify whether the OracleAS TopLink Mapping Workbench automatically updates
the ejb-jar.xml file when you save the project.

Note: You can also write the information to a . jar file. The
OracleAS TopLink Mapping Workbench automatically places the
ejb-jar.xml file in the proper location
(META-INF/ejb-jar.xml).

To Write the ejb-jar.xml File:

Choose Selected > Write Project to ejb-jar.xml from the menu. You can also
right-click the project in the Navigator pane and choose Write Project to ejb-jar.xml
from the pop-up menu.

Understanding Projects 2-19

Working with the ejb-jar.xml File

s If the project does not currently contain an ejb-jar.xml, the system prompts
you to create a new file.

» If the system detects that changes were made to the ejb-jar.xml file but not
yet read into the OracleAS TopLink Mapping Workbench (for example, you
changed the file outside the OracleAS TopLink Mapping Workbench), then the
system prompts you to read the file before writing the changes.

Reading from the ejb-jar.xml File

Use this procedure to read the ejb-jar.xml information and update your
OracleAS TopLink Mapping Workbench project.

Tip: To automatically create EJB descriptors in the OracleAS
TopLink Mapping Workbench for all entities, read the
ejb-jar.xml file before adding any classes in the OracleAS
TopLink Mapping Workbench.

To Read the ejb-jar.xml File:

Choose Selected > Update Project from ejb-jar.xml from the menu. You can also
right-click the project in the Navigator pane and choose Update Project from
ejb-jar.xml from the pop-up menu.

2-20 Oracle Application Server TopLink Mapping Workbench User’'s Guide

3

Understanding Databases

When you create a descriptor for a class, the Oracle Application Server TopLink
Mapping Workbench retrieves the table information from the database. This section
includes information on:

» Working with Databases
= Working with Database Tables in the Editor Pane

= Generating Data from Database Tables

Working with Databases

Each OracleAS TopLink Mapping Workbench project contains a database. You can
create multiple logins for each database. This section describes how to specify
database properties and how to log into the database.

Database Properties

Use the Database property sheet to specify information about the database and
login(s).

To Specify the Database Properties:

1. Choose the database object in the Navigator pane. The Database property sheet
appears in the Editor pane.

Understanding Databases 3-1

Working with Databases

Figure 3—1 Database Property Sheet

) Database

Defined Lagins:

Diatahase Platform: [Oracle Change...

Add...

Eemaoyve

Drriver Class: |

URL:

|
Ugername: |
Password: |

™ Save Pagsword

Development Login: |

Deployment Login: |

2. Use this table to enter data in each field:

Field

Description

Database Platform

Defined Logins

Login Fields:
Driver Class
URL

Username

Database platform for the project. Click Change to select a new
database.

Note: To use Oracle Database 10g, select Oracle9i. To use an
Oracle Database prior to version 8i, select Oracle.

Login used to access the database. Click Add to add a new login,
or Remove to delete an existing login.

To edit these fields, first select a Defined Login.

The OracleAS TopLink Mapping Workbench connects to
databases through JDBC. Contact your database administrator
for information on installing and configuring your driver.

Name required to log into the database.

3-2 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Database Tables in the Editor Pane

Field Description

Password Password required to log into the database.

Note: When exporting deployment XML and Java source (see
"Exporting Project Information" on page 2-16) the OracleAS
TopLink Mapping Workbench writes out this password. Use the
OracleAS TopLink Sessions Editor (see Chapter 8,
"Understanding the OracleAS TopLink Sessions Editor") to
specify password encryption options.

Save Password Specify whether the OracleAS TopLink Mapping Workbench
saves the Password for this Defined Login.
Development Login The OracleAS TopLink Mapping Workbench supports multiple
D . logins. Select a Defined Login to use for development and/or
eployment Login d
eployment.

3. After entering the information, continue with "Logging into the Database" on
page 3-3.

Logging into the Database

You must log into the database before importing or exporting table information.

To Log into the Database:

£

- Select the database object in the Navigator pane and click the Login button on the
toolbar. The OracleAS TopLink Mapping Workbench logs into the database. The
database object in the Navigator pane changes to.

L You can also right-click on the database object and choose Log In from the pop-up

menu or choose Selected > Log In from the menu.

Note: If you have not defined a login, the system displays a
warning message. See "Database Properties" on page 3-1 for more
information on creating a database login.

Working with Database Tables in the Editor Pane

When you select a database table in the Navigator pane, its properties appear in the
Editor pane. Each database table contains the following property tabs:

» Fields - Add or modify the table’s fields, and specify the field’s properties (see
Figure 3-2).

Understanding Databases 3-3

Working with Database Tables in the Editor Pane

= References — Specify references between tables (see Figure 3-5).

Working with Field Properties

Use the database table’s Field tab to specify properties for the database table’s
fields.

Note: Some properties may be unavailable, depending on your
database type.

To Specify Table Field Properties:

1. Select a database table in the Navigator pane. The table’s property sheet
displays in the Editor pane.

2. Click the Fields tab.

Figure 3-2 Fields Properties

Fields [

Mame Type Size Sub-f add
& ErnployeelD MUMBER |20 =
W& Firstlame VARCHAR? [20 =l Remove
& LastName YARCHARZ 20 =l
W Address VARCHAR? 20 =
& HomePhone MUMBER [z0 -

4| | b

3. Use this table to enter information in each field. Use the scroll bar to display all

fields on the tab.
Field Description
Name Name of the field.
Type Use the drop-down list to select the field’s type.

Note: The valid values will vary, depending on the database.

Size Size of the field.
Sub-Size Sub-size of the field.
Allows Null Specify if this field can be null.

3-4 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Database Tables in the Editor Pane

Field Description

Primary Key Specify whether this field is a primary key for the table.
Identity Indicates a Sybase, SQL Server or Informix identity field.
Unique Specify whether the value must be unique within the table.

Note: Use the scroll bar to display the additional fields

4. Enter the necessary information for the existing fields, or click Add Field to add
a new field.

To remove a field, select the field and click Remove.

Setting a Primary Key for Database Tables

Use this procedure to set primary key(s) for a database table.

Note: The OracleAS TopLink Mapping Workbench can
automatically import primary key information if supported by the
JDBC driver.

To Set a Primary Key:
1. Select a database table in the Navigator pane. Its property sheet appear in the
Editor pane.

2. C(lick the Fields tab.

Figure 3-3 Setting Primary Key for a Database Table

sl l Prirmary key
Size Sub-Size | Allows NUl @ ol
-l =l =
|20 = = W T Rernove
[20 - =t 4 [
| lse =lo = M
4| | 3

Understanding Databases 3-5

Working with Database Tables in the Editor Pane

3. Select the Primary Key field(s) for the table.

Working with Reference Properties

References are table properties that contain the foreign key — they may or may not
correspond to an actual constraint that exists on the database. The OracleAS
TopLink Mapping Workbench uses these references when you define relationship
mappings and multiple table associations.

When importing tables from the database, the OracleAS TopLink Mapping
Workbench can automatically create references (if the driver supports this), or you
can define references from the workbench.

Creating Table References
Use this procedure to create a new table reference.

To Create a New Table Reference:

1. Select a database table in the Navigator pane. The table’s properties display in
the Editor pane.

2. Click the Table Reference tab (see Figure 3-5).

3. In the Table References area, click the Add button. The New Reference dialog
box appears.

Figure 3—-4 New Reference

E:_:\;s:-l*«alul Reference

Enter Mame of kew Reference:
| SOURCE_TARGET

Selectthe Source Tahle:
| s0URCE -

Selectthe Target Tahle:
| TARGET -

[On Database

4. Use this table to enter information in each field.

3-6 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Database Tables in the Editor Pane

Field Description

Name of New Reference Name of the reference table. If you leave this field blank, the
OracleAS TopLink Mapping Workbench automatically creates a
name based on the format: SOURCETABLE TARGETTABLE.

Select the Source Table Name of the database table. This field is for display only.

Select the Target Table Use the drop-down list to specify the target table for this
reference.

On Database Specify if you want to create the reference on the database when
you create the table. Not all database drivers support this option.

Continue with Creating Field References.

Creating Field References
Use this procedure to create a new field reference.

To Specify Table Reference Properties:

1. Select a database table in the Navigator pane. The table’s properties display in
the Editor pane.

2. C(lick on Table Reference tab.

Figure 3-5 References Properties

Referencesl

Reference Name Target Table 0On Database Add
S EMPLOYEE_ADDRESS ADDRESS [
% EMPLOYEE_EMPLOYEE EMPLCYEE [Remove

o

Source Field Target Field Add

S ADDR_ID |[ADDRESS_ID

9__ Remove

Figure 3-5 calls out the following user-interface components:
1. Table References area

2. Key Pairs area

Understanding Databases 3-7

Generating Data from Database Tables

3. Inthe Table References area, select a Table Reference (see "Creating Table
References" on page 3-6).

4. Inthe Key Pairs area, click on Add button. The Source and Target fields appear
on the tab.

5. Use the Source Field and Target Field drop-down lists to choose the key pair
for this reference.

Generating Data from Database Tables

The OracleAS TopLink Mapping Workbench can automatically generate the
following information from the database tables.

s Generating SQL Creation Scripts
= Generating Descriptors and Classes from Database Tables
= Generating EJB Entities from Database Tables

You can also generate database tables from descriptors in your project.

Generating SQL Creation Scripts

Use this procedure to automatically generate SQL scripts to create the tables in a
project.

To Generate SQL Scripts from Database Tables:
1. Select the database table(s) in the Navigator pane.

2. Right-click the table(s) and choose Generate Creation Script for > Selected
Table or All Tables from the pop-up menu. The SQL Creation Script dialog box
appears.

You can also choose Selected > Generate Creation Script for > Selected Table
or All Tables from the menu.

3-8 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Generating Data from Database Tables

Figure 3-6 SQL Creation Script

-50L Creation Script

DROP TAELE Employees:
CEEATE TAELE Ewployees (EmployeeIDl INTEGER, FirstHame

3. Copy the script and paste it into a file. You may need to edit the file to include
additional SQL information that the OracleAS TopLink Mapping Workbench
could not generate.

Note: If OracleAS TopLink cannot determine how a particular
table feature should be implemented in SQL, it generates a
descriptive message in the script.

Generating Descriptors and Classes from Database Tables

The OracleAS TopLink Mapping Workbench can automatically generate Java class
definitions, descriptor definitions, and associated mappings from the information in
database tables. You can later edit the generated information if necessary.

For each table, the OracleAS TopLink Mapping Workbench:
» Creates a class definition and a descriptor definition.
= Adds attributes to the class for each column in the table.
= Automatically generates access methods, if specified.

» Creates direct-to-field mappings for all direct (non-foreign key) fields in the
table.

» Creates relationship mappings (one-to-one and one-to-many) if there is
sufficient foreign key information. You may be required to determine the exact

mapping type.

Understanding Databases 3-9

Generating Data from Database Tables

Note: Class and attribute names are generated based on the table
and column names. You can edit the class properties to change
their names.

To Generate Descriptors and Classes from Database Tables:
1. Select the database table(s) in the Navigator pane.

2. Right-click the table(s) and choose Generate Descriptors and Classes from >
Selected Table or All Tables from the pop-up menu. The Save Project dialog
box appears.

You can also choose Selected > Generate Descriptors and Classes from >
Selected Table or All Tables from the menu.

3. Click Yes. The Generate Classes and Descriptors dialog box appears.

Figure 3—-7 Generate Classes and Descriptors

E:_:\;;:-E:am:rate Classes and Descriptors

FPackage Mame: J
W Generate Accessing Methods

4. Use this table to enter data in each field:

Field Description

Package Name Name of package to generate

Generate Accessing Specify if the OracleAS TopLink Mapping Workbench generates
Methods accessing methods for each class and descriptor

5. Enter the information and click OK. If the table contains foreign key fields that
may represent relationship mappings, then the Choose Relationships to
Generate dialog box appears.

3-10 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Generating Data from Database Tables

Figure 3-8 Choose Relationships to Generate

T:\:s:-l:hoose Relationships to Generate

Based on the foreign keys of the tables, some relationship mappings can be generated.
Selectthe appropriate relationships below and indicate their types using the mapping buttons.

Fotential Relationships Selected Relationships

Phonenumber{ P_MNUMBER) == Employ a2
Employee{ EMP_ID) == Address{ 1D}

4

4] | 3

[+ Generate Bi-directional Relationships

Select a Potential Relationship and click the 1:1 Mapping or 1:M Mapping
button. See Chapter 6, "Understanding Relationship Mappings" for more
information on mappings.

You can also specify whether the relationships are bidirectional.

Click Create to automatically create the relationships (or click Skip to generate
the descriptors without creating these relationships.).

The newly created descriptors appear in the Navigator pane of the OracleAS
TopLink Mapping Workbench.

Generating EJB Entities from Database Tables

Use this procedure to automatically generate EJB classes and descriptors for each
database table. Generating EJB entities allows you to create:

One EJB descriptor that implements the <javax.ejb.EntityBeans interface
and four EJB 1.1 classes for each table

Bean relation attributes (CMP or BMP)
Java source fore each class

EJB-compliant method stubs

Understanding Databases 3-11

Generating Data from Database Tables

Note: This option is available only for projects with CMP or BMP
persistence.

To Generate EJB Entities:
1. Select the database table(s) in the Navigator pane.

2. Right-click the table(s) and choose Generate EJB Entities and Descriptors
from > Selected Table or All Tables from the pop-up menu. The Save Project
dialog box appears.

You can also choose Selected > Generate EJB Entities and Descriptors from >
Selected Table or All Tables from the menu.

3. Click Yes to save your project before generating EJB entities. The Generate
Enterprise Java Beans dialog box appears.

Figure 3-9 Generate EJB Entity Classes and Descriptors

E:_:\;;:-E:am:rate EJB 2.0 CMP Entity Classes and Descriptors

FPackage Mame:
Thesefields appear
for 2.0 CMP and BWMP

W Generate Local Interfaces projects only.

[” Generate Remote Interfaces

4. Enter a package name, select any persistence type options, and click on OK.

5. If the table contains foreign key fields that may represent relationship
mappings, then the Choose Relationships To Generate dialog box appears (see
Figure 3-8). Select a potential relationship and click the 1:1 Mapping or 1:M
Mapping button.

You can also specify whether the relationships are bidirectional.
6. Repeat step for all appropriate sets of tables.

7. Click Create to generate the relationship mappings (or click Skip to generate
the EJB descriptors without creating these relationships.).

The system creates the remote primary key, home, and bean classes for each bean
and adds this information to the project.

3-12 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Generating Data from Database Tables

Generating Tables on the Database

Use this procedure to create a table in the database, based on the information in the
OracleAS TopLink Mapping Workbench.

To Create a Table on the Database:
1. Select the database table(s) in the Navigator pane.

2. Right-click the table(s) and choose Create on Database > Selected Table or All
Tables from the pop-up menu. The Save Project dialog box appears.

You can also create tables by selecting Selected > Create on Database >
Selected Table or All Tables from the menu.

Note: You must log into the database before creating tables. See
"Logging into the Database" on page 3-3 for more information.

The OracleAS TopLink Mapping Workbench creates the tables on the database.

The newly created descriptor(s) appear in the Navigator pane of the OracleAS
TopLink Mapping Workbench. Use the EJB Info tab (see Figure 4-16) to modify the
EJB information.

Understanding Databases 3-13

Generating Data from Database Tables

3-14 Oracle Application Server TopLink Mapping Workbench User’'s Guide

4

Understanding Descriptors

Oracle Application Server TopLink uses descriptors to store the information that
describes how an instance of a particular class can be represented in a relational
database. Most descriptor information can be defined by the OracleAS TopLink
Mapping Workbench and read from a project file to be registered with an OracleAS
TopLink Mapping Workbench session.

For complete information on the OracleAS TopLink API, refer to the Oracle
Application Server TopLink API Reference.

Note: In this document, descriptors refers to OracleAS TopLink
Mapping Workbench descriptors; deployment descriptors refers to
EJB deployment descriptors.

Working with Descriptors

A descriptor stores all the information describing how an instance of a particular
class can be represented in a relational database. The OracleAS TopLink Mapping
Workbench reads a project . mwp file to load all a project’s information (including
descriptor information).

You may need to amend a descriptor (for example, to specify a property not
supported by the OracleAS TopLink Mapping Workbench) after reading a project
file (see "Amending Descriptors After Loading" on page 4-27). However, do not
modify any descriptors after registering them with the session.

OracleAS TopLink descriptors contain the following information:

» The persistent Java class it describes and the corresponding database table(s) for
storing instances of that class

Understanding Descriptors 4-1

Working with Descriptors

= A collection of mappings, which describe how the attributes and relationships
for that class are stored in the database

s The primary key information of the table(s)
= Alist of query keys (or aliases) for field names
s Information for sequence numbers

= A set of optional properties for tailoring the behavior of the descriptor,
including support for identity maps, optimistic locking, the Event Manager,
and the Query Manager

s Caching refresh options

Understanding Persistent Classes

Any class that registers a descriptor with an OracleAS TopLink Mapping
Workbench database session is called a persistent class. OracleAS TopLink does not
require that persistent classes provide public accessor methods for any private or
protected attributes stored in the database.

See Appendix A, "Object Model Requirements" for more information on persistent
classes object model requirements.

Specifying Descriptor Types

OracleAS TopLink descriptors can be a class descriptor, an aggregate descriptor, or
an EJB descriptor. After creating a descriptor, use this procedure to change the
descriptor type.

Note: An EJB descriptor cannot be an aggregate.

To specify a descriptor’s type:
1. Select the descriptor in the Navigator pane.

2. Click the appropriate descriptor icon (Class, Aggregate, or EJB) on the
mapping toolbar.

You can also select the descriptor and choose Selected > Descriptor Type >
specific descriptor type from the menu or by right-clicking on the descriptor in
the Navigator pane and selecting Descriptor Type > specific descriptor type from
the pop-up menu.

4-2 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Descriptors

Note: EJB 2.0 descriptors are created only by reading the
ejb-jar.xml file. See "Mapping E]B 2.0 Entities" on page 2-7 for
more information.

When changing a descriptor’s type, the OracleAS TopLink Mapping Workbench
adds or removes property tabs, as needed.

Converting a class or EJB descriptor to an aggregate descriptor removes the
Descriptor Info and Queries tabs. Some advanced properties are not available for
aggregate descriptors and will be removed from the Editor pane.

Converting an aggregate descriptor to a class descriptor adds the Descriptor Info
and Queries tabs.

Mapping Descriptors

Descriptors define mappings between classes and tables. To display the attributes in
a specific class, expand the descriptor item in the Navigator pane (see Figure 1-5).

Use the mapping toolbar (see "Mapping Toolbar" on page 1-7) to choose a mapping
type for each attribute.

To map a descriptor:

1. Select a descriptor in the Navigator pane. Its properties appear in the Editor
pane.

2. On the Descriptor Info tab, associate the descriptor with a database table (see
"Setting Descriptor Information" on page 4-5).

3. In the Navigator pane, expand the descriptor to display its attributes.

4. Select an attribute and click the appropriate mapping button on the Mapping
toolbar (see "Mapping Toolbar" on page 1-7).

Continue with "Working with Mappings" on page 4-69 to modify the mapping.

Automapping Descriptors

The OracleAS TopLink Mapping Workbench can automatically map class attributes
to a similarly named database field. The Automap function only creates mappings
for unmapped attributes — it does not change previously defined mappings.

You can automap classes for an entire project or for specific tables.

Understanding Descriptors 4-3

Working with Descriptors

Note: You must associate a descriptor with a database table
before using the Automap function. See "Setting Descriptor
Information" on page 4-5 for more information.

To automap attributes:

To automap all descriptors in a project, right-click the project icon in the Navigator
pane and choose Automap from the pop-up menu or choose Selected > Automap
from the menu.

or

To automap a specific descriptor or attribute choose the descriptor/attribute(s).
Right-click and select Automap from the pop-up menu or choose Selected >
Automap from the menu.

Generating Java Code for Descriptors

Use this procedure to generate the Java class code for the selected descriptor or
package.

To generate Java code:

Right-click the descriptor or package and choose Export Java Model Source from
the pop-up menu. The Choose a Directory dialog box appears.

You can also choose Selected > Export Java Model Source from the menu.

If you have not defined deployment and source code generation defaults (see
"Working with Project Options" on page 2-10) the OracleAS TopLink Mapping
Workbench prompts for a filename and directory.

OracleAS TopLink creates the <DescriptorName>. java file in the specified
directory.

4-4 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Descriptor Properties

Note: If you attempt to generate source code for a descriptor but
cancel the process before the OracleAS TopLink Mapping
Workbench writes the new source code, a dialog indicates that the
source code was successfully updated. However, if you cancelled
the process, the OracleAS TopLink Mapping Workbench did not
overwrite any existing code.

In this release, the OracleAS TopLink Mapping Workbench does
not support generating Project Java Source for Descriptors mapped
to inner classes.

If you attempt to generate source code from a table with BLOBs, the
generated Java code may contain errors in the type definition and
method parameters. You must edit the source code to eliminate the
errors.

Working with Descriptor Properties

Each descriptor in the OracleAS TopLink Mapping Workbench contains the
following default tabs and specific properties.

Descriptor Info
Class Info
Query Keys
Queries

EJB Info (for E]B descriptors only)

Use the Set Advanced Properties function (see "Working with Advanced
Properties" on page 4-26 and "To Specify the Default Advanced Properties for
Descriptors:" on page 2-12) to specify additional properties for each descriptor.

Setting Descriptor Information

Use the Descriptor Info tab to map a descriptor to a specific table in the database,
define primary key(s), specify sequencing information, and set caching options.

To map a descriptor to a table:

1.

Select a descriptor in the Navigator pane. Its properties appear in the Editor
pane.

Understanding Descriptors 4-5

Working with Descriptor Properties

2. Click the Descriptor Info tab.

Figure 4-1 Descriptor Info Tab

Descriptar Info l

Associated Table: [<none selected= -

Primary Keys:

™ Use Seguencing:

[ame: |

Takle: | |

Field: | |

[Read Only
" Conform Results in Unit of Waork
Refreshing Cache Options (Advanced)
w Default
O Always Refresh

" |Dizakle Gache Hits

" Only Refresh If Mewer Yersion

3. Use this table to enter data in each field:

Field Description

Associated Table Use the drop-down list to select a database table for the
descriptor.

Primary Keys Specify the primary key(s) for the table.

Use Sequencing Specify if this descriptor uses sequencing. If selected, specify the

Name, Table, and Field for sequencing. See "Working with
Sequencing" on page 4-36 for more information.

Read Only Specify if this descriptor is read-only.

Conform Results in Unit Specify to use the conformResultsInUnitOfWork ()
of Work method for any read object or read all query.

Refer to the Oracle Application Server TopLink Application
Deuveloper’s Guide for more information.

4-6 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Descriptor Properties

Field Description

Refreshing Cache

Default Use the project’s default caching options. OracleAS TopLink will
not refresh the cache unless a read query is configured to refresh
the cache.

Always Refresh Refreshes the objects in the cache on all queries.
Note: Using this property may impact performance.

Disable Cache Hits Disables the cache hits on primary key read object queries.

Only Refresh if Newer Refreshes the cache only if the object in the database is newer

than the object in the cache (as determined by the Optimistic
Locking field). See "Working with Optimistic Locking" on
page 4-56 for more information.

Note: Use the caching options to specify how descriptors refresh
the objects in the cache during queries. This ensures that queries
against the session will refresh the objects from the row data.

Setting Class Information

After generating classes and descriptors, use the Class Info tab to:

s Rename classes, attributes, and methods

= Add, delete, or edit the generated attributes and methods

= Generate Java source to create new classes

To specify class info:

1. Select a descriptor in the Navigator pane. Its properties appear in the Editor

pane.

2. Click the Class Info tab in the Editor pane.

3. Select the appropriate tab:

s Class Tab

s Attributes Tab
s Methods Tab

Understanding Descriptors 4-7

Working with Descriptor Properties

Class Tab

To add a new interface to implement, click Add.

To delete an interface, select the interface and click Remove.

To generate source code for the descriptor, click Generate Source Code.

Figure 4-2 Class Tab

Class Info l

Class [Aﬂributes Methods

Marme: |0rac|e.t0p|ink.com.NewCIass

Superclass: |java.|ang.0bject

Modifiers Interfaces Implemented

Browse...

Access Madifiers

® Puyblic
T (Defaulty

Other Modifiers
[Abstract
[Final

Generate Source Code...

Addd Rernove

Use this table to enter data in each field:

Field Description

Name Name of the class. This field is for display only.
Superclass Click Browse and select a class and package.
Modifiers

Access Modifiers

Other Modifiers

Specify if the class is accessible publicly or only within its own
package. Non-public classes are not accessible to the OracleAS
TopLink Mapping Workbench.

Specify if the class is Final and/or Abstract. Final classes are not
included in the superclass selection lists for other classes to
extend.

4-8 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Descriptor Properties

Field

Description

Interfaces Implemented

To add an interface, click Add and select the interface and
package. To remove an interface, select the interface and click

Remove.

Note: You must save your project after removing an interface

Attributes Tab

To add a new attribute, click Add.

To delete an existing attribute, select the attribute and click Remove.

To rename an existing attribute, select the attribute and click on Rename.

Figure 4-3 Attributes — General Tab

Class Infa l

Class Aﬁributes[Methods

Sg addressid
2g city

S country
Z¢ pCode
S province
Zg straet

Addd | Bemove| Rgname|

General l ACCessors

Modifiers
Access Modifiers
T public w private

O protected © (Defaulfy

Type Information

Type:

Type Dimensionalit: |0 i

Double {ava.landg) Browse...

Other Modifiers
[~ final [transient

[static [volatile

Select an attribute, then use this table to enter data in each field on the General tab.

Understanding Descriptors 4-9

Working with Descriptor Properties

Field

Description

Modifiers

Access Modifiers

Other Modifiers

Type Information

Type
Type Dimensionality

Specify how the attribute is accessible:

L

] Public
v
Protected
~ — Public only within its own package
=l

) Private — Public only for subclasses
= Default - Public only within its own package

Specify whether the attribute is Final, Static, Transient, or
Volatile.

Note: Selecting some modifiers may disable others.

Click Browse and select a class and package for the attribute.

Specify the length of an array. This field applies only if Type is
an array.

Figure 4-4 Attributes — Accessors Tab

Class Aftributes | Methods

Class Info

g addressid
g city

Sig country
Z¢ pCode
g province
S street

Add | Eemove| Rgname|

General Accessorsl
Gethethod: | ¢ gethddressldg -
Set Method: | $ sethddressid{java.lang. Double) v|

Generate Methods

4-10 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Descriptor Properties

Select an attribute, then use this table to enter data in each field on the Accessors
tab.

Field Description
Get Method Choose the get () method for the attribute.
Set Method Choose the set () method for the attribute.

To generate a get or set method for an attribute, click Generate Get/Set Methods.

Methods Tab
To add a new method, click Add.

To delete an existing method, select the method and click Remove.
Figure 4-5 Methods Tab

Class Info l

Class | Afributes Methods |

ad m Prapeties

e ress

¢ StErmpld] Modifiers

L& P Access Modifiers Other Modifiers

& getilamed

@ settddressidijava.lang.Double) ® Public Private [apstract [Static
& setEmpldiava.lang String) © Protected © (Default ™ Final ™ NMative

setNamejava.lang.Strin
4 0 g w ™ Synchranized

Type Information

Return type: v Browse...
Type Dimensionality: |0
Parameters
Tyne Dimensionality Mame
& “T¢ String (java.lang) i -

Add | Bemove| Rgname| M Remove

Select a method, then use this table to enter data in each field:

Understanding Descriptors 4-11

Working with Descriptor Properties

Field Description

Modifiers

Access Modifiers £ --ify how the attribute is accessible:
|(|:: Public

1n Protected — Public only within its own package
=

) Private — Public only for subclasses

= Default - Public only within its own package

Other Modifiers Specify whether the attribute is Final, Static, Transient, or
Volatile.

Note: Selecting some modifiers may disable others.
Return Type Click Browse and select a class and package.
Type Dimensionality Specify the length of the array (Return Type).
Parameters Click Add to include parameter(s) for the method.

Note: The parameters are loaded in the order listed.

Specifying Queries and Named Finders

Use the Queries tab to specify E]JB QL and SQL queries and finders to use for
database access. The Queries tab contains two additional tabs: Named Queries and
Custom SQL.

For 2.0 CMP projects, the ejb-jar.xml file stores query lists. You can define the
queries in the file and then read them into the OracleAS TopLink Mapping
Workbench, or define them on the Queries tab and write them to the file. See
"Writing to the ejb-jar.xml File" on page 2-19 for more information.

To create queries:
1. In the Navigator pane, select a descriptor.

2. Click the Queries tab in the Editor pane.
3. Select the appropriate tab:
s Custom SQL Queries

s Named Queries

4-12 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Descriptor Properties

Custom SQL Queries

Use this procedure to create custom SQL queries in the OracleAS TopLink
Mapping Workbench. For 2.0 CMP projects, the SQL is not written to the

ejb-jar.xml file.

To create custom SQL queries:

1. In the Navigator pane, select a descriptor.

2. Click the Queries tab in the Editor pane.

3. Click the Custom SQL tab.

Figure 4-6 Queries Custom SQL Tab

Queries l
MNamed Gueries Custom SQL l

Insert Update Delete Read Object Read All

4. Click the appropriate SQL function tab and type your own query object or SQL

string to control these actions for a descriptor.

Tab Description
Insert Generates the insertObject () method of the Session class.
Update Generates the updateObject () method of the Session class.

When customizing a descriptor’s update string if the application uses
optimistic locking, you must ensure that the row is not written if the
version field has changed since the object was read. Also, the update
string must increment the version field if the row is written. In addition,
the update string must maintain the row count of the database.

Delete Generates the deleteObject () method of the Session class.

Understanding Descriptors 4-13

Working with Descriptor Properties

Tab Description

Read Generates the readObject () method of the Session class

Customizing a descriptor’s read-object query works only for the version
of the readObject () that takes a primary key expression as a
parameter. If other expressions are used, OracleAS TopLink generates
dynamic SQL. You can define additional named queries for other
read-object queries.

Read All Generates the readAl10bjects () method of the Session class.

Customizing a descriptor’s read-all query works only for the version of
the readAll () that takes the class as a parameter—not the version that
takes the class and an expression. As a result, the query reads every
single instance. You can define additional named queries for other
read-all queries.

Note: The OracleAS TopLink Mapping Workbench does not
validate the SQL code that you enter. The code is defined by the
specific database type.

Example 4-1 Custom Queries

To control the five custom query tabs, you can include your own query object or
SQL string for a particular descriptor. The SQL string for each database is defined
by the type of database.

For example, the stored procedure to read an object may use the following string:
Read Employee (EMP_ID=>4653)
The query manager requires the following string to read the object:

Read Employee (EMP_ID=>#EMP _ ID)In this query, the hash character, #, binds
the argument EMP_ID within the SQL string.

Named Queries

Use named queries to specify SQL, EJB QL, or OracleAS TopLink Expression
queries to access the database. EJB QL is a declarative language that presents
queries from an object-model perspective. Refer to the EJB specification and the
Oracle Application Server TopLink Application Developer’s Guide for detailed
information.

4-14 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Descriptor Properties

To create a named query:
1. In the Navigator pane, select a descriptor.

2. Click the Queries tab in the Editor pane.

3. Click the Named Queries tab in the Queries tab. The Named Queries tab
contains the following additional tabs:

s Named Queries General tab
s Named Queries Format tab

= Named Queries Options tab

Figure 4-7 Named Queries Tab

Queries l

Mamed Gueries l Custom SGL

Descriptor Alias: |

Generall Faormat Options

Type: | FeadObjectQuery (oracle.toplink.queryramewark) v|

Parameters

Add.. Remaove

Add | Bemove| Rgname|

4. Click Add to create a new named query. The Add Named Query dialog box
appears.

Understanding Descriptors 4-15

Working with Descriptor Properties

Figure 4-8 Add named Query

i\?.;-ndd Named Query

The Type options
appear only for

Tyne:
¥pe EJE descriptars.

" TopLink Mamed Queny

& EJBE Finder

" TopLink Reserved Finder
" EJBE Select

Marme: J

5. Select the query type (for EJB descriptors), enter the query name, and press
Enter. The OracleAS TopLink Mapping Workbench adds the query to the
Named Query tab.

Note: For OracleAS TopLink Reserved Finders, use the
drop-down box to select a reserved name. OracleAS TopLink will
generate the query at runtime.

6. Click on the General tab to specify the query type and parameters.

Figure 4-9 Named Queries General Tab

Generall Format Options

Type: | ReadObjectQuery {oracle toplink.guerdramework) v|

Parameters

Add... Remove

7. Use this table to enter data in each field on the General tab.

4-16 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Descriptor Properties

Field

Description

Descriptor Alias

Name

Type

Parameters

Alias for the descriptor class. This field applies for EJB finders
only.

Name of the query. The prefix of the query name specifies the
query type:

« find-E]JB2.0

s ejbSelect — EJB Select

You cannot change the name of OracleAS TopLink Reserved
Finders.

Use the drop-down list to specify whether this is a ReadObject
or ReadAll query.

Click Add to add a parameter of a specific type to this query.

Note: You cannot add parameters for EJB descriptors.

8. Click on the Format

tab to specify the named query and its format.

Figure 4-10 Named Queries Format Tab

General Formatl Options

T EJB QL

Ciuerny String:

" Expression
©saL \

I

For Expressions, click
Editto edit the query
with the Expression
Builder.

Edit..

9. Use this table to enter data in each field on the Format tab.

Field Description

Expression Specify this named query uses an OracleAS TopLink expression.
SQL Specify this named query is a SQL query.

EJB QL Specify this named query is an EJB QL query.

Understanding Descriptors 4-17

Working with Descriptor Properties

Field

Description

Query String

Entry the query. The OracleAS TopLink Mapping Workbench
does not validate the query string.

Note: For Expressions, double-click the query string or click Edit
to create or edit the query string. See "Building Expressions" on
page 4-20 for more information.

10. Click on the Options tab to specify additional options for the named query.

Note:

If the options on this panel are disabled, the Mapping

Workbench uses the options specified in the parent.

Figure 4-11 Named Queries Options Tab

General Format Options l

™ Refresh Identity Map Results

Cache Staternent: |undeﬂned v|

Bind Parameters: |undeﬂned v|

Cache Usage: |Check Cache by Primary Key v|

InMemory Query Indirection: | Throw Indirection Exception 7|

Advanced...

11. Use this table to enter data in each field on the Options:

Field Description
Refresh Identity Map Specify the refreshIdentityMapResults () method to
Results refresh the attributes of the object resulting from the query.

Cache Statement

Bind Parameters

Specify the cacheStatement () method for the query.

= If undefined, the query uses the project’s default settings
(see "Working with Default Properties" on page 2-9).

s If true, then Bind Parameters must be true as well.

Specify the bindAllParameters () method for the query.

s If undefined, the query uses the project’s default settings
(see "Working with Default Properties” on page 2-9).

4-18 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Descriptor Properties

Field Description

Cache Usage Select if /how the query checks the cache before accessing the
database.

In Memory Query Specify how a query reacts when accessing un-instantiated

Indirection indirection. Use this option to specify the

InMemoryQueryIndirectionPolicy policy.

Note: These options are not available for £indOneByQuery and
findManyByQuery.

12. Click Advanced to specify additional named query options.

Figure 4-12 Advanced Query Options

E:_\;;:-.I"\d'nl'anl:ed Query Options

W Maintain Cache
W Usewirapper Policy

W Prepare SQL Once

™ Cache Query Results

™ Refresh Remate Identity Map Results

Pessimistic Locking: | Do Mot Acquire Locks ‘.|

Distinct State: | Uncomputed Distinct State |

Query Timeout

[Mo Timeout: |0 seconds

Maximum Rows

¥ Mo Maximum: |0

13. Use this table to enter data in each field and click OK:

Field Description

Maintain Cache Specify maintainCache () for the named query.

Understanding Descriptors 4-19

Working with Descriptor Properties

Field

Description

Use Wrapper Policy
Prepare SQL Once

Cache Query Results

Refresh Remote Identity
Map Results

Pessimistic Locking

Distinct State
Query Timeout

Maximum Rows

Specify the setWrapperPolicy () for the named query.

Specify the setShouldPrepare () for the named query. By
default, OracleAS TopLink optimizes queries to generate their
SQL only once. You may need to disable this option for certain
types of queries that require dynamic SQL based on their
arguments, such as:

= Expressions that use equal where the argument value
could be null. This may cause problems on databases that
require IS NULL, instead of = NULL.

= Expressions that use in and use parameter binding. This
will cause problems as the in values must be bound
individually.

Specify the cacheQueryResults() for the query. OracleAS
TopLink can maintains an internal cache of the objects
previously returned by a read query.

Specify the refreshRemoteIdentityMapResult () method
for the query. OracleAS TopLink can refresh the attributes of
the object(s) resulting from the query. With cascading,
OracleAS TopLink will also refresh the private parts of the
object(s).

Specify the pessimistic locking policy for the query.

Specify if OracleAS TopLink prints the DISTINCT clause, if a
distinct has been set.

Specify if the query will time out (or abort) after a specified
number of seconds.

Specify if the query will limit the results to a specified number
of rows. Use this to option for queries that could return an
excessive number of objects.

Refer to the Oracle Application Server TopLink Application Developer’s Guide for
additional information on named queries.

Building Expressions

Use the Expression Builder to create OracleAS TopLink expressions for Named

Queries.

4-20 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Descriptor Properties

To build an expression:

1. From the Named Queries Format tab (see Figure 4-10), click Edit (or
double-click a query string). The Expression Builder dialog box appears.

Figure 4-13 Expression Builder

{:\:;:-Expression Builder

AND ' v]
1. courtry Equal "USA" S—
2 AND Add Nested...
o |—2. 1. pCode Equal "27615"

3 0R Remaove

3. 1. country Equal ™

Logical Operator:
8- i nd

<First Argument ~Second Argument
—

Query Key: ® | jteral

||ddressld Edit Operator: T Query Key:
T Parameter:

Figure 4-13 calls out the following user-interface components:
1. Expression tree
2. Arguments

2. Click Add or Add Nested to create a new expression. OracleAS TopLink
assigns a sequence number to each node and nested node.

Click Remove to remove an existing expression.

3. Select the node and use the Logical Operator drop-down list to specify the
operator for the node (AND, OR, Not AND, or Not OR).

Choose the expression and use this table to enter data in each field:

Understanding Descriptors 4-21

Working with Descriptor Properties

Field Description

First Argument Click Edit and select the query key for the first argument. See
"Adding Arguments" for more information.

Operator Specify how OracleAS TopLink should evaluate the expression.
Valid operators include: Equal, Not Equal, Equal Ignore Case,
Greater Than, Greater Than Equal, Less Than, Less Than
Equal, Like, Not Like, Like Ignore Case, Is Null, and Not Null.

Second Argument Specify the second argument:
= Literal — Click Edit and choose a literal type and value.
s Query Key — Click Edit and select the query key.

= Parameter — Choose a previously created parameter
argument.

See "Adding Arguments" for more information.

4. Click OK. The OracleAS TopLink Mapping Workbench adds the expression to
Named Queries tab.

Adding Arguments

Each expression contains elements (arquments) to evaluate. Expressions using the Is
Null or Not Null operators require only a single argument.

Use this procedure to add new arguments.

1. Select an existing expression or click Add (or Add Nested) to add a new
expression to the named query.

2. For the First Argument, click Edit. The Choose Query Key dialog box appears.

4-22 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Descriptor Properties

Figure 4-14 Choose Query Key

T:\:s:-l:hoose Query Key

Se-e gddress [Allows Mull
% city

*% country
*%id

*¥ postalCode
*¥ province
*% street
—*% firsthame
—3§§ gender
—*%id

—*% lastMame

&-92§ managedEmployees [Allows M

3. Select the attribute, specify if the query allows a null value, and click OK.

4. Use the Operator drop-down list to specify how OracleAS TopLink should
evaluate the expression.

5. For the Second Argument, select Literal, Query Key, or Parameter, and click
Edit.

s For Literal arguments, the Edit the Literal Type and Value dialog box
appears. Choose the literal type (such as String or Integer) and value.

s For Query Key arguments, the Choose Query Key dialog box appears (see
Figure 4-14).

s For Parameter arguments, use the drop-down list to select the specific
parameter, as created on the Named Queries General tab (see Figure 4-9).

Repeat this procedure for each expression or sub-expression.

Example 4-2 Sample Expression

This expression:

AND
1.manager (Allows Null).lastName EQUAL "Jones"
2.0R
2.1l.projects.name LIKE "BETA"
2.2.projects.id EQUAL "4"

Understanding Descriptors 4-23

Working with Descriptor Properties

1.1.address.country EQUAL "Canada"
1.2.salary GREATER THAN "25000"

.1.1.address.country EQUAL "United States"
1.2.salary GREATER THAN "37500"

will find employees who:
» Have a manager with the last name Jones or have no manager, and
= Work on projects with the name Beta or project ID 4, and

= Live in Canada and have a salary of more than 25,000 or
Live in the United States and have a salary of more than 37,500

Query Keys

The OracleAS TopLink Mapping Workbench uses query keys as an alias for a
field name. With an alias, OracleAS TopLink expressions can use the Java names
instead of DBMS-specific field names. See "Automatically-generating Query Keys"
on page 4-61 for additional information.

Use the Query Keys tab to create user-defined queries or to work with
automatically generated query keys.

Specifying Query Keys
Use the Query keys tab to specify a query key for a descriptor.

To specify query keys:
1. Select a descriptor in the Navigator pane. Its properties appear in the Editor
pane.

2. Click the Query Keys tab in the Editor pane.

4-24 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Descriptor Properties

Figure 4-15 Query Keys Tab

GQuery Keys l
- Selected Query Ke
2 empld v
2 name Field: |EMFP_ID
Add | Remaove | Rename |

3. Toadd a new query key, click Add.
To delete an existing query key, select the query key and click Remove.
To rename an existing query key, select the query key and click Rename.

4. Use the Field drop-down list to select the field in the table used by the query.

Displaying EJB descriptor Information

Use the EJB Info tab to display the EJB descriptor’s information (from the
ejb-jar.xml file). This tab is available only for EJB descriptors.

To display EJB descriptor information:
1. In the Navigator pane, select an EJB descriptor.

2. Click the EJB Info tab in the Editor pane.

Figure 4-16 EJB Info Tab

EJE Infa [

EJE Mame: |

Brimary Key Class: Browse...
Local Interface: Browse...
Local Home [nterface: Browse...
Eemaote Interface: Browse...
Remaote Home Interface: Browse...

3. Use this table to identify each field:

Understanding Descriptors 4-25

Working with Advanced Properties

Field Description

EJB Name Base name. When using EJB 2.0, this is specified in the

<ejb-name> element of the ejb-jar.xml file.

Primary Key Class Primary key. When using EJB 2.0, this is specified in the
ry ey y key g P

<prim-key-class> element of the ejb-jar.xml file.

Local Interface Local interface. When using EJB 2.0, this is specified in the

<locals element of the ejb-jar.xml file.

Local Home Interface Local home interface. When using EJB 2.0, this is specified in the

<local-home> element of the ejb-jar.xml file.

Remote Interface Remote interface. When using EJB 2.0, this is specified in the

<remote> element of the ejb-jar.xml file.

Remote Home Interface Remote interface. When using EJB 2.0, this is specified in the

<home> element of the ejb-jar.xml file.

Note: When using EJB 2.0 persistence, these fields are for display
only.

Working with Advanced Properties

You can also specify the following advanced properties for each descriptor:

Amending Descriptors After Loading
Specifying Events

Specifying Inheritance

Specifying Optimistic Locking
Specifying Multi-table Info

Setting the Copy Policy

Specifying Identity Mapping

Setting Instantiation Policy

Specifying an Interface Alias

4-26 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Advanced Properties

To display advanced properties:

Right-click a descriptor in the Navigator pane and choose Set Advanced Properties
> specific property from the pop-up menu or choose Selected > Set Advanced
Properties > specific property from the menu.

See "To Specify the Default Advanced Properties for Descriptors:" on page 2-12 for
information on specifying default advanced properties.

Amending Descriptors After Loading

Some OracleAS TopLink features cannot be configured from the OracleAS
TopLink Mapping Workbench. To use these features, you must write a Java
method to amend the descriptor after it is loaded as part of the project. This method
takes the descriptor as a single parameter. You can then send messages to the
descriptor or any of its specific mappings to configure advanced features.

To a specify a method to execute after loading the descriptor:

1. Select a descriptor in the Navigator pane. Its properties appear in the Editor
pane.

If the After load advanced property is not visible for the descriptor, right-click
the descriptor and choose Set Advanced Properties > After Load from pop-up
menu or from the Selected menu.

2, Click the After load tab in the Editor pane.

Figure 4-17 After Load Tab

After Load

[After Inading the descriptor, execute the following static method.

Class: | Erowse...

Static method: | =nhaone selecteds

3. Use this table to enter data in each field:

Field Description

After Loading Specify whether the OracleAS TopLink Mapping Workbench
should execute a method after loading the descriptor.

Understanding Descriptors 4-27

Working with Advanced Properties

Field Description
Class Click Browse and choose the class of the method to execute.
Static Method Use the Static Method drop-down list to choose the method to
execute.
Specifying Events

Use the Events tab to specify a methods to execute when certain events occur.

To specify an event method:

1. Select a descriptor in the Navigator pane. Its properties appear in the Editor
pane.

If the Events advanced property is not visible for the descriptor, then right-click
the descriptor and choose Set Advanced Properties > Events from pop-up
menu or from the Selected menu.

2. Click the Event tab in the Editor pane.

Figure 4-18 Events Tab

Ewents choice: | |

Euild: | =none selected=

Merge: | =nahe selecteds=

|
Clone: | =none selected= |
|
|

Refresh: | =none selected=

3. Use this table to enter data in each field:

Field Description
Events Choice Select an event for this descriptor.
Methods Select a method for each event.

Note: The methods available will vary, depending on the Event.

See "Registering an Event" on page 4-66 for a complete list of events and methods.

4-28 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Advanced Properties

Specifying Identity Mapping
The OracleAS TopLink Mapping Workbench specifies the default identity mapping
for each descriptor in the project options (see "Working with Default Properties" on

page 2-9). Use the Identity tab to specify identity map and existence checking
information.

Note: Changing the project’s default identity policy does not
affect descriptors that already exist in the project.

To specify an identity map for a descriptor:
1. In the Navigator pane, select a descriptor.

If the Identity advanced property is not visible for the descriptor, right-click the
descriptor and choose Set Advanced Properties > Identity from the pop-up
menu or from the Selected menu.

2. Click the Identity tab.

Figure 4-19 Identity Tab

Identity |
Identity Map
Type: |SoﬂCacheWeakIdentinap '|
size: 100 =

Existence Checking
® Check Cache

" Check Datahase
T Assume Existence

" Assume Mon-Existence

3. Use this table to enter data in each field:

Field Description

Type Use the Type drop-down list to choose the identity map (see
Table 4-2 for details).

Size Size of the identity map.

Understanding Descriptors 4-29

Working with Advanced Properties

Field Description

Existence Checking Specify the method of existence checking.

Specifying Inheritance

Use the Inheritance tab to specify the descriptor’s inheritance properties as either a
root or subclass (branch class or leaf class).

Note: When using an aggregate descriptor in an inheritance, all
the descriptors in the inheritance tree must be aggregates.
Aggregate and Class descriptors cannot exist in the same
inheritance tree.

Creating a Root Class
Use this procedure to create a root class.

To specify a root class:
1. In the Navigator pane, select the descriptor you wish to specify as the root.

2. Choose the Inheritance tab in the Property pane.

If the Inheritance tab is not visible, right-click the descriptor and choose Set
Advanced Properties > Inheritance.

4-30 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Advanced Properties

Figure 4-20 Creating a Root Class

[Read Subclasses on Query

Inheritance l

Read Subclasses Yiew (Optional) | =none selected=

¥ |s Root Descriptor

T Use Class Extraction Method

|<n0ne selected= |

® Use Class Indicatar Field

|<n0ne selected= v|

T Use Class Mame as Indicatar

® Use Class Indicator Dictionany

Indicator Type: |"|; String (java.lang) Browse...

Include Class Indicatar Walue .
3 SmallPraject 5 Edit..
[LargeProject L
Parent Descriptar | =none selectad= '|

To instantiate the descriptor’s subclasses when queried, select the Read
Subclasses on Query checkbox. Select a database view to use for reading
subclasses if desired.

Note: The view can be used for root or branch classes that have
subclasses spanning multiple tables. The view must apply an
outer-join or union all to the subclass tables.

Select the Is Root Descriptor checkbox.

You can use a class extraction method or a class indicator field to specify which
class to instantiate on querying. Choose the option and select the appropriate
method or field.

If you use a class indicator field, you can use the class name as the indicator, or
you can use a class indicator dictionary. Choose which option you wish to use
and specify the necessary information.

Understanding Descriptors 4-31

Working with Advanced Properties

7. If you use an indicator dictionary, choose the indicator type and set the
indicator values for each subclass.

Note: A list of subclasses and their indicator values appears when
the subclasses have set their parent descriptor. Abstract roots are
not in the list.

8. If you want instances of the subclasses to be instantiated when the root class is
queried, select the Read Subclasses on Query checkbox. Do not select this
checkbox for leaf classes.

Creating Branch and Leaf Classes

After setting up the root class for inheritance, you must also specify properties for
branch and leaf classes.

To create branch and leaf classes:

1. In the Navigator pane, select the descriptor for which to specify inheritance
information.

2. If the Inheritance advanced property has not been added to the descriptor,
right-click the descriptor and choose Set Advanced Properties > Inheritance.

3. Click the Inheritance tab of the Editor pane.

4. Ensure that Is Root Descriptor is not selected. The Parent Descriptor
drop-down list is now enabled and the class indicator information is disabled.

4-32 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Advanced Properties

Figure 4-21 Creating Branch and Leaf Classes

Inheritance l
¥ Read Subclasses on Query
Read Subclasses View (Optional) | PROJECT v|
[Is Root Descriptar
" Use Class Extraction Method
|<n0ne selected= |
@ Use Class Indicator Field
|<n0ne selecteds v|
= Use Class Mame as Indicatar
T Lse Class Indicator Dictionary
Indicator Type: “'E: String {java.lang) J

- |

Parent Descriptar | Project

5. Choose the parent descriptor from the Parent Descriptor drop-down list. This
may be the root class or a branch class.

6. Select the Read Subclasses on Query option if this is a branch class and you
want its subclasses to be instantiated when it is queried. Choose a database
view for reading subclasses, if desired. Do not select this checkbox for leaf

classes.

Specifying Optimistic Locking

Use the Locking tab to specify whether the descriptor uses optimistic locking.

To specify a descriptor’s locking policy:
1. In the Navigator pane, select a descriptor.

If the Locking advanced property is not visible for the descriptor, right-click the
descriptor and choose Set Advanced Properties > Locking from the pop-up
menu or from the Selected menu.

2. C(Click the Locking tab.

Understanding Descriptors 4-33

Working with Advanced Properties

Figure 4-22 Locking Tab

Locking l

® Optimistic Locking

Database Field: | EMP_ID '|

® Yersion Locking
O Timestamp Locking
[¥ Store Wersion in Cache

3. Use this table to enter data in each field:

Field Description

Optimistic Locking Specify that the descriptor uses optimistic locking.
Database Field Select the correct database field used for optimistic locking.
Version Locking Specify that the descriptor uses version locking.
Timestamp Locking Specify that the descriptor uses timestamp locking.

Store Version in Cache Specify whether you want to store the version information in the
cache.

Specifying an Interface Alias

Use the Interface Alias tab to specify a descriptor’s alias. Each descriptor can have
one interface alias. Use the interface in queries and relationship mappings.

Note: If you use an interface alias, do not associate an interface
descriptor with the interface.

To specify an interface alias:
1. In the Navigator pane, select a descriptor.

If the Interface Alias advanced property is not visible for the descriptor,
right-click the descriptor and choose Set Advanced Properties > Interface Alias
from pop-up menu or from the Selected menu.

2. Click the Interface Alias tab.

4-34 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Primary Keys

Figure 4-23 Interface Alias Tab

Interface Alias l

Aclass descriptor may have one interface alias associated with it.
This interface can then be used in gueries and relationship
mappings. Ifyou use this mechanism, the interface should not
have an interface descriptor associated with it

Interface alias: | SmallProject | Browyse...

3. C(lick Browse and select an interface.

Working with Primary Keys

A primary key is a column (or a combination of columns) that contains a unique
identifier for every record in the table. In the OracleAS TopLink Mapping
Workbench, every table that stores persistent objects must have a primary key.
Tables that require multiple columns to create an identifier use a composite primary
key. Setting the primary key for a table also sets the primary key for the descriptor
that uses the table.

The OracleAS TopLink Mapping Workbench implements primary keys using
sequence numbers (see "Working with Sequencing" on page 4-36).

Each descriptor must provide mappings for its primary key. These mappings may
be direct, transformation, or one-to-one. The OracleAS TopLink Mapping
Workbench does not require you to define a primary key constraint in the database
— only that the fields specified for the primary key are unique.

Note: Primary keys for classes in an inheritance hierarchy or for
descriptors that map to multiple tables have special requirements.
Refer to"Working with Inheritance" on page 4-39 and "Working
with Multiple Tables" on page 4-49 for more information.

Setting a Primary Key for Descriptors

Use this procedure to set a primary key for a descriptor.

Understanding Descriptors 4-35

Working with Sequencing

To set a primary key:
1. Select a descriptor in the Navigator pane. Its properties appear in the Editor
pane.

2. C(Click the Descriptor Info tab.

Figure 4-24 Primary Keys

Descriptar Info l

seleded Assosiated Table: | ADDRESS -
Primary Key. Primary Keys:
M = D =]
[& STREET e
Ty -

[Use Sequencing

Mame: |

[Read Only
" Conform Results in Unit of Waork

Refreshing Cache Options (Advanced)
® Default
T Always Refresh

[™ Disable Cache Hits

" Only Refresh If Newer Version

3. Select the field(s) to set as the primary key.

Working with Sequencing

Sequence numbers are artificial keys that uniquely identify the records in a table.
When you define a sequence number field for a descriptor, the OracleAS TopLink
Mapping Workbench automatically generates a new sequence number every time
you insert a new record into the table.

Use the project’s Sequencing tab (see Figure 2-5) or the Sequencing area of a
descriptor’s Descriptor Info tab (see Figure 4-1) to specify sequencing information

4-36 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Sequencing

Database tables often use a sequence number as the primary key. The OracleAS
TopLink Mapping Workbench can use the database’s native support or a sequence
table to maintain sequence numbers.

Tip: Oracle recommends using sequence numbers for primary
keys because they are single, guaranteed, unique values.

Other data values may require composite primary keys to make up a unique value,
which is less optimal. Additionally, non-artificial values may need to change, and
this is not allowed for primary keys.

Using Sequence Numbers with Entity Beans

When implementing sequencing for Entity Beans, you must provide create ()
methods and the corresponding ejbCreate () and ejbPostCreate () methods
for your bean home and bean class.

OracleAS TopLink creates the primary key value when you first insert the bean in
the database. The key value is not passed as a parameter to the create () methods
because they do not set the primary key value (the key is generated).

Note: Be careful when using transactions with these create
methods. If you create an Entity Bean within a transaction and you
use native sequencing in Sybase, SQL Server or Informix, then the
bean’s key is not initialized until the transaction commits and the
bean is persisted to the database for the first time.

Using Native Sequencing

Oracle, Sybase, SQL Server, and Informix databases support native sequencing in
which the DBMS generates the sequence numbers. However, the OracleAS TopLink
Mapping Workbench must still tell the DBMS to assign sequence number values.

» For Oracle databases, create a SEQUENCE object in the database.
= For Sybase and SQL Server databases, set the primary key field to IDENTITY.
s For Informix databases, set the primary key field to use SERIAL.

Understanding Descriptors 4-37

Working with Sequencing

Tip: If you use native sequencing in these databases, the OracleAS
TopLink Mapping Workbench cannot support pre-allocation.
Oracle recommends using the sequence table instead. Oracle
databases support pre-allocation, but only if the sequence
increment matches the pre-allocation size. See "Sample Sequence
Table" on page 4-38 for more information.

Using Sequence Tables

If your database does not use native sequencing, you must manually create the
sequence table (named SEQUENCE). Use this table to store each table, as illustrated

below:

Field name Field format Description

SEQ_NAME CHAR Name of the sequence number
SEQ_COUNT NUMERIC Current value

After creating the table, you must initialize the table within the application. The
value of the SEQ COUNT field for each sequence should be zero (0), as in the
following table.

Example 4-3 Sample Sequence Table

SEQ_NAME SEQ_COUNT
EMP_SEQ 0
PROJ_SEQ 0

Pre-allocating Sequence Numbers

To increase the speed of database inserts, obtain a block of sequence numbers (by
setting an allocation size) instead of executing a corresponding SELECT statement
to obtain the newly assigned sequence number each time you create an object.

OracleAS TopLink uses a default pre-allocation size of 50 when using a sequence
table and 1 when using native sequencing.

4-38 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Inheritance

= When using native sequencing in Sybase, SQL Server, or Informix databases,
pre-allocation cannot be set — it is always 1.

= When using native sequencing, you must set the pre-allocation size explicitly in
the OracleAS TopLink Mapping Workbench.

= When using native sequencing in an Oracle database, you can use
pre-allocation only if an INCREMENT is set on the Oracle Sequence object (not
the CACHE option). This increment must match the pre-allocation size specified
in the OracleAS TopLink Mapping Workbench. If the increment is set
incorrectly, invalid and negative sequence numbers could be generated. The
CACHE option specifies how many sequences are pre-allocated on the database
server; the INCREMENT specifies the number that can be pre-allocated to the
database client.

Tip: Oracle recommends using sequence pre-allocation because of
its performance and concurrency benefits.

Creating the Sequence Table on the Database

Normally, the database administrator defines the sequence table or sequencing
object. However, you can use the OracleAS TopLink schema manager to define the
sequence numbers using:

SchemaManager schemaManager = new SchemaManager (session) ;
schemaManager.createSequences () ;

You should execute this command only once. The SchemaManager creates a
sequence entry for each registered descriptor.

Refer to the Oracle Application Server TopLink Application Developer’s Guide for more
information on using the schema manager to create number information in the
database.

Working with Inheritance

Inheritance describes how a child class inherits the characteristics of its parent class.
OracleAS TopLink provides multiple methods to preserve the inheritance
relationships. You can override mappings that have been specified in a superclass,
or map attributes that have not been mapped at all in the superclass.

Understanding Descriptors 4-39

Working with Inheritance

Note: When using an aggregate descriptor in an inheritance, all
the descriptors in the inheritance tree must be aggregates.
Aggregate and Class descriptors cannot exist in the same
inheritance tree.

Using Inheritance with EJBs

Although inheritance is a standard tool in object-oriented modeling, the current EJB
specification contains only general information regarding inheritance. You should
fully understand the current EJB specification before implementing inheritance.

Caution: Use caution when employing inheritance. The next EJB
specification may dictate inheritance guidelines not supported by
the different servers.

Mapping Inherited Attributes in One Descriptor

If you are mapping only one class in an inheritance hierarchy, you can map
attributes that it inherits from any of its superclasses.

To map attributes in one descriptor:
1. In the Navigator pane, select a descriptor.

2. Right-click the descriptor and choose Map Inherited Attributes > specific
location from the pop-up menu. You can also choose Selected > Map Inherited
Attributes from the menu.

Map inherited attributes to:
= Superclass
= Root minus one
= Selected class
3. Map the now visible attributes as though they belonged to this descriptor.

You can also do this if you have a common superclass that stores little or no
persistent data. For example, if you were mapping subclasses of
java.rmi.RemoteObject, each subclass could be mapped independently.

4-40 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Inheritance

Supporting Inheritance Using One Table

Store classes with multiple levels of inheritance in a single table to optimize
database access speeds.

The following diagram illustrates the Vehicle object model.

Figure 4-25 Supporting Inheritance Using One Table

Java Inheritance Hierarchy:

Root (1 ehicle |
Murnber id:
Integer passengerCagacity;
Branch - cled Vehide | [Non-Fueled Vehicle |
Integer fuelCapaciy;
Sinng fuelType
k4 ¥

[Car | [Bicysle |

|Sm§n g descnption; | ‘Smh g descrption;

The entire inheritance hierarchy can share the same table, as in Figure 4-26. The
FueledVehicle and NonFueledVehicle subclasses can share the same table even
though FueledVehicle has some attributes that NonFueledVehicle does not. The
NonFueledVehicle instances waste database resources because the database must
still allocate space for the unused portion of its row. However, this approach saves
on accessing time because there is no need to join to another table to get the
additional FueledVehicle information.

Understanding Descriptors 4-41

Working with Inheritance

Figure 4-26 Inheritance Using a Superclass Table with Optional Fields

VEHICLE tablke &
< < £ &
PR 8 & =%

SN S Q7 &

PFE < o &

1118 Mourtain Bike

23|y

218 [F | 20| Diesal

4|5 C] 16| Unlsaded | Toyota Carmny

Class Indicator Field:
¥V =Vehicle

F = Fueled Wehicle

N = NonFuelad Vehicle
C=Car

B = Bicycle

Figure 4-27 illustrates the OracleAS TopLink implementation of the

FUELEDVHCL, CAR, and BICYCLE tables. All objects are stored in the VEHICLE
table. The secondary table stores Fueled Vehicle, Car, and Bicycle information.

Figure 4-27 Inheritance Using Separate Tables for Each Subclass

3
T
éc?“

g _ﬁz‘(” « 8

@gy‘ A 1 [Wiountain Bike |
ot A BICYCLE (subclass takle) C?g
1
2
2

&
< & LY <
o o [4]Toyota Camny |

e ol
4 \‘1 & @Q’ ((\g’ CAR (subclass tablg)
VEHICLE table a[20 [Ciesd |

415 [Unleaded
FUELEDVHCL (zubclass table)

Note: Because NonFueledVehicle does not hold any attributes or
relationships, it does not need a secondary table. For performance
considerations, this design is inefficient because it requires multiple
table fetching.

Supporting Inheritance Using Multiple Tables

For subclasses that require additional attributes, use multiple tables instead of a
single superclass table to optimize storage space (because there are no unused fields

4-42 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Inheritance

in the database). However, this may affect performance because OracleAS TopLink
must read from more than one table before it can instantiate the object. OracleAS
TopLink first looks at the class indicator field to determine the class of object to
create, then uses the descriptor for that class to read from the subclass tables.

Finding Subclasses

An inheritance mapping for a root class must be able to locate its subclasses by
using one of the following methods:

» Providing a class indicator field, which contains a key corresponding to its
subclass.

s Including a class extraction method, which can be implemented in Java code; this
is simply a method that returns a java.lang.Class object.

= Using class names directly in the class indicator field.

Providing a Class Indicator Field

Use a class indicator field in the table of the root class table to indicate which subclass
should be instantiated. The indicator field should not have an associated direct
mapping unless it is set to read-only.

Note: If the indicator field is part of the primary key, define a
write-only transformation mapping for the indicator field. Refer to
"Working with Transformation Mappings" on page 5-9 for more
information.

You can use strings or numbers as values in the class indicator field. The root class
descriptor must specify how the value in the class indicator field translates into the
class to be instantiated. The following table illustrates the class indicator mapping
from the Vehicle class containing four entries.

Table 4-1 Class Indicator Mapping from the Vehicle Class

Key Value

F FueledVehicle

N NonFueledVehicle
C Car

Understanding Descriptors 4-43

Working with Inheritance

Table 4-1 (Cont.) Class Indicator Mapping from the Vehicle Class

Key Value

B Bicycle

When working with hierarchies more than two levels deep, the class indicator field
and the class indicator mapping can be in only the root class.

Note: All concrete classes in the hierarchy must have a defined
indicator value.

Understanding Root, Branch, and Leaf Classes in an Inheritance Hierarchy

OracleAS TopLink allows three types of classes in an inheritance hierarchy:

s The root class stores information about all instantiable classes in its subclass
hierarchy. By default, queries performed on the root class return instances of
the root class and its instantiable subclasses. However, the root class can be
configured so queries on it return only instances of itself without instances of its
subclasses.

= Branch classes have a persistent superclass and also have subclasses. By default,
queries performed on the branch class return instances of the branch class and
any of its subclasses. However, as with the root class, the branch class can be
configured so queries on it return only instances of itself without instances of its
subclasses.

= Leaf classes have a persistent superclass in the hierarchy but do not have
subclasses. Queries performed on the leaf class can only return instances of the
leaf class.

Specifying Primary Keys in an Inheritance Hierarchy

OracleAS TopLink assumes that all of the classes in an inheritance hierarchy have
the same primary key, as set in the root descriptor. Child descriptors associated
with tables that have different primary keys must define the mapping between the
root primary key and the local one.

See "Specifying Multi-table Info" on page 4-50 for more information on primary
keys in an inheritance hierarchy.

4-44 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Interfaces

Mapping Inherited Attributes in a Subclass

If you are defining the descriptor for a class that inherits attributes from another
class, then you can create mappings for those attributes. If you remap an attribute
that was already mapped in the superclass, then the new mapping applies to the
subclass only. Any other subclasses that inherit the attribute are unaffected.

To view and map attributes inherited from a superclass:

1. In the Navigator pane, right-click a descriptor and choose Map Inherited
Attributes > selected class from the pop-up menu or choose Selected > Map
Inherited Attributes from the menu.

The mappings list now includes all the attributes from the superclass of this
class.

2. Map any desired attributes. See "Working with Mappings" on page 4-69 for
more information.

If you leave inherited attributes unmapped, OracleAS TopLink uses the
mapping (if any) from the superclass if the superclass’s descriptor has been
designated as the parent descriptor.

Note: You cannot map inherited attributes on a descriptor whose
superclass has no descriptor. You can select the root descriptor, but
cannot map its attributes.

In order to map the project, import the superclass into the project.
OracleAS TopLink Mapping Workbench creates a descriptor for the
superclass. Then deactivate this descriptor or remove it from the
project.

Working with Interfaces

An interface is a collection of method declarations and constants used by one or
more classes of objects. Domain classes can implement interfaces or can reference
existing interfaces. OracleAS TopLink supports interfaces in the following methods:

s In a variable class relationship, a domain object references another domain object
or a collection of objects that implement a specific interface.

= Aread query can be issued to query an interface.

Understanding Descriptors 4-45

Working with Interfaces

Understanding Interface Descriptors

An interface descriptor is a descriptor whose reference class is an interface. Each
domain class specified in OracleAS TopLink has a related descriptor. A descriptor is
a set of mappings that describes how an object’s data is represented in a relational
database. It contains mappings from the class instance variable to the table’s fields,
as well as the transformation routines necessary for storing and retrieving
attributes. The descriptor acts as the link between the Java object and its database
representation.

An interface is a collection of abstract behavior that other classes can use. Itis a
purely Java object concept and has no representation on the relational database.
Therefore, a descriptor defined for the interfaces does not map any relational
entities on the database.

Note: You cannot create or edit interface descriptors in the
OracleAS TopLink Mapping Workbench.

Here are the components defined in the interface descriptor:
» The Java interface it describes

» The parent interface(s) it implements

= Alist of abstract query keys

An interface descriptor does not define any mappings, because there is no concrete
data or table associated with it. A list of abstract query keys is defined so that you
can issue queries on the interfaces. A read query on the interface results in reading
one or more of its implementors.

The following illustration shows an interface implemented by two descriptors.

4-46 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Interfaces

Figure 4-28 Classes Implement an Interface

Email
id
address

Contact Interface
| —

F——
Phone
id
number

| —

Following is the sample code implementation for the descriptors for Email and
Phone:

Descriptor descriptor = new Descriptor();
descriptor.setJavalnterface (Contact.class) ;
descriptor.addAbstractQueryKey ("id") ;
return descriptor;

Descriptor descriptor = new Descriptor();
descriptor.setJavaClass (Email.class) ;
descriptor.addDirectQueryKey("id", "E ID");
descriptor.getInterfacePolicy () .addParentInterface (Contact.class);
descriptor.setTableName ("INT EML") ;
descriptor.setPrimaryKeyFieldName ("E_ID");
descriptor.setSequenceNumberName ("SEQ") ;
descriptor.setSequenceNumberFieldName ("E_ID") ;
descriptor.addDirectMapping ("emailID", "E ID");
descriptor.addDirectMapping ("address", "ADDR");
return descriptor;

Descriptor descriptor = new Descriptor();
descriptor.setJavaClass (Phone.class) ;
descriptor.getInterfacePolicy () .addParentInterface (Contact.class);
descriptor.addDirectQueryKey("id", "P_ID");
descriptor.setTableName ("INT PHN") ;
descriptor.setPrimaryKeyFieldName ("P_ID");
descriptor.setSequenceNumberName ("SEQ") ;
descriptor.setSequenceNumberFieldName ("P_ID") ;
descriptor.addDirectMapping ("phoneID", "P_ID");
descriptor.addDirectMapping ("number", "P_NUM");
return descriptor;

If the Contact interface extended another interface, you would call the following
method to set its parent:

Understanding Descriptors 4-47

Working with Interfaces

descriptor.getInterfacePolicy () .addParentInterface (Interface.c
lass) ;

Single Implementor Interfaces

Use single implementor interfaces for applications where only the domain objects’
interface is visible. Each domain class has its own unique interface, and no other
domain class implements it. The references to other domain objects are also through
interfaces.

In such applications, defining a descriptor for each interface would be expensive
and may be unnecessary. OracleAS TopLink does not force you to define
descriptors for such interfaces. The descriptors are defined for the domain classes,
and the parent interface is set as usual.

During the initializing of a descriptor, the interface is given the descriptor of its
implementor. This process allows queries on both the domain class and its interface.
The only restriction is that each interface should have a unique implementor. In
other words, a descriptor is not needed for an interface unless it has multiple
implementors.

Implementing an Interface

One-to-one mappings that reference interfaces that have multiple implementors are
known as variable one-to-one mappings. See Chapter 6, "Understanding
Relationship Mappings", and Chapter 4, "Understanding Descriptors" for more
information.

Use this procedure to implement an interface.

To configure an interface descriptor:
1. In the Navigator pane, select an interface.

2. On the Implementors tab in the Editor pane, click the descriptors that
implement this interface and share at least one common query key.

4-48 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Multiple Tables

Figure 4-29 Implementors Tab

Implementors

Choose the descriptors that implement this interface and share
at least one commaon guery key.

Implementars Commaon Query Keys

[l ¥ Emailaddress (testor |Id
M H# PhoneMumber (test.or |nurmber

4 L3

The Common Query Keys area displays all the query keys for the interface’s
implementors.

To specify a class descriptor as a single implementor of an interface:

1. In the Navigator pane, select the descriptor that will be the sole implementor of
an interface.

2. If the Interface Alias advanced descriptor property is not visible for this
descriptor, choose Set Advanced Properties > Interface Alias from the
Selected menu or the pop-up menu to create the Interface Alias page.

3. Select the interface that will serve as an alias for this descriptor on the Interface
Alias page. It is not necessary for this interface to have a descriptor in the
project, and in fact, if an associated descriptor exists, it will be removed. Every
instance of the interface will now be treated as an instance of this class as well.

Working with Multiple Tables

Descriptors can use multiple tables in mappings. Use multiple tables when:

= A subclass is involved in inheritance, and its superclass is mapped to one table
while the subclass has additional attributes that are mapped to a second table

= A class is not involved in inheritance and its data is spread out across multiple
tables

When a descriptor has multiple tables, you must be able to join a row from the
primary table to all the additional tables. By default, OracleAS TopLink assumes

that the primary key of the first, or primary, table is included in the additional
tables, thereby joining the tables.

OracleAS TopLink also supports custom methods for joining tables.

Understanding Descriptors 4-49

Working with Multiple Tables

Specifying Multi-table Info

Use the Multi-table Info tab to define multiple tables for a descriptor in the
OracleAS TopLink Mapping Workbench.

To associate multiple tables with a descriptor:
1. In the Navigator pane, select a descriptor.

If the Multi-table Info advanced property is not visible for the descriptor,
right-click the descriptor and choose Set Advanced Properties > Multi-table
Info from pop-up menu or from the Selected menu.

2. Click the Multi-table Info tab.

Figure 4-30 Multi-table Info Tab

Multi-Table |nro[

Frimary Table: ADDRESS

Additional Tables Associated Via
_ The Key Reference area
‘ # Brimary Key ray vary, depending on
" Foreign Key haw you associate the tables.

Add Rermove

Table Reference: | =nahe selectad=

Source Fareign Keysl| Taraet Brimany Keys

[HEw...

3. Use this table to enter data in each field:

Field Description

Primary Table The primary table for this descriptor. This field is for display
only.

Additional Tables Use the Add and Remove buttons to add or remove additional
tables.

Associated Via Specify if each Additional Table is associated by its Primary or
Foreign key.

4-50 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Multiple Tables

When associating an additional table via Primary Key, additional options appear
on the Multi-table Info tab. Continue with "Primary Keys Match" on page 4-51 or
"Primary Keys are Named Differently" on page 4-52 to assign the primary key.

Figure 4-31 Associating Multiple Tables via Primary Key

Primary Key Tahle Reference

® Primary Keys Have Same Marmes

O Primary Keys Have Different Marmes (Use Specified Reference)

Tahle Reference: | =none selected= |

Source Foreinn Keys|| Tardet Primary Keys

[+ e,

When associating a table via Foreign Key, additional options (shown in

Figure 4-31) appear. You must choose a reference that relates the correct fields in
the primary table to the primary keys in the selected table. Continue with "Tables
are Related by Foreign Key in Primary Table" on page 4-52 to assign the foreign key.

Figure 4-32 Associating Multiple Tables via Foreign Key

Select a table reference that defines the field translations.

Table Reference: | =none selected= |

Source Foreinn Keys|| Target Primary Keys

Primary Keys Match

When associating a descriptor with multiple tables in which the primary key field
names are identical, you do not have to specify any additional information. Select
the tables from the list of available tables on the Multi-table Info tab. The OracleAS
TopLink Mapping Workbench automatically selects the Primary Keys Have the
Same Names option.

Understanding Descriptors 4-51

Working with a Copy Policy

Primary Keys are Named Differently

If the primary keys of the additional table(s) are the same, but they are named
differently, you must specify how they relate to the primary key(s) of the
default/primary table.

1. Select the associated table, and select Associated Via Primary Key.
2. Select Primary Keys Have Different Names.

3. In the Primary Key Reference area (Figure 4-31), choose a table reference that
relates how the primary keys of the primary table relate to the primary keys of
the selected table. Use the drop-down list to select a primary key association.

Tables are Related by Foreign Key in Primary Table

If the primary keys of the additional table are not the same as the primary keys of
the primary table, but are instead related to a different set of fields, you must set up
a foreign key relation between the tables.

1. Select the associated table, and select Associated Via Foreign Key.

2. Use the drop-down list to choose a foreign key reference that relates the correct
fields in the primary table to the primary keys in the selected table. Click
Browse to create a reference.

Working with a Copy Policy

The OracleAS TopLink unit of work feature must be able to clone persistent objects.
OracleAS TopLink supports two ways of copying objects:

» By default, an object’s default constructor is called to create a copy.

= You can specify a method on the object to be used by OracleAS TopLink to
perform the copy, such as clone.

Setting the Copy Policy

Use the Copying tab to specify how OracleAS TopLink copies objects. OracleAS
TopLink supports the following methods:

= Using the object’s default constructor to create a copy

= Specifying a method, such as clone

4-52 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Instantiation Policy

To specify a copy method:
1. Select a descriptor in the Navigator pane. Its properties appear in the Editor
pane.

If the Copying advanced property is not visible for the descriptor, right-click
the descriptor and choose Set Advanced Properties > Copying from the
pop-up menu or from the Selected menu.

2. Click the Copying tab in the Editor pane.

Figure 4-33 Copying Tab

Copying l

® se Instantiation Paolicy

" Use Clone Method:
Method: | =none selected= |

The clone method must be non-static
with no parameters and must return a
logical shallow clone of the object.

Create news method..

3. Use this table to enter data in each field:

Field Description

Use Instantiation Policy Creates a new instance of the object using the descriptor’s
instantiation policy.

Use Clone Method Specifies to call the clone () method of the object.

Method Select the clone method from the drop-list. Click Create New
Method to create a new method.

Working with Instantiation Policy
OracleAS TopLink supports several ways to instantiate objects:
= By default, the default constructor of the class instantiates a new instance.

» If the application requires that objects be instantiated in other ways, the
instantiation method can be customized.

You can use custom Java code to override the instantiation policy. Refer to the
Oracle Application Server TopLink Application Developer’s Guide for details.

Understanding Descriptors 4-53

Working with Instantiation Policy

Setting Instantiation Policy

Use the Instantiation tab to specify if objects are instantiated by the default
constructor, a specific method, or a factory.

To set the instantiation policy:
1. In the Navigator pane, select a descriptor.

If the Instantiation advanced property is not visible for the descriptor,
right-click the descriptor and choose Set Advanced Properties > Instantiation
from the pop-up menu or from the Selected menu.

2. C(lick the Instantiation tab.

Figure 4-34 Instantiation Tab

Instantiation

® Use Default Constructor

T Use Method:

Methad: | =none selecteds

O Use Factory:

Factory Class: Browse...

|
* Factary Method: | |
Instantiation Method: |

*This is the name of & method that will return a factory object.
Choose =nothing= to use the default constructor.

3. Use this table to enter data in each field:

Field Description

Use Default Constructor The default constructor of the class instantiates a new instance.
Use Method Specify a Method to execute to create objects from the database.

Method Name of a method to be executed to create objects from the
database. The method must be a public, static method on the
descriptor’s class and must return a new instance of the object.

Use Factory Refer to the Oracle Application Server TopLink Application
Deuveloper’s Guide for more information.

4-54 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with a Wrapper Policy

Field Description
Factory Class The class of the factory object that creates the new instances.
Factory Method The message to be sent to obtain a factory object. Choose

<nothings> to use the default constructor.

Instantiation Method The method to be sent to the factory object to obtain a new
instance that will be populated with data from the database.

Working with a Wrapper Policy

OracleAS TopLink allows you to use wrappers (or proxies) in cases where the
persistent class is not the same class that is to be presented to users.

For example, in the Enterprise JavaBeans specification, the Entity bean class (the
class that implements javax.ejb.EntityBean) is persistent but is hidden from
users who interact with a class that implements javax.ejb.EJBObject (the remote
interface class). In this example, the EJBObject acts as a proxy or wrapper for the
EntityBean.

In cases where such a wrapper is used, OracleAS TopLink continues to make the
class specified in the descriptor persistent, but returns the appropriate instance of
the wrapper whenever a persistent object is requested.

Use a wrapper policy to tell OracleAS TopLink how to create wrappers for a
particular persistent class, and how to obtain the underlying persistent object from
a given wrapper instance. If you specify a wrapper policy, OracleAS TopLink
uses the policy to wrap and unwrap persistent objects as required:

= Wrapper policies implement the interface
oracle.toplink.descriptors.WrapperPolicy.

= A wrapper policy is specified by setting the wrapper policy for the OracleAS
TopLink descriptor.

» By default, no wrapper policy is used (the wrapper policy for a descriptor is
null by default).

= Wrapper policies cannot be set using the OracleAS TopLink Mapping
Workbench and can only be set using Java code.

Note: Wrapper policies are advanced OracleAS TopLink options.
Using a wrapper policy may not be compatible with some
OracleAS TopLink Mapping Workbench features.

Understanding Descriptors 4-55

Working with Optimistic Locking

Setting the Wrapper Policy Using Java Code

The Descriptor class provides methods used in conjunction with the wrapper

policy:

m setWrapperPolicy(oracle.toplink.descriptors.WrapperPolicy)
can be invoked to provide a wrapper policy for the descriptor.

m getWrapperPolicy () returns the wrapper policy for a descriptor.

Refer to the, Oracle Application Server TopLink Application Developer’s Guide, for
detailed information.

Working with Optimistic Locking

When using caching to provide performance benefits, you should also use a locking
policy to manage database record modification in multi-user environments.
Without a locking policy, it may be possible for users to see data that is no longer
valid (sometimes called stale data) stored in the cache.

Databases typically support the following locking policies:

= Optimistic — All users have read access to the data. When a user attempts to
write a change, the application checks to ensure the data has not changed since
the last read. OracleAS TopLink supports multiple methods of optimistic
locking.

» Pessimistic — The first user who accesses the data with the purpose of updating
locks the data until completing the update. OracleAS TopLink supports
pessimistic locking through UnitOfWork and updateAndLockObject ().

= No locking — The application does not verify that data is current.

Oracle recommends using optimistic locking to ensure that all users are working
with valid data before committing changes. OracleAS TopLink supports multiple
locking policies for optimistic locking:

= Version locking policies enforce optimistic locking by using version fields (or
write lock fields) that are updated each time a record version field must be
added to the table for this.

» Field locking policies do not require additional fields, but do require a
UnitOfWork to be implemented.

4-56 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Optimistic Locking

Note: If a three-tier application is being built and objects are
edited outside the context of a unit of work, then the write lock
value is stored in the object and passed to the client. If it is only the
server, then lock conflicts may be missed as clients update the same
cache.

Using Version Locking Policies

For each of the following version locking policies, you must add a specific database
field.

s ForVersionLockingPolicy, add a numeric field.
s For TimestampLockingPolicy, add a timestamp field.

OracleAS TopLink records the version as it reads an object from a table. When the
client attempts to write the object, OracleAS TopLink compares the version of the
object with the version in the table record.

» If the versions are the same, the updated object is written to the table, and the
version of both the table record and the object are updated.

s If the versions are different, the write is disallowed because another client must
have updated the object since this client initially read it.

The two version locking policies have different ways of writing to the database:

s For VersionLockingPolicy, the number in the version field increments by
one.

» For TimestampLockingPolicy, a new timestamp is inserted into the row
(this policy can be configured to get the time from the server or locally).

For both policies, the values of the write lock field can be the writable mapping
within the object.

If the value is stored in the identity map, then by default an attribute mapping is
not required for the version field. If the application does map the field, it must make
the mappings read-only to allow OracleAS TopLink to control writing the fields.

Using Field Locking Policies

The following locking policies, included in OracleAS TopLink, do not require any
additional fields:

Understanding Descriptors 4-57

Working with Optimistic Locking

m AllFieldsLockingPolicy
s ChangedFieldsLockingPolicy
m SelectedFieldsLockingPolicy

All these policies compare the current values of certain mapped previous values.
When using these policies, a UnitOfWork must be employed for updating the
database. Each policy handles its field comparisons in specific way, as defined by
the policy.

= Whenever an object using A11FieldsLockingPolicy isupdated or deleted,
all the fields in that table are compared in the where clause. If any value in that
table has been changed since the object was read, the update or delete fails.

Note: This comparison is only on a per table basis. If an update is
performed on an object that is mapped to multiple tables (multiple
table inheritance), then only the changed table(s) appear in the
where clause.

= Whenever an object using ChangedFieldsLockingPolicy is updated, only
the modified fields are compared. This allows for multiple clients to modify
different parts of the same row without failure. Using this policy, a delete
compares only on the primary key.

= Whenever an object using SelectedFieldsLockingPolicy is updated or
deleted, a list of selected fields is compared in the statement. Updating these
fields must be done by the application manually or through an event.

Whenever any update fails because optimistic locking has been violated, an
OptimisticLockException is thrown. This should be handled by the
application when performing any database modification The application must
refresh the object and reapply its changes.

Specifying Advanced Optimistic Locking Policies

The OracleAS TopLink optimistic locking policies that "Working with Optimistic
Locking" describes implement the Opt imisticLockingPolicy interface,
referenced throughout the OracleAS TopLink code. You can create more policies by
implementing this interface and implementing the methods defined.

4-58 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Identity Maps

Use the Locking tab (see Figure 4-22) to specify locking policies for the OracleAS
TopLink Mapping Workbench, or refer to the Oracle Application Server TopLink
Application Developer’s Guide for more information.

Working with Identity Maps

OracleAS TopLink uses identity maps to cache objects for performance and
maintain object identity. The OracleAS TopLink Mapping Workbench provides
the following identity map types on the Identity tab (see Figure 4-19):

Table 4-2 Identity Maps

Identity Map Description

Full identity map Provides full caching and guaranteed identity. Caches all objects
and does not remove them. This method may be memory
intensive when many objects are read.

Do not use on batch type operations.

Soft cache weak identity ~ Similar to the weak identity map except that it maintains a
map most-frequently-used sub-cache. The size of the sub-cache is
(default with JDK 1.2, gropqrtlol}al to the size .of the 1dept1ty mabp as specified by
. . escriptor’s setIdentityMapSize () method. The sub-cache
available since JDK 1.2) -
uses soft references to ensure that these objects are
garbage-collected only if the system is low on memory.

Hard cache weak Identical to the soft cache weak identity map except that it uses
identity map hard references in the sub-cache. Use this identity map if soft
(available since JDK 1.2) references do not behave properly on your platform.

Weak identity map Similar to the full identity map except that the map holds the
(available since JDK 1.2) objects using weak references. This method allows full garbage
collection and provides full caching and guaranteed identity.

Cache identity map Furnishes caching and identity, but does not guarantee identity.
A cache identity map maintains a fixed number of objects
specified by the application. Objects are removed from the cache
on a least-recently-used basis. This method allows object
identity for the most commonly used objects.

No identity map Does not preserve object identity and does not cache objects.

Identity Map Size

The default identity map size is 100.

Understanding Descriptors 4-59

Working with Identity Maps

For the cache identity map policy, the size indicates the maximum number of
objects stored in the identity map.

For the full identify map policy, the size determines the starting size of the map.

For the soft/hard cache weak identity map, the most recently used sub-cache is
proportional to the size.

Design Guidelines

Use the following guidelines when employing an identity map:

If using a Java 2-compatible Virtual Machine (VM), objects with a long lifespan,
and object identity are important, use a SoftCacheWeakldentityMap or
HardCacheWeakldentityMap policy.

If using a Java 2-compatible VM, and object identity is important but caching is
not, use a WeakldentityMap policy.

If an object has a long lifespan or requires frequent access, or is important, use a
FullldentityMap policy.

If an object has a short lifespan or requires frequent access, and identity is not
important, use a CacheldentityMap policy.

If objects are discarded immediately after being read from the database, such as
in a batch operation, use a NoldentityMap policy.

Using Object Identity

Note: The NoldentityMap does not preserve object identity.

In a Java application, object identity is preserved if each object in memory is
represented by one, and only one, object instance. Multiple retrievals of the same
object return references to the same object instance — not multiple copies of the
same object.

Maintaining object identity is extremely important when the application’s object
model contains circular references between objects. You must ensure that two are
referencing each other directly, rather than copies of each other. Object identity is
important when multiple parts of the application may be modifying the same object
simultaneously.

4-60 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Query Keys

Turn identity off when object identity is not important (for example, for read-only
objects).

Caching Objects

Identity maps maintain client-side object caches, which increases application
performance by minimizing the number of database reads.

When the cache fills up, OracleAS TopLink cleans up the cache based on the
identity map policy.

Working with Query Keys

Use a direct query key as an alias for a field name. Query keys allow OracleAS
TopLink expressions to refer to a field using Java attribute names (such as
firstName), rather than DBMS-specific names (such as F_NAME).

Use query keys to:
= Enhance code readability when defining OracleAS TopLink expressions.

= Increase portability by making code independent of the database schema. If you
rename a field, the query key could be redefined without changing any code
that references it.

= Interface descriptors define only common query keys shared by implementors;
the fields aliased could have different names in the implementor’s tables.

Automatically-generating Query Keys

OracleAS TopLink automatically defines direct query keys for all direct mappings
and has a special query key type for each mapping. Typically, use query keys to
access fields that do not have direct mappings, such as the version field used for
optimistic locking or the type field used for inheritance.

OracleAS TopLink displays automatically generated queries in the Query Keys
tab of the Editor pane (see Figure 4-15). You cannot change these keys.

Example 4-4 Automatically Generated Query Key

For example, consider the Employee class in the OracleAS TopLink tutorial: When
you define a direct-to-field mapping from the Employee class (attribute £irstName)
to the EMPLOYEE table (field F_ NAME) you get a query key for free — it is
automatically generated.

Understanding Descriptors 4-61

Working with Query Keys

The following code example illustrates using an automatically generated query
key within the OracleAS TopLink expression framework.

Vector employees = session.readAllObjects (Employee.class, new
ExpressionBuilder () .get ("firstName") .equal ("Bob")) ;

Using Query Keys in Interface Descriptors

Interface descriptors are defined only with query keys that are shared among their
implementors. In the descriptor for the interface, only the name of the query key is
specified.

In each implementor descriptor, the key must be defined, and with appropriate

field, from one of the implementor descriptor’s tables.

Doing this ensures that a single query key can be used to specify foreign key
information from a descriptor that contains a mapping to the interface, even if the
field names differ.

Consider an Employee that contains a contact, of type Contact. Contact is an
interface with two implementors: Phone and EmailAddress. Each class has two
attributes. The following figure illustrates the generated keys:

Figure 4-35 Contact interface Descriptor with Common Query Key id

Phone Email
2 id ¥ id
¥ number ¥ address

Note: Both classes have an attribute, 1d, that is directly mapped
to fields that have different names. However, a query key is
generated for this attribute. For the Contact interface descriptor,
indicate that the 1d query key must be defined for each of the
implementors, as Figure 4-36 illustrates.

4-62 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Query Keys

Figure 4-36

Implementors l

Choose the descriptors that implement this interface and share
at least one common guery key.

Implementors Cammeon Query Keys
7 m Email 4 id
[# 1 Phone

Note: If either of the implementor classes did not have the id
query key defined, that descriptor would be flagged as deficient.

Now that a descriptor with a commonly shared query key has been defined for
Contact, you can use it as the reference class for a variable one-to-one mapping. For
example, you can now create a one-to-one mapping for the contact attribute of
Employee. When you edit the foreign key field information for the mapping, you
must match the Employee descriptor’s tables to query keys from the Contact
interface descriptor.

See "Working with Interfaces" on page 4-45 and "Working with Relationship
Mappings" on page 6-2 for more information.

Relationship Query Keys

OracleAS TopLink supports query keys for relationship mappings and
automatically defines them for all relationship mappings. You can use these keys to
join across a relationship. One-to-one query keys define a joining relationship and
are accessed through the get () method in expressions.

One-to-many and many-to-many query keys define a distinct join across a
collection relationship and are accessed through the anyOf () method in
expressions. You can also define relationship query keys manually if mapping
does not exist for the relationship. The relationship defined by the query key is
data-level expressions.

Example 4-5 One-to-one Query Key

The following code example illustrates using a one-to-one query key within the
OracleAS TopLink expression framework.

Understanding Descriptors 4-63

Working with Events

ExpressionBuilder employee = new ExpressionBuilder();
Vector employees = session.readAllObjects (Employee.class,
employee.get ("address") .get ("city") .equal ("Ottawa")) ;

Defining Relationship Query Keys by Amending a Descriptor

Relationship query keys are not supported directly in the OracleAS TopLink
Mapping Workbench. To define a relationship query key, you must specify and
write an amendment method. Register query keys by sending the addQueryKey ()
message.

Example 4-6 Defining One-to-one Query Key Example

The following code example illustrates how to define a one-to-one query key:

// Static amendment method in Address class, addresses do not know their owners
in the object-model, however you can still query on their owner if a
user-defined query key is defined

public static void addToDescriptor (Descriptor descriptor)

}

OneToOneQueryKey ownerQueryKey = new OneToOneQueryKey () ;
ownerQueryKey.setName ("owner") ;

ownerQueryKey.setReferenceClass (Employee.class) ;

ExpressionBuilder builder = new ExpressionBuilder();
ownerQueryKey.setJoinCriteria (builder.getField ("EMPLOYEE.ADDRESS
ID") .equal (builder.getParameter ("ADDRESS.ADDRESS ID"))) ;
descriptor.addQueryKey (ownerQueryKey) ;

}

Working with Events

Use the event manager to specify specific events to occur whenever OracleAS
TopLink performs a read, update, delete, or insert on the database.

Note: OracleAS TopLink uses the Java event model.

Applications can receive descriptor events in the following ways:
= Implement the DescriptorEventListener interface

= Subclass the DescriptorEventAdapter adapter class

4-64 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Events

= Register an event method with a descriptor

Objects that implement the DescriptorEventListener interface can be
registered with the descriptor event manager to be notified when any event occurs
for that descriptor.

Alternately, you may wish to use the DescriptorEventAdapter class if your
application does not require all the methods defined in the interface. The
DescriptorEventAdapter implements the DescriptorEventListener
interface and defines an empty method for each method in the interface. To use the
adapter, first subclass it, then register your new object with the descriptor event
manager.

You can use descriptor events in many ways, including:

= Synchronizing the persistent objects with other systems, services and
frameworks

= Maintaining non-persistent attributes of which OracleAS TopLink is not aware

= Notifying other parts of the application when the persistent state of objects
is changed

s Performing complex mappings or optimizations not directly supported by
OracleAS TopLink mappings

Use the descriptor’s Event tab (see Figure 4-18) to specify events for a descriptor.

Example 4-7 Event Example

To invoke a method called postBuild () for an Employee object, the
postBuild () method must be implemented in the Employee class. This method
must also accept one parameter that is an instance of DescriptorEvent fully
qualified with a package name.

Registering an Event with a Descriptor

A persistent class can register a public method as an event method. A descriptor
calls the event method when a particular database operation occurs.

Event methods:
= Must be public so that OracleAS TopLink can call them
= Must return void

= Must take a DescriptorEvent as a parameter

Understanding Descriptors 4-65

Working with Events

Registering an Event

The following code illustrates an event method definition:

public void myEventHandler (DescriptorEvent event);

Supported Events

Events the DescriptorEventManager supports include:

Post-X Methods:

Post-Build — occurs after an object is built from the database.
Post-Clone — occurs after an object has been cloned into a unit of work.
Post-Merge — occurs after an object has been merged from a unit of work.

Post-Refresh — occurs after an object is refreshed from the database.

Updating Methods:

Pre-Update — occurs before an object is updated in the database. This may be
called in a unit of work even if the object has no changes and does not require
an update.

About-to-Update — occurs when an object’s row is updated in the database.
This is called only if the object has changes in the unit of work.

Post-Update — occurs after an object is updated in the database. This may be
called in a unit of work even if the object has no changes and does not require
an update.

Inserting Methods:

Pre-Insert — occurs before an object is inserted in the database.
About-to-Insert — occurs when an object’s row is inserted in the database.

Post-Insert — occurs after an object is inserted in the database.

4-66 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Object-relational Descriptors

Writing Methods:

» Pre-Write — occurs before an object is inserted or updated in the database. This
occurs before Pre-Insert/Update.

» Post-Write — occurs after an object is inserted or updated in the database. This
occurs after Pre-Insert/Update.

Deleting Methods:

s Pre-Delete — occurs before an object is deleted from the database.

s Post-Delete — occurs after an object is deleted from the database.

Working with Finders

In OracleAS TopLink, use named queries to represent SQL or EJB QL finders to use
in database accesses. You can create these finders within the OracleAS TopLink
Mapping Workbench.

When you create a finder for an EJB, the OracleAS TopLink Mapping Workbench
creates a named query and populates the descriptor alias with information from the
ejb-jar.xml file.

Reserved finders are valid for projects with CMP persistence.

Working with Object-relational Descriptors

The object-relational paradigm extends traditional relational databases with
object-oriented functionality. Oracle, IBM DB2, Informix, and other DBMS
databases allow users to store, access, and use complex data in more sophisticated
ways.

The object-relational standard is an evolving standard mainly concerned with
extending the database data structures and the SQL language (SQL 3).

The new features include:
= Structures or Object-types can be defined and stored on the database
= Collections/Arrays can be defined and stored on the database

» Structures/Object-types can have system-generated ObjectIDs

Understanding Descriptors 4-67

Working with Object-relational Descriptors

= Structures/Object-types can reference other structures through References or
aggregation

= SQL 3, an extension to the SQL language that supports querying and
manipulating the new object-types

Coinciding with object-relational changes, most database vendors are also
extending their server architectures to support features such as:

s Embedded server-side Java VMs
= Java stored procedures
s CORBA, HTML and EJB support in the database

This section describes how the object-relational features affect OracleAS TopLink
descriptors and mappings. The server architecture changes are discussed in the
Oracle Application Server TopLink Application Developer’s Guide.

Effect on OracleAS TopLink

Object-relational databases introduce several new features that allow more complex
data to be stored and accessed. One advantage of object-relational databases is that
the differences between the object model and data model can be reduced to the
point that the two are almost identical. Although this makes the object-relational
mapping process easier, it does not reduce the need for a persistence framework
such as OracleAS TopLink. Although the JDBC standard has been improved to take
advantage of object-relational features in JDBC 2.0, it still remains a low-level
database interface. On top of JDBC, frameworks such as OracleAS TopLink can
provide applications with much more sophisticated functionality, including units of
work, identity maps, expressions, querying, complex mappings, three-tier and
enterprise application support.

OracleAS TopLink provides object-relational support through a new type of
descriptor object and several new types of mappings. See Chapter 7,
"Understanding Object-Relational Mappings" for more information.

Databases OracleAS TopLink Supports

OracleAS TopLink supports any JDBC 2.0 driver that complies with JDBC’s 2.0
object-relational extensions. Contact your database and JDBC vendor to determine
which object-relational features they support.

4-68 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Mappings

Defining Object-Relational Descriptors

The OracleAS TopLink Mapping Workbench does not currently support the
object-relational descriptor and mappings. Support will be added to the OracleAS
TopLink Mapping Workbench in future releases.

You should be able to import most of the simple object-relational table structures
into OracleAS TopLink. In addition, you can define the standard
non-object-relational descriptor properties and mappings. You can use amendment
methods to add any object-relational mappings and features to the descriptors.

Working with Mappings
In OracleAS TopLink, mappings define how an object’s attributes are represented in

the database.

s Direct mappings define how a persistent object refers to objects that do not have
descriptors (for example, the JDK classes and primitives). See Chapter 5,
"Understanding Direct Mappings" for details.

= Relationship mappings define how a persistent object refers to other persistent
objects. See Chapter 6, "Understanding Relationship Mappings", and Chapter 7,
"Understanding Object-Relational Mappings", for details.

All the mapping classes are derived from the DatabaseMapping class, as
Figure 4-37 illustrates.

Understanding Descriptors 4-69

Working with Mappings

Figure 4-37 Mapping Classes Hierarchy

Transformation ObjectType

e J—

DirectToField SerializedObject

\TypeConversion

Array

DirectCollect
; % / — - hanyTokdany
DatabaseMapping Aggregate AggregateCbject
\ h 8 Si/OneTDMany
\ tructure
ForeignReferences /
\NestedTahle
Abstract Classes Collection OneToOne
€
\\\\f’ariahleOneTDOne
\Reference

Working with Common Mapping Properties

OracleAS TopLink associates each mapping with the attribute whose persistence
it describes. To create a mapping in the OracleAS TopLink Mapping
Workbench, select the attribute to map from the Navigator pane and then click the
appropriate button on the mapping toolbar (see "Mapping Toolbar" on page 1-7).

Use the mapping’s Editor pane to enter specific information for the mapping. Some
mappings require more information that others and have multiple tabs in the Editor
pane.

4-70 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Mappings

Figure 4-38 Sample Properties for a Mapping

3% (One To Many Mapping)

General l Collection Options Tahle Reference

o——l— Eead Only

[Use Method Accessing:

Get Method: |<none selected= |

Set Method: |<none selecied= |

Reference Descriptar: | Metwark '|

™ Maintain Bidirectional Relatianship:

Relationship Partner: | =none selected= |

[Private Cnwned
[Use Batch Reading
W Usze Indirection:

T YalueHolder ® Transparent

Mapping properties called out in Figure 4-38:
1. Specify if read-only.
2. Specify access method.

Specifying Direct Access and Method Access

By default, OracleAS TopLink uses direct access to access public attributes.
Alternatively, you can use accessor methods to access object attributes when
writing the attributes of the object to the database or reading the attributes of the
object from the database. This is known as method access.

The attribute’s visibility (public, protected, private, or package visibility) and the
supported version of JDK may restrict the type of access that you can use.

Starting with JDK 1.2, the Java Core Reflection API provides a means to suppress
default Java language access control checks when using reflection. OracleAS
TopLink uses reflection to access the application’s persistent objects. This means
that if you are using a VM that supports the AP]I, then OracleAS TopLink can access
an attribute directly, regardless of its declared visibility.

Understanding Descriptors 4-71

Working with Mappings

Note: Private variable access under JDK 1.2 requires you to enable
the security setting. Consult the JDK documentation for more
information.

Oracle recommends using direct access whenever possible to improve performance
and avoid executing any application-specific behavior while building objects.

Setting the Access Type

Use the General tab of the mapping Editor pane (see Figure 4-38) to set the access
type as direct or method-based

To change the default access type used by all new mappings, use the Defaults tab
on the project Editor pane. See "Working with Default Properties" on page 2-9 for
more information.

Note: If you change the access default, existing mappings retain
their current access settings, but new mappings will be created with
the new default.

Specifying Read-Only Settings

Use the Read Only check-box on the General tab of the mapping Editor pane (see
Figure 4-38) to set a mapping to be read only. OracleAS TopLink will not consider
attributes associated with read-only mappings during update and delete
operations.

Because these operations are not actually performed for the mapping, any processes
dependent on these operations (such as custom SQL or descriptor events) are not
called for read-only. The attributes are still used for read operations.

Note: The primary key mappings must not be read-only.

Mappings defined for the write-lock or class indicator field must be read-only,
unless the write-lock is configured not to be stored in the cache and the class
indicator is part of the primary key.

4-72 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Mappings

Defaulting Null Values

Direct mappings include a

Null values translate in two directions: from null values read from the database to
the specified value, and from the specified value back to null when writing or
querying. You can also use OracleAS TopLink to set global default null values on a
per-class basis. For more information, refer to the Oracle Application Server TopLink
Application Developer’s Guide.

Click the Use Default Value when Database Field is Null option on the General
tab (see Figure 4-38) and the Type and Value drop-down lists to specify the null
value.

Note: You must specify the Type and Value in the mapping form.

Maintaining Bidirectional Relationships

Select the Maintain Bidirectional Relationship Only option on the General tab of
the mapping Editor pane (see Figure 4-38) to maintain a bidirectional relationship
for a one-to-one or one-to-many mapping. You can also specify the relationship
partner.

Specifying Field Names and Multiple Tables

When defining mappings in code, OracleAS TopLink assumes all mappings are in
the first table specified by the descriptor’s setTableName () or addTableName ()
method. If the persistent class stores information in multiple tables, any messages
sent that require field names should be implemented to pass fully qualified names
(that include the table name). Use the following syntax to fully qualify a field:

someMessage ("tablename.fieldname") ;

Specifying Collection Properties

Some relationship mapping types (direct collection, one-to-many, and
many-to-many) contain a Collection Options tab to allow you to specify collection
options.

OracleAS TopLink can populate a collection in ascending or descending order,
upon your specification. Query keys are automatically created for and with the
same name as all attributes mapped as direct-to-field, type conversion, object type,
and serialized object mappings.

Understanding Descriptors 4-73

Working with Mappings

Figure 4-39 Collection Options

'§§ managedEmployees

General Collection Optionsl Table Reference
Thesefields appear
Container Policy anlyfor Collection Class.
® Use Collection Class T Use Map Class

W Use Default Collection Class

Collection Class: |IndirectList {oracle toplink.indirection) Erowese. .
Thesefields appear

anlyfor Map Class.

/

Use Default Map Class

Map Class: |IndirectMap (oracle toplink.indirection) Browse. | -

Key Method: | “none selected=> |

[Order Query Results:

& Ascending
C Descending

Guery Key! | =none selected=

Use this table to enter data in each field:

Field Description

Container Policy

Collection or Map Class Select the collection or map class to use for this collection

mapping.
Use Default Container If Container Policy = Use Collection Class, select the default
Class Collection Class for the mapping.

Use Default Map Class If Container Policy = Use Map Class, select the default Map
Class and Key Method for the mapping.

Order Query Results Specify how the collection results are sorted for queries.

Specifying Mapping information in ejb-jar.xml File

For 2.0 CMP projects, the ejb-jar.xml files stores information on bean-to-bean
relationships (mappings) in the <relationship> element. By updating this
information in the ejb-jar.xml, the OracleAS TopLink Mapping Workbench
creates new mappings. You can then update the mapping information (such as
reference tables).

4-74 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Mappings

If the information does not exist in the ejb-jar.xml file, you can build the
mappings in the OracleAS TopLink Mapping Workbench, then write the
information to the file. See "Writing to the ejb-jar.xml File" on page 2-19 for more
information.

Understanding Descriptors 4-75

Working with Mappings

4-76 Oracle Application Server TopLink Mapping Workbench User’'s Guide

o)

Understanding Direct Mappings

In Oracle Application Server TopLink, direct mappings define how a persistent
object refers to objects without descriptors, such as the JDK classes and primitives.

You can create the following direct mappings in OracleAS TopLink:

Direct-to-field mappings — Map a Java attribute directly to a database field (see
"Working with Direct-to-Field Mappings" on page 5-2).

Type conversion mappings — Map Java values with simple type conversions,
such as from character to string (see "Working with Type Conversion Mappings"
on page 5-5).

Object type mappings — Use an association to map values to the database (see
"Working with Object Type Mappings" on page 5-6).

Serialized object mappings — Map serializable objects, such as multimedia
objects, to database BLOB fields (see "Working with Serialized Object
Mappings" on page 5-8).

Transformation mappings — Allow you to create custom mappings where one
or more fields can be used to create the object be stored in the attribute (see
"Working with Transformation Mappings" on page 5-9).

Working with Direct Mappings

There are two basic ways of storing object attributes directly in a database table:

The information can be stored directly if the attribute type is comparable to a
database type.

If there is no database primitive type that is logically comparable to the
attribute’s type, it must be transformed on its way to and from the database.

Understanding Direct Mappings 5-1

Working with Direct-to-Field Mappings

OracleAS TopLink furnishes the following classes of direct mappings:
s Direct-to-field

= Type conversion

s Object type

s Transformation

» Serialized object

If the application’s objects contain attributes that cannot be represented as
direct-to-field, type conversion, or object-type mappings, then the application must
provide transformation routines for saving the attributes.

If a direct-to-field mapping cannot be used to perform the desired conversion, try
type conversion and object type mappings before attempting to define a custom
transformation mapping.

Working with Direct-to-Field Mappings

Direct-to-field mappings map a Java attribute directly to a value database column.
When the application writes a Java instance to the database, it stores the value of
the attribute in a field of the table column. OracleAS TopLink supports the
following types:

s java.lang: Boolean, Float, Integer, String, Double, Long, Short,
Byte, Byte[1,Character, Character [];all of the primitives associated
with these classes

m java.math:BigInteger, BigDecimal
m java.sgl:Date, Time, Timestamp
m Jjava.util:Date, Calendar

While reading, direct-to-field mappings perform some simple one-data conversions,
as described in Table 5-1. You must use other direct mappings for two-way or more
complete conversions.

Table 5-1 Type Conversions Provided by Direct-to-Field Mappings

Java type Database type

Integer, Float, Double, Byte, Short, NUMBER, NUMERIC, DECIMAL, FLOAT,
BigDecimal, BigInteger, int, float, double, DOUBLE, INT, SMALLINT, BIT, BOOLEAN
byte, short

5-2 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Direct-to-Field Mappings

Table 5-1 (Cont.) Type Conversions Provided by Direct-to-Field Mappings

Java type

Database type

Boolean, boolean

String

nSting

nClob
Character, char
nChararcter

byte[]

Time
sql.Date
Timestamp, util.Date, Calendar

sql.Date, Time, Timestamp, util.Date,
Calendar

BOOLEAN, BIT, SMALLINT, NUMBER,
NUMERIC, DECIMAL, FLOAT, DOUBLE,
INT

VARCHAR, CHAR, VARCHAR?2, CLOB,
TEXT, LONG, LONG VARCHAR, MEMO

NVARCHAR? (applies to Oracle9)
NCLOB (applies to Oracle9)
CHAR

NCHAR (applies to Oracle9)

BLOB, LONG RAW, IMAGE, RAW,
VARBINARY, BINARY, LONG
VARBINARY

TIME
DATE (only applies to DB2)
TIMESTAMP (only applies to DB2)

DATE, DATETIME (applies to Oracle,
Sybase, SQL Server)

Direct-to-field mappings also allow you to specify a null value. This may be
required if primitive types are used in the object, and the database field allows null

values.

Example 5-1 Direct-to-Field Mapping Example

Figure 5-1 illustrates a direct-to-field mapping between the Java attribute city and
the relational database column CITY. Similarly, direct-to-field mappings could be
defined from country to COUNTRY, id to ADDRESS_ID, established to EST_DATE,

and province to PROVINCE.

Understanding Direct Mappings 5-3

Working with Direct-to-Field Mappings

Figure 5-1 Direct-to-Field Mapping

o &
$ & Qv‘& &
: w@g 7 @* o & &
String country; & s %} & <
Date established, [ZR4 I Ottawa Canada | 01/01/1995 | Ottawa
Integer id; 105 | Taronta | Canada | 04011933 | Taronto
String province; 421 | MWew Yaork | USA 05/01/2001 | Mew York

Java Class Relational Database

Creating Direct-to-Field Mappings

Use this procedure to create a basic direct-to-field mapping to map a Java attribute
directly to a value in a database.

To create a direct-to-field mapping:
1. Select the attribute to be mapped from the Navigator pane.

2.

3. From the Database Field drop-down list on the General tab on the Editor pane,
choose the appropriate database field.

Click the Direct to Field Mapping button on the mapping toolbar.

4. Select the Use Default Value When Database Field is Null option to specify a
default Type and Value to use if the database field is null.

Figure 5-2 Direct-to-field Mapping Properties

'"'n city (Direct To Field Mapping)

General l

Database Field: | oy v

[Read Only
[Use Method Accessing:

Get hethod: | =none selecteds |

Set iethodd: | =none selected= |

[Use Default Yalue When Database Field is Mull:

Type: | =nahe selected= |

Walue: |

You can also specify:

5-4 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Type Conversion Mappings

= Read-only attributes — See "Specifying Read-Only Settings" on page 4-72

= Access methods — See "Specifying Direct Access and Method Access" on
page 4-71

= Null values — See "Defaulting Null Values" on page 4-73

Working with Type Conversion Mappings

Type conversion mappings explicitly map a database type to a Java type. For
example, a Number in the database can be mapped to a StringinJava, ora
java.util.Date in Java can be mapped to a java.sqgl.Date in the database.

For Oracle9 databases, OracleAS TopLink supports NCHAR, NAVRCHAR2, and
NCLOB database types. Use the Ncharacter, NString, and NClob target types,
respectively.

Example 5-2 Type Conversion Mapping Example

Figure 5-3 illustrates a type conversion mapping. Because the java.util.Date class is
stored by default as a Timestamp in the database, it must first be converted to an
explicit database type such as java.sql.Date (required only for DB2— most other
databases have a single date data-type that can store any date or time).

Figure 5-3 Type Conversion Mappings

9 & .,
NSRS i
& & W
Integer id; 2561 | Canada | 0140141995
Date joinDate; :._' Java.util. Date== 2562 | Canada | 0440141993
String name; Java.syl.Date o AR [TTE 08/01£2001
Java Class Relational Database

Creating Type Conversion Mappings

Use this procedure to create a type conversion mapping.

To create a type conversion mapping:
1. Select the attribute to be mapped from the Navigator pane.

300 2

3. From the Database field and Database type drop-down lists on the General
tab in the Editor pane, choose the appropriate database field and database type.

Click the Type Conversion Mapping button on the mapping toolbar.

Understanding Direct Mappings 5-5

Working with Object Type Mappings

Figure 5-4 Type Conversion Mapping Properties

:}u salary (Type Caonversion Mapping)

General l

Database Field: |SALARY.SALARY -

[Read Only
[Use Method Accessing:

Get Method: |<none selected= |

Set hiethod: |<none selected= |

Database Type: | =nane selected= v|

You can also specify:
= Read-only attributes — See "Specifying Read-Only Settings" on page 4-72

» Access methods — See "Specifying Direct Access and Method Access" on
page 4-71

Working with Object Type Mappings

Object type mappings match a fixed number of database values to Java objects. Use
these mappings when the values in the database differ from those in Java. Object
types mappings are similar to direct-to-field mappings in all other respects.

The following figure illustrates an object type mapping between the Employee
attribute gender and the relational database column GENDER. If the gender value
in the Java class = Male, the system stores it in the GENDER database field as M;
Female is stored as F.

Figure 5-5 Object Type Mappings

<

¥ g & &
N 3

& & £ &

Address address;

String gender, H="ale" = "hA" e ek B b | 01011995
Integer id; "Female" - "F" HddareSrmithmt | 04011993
String name; 105 | Tom Jones | K| 080172001

Java Class Relational Database

5-6 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Object Type Mappings

Creating Object Type Mappings

Use this procedure to create an object type mapping between an attribute and a

database column.

To create a basic object type mapping:

1. In the Navigator pane, select the attribute to be mapped.

2. Click the Object-Type Mapping button on the mapping toolbar. The Object

type mapping tab appears in the Editor pane.

Figure 5-6 Object Type Mapping General Properties

oIF dender

General l
Database Field: |EMPLOYEE.GENDER Browse...
[~ Read Cnly

[Use Method Accessing:

Get tethod: |<n0ne selecied= Erowse...

BetWethod: | <none selected- Brawse. .

[Use Default Yalue When Database Field is Mull:

Type: | =nohe selected= |

Walue: |

Database Type: | T String (ava.lang) Erowse..
Object Type: | T String {ava.lang) Browse...

Database Walue OhjectValue | Default Attribute Value Add...
Ferale [4

F
il tale [Edit

e

[
= o = |

Eemove

Type and Value to use if the database field is null.

Choose the appropriate database field in the Database Field drop-down list.
Select Use Default Value When Database Field is Null to specify a default

Set the database type from the Database Type drop-down list and the Java type

from the Object type drop-down list.

Understanding Direct Mappings 5-7

Working with Serialized Object Mappings

6. Click on Add to add Database Value and Object Value pairs to the table. Select
the Default Attribute Value option for the value to use as the default.

To remove a database value, select the value and click Remove.
You can also specify:
= Read-only attributes — See "Specifying Read-Only Settings" on page 4-72

= Access methods — See "Specifying Direct Access and Method Access" on
page 4-71

Working with Serialized Object Mappings

Serialized object mappings are used to store large data objects, such as multimedia
files and BLOBs, in the database. Serialization transforms these large objects as a
stream of bits.

As with direct-to-field mappings, serialized object mappings require you to specify
an attribute and field, as shown in the following illustration.

Figure 5-7 Serialized Object Mappings

Ty c'gc"
S s ol
JobDescription job; &) = kS
String country; [Z5e T Canada DI TO95
Date startDate; 2662 | Canada | 040141993
Integer id; 2563 | USA 05/01/2001
Java Class Relational Database

Creating Serialized Object Mappings

Use this procedure to create serialized object mappings.

To create a serialized object mapping:
1. In the Navigator pane, select the attribute to be mapped.

2. Click the Serialized Mapping button on the mapping toolbar.

5-8 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Transformation Mappings

Figure 5-8 Serialized Object Mapping Properties

:,,',:, picture (Serialized Mapping)

General l

Database Field: | EMPLOYEE PHOTO &

[Read Only
[Use Method Accessing:

Get Method: |<n0ne selectad= |

Set Method: |<n0ne selecteds= |

3. Choose the appropriate database field in the Database Field drop-down list.
You can also specify:
= Read-only attributes — See "Specifying Read-Only Settings" on page 4-72

= Access methods — See "Specifying Direct Access and Method Access" on
page 4-71

Working with Transformation Mappings

Use transformation mappings for specialized translations between how a value is
represented in Java and in the database.

Tip: Use transformation mappings only when mapping multiple
fields into a single attribute. Because of the complexity of
transformation mappings, it is often easier to perform the
transformation with get /set methods of a direct-to-field

mapping.

Often, a transformation mapping is appropriate when values from multiple fields
are used to create an object. This type of mapping requires that you provide an
attribute transformation method that is invoked when reading the object from the
database. This method must have at least one parameter that is an instance of
DatabaseRow. In your attribute transformation method, you can send the get ()
message to the DatabaseRow to get the value in a specific column. Your attribute
transformation method can specify a second parameter, when it is an instance of
Session. The Session performs queries on the database to get additional values

Understanding Direct Mappings 5-9

Working with Transformation Mappings

needed in the transformation. The method should return the value to be stored in
the attribute.

Transformation mappings also require a field transformation method for each field, to
be written to the database when the object is saved. The transformation methods are
specified in a dictionary associating each field with a method. The method returns
the value to be stored in that field.

Figure 5-9 illustrates a transformation mapping. The values from the B_DATE and
B_TIME fields are used to create a java.util.Date to be stored in the birthDate
attribute

Figure 5-9 .Transformation Mappings

attribute
transfarmation
method

Birthinfo e

java.util. Date birthDate;
String country;
Integer id;

@7
2861 | Canada]01/01/1995 | 09:45
2562 | Canada | 0401415993 | 2310
2563 | USA i 080120011 14:25

Java Class
field

transformation
method

Creating Transformation Mappings

Use this procedure to create transformation mappings in the OracleAS TopLink
Mapping Workbench.

To create a transformation mapping:
1. In the Navigator pane select the attribute to be mapped.

2. C(Click the Transformation Mapping button from the Mapping toolbar.

5-10 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Transformation Mappings

Figure 5-10 Transformation Mapping Tab

'} normalHours (Transformation Mapping)
General l

[Read Only
W Use Method Accessing:

Get Method: | @ gethlormalHours) Erowse...
SgtMethod:| # sethlormalHoursjava.sgl.Timel... Browse..

[Use Indirection:

Database Row -= Object Method: | @ buildMormalHours{orac... v|

(Object-= Field Methods

Add...
Databasze Field Method
% [5TART_TIME @oetStanTimeq e —
%/ [END_TIME || gustEndTimed |

Use the Database Row --> Object Method drop-down list to select a method to
convert the database row into an object.

Note: The method must have the parameter (DatabaseRow) or
parameters (DatabaseRow, Session).

Click Add to add field transformation methods to the descriptor.
To remove a transformation method, select the method and click Remove.

Select the Use indirection option to specify if the creation of the target object
requires extensive computational resources. If selected, OracleAS TopLink uses
indirection objects. See "Working with Indirection" on page 6-5 for more
information.

After specifying the details of the mapping, create the attribute field
transformation methods in the associated Java class (see Example 5-3).

You can also specify:

= Read-only attributes — See "Specifying Read-Only Settings" on page 4-72

»s Access methods — See "Specifying Direct Access and Method Access" on

page 4-71

Understanding Direct Mappings 5-11

Working with Transformation Mappings

Example 5-3 Transformation Mapping Code Example

The following code example illustrates the methods required for a transformation
mapping:

// Get method for the normalHours attribute since method access indicated access
public Time[] getNormalHours ()

{
}

// Set method for the normalHours attribute since method access indicated access
public void setNormalHours (Time[] theNormalHours)

{
}

// Create attribute transformation method to read from the database row

//** Builds the normalHours Vector. IMPORTANT: This method builds the value but
does not set it. The mapping will set it using method or direct access as
defined in the descriptor. */

public Time[] getNormalHoursFromRow (DatabaseRow row)

{

return normalHours;

normalHours = theNormalHours;

Time[] hours = new Time[2];
hours [0] = (Time)row.get ("START TIME");
hours[1] = (Time)row.get ("END TIME");
return hours;
}
// Define a field transformation method to write out the start time. Return the
first element of the normalHours attribute.
public java.sql.Time getStartTime ()

{
}

// Define a field transformation method to write out the end time. Return the
last element of the normalHours attribute.
public java.sql.Time getEndTime ()

{
}

return getNormalHours () [0];

return getNormalHours () [1];

Specifying Advanced Features Available by Amending the Descriptor

In OracleAS TopLink, transformation mappings do not require you to specify an
attribute.

5-12 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Transformation Mappings

A field can be mapped from a computed value that does not map to a logical
attribute. This, in effect, constitutes a write-only mapping. In the OracleAS
TopLink Mapping Workbench, all mappings are associated with an attribute
before any other information can be specified. Therefore, to use a write-only
mapping, you must build it by amending the descriptor. The mapping itself has no
attribute name, get and set methods, or attribute method. In your amendment
method, create an instance of TransformationMapping and send
addFieldTransformation () message for each field to be written.

Example 5—-4 Descriptor Amendment Examples

The following code example illustrates creating a write-only transformation
mapping and adding it to the descriptor.

public static void addToDescriptor (Descriptor descriptor)

// Create a Transformation mapping and add it to the descriptor.
TransformationMapping transMapping = new
transMapping.addFieldTransformation (“WRITE DATE”,
“descriptor.addMapping (transMapping) ;

}

The following example illustrates how to create a one-way transformation mapping
by using the inheritance indicator field of the primary key. Map the class as normal,
including the other part of the primary key, and the inheritance through the type
field.

Create an amendment method for the class.

Note: The OracleAS TopLink Mapping Workbench displays a
neediness error, because the class indicator field part of the primary
key is not mapped. Use the following code to create an amendment
method to map the indicator field.

public void addToDescriptor (Descriptor descriptor) {
TransformationMapping keyMapping = new TransformationMapping() ;
keyMapping.addFieldTranslation (“*PROJECT.PROJ TYPE”,
“getType”) ;descriptor.addMapping (keyMapping) ; }

Define the getType method on the class to return its type value:

Project>>public abstract String getType() ;
LargeProject>>public String getType() { return “L”; }
SmallProject>>public String getType() { return “S”; }

Understanding Direct Mappings 5-13

Working with Transformation Mappings

Refer to "Amending Descriptors After Loading" on page 4-27 for more information.

5-14 Oracle Application Server TopLink Mapping Workbench User’'s Guide

6

Understanding Relationship Mappings

Relational mappings define how persistent objects reference other persistent objects.
Oracle Application Server TopLink furnishes the following relationship mappings:

Direct collection mappings — Map Java collections of objects that do not have
descriptors (see "Working with Direct Collection Mappings" on page 6-30).

Aggregate object mappings — Strict one-to-one mappings that require both
objects to exist in the same database row (see "Query Optimization Using
Joining" on page 6-15).

One-to-one mappings — Map a reference to another persistent Java object to the
database (see "Working with One-to-One Mappings" on page 6-21).

Variable one-to-one mappings — Map a reference to an interface to the
database (see "Working with Variable One-to-One Mappings" on page 6-25).

One-to-many mappings — Map Java collections of persistent objects to the
database (see "Working with One-to-Many Mappings" on page 6-33).

Aggregate collection mappings — Map Java collections of persistent objects to
the database (see "Working with Aggregate Collection Mappings" on
page 6-32).

Many-to-many mappings — Use an association table to map Java collections of
persistent objects to the database (see "Working with Many-to-Many Mappings"
on page 6-36).

Oracle Application Server TopLink also provides object-relational relationship
mappings (see Chapter 5, "Understanding Direct Mappings", and Chapter 7,
"Understanding Object-Relational Mappings").

All OracleAS TopLink relationship mappings are unidirectional, from the class
being described (the source class) to the class with which it is associated (the target

Understanding Relationship Mappings 6-1

Working with Relationship Mappings

class). The target class does not have a reference to the source class in a
unidirectional relationship.

To implement a bidirectional relationship (classes that reference each other), use
two unidirectional mappings with the sources and targets reversed.

Working with Relationship Mappings

Persistent objects use relationship mappings to store references to instances of other
persistent classes. The appropriate mapping class is chosen primarily by the
cardinality of the relationship.

Specifying Private or Independent Relationships

In OracleAS TopLink, object relationships can be either private or independent.

= Ina private relationship, the target object is a private component of the source
object. The target object cannot exist without the source and is accessible only
through the source object. Destroying the source object will also destroy the
target object.

» In anindependent relationship, the source and target are public objects that
exist independently. Destroying one object does not necessarily imply the
destruction of the other.

Aggregate object mappings are private by default, because the target object shares
the same row as the source object. One-to-one, one-to-many, and many-to-many
mappings can be independent or private, depending upon the application.
Normally, many-to-many mappings are independent by definition; however,
because a many-to-many mapping can be used to implement a logical one-to-many
without requiring a back reference in the target to the source, OracleAS TopLink
allows many-to-many mappings to be private as well as independent.

Tip: OracleAS TopLink automatically supports private
relationships. Whenever an object is written to the database, any
private objects it owns are also written to the database. When an
object is removed from the database, any private objects it because
are also removed. Be aware of this when creating new systems,
since it may affect both the behavior and the performance of your
application.

6-2 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Foreign Keys

Working with Foreign Keys

OracleAS TopLink uses references to maintain foreign key information. OracleAS
TopLink defines the reference as a property of the table containing the foreign key.
This may or may not correspond to an actual constraint that exists on the database.

If you import tables from the database, OracleAS TopLink creates references that
correspond to existing database constraints (if the driver supports this). You can
also define any number of references in the OracleAS TopLink Mapping
Workbench without creating similar constraints on the database.

OracleAS TopLink uses these references when defining relationship mappings and
descriptors’ multiple table associations.

Understanding Foreign Keys

A foreign key is a combination of columns that reference a unique key, usually the
primary key, in another table. Foreign keys can be any number of fields (similar to a
primary key), all of which are treated as a unit. A foreign key and the parent key it
references must have the same number and type of fields.

Relationship mappings use foreign keys to find information in the database so that
the target object(s) can be instantiated. For example, if every Employee has an
attribute address that contains an instance of Address (which has its own
descriptor and table) then, the one-to-one mapping for the address attribute would
specify foreign key information to find an address for a particular Employee.

OracleAS TopLink classifies foreign keys into two categories in mappings —
foreign keys and target foreign keys:

= In a foreign key, the key is found in the table associated with the mapping’s own
descriptor. In the previous example, a foreign key to ADDRESS would be in the
EMPLOYEE table.

= In atarget foreign key, the reference is from the target object’s table back to the
key from the mapping’s descriptor’s table. In the previous example, the
ADDRESS table would have a foreign key to EMPLOYEE.

Caution: Make sure you fully understand the distinction between
foreign key and target foreign key before defining a mapping.

Understanding Relationship Mappings 6-3

Working with a Container Policy

Specifying Foreign Keys
If you import tables from the database, OracleAS TopLink creates references that
correspond to existing database constraints (if supported by the driver). You can

also define references in OracleAS TopLink without creating similar constraints on
the database.

To display existing references for a table, use the References tab (see Figure 3-5).
References that contain the On Database option will create a constraint that
corresponds to the references.

Note: Your database driver must support this.

To create a foreign key:
1. Choose a database table in the Navigator pane that will contain the foreign key.

2. Click the References tab in the Editor pane (see Figure 3-5).

3. Select a reference table. See "Creating Table References" on page 3-6 for more
information.

4. Add a key pair for the reference. See "Creating Field References" on page 3-7 for
more information.

Use the Source Field and Target Field drop-down lists to choose the
appropriate fields on the source and target tables.

Repeat step 4 for each foreign key field.

Working with a Container Policy

A container policy specifies the concrete class OracleAS TopLink should use when
reading target objects from the database. You can specify a container policy for
collection mappings (DirectCollectionMapping, OneToManyMapping, and
ManyToManyMapping) and for read-all queries (ReadAllQuery).

Starting with JDK 1.2, the collection mappings can use any concrete class that
implements either the java.util.Collection interface or the java.util.Map
interface.

When using OracleAS TopLink with JDK 1.2 (or later), you can map object
attributes declared as Collection or Map, or any subinterface of these two
interfaces, or as a class that implements one of these two interfaces. You must
specify in the mapping the concrete container class to be used. When OracleAS

6-4 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Indirection

TopLink reads objects from the database that contain an attribute mapped with a
collection mapping, the attribute is set with an instance of the concrete class
specified. By default, a collection mapping’s container class is
java.util.Vector.

Read-all queries also require a container policy to specify how the result objects are
to be returned. The default container is java.util.Vector.

Container policies cannot be used to specify a custom container class when using
indirect containers.

Overriding the Default Container Policy

For collection mappings, you can specify the container class in the OracleAS
TopLink Mapping Workbench (see "Working with Direct Collection Mappings" on
page 6-30).

To set the container policy without using the OracleAS TopLink Mapping
Workbench, the following API is available for both CollectionMapping and
ReadAllQuery:

= useCollectionClass (Class) —Specifies the concrete Collection class to
use as a container for the objects in the collection. In JDK 1.2, the class must
implement the java.util.Collection interface.

m useMapClass (Class, String) — Specifies the concrete Map class to use as
a container for the objects in the collection. In JDK 1.2, the class must implement
the java.util.Map interface.

Also specified is the name of the zero argument method whose result, when
called on the target object, is used as the key in the Hashtable or Map. This
method must return an object that is a valid key in the Hashtable or Map.

Working with Indirection

Using indirection objects can improve the performance of OracleAS TopLink object
relationships. An indirection object takes the place of an application object so that
the application object is not read from the database until it is needed (see

Figure 6-1).

Understanding Relationship Mappings 6-5

Working with Indirection

Figure 6—-1 OracleAS TopLink indirection

Indirection Off:
Source | | Callection | N
Indirection On: Target

[Source] [Indirection | [Collection | [Target]
Target

Without indirection, when OracleAS TopLink retrieves a persistent object, it also
retrieves all the objects referenced by that object. This can result in lower
performance for some applications. Using indirection allows OracleAS TopLink to
create “stand-ins” for related objects, resulting in significant performance
improvements, especially when the application is interested only in the contents of
the retrieved object rather than the objects to which it is related.

Understanding Indirection

Indirection is available for transformation mappings and for direct collection,
one-to-one, one-to-many, and many-to-many relationship mappings.

You can enable or disable indirection for each mapping individually. By default,
indirection is enabled for relationship mappings and disabled for transformation
mappings. Indirection should be enabled only for transformation mappings if the
execution of the transformation method is a resource-intensive task, such as
accessing the database.

s Indirection disabled: An indirection object is not used. Whenever an object is
retrieved from the database, all the objects associated with it through the
mapping are also read.

» Indirection enabled: A value holder is used to represent the entire relationship.
When an object is retrieved from the database, a value holder is created and
stored in the attribute corresponding to the mapping. The first time the value
holder is accessed, it retrieves the related object from the database.

In addition to this standard version of indirection, collection mappings (direct
collection, one-to-many, and many-to-many) can use indirect containers.

6-6 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Indirection

Using Value Holder Indirection

Persistent classes that use indirection must replace relationship attributes with
value holder attributes. A value holder is an instance of a class that implements the
ValueHolderInterface interface, such as ValueHolder. This object stores the
information necessary to retrieve the object it is replacing from the database. If the
application does not access the value holder, the replaced object is never read from
the database.

When using method access, the get and set methods specified for the mapping
must access an instance of ValueHolderInterface, rather than the object
referenced by the value holder.

To obtain the object that the value holder replaces, use the getValue () and
setValue () methods of the ValueHolderInterface class. A convenient way of
using these methods is to hide the getValue and setValue methods of the
ValueHolderInterface inside get and set methods, as in the following
example.

Value Holder Indirection

The following figure illustrates the Employee object being read from the database.
The Address object is not read and will not be created unless it is accessed.

Figure 6—2 Address Object Not Read

"Get Employee” request

Java Application

emp2= -t Employee - Relational
readObject(; “YalueHaolder address; Datahase
Integer id;
String name;

YWector phones;
ValueHolder

The first time the address is accessed, as in the following figure, the ValueHolder
reads and returns the Address object.

Understanding Relationship Mappings 6-7

Working with Indirection

Figure 6-3 Initial Request

Employee
Java Application “alueHolder address
Integer id;
: String name;
tAdd 4 -
ge ress(}; “ector phones;

ValueHolder

Relational
Databhase

String city;
Integer id;

Subsequent requests for the address do not access the database, as shown in the

following figure.

Figure 6—4 Subsequent Requests

Employee
Java Application “alueHolder address
Integer id;
: String name;
tAdd 4 -
ge ress() “ector phones;

ValueHolder

String city;
Integer id;

Specifying Indirection
Use this procedure to specify that a mapping uses indirection.

To specify indirection:

1. In the Navigator pane, select the mapping to be mapped, and click the

appropriate button on the mapping toolbar.

The mapping tab appears in the Editor pane.

6-8 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Indirection

Figure 6-5 Sample Mapping Properties

@-3 gddrass
General l Tahle Reference
Reference Descriptor: | HF Address 7
[Read Only

[Use Method Accessing:

Get ethod: |<n0ne selected= Erowse...

Set Method: | <none selected= Browse...

" Maintain Bidirectional Relationship:

Relationship Farner: | =hiohe selected=

Indirection
option [Private Cwned

[" Use Batch Reading
[~ Use Joining

W Use Indirection

2. On the General tab, click Use Indirection to specify that the mapping uses
indirection.

Changing Java Classes to Use Indirection

Attributes using indirection must conform to the ValueHolderInterface. You
can change your attribute types in the Class Editor without re-importing your Java
classes. Ensure that you change the attribute types in your Java code as well.
Attributes typed incorrectly will be marked as deficient.

In addition to changing the attribute’s type, you may also need to change its
accessor methods. If you use method access, OracleAS TopLink requires accessors
to the indirection object itself, so your get method returns an instance that conforms
to ValueHolderInterface, and your set method accepts one argument that
conforms to the same. If the instance variable returns a Vector instead of an object,
then the value holder should be defined in the constructor as follows:

addresses = new ValueHolder (new Vector()) ;

In any case, the application uses the getAddress () and setAddress () methods
to access the Address object. With indirection, OracleAS TopLink uses the
getAddressHolder () and setAddressHolder () methods when saving and
retrieving instances to and from the database.

Understanding Relationship Mappings 6-9

Working with Indirection

Refer to the Oracle Application Server TopLink Application Developer’s Guide for details.
Example 6—1 Indirection

Example 6-2 The following code illustrates the Employee class using indirection with
method access for a one-to-one mapping to Address.

Example 6-3 The class definition is modified so that the address attribute of
Employee is a ValueHolderInterface instead of an Address, and appropriate get and set
methods are supplied.

Example 6-4 /

/ Initialize ValueHolders in Employee Constructor
public Employee() {
address = new ValueHolder() ;

}

protected ValueHolderInterface address;

// 'Get’ and ‘Set’ accessor methods registered with the mapping and used by
OracleAS TopLink.

public ValueHolderInterface getAddressHolder() {

return address;

}

public void setAddressHolder (ValueHolderInterface holder) ({

address = holder;

}

// ‘Get’ and ‘Set’ accessor methods used by the application to access the
attribute.

public Address getAddress()

return (Address) address.getValue();

}

public void setAddress (Address theAddress) {

address.setValue (theAddress) ;

}

6-10 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Transparent Indirection

Working with Transparent Indirection

Transparent indirection allows you to declare any relationship attribute of a
persistent class that holds a collection of related objects as a
java.util.Collection, java.util.Map, java.util.Vector, or
java.util.Hastable. OracleAS TopLink will use an indirection object that
implements the appropriate interface and also performs “just in time” reading of
the related objects. When using transparent indirection, you do not have to declare
the attributes as ValueHolderInterface.

You can specify transparent indirection from the OracleAS TopLink Mapping
Workbench. Newly created collection mappings use transparent indirection by
default if their attribute is not a ValueHolderInterface.

Specifying Transparent Indirection

Use this procedure to use transparent indirection.
Using Transparent Indirection:

1. In the Navigator pane, select the attribute. The mapping tab appears in the
Editor pane.

Understanding Relationship Mappings 6-11

Working with Proxy Indirection

Figure 6—6 Sample Mapping Properties

OEQ phoneMumbers (One To Many Mapping

General l Collection Options Tahle Reference

Reference Descriptor: | H¥| PhoneMNumber e

[Read Only
[Use Method Accessing:

GetMethod: |<n0ne selected= Erowse...

sethethod: | <none selected= Browse..

[Maintain Bidirectional Relationship:

Relatianship Fartner: | shoheselectad=

Tra_nspa_rent [Private Owned
Indirection
option [Use Batch Reading

W Use Indirection

w YalueHolder

" Transparent

1. On the General tab, click the Use Indirection option for attributes that use
indirection.

2. Select the Transparent indirection option.

Working with Proxy Indirection

Introduced in JDK 1.3, the Java class Proxy enables you to use dynamic proxy
objects as stand-ins for a defined interface. Certain OracleAS TopLink mappings
(OneToOneMapping, VariableOneToOneMapping, ReferenceMapping, and
TransformationMapping) can be configured to use proxy indirection, which
gives you the benefits of OracleAS TopLink indirection without the need to
include OracleAS TopLink classes in your domain model. Proxy indirection is to
one-to-one relationship mappings as indirect containers are to collection mappings.

Although the OracleAS TopLink Mapping Workbench does not support proxy
indirection, you can use the useProxyIndirection method in an amendment
method.

To use proxy indirection, your domain model must satisfy the following criteria:

6-12 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Proxy Indirection

s The target class of the one-to-one relationship must implement a public
interface.

= The one-to-one attribute on the source class must be of the interface type.

= If you employ method accessing, then the get () and set () methods must
use the interface.

Example 6-5 Proxy indirection Examples

The following code illustrates an Employee->Address one-to-one relationship.

public String getName () ;

public Address getAddress();

public void setName (String value) ;
public void setAddress(Address value);

}

public class EmployeeImpl implements Employee {
public String name;
public Address address;

public Address getAddress()
return this.address;
}

public void setAddress(Address value) {
this.address = value;
}

}

public interface Address {
public String getStreet();
public void setStreet (String value);

}

public class AddressImpl implements Address {
public String street;

}
In Example 6-5, both the Employeelmpl and the AddressImpl classes implement

public interfaces (Employee and Address respectively). Therefore, because the
AddressImpl is the target of the one-to-one relationship, it is the only class that
must implement an interface. However, if the Employeelmpl is ever to be the target
of another one-to-one relationship using transparent indirection, it must also
implement an interface, as shown below:

Employee emp = (Employee) session.readObject (Employee.class);

Understanding Relationship Mappings 6-13

Working with Proxy Indirection

System.out.println(emp.toString()) ;
System.out.println (emp.getAddress () .toString()) ;
// Would print:

[Employee] John Smith

{ IndirectProxy: not instantiated }

String street = emp.getAddress().getStreet();

// Triggers database read to get Address information
System.out.println(emp.toString()) ;
System.out.println (emp.getAddress () .toString()) ;
// Would print

[Employee] John Smith

{ [Address] 123 Main St. }

Using proxy indirection does not change how you instantiate your own domain
objects for insert. You still use the following code:

Employee emp = new EmployeeImpl ("John Smith");

Address add = new AddressImpl("123 Main St.");

emp.setAddress (add) ;

Implementing Proxy Indirection in Java

To enable proxy indirection in Java code, use the following API for
ObjectReferenceMapping:

s useProxyIndirection() —Indicates that OracleAS TopLink should use
proxy indirection for this mapping. When the source object is read from the
database, a proxy for the target object is created and used in place of the “real”
target object. When any method other than getString () is called on the
proxy, the “real” data will be read from the database.

Example 6-6 Proxy indirection Example
The following code example illustrates using proxy indirection.

// Define the 1:1 mapping, and specify that Proxy Indirection should be used
OneToOneMapping addressMapping = new OneToOneMapping() ;
addressMapping.setAttributeName ("address") ;

addressMapping.setReferenceClass (AddressImpl.class) ;
addressMapping.setForeignKeyFieldName ("ADDRESS ID") ;
addressMapping.setSetMethodName ("setAddress") ;
addressMapping.setGetMethodName ("getAddress") ;
addressMapping.useProxyIndirection () ;

descriptor.addMapping (addressMapping) ;

6-14 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Optimizing for Queries

You can configure query optimization on any relationship mappings. The
optimization requires fewer database calls to read a set of objects from the database.
You can configure query optimization on a descriptor’s mappings to affect all
queries for that class, resulting in a significant system performance gain without
changing any application code. Queries can also be optimized on a per-query basis.
For more information, see the Oracle Application Server TopLink Application
Developer’s Guide.

OracleAS TopLink provides two query optimization features on mappings: joining
and batch reading.

= Joining can be used only on one-to-one mappings. Joining joins the two related
classes tables to read all the data in a single query. This feature should be used
only if it is known that the target object is always required with the source
object, or indirection is not used.

= Batch reading can be used in most of the relational mappings, including direct
collection mappings, one-to-one mappings, aggregate collection mappings,
one-to-many mappings, and many-to-many mappings. This feature should be
used only if it is known that the related objects are always required with the
source object.

Example 6-7 Query Optimization Using Joining
The following code example illustrates using joining for query optimization.

// Queries for Employee are configured to always join Address
OneToOneMapping addressMapping = new OneToOneMapping() ;
addressMapping.setReferenceClass (Address.class) ;
addressMapping.setAttributeName ("address") ;
addressMapping.usedoining() ;
addressMapping.privateOwnedRelationship () ;

Example 6—8 Query Optimization Using Batching
The following code example illustrates using batch for query optimization.

// Queries on Employee are configured to always batch read Address
OneToManyMapping phoneNumbersMapping = new OneToManyMapping() ;

Understanding Relationship Mappings 6-15

Working with Aggregate Object Mappings

phoneNumbersMapping.setReferenceClass ("PhoneNumber.class")
phoneNumbersMapping.setAttributeName ("phones") ;
phoneNumbersMapping.useBatchReading () ;
phoneNumbersMapping.privateOwnedRelationship () ;

Working with Aggregate Object Mappings

Two objects are related by aggregation if there is a strict one-to-one relationship
between the objects, and all the attributes of the second object can be retrieved from
the same table(s) as the owning object. This means that if the source (parent) object
exists, then the target (child or owned) object must also exist, as illustrated in
Figure 6-7.

Aggregate objects are privately owned and should not be shared or referenced by
other objects.

Note: When using an aggregate descriptor in an inheritance, all
the descriptors in the inheritance tree must be aggregates.
Aggregate and Class descriptors cannot exist in the same
inheritance tree.

Figure 6—7 Aggregate Object Mapping

&
o s & &
Y ¥ & <
X & oK &7
Address address; & ¥ %) <
Integer id; 103 | John Doe 305 010141995 (0140741995
String name; HEelane Smith | 226 | 04014953 010119594
105 | Tom Jones | 274 DB.-‘D'].-"’QQB 02/01/2001

Relational Database

Period (target
Date startDate;
Date endDate;

To implement an aggregate object mapping:

» The descriptor of the target class must declare itself to be an aggregate object.
Because all its information comes from its parent’s table(s), the target descriptor
does not have a specific table associated with it. You must, however, choose one
or more candidate table(s) from which you can use fields in mapping the target.

6-16 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Aggregate Object Mappings

In the example above, you could choose the EMPLOYEE table so that the
START_DATE and END_DATE fields are available during mapping.

The descriptor of the source class must add an aggregate object mapping that
specifies the target class. In the example above, the Employee class has an
attribute called employPeriod that would be mapped as an aggregate object
mapping with Period as the reference class. The source class must ensure that
its table has fields that correspond to the field names registered with the target
class.

If a source object has a null target reference, OracleAS TopLink writes NULLs
to the aggregate database fields. When the source is read from the database, it
can handle this null target in one of two ways:

s Create an instance of the object with all its attributes equal to null.

s Put a null reference in the source object without instantiating a target. (This
is the default method of handling null targets.)

Target objects can also have multiple sources, hence the need to choose a candidate
table during its mapping. This allows different source types to store the same target
information within their tables. Each source class must have table fields that
correspond to the field names registered with the target class. If one of the source
tables has different field names than the names registered with the target class, the
source class must translate the field names.

In Figure 6-8:

The Period class has a direct-to-field mapping between startDate and START_
DATE.

The Employee class can use the Period class as a normal aggregate to write to
its START_DATE column.

The PROJECT table does not have a field called START_DATE, so the Project
descriptor must provide a field translation on its aggregate object mapping
from START_DATE to S_DATE. (If the PROJECT table had a START_DATE
column, this field translation would be unnecessary.)

Understanding Relationship Mappings 6-17

Working with Aggregate Object Mappings

Figure 6—-8 Aggregation with Multiple Source Classes

Java Class: Relational Datahase: & &
A
¥ Yoo« &
£ & & 97

Address address; % ks) %
Integer id; | 103 | John Doe | 305 01/01/1995 |01/07/1935
String name; 104 | Jane Smith | 226 | 04011993 (014011994
Period employPeriod; 105 | Tam Jones | 274 | 080141998 | 024012001

Aggregate object EMPLOYEE table

rmapping s
erio

Date startDate;
Date endDate;

&
2 &
Q £ <
S & &7 F
& & & ®
: _ & & 9 5 ©
String d_ESC”pUDn: 975 | Consultant Database 01/01/1995 | 014071995
Intggend; 42 | Java Devloper | Java Product | D4/A01/1993 | 010141994
String name; 355 | Multimedia Multitmedia | 080151998 | 024012001
Period projectPetiod; PROJECT table

Agagregate object
mapping with translation

Aggregate target classes not shared among multiple source classes can have any
type of mapping, including other aggregate object mappings.

Aggregate target classes shared with multiple source classes cannot have
one-to-many or many-to-many mappings.

Other classes cannot reference the aggregate target with one-to-one, one-to-many,
or many-to-many mappings. If the aggregate target has a one-to-many relationship
with another class, the other class must provide a one-to-one relationship back to
the aggregate’s parent class, instead of the aggregate child. This is because the
source class contains the table and primary key information of the aggregate.

Aggregate descriptors can make use of inheritance. The subclasses must also be
declared as aggregate and be contained in the source’s table. See "Working with
Inheritance" on page 4-39 for more information.

Creating a Target Descriptor

Use this procedure to create a target descriptor to employ with an aggregate
mapping. You must configure the target before specifying field translations in the
parent descriptor.

To create the target descriptor:

6-18 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Aggregate Object Mappings

1. In the Navigator pane, right-click the target descriptor and choose Aggregate
from the pop-up menu. The descriptor’s icon in the Navigator pane changes to
an Aggregate Descriptor.

You can also choose Selected > Aggregate from the menu or by clicking the
Aggregate Descriptor button.

2. Map the attributes, specifying all but field information.

= For a one-to-one mapping, pick a reference between a table in the target
descriptor and a table in a descriptor that will have a mapping to this
aggregate target. If this aggregate target will be mapped to multiple source
descriptors, pick a reference whose foreign key field(s) will be in the tables
of one of the source descriptors.

= For a one-to-many mapping or a many-to-many mapping, pick a reference
whose foreign key field(s) will be in the referenced descriptor’s tables and
whose primary key field will be in the source descriptor’s tables.

3. Continue with "Creating an Aggregate Object Mapping" on page 6-19 to create
the aggregate mapping.

Creating an Aggregate Object Mapping

Use this procedure to create an aggregate object mapping. You must also create a
target descriptor to use with the aggregate mapping.

To create an aggregate object mapping:

(@] 1. In the Navigator pane, select the mapping to be mapped and click the
Aggregate Mapping button on the mapping toolbar.

The Aggregate mapping tab appears in the Editor pane.

Understanding Relationship Mappings 6-19

Working with Aggregate Object Mappings

Figure 6-9 Aggregate Mapping General Tab

Q period (Aggregate Mapping)

General l Fields

Reference Descriptar: |g EmploymentPeriod

[Read Only
[Use Method Accessing

Get Method: | @ getFeriody |

Set Miethod: | ¢ setPerindioracle.comtoplink. . |

[Allows Mull

1. Use the Reference Descriptor drop-down list on the General tab to choose a
reference descriptor.

Note: You can select only aggregate descriptors. See "Creating a
Target Descriptor” on page 6-18 for details.

2. You can also specify:
= Read-only attributes — See "Specifying Read-Only Settings" on page 4-72.

»s Access methods — See "Specifying Direct Access and Method Access" on
page 4-71.

= Null values — See "Defaulting Null Values" on page 4-73.
3. Click the Fields tab to specify field information for the target descriptor’s
mapping.

Figure 6-10 Aggregate Mapping Fields Tab

Q period iAggregate Mapping)

General Fields l

Field Description Fields

EmploymentPeriod.endDate directfield |END DATE
EmploymentPeriod.stantDate directfield | START DATE

1. Use this table to enter data in each field:

6-20 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with One-to-One Mappings

Field Description

Field Description Available fields from the reference descriptor. These fields are
for display only and cannot be changed on this tab.

Field Use the drop-down list to choose a field to use for the mapping
for each field description.

Working with One-to-One Mappings

One-to-one mappings represent simple pointer references between two Java objects.
In Java, a single pointer stored in an attribute represents the mapping between the
source and target objects. Relational database tables implement these mappings
using foreign keys.

Figure 611 illustrates a one-to-one relationship from the address attribute of an
Employee object to an Address object. To store this relationship in the database,
create a one-to-one mapping between the address attribute and the Address class.
This mapping stores the id of the Address instance in the EMPLOYEE table when
the Employee instance is written. It also links the Employee instance to the Address
instance when the Employee is read from the database. Because an Address does
not have any references to the Employee, it does not have to provide a mapping to
Employee.

For one-to-one mappings, the source table normally contains a foreign key reference
to a record in the target table. In Figure 6-11, the ADDR_ID field of the EMPLOYEE
table is a foreign key.

Understanding Relationship Mappings 6-21

Working with One-to-One Mappings

Figure 6—11 One-to-One Mappings
One-to-One relationship in Java:

Address address; String city;
Integer id; String country;

String firstMame; Date established;
String lastMame; Integer id;
“ector phones; String province;

One-to-One relationship in relational database:

A & 2
9 &
N S N & § S
E000 MG M D R P S
R ks < o &) & <
103 | John | Doe 305 /'2?4 Ottawa Canada | 01/01/1935 | Ottawa

104 | Jane | Smith | 296 105 | Taronto Canada | 040141993 | Toronto
105) Tom | Jones | 274 421 | New York | USA 08/01/2001 | MNew Yark
EMPLCOYEE tahle ADDRESS table

You can also implement a one-to-one mapping where the target table contains a
foreign key reference to the source table. In the example, the database design would
change such that the ADDRESS row would contain the EMP_ID to identify the
Employee to which it belonged. In this case, the target must also have a relationship
mapping to the source.

The update, insert and delete operations, which are normally done for the target
before the source, for privately owned one-to-one relationships, are performed in
the opposite order when the target owns the foreign key. Target foreign keys
normally occur in bidirectional one-to-one mappings, because one side has a
foreign key and the other shares the same foreign key in the other’s table.

Target foreign keys can also occur when large cascaded composite primary keys
exist (that is, one object’s primary key is composed of the primary key of many
other objects). In this case it is possible to have a one-to-one mapping that contains
both foreign keys and target foreign keys.

In a foreign key, OracleAS TopLink automatically updates the foreign key value in
the object’s row. In a target foreign key, it does not. In OracleAS TopLink, the
Target Foreign Key checkbox includes a checkmark when a target foreign key
relationship is defined.

When mapping a relationship, you must understand these differences between a
foreign key and a target foreign key, to ensure that the relationship is defined
correctly.

In a bidirectional relationship where the two classes in the relationship reference
each other, only one of the mappings should have a foreign key. The other mapping
should have a target foreign key. If one of the mappings in a bidirectional

6-22 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with One-to-One Mappings

relationship is a one-to-many mapping, see "Working with Variable One-to-One
Mappings" on page 6-25 for details.

Creating One-to-One Mappings

Use this procedure to create a one-to-one mapping.

To create a one-to-one mapping:

1. In the Navigator pane, select the mapping to be mapped and click the
One-to-One Mapping button on the mapping toolbar.

The One-to-one mapping tab appears in the Editor pane.

Figure 6—12 One-to-One Mapping General Properties

#-2 gidress (One To One Mapping)

General l Table Reference
Reference Descriptor: | HE Address -
™ Read Only

™ Use Method Accessing:

Get iethod: | =hote selected= Erowse...

Set Method: | =none selected= Erowse...

[Maintain Bidirectional Relationship:

Felationship Bartner: | =rone selecteds

[Private Cwned

[" Use Batch Reading
[Use Joining

¥ Use Indirection

1. Enter the required information on the General tab (see "Working with Common
Mapping Properties" on page 4-70).

2. You can also specify:

» Bidirectional relationships — See "Maintaining Bidirectional Relationships"
on page 4-73

= Read-only attributes — See "Specifying Read-Only Settings" on page 4-72

Understanding Relationship Mappings 6-23

Working with One-to-One Mappings

»s Access methods — See "Specifying Direct Access and Method Access" on
page 4-71

s Null values — See "Defaulting Null Values" on page 4-73

3. C(lick the Table Reference tab to choose the reference.

Figure 6—-13 One-to-One Mapping Table Reference Properties

=-2 grdress (One To One Mapping)

General Tahle Referencel
Table Reference: | EMPLOYEE_ADDRESS | Hew..
Source Field Target Field Target Foreign Key Add.
“ulsoprp -llapoREss m -] C
-
Femove

1. Use this table to enter data in each field:
Field Description
Table Reference Use the drop-down list to choose a table reference for the

mapping. Click New to create a new table

Key Pairs

Source Field Use the drop-down list to choose a field from the source table.
Target Field Use the drop-down list to choose a field from the target table.
Target Foreign Key Specify if the relationship is a target foreign key.

Specifying Advanced Features Available by Amending the Descriptor

One-to-one target objects mapped as Privately Owned are, by default, verified
before deletion or update outside of a unit of work.

Verification is a check for the previous value of the target and is accomplished
through joining the source and target tables. Inside a unit of work, verification is
accomplished by obtaining the previous value from the back-up clone, so this
setting is not used because a database read is not required. You may wish to disable
verification outside of a unit of work for performance reasons and can do so by

6-24 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Variable One-to-One Mappings

sending the setShouldVerifyDelete () message to the mapping in an
amendment method written for the descriptor, as follows:

public static void addToDescriptor (Descriptor descriptor) {
//Find the one-to-one mapping for the address attribute
OneToOneMapping addressMapping= (OneToOneMapping)
descriptor.getMappingForAttributeName (“address”) ;
addressMapping.setShouldVerifyDelete (false) ;

}

Working with Variable One-to-One Mappings

Variable class relationships are similar to polymorphic relationships except that in
this case the target classes are not related through inheritance (and thus not good
candidates for an abstract table), but through an interface.

To define variable class relationships in OracleAS TopLink Mapping Workbench,
use the variable one-to-one mapping selection, but choose the interface as the
reference class. This makes the mapping a variable one-to-one. When defining
mappings in Java code, use the VariableOneToOneMapping class.

OracleAS TopLink supports variable relationships only in one-to-one mappings. It
handles this relationship in two ways:

= Through the class indicator field

s Through unique primary key values among target classes implementing the
interface

Specifying Class Indicator

A source table has an indicator column that specifies the target table through the
class indicator field, as show in Figure 6-14. The EMPLOYEE table has a TYPE
column that indicates the target for the row (either PHONE or EMAIL).

Understanding Relationship Mappings 6-25

Working with Variable One-to-One Mappings

Figure 6-14 Class indicator Field

Class indicator field (C_ID): &2
* "Email" = Email Java class ng
= "Phone" = Phone Java class o

(21 . | ESERE;

EMPLOYEE table

PHONE table
The principles of defining such a variable class relationship are similar to defining a
normal one-to-one relationship, except:

» The reference class is a Java interface, not a Java class. However, the method to
set the interface is identical.

= You must specify a type indicator field.

= You specify the class indicator values on the mapping so that mapping can
determine the class of object to create.

= You must specify the foreign key names and the respective abstract query keys
from the target interface descriptor.

Specifying Unique Primary Key
As Figure 6-15 illustrates, the value of the foreign key in the source table mapped to
the primary key of the target table is unique. No primary key values among the
target tables are the same, so primary key values are not unique just in the table, but
also among the tables.

6-26 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Variable One-to-One Mappings

Figure 6-15 Unique primary key

¥ %)

T [

2

ESMP-L.O.YESI‘EtabIe NI
ElIN
EX

PHOME table

Because there is no indicator stored in the source table, OracleAS TopLink cannot
determine to which target table the foreign key value is mapped. Therefore,
OracleAS TopLink reads through all the target tables until it finds an entry in one of
the target tables. This is an inefficient way of setting up a relation model, because
reading is expensive. The class indicator is much more efficient and it reduces the
number of reads performed on the tables to get the data. In the class indicator
method, OracleAS TopLink knows exactly which target table to look into for the
data.

The principles of defining such a variable class relationship are similar to defining
class indicator variable one-to-one relationships, except:

= A type indicator field is not specified.
s The class indicator values are not specified.

The type indicator field and its values are not needed, because OracleAS TopLink
goes through all the target tables until data is finally found.

Creating Variable One-to-One Mappings

Use this procedure to create a variable one-to-one mapping. You must configure the
target descriptor before defining the mapping.

To create a variable one-to-one mapping:
1. In the Navigator pane, select the interface descriptor that will be referenced.

2. On the Implementors tab, choose all descriptors that implement this interface
and share a common query key. You may need to create query keys for some or
all of these descriptors.

Understanding Relationship Mappings 6-27

Working with Variable One-to-One Mappings

Figure 6-16 Implementors Tab

& Implementors

Choose the descriptors that implement this interface and share at least
ONe COmman guery key.

Implementors Common Gluery Keys

¥ 18 Email
¥ 1 Phone

1. In the Navigator pane, select the attribute to be mapped as a variable
one-to-one mapping and click the Variable One-to-One Mapping button on
the mapping toolbar.

2. Select the General tab.

Figure 6—17 Variable One-to-One Mapping General Properties

«# contact (wariable One To One Mapping)

General l Cuery Key Associations Class Indicator Info

Reference Descriptor: | Contact
[Read Only
[~ Use Method Accessing:

Get Method: |<n0ne selected= |

Set Method: |<none selected= |

[Private Owmed
[Use Batch Reading

™ Use Indirection:

1. Use the Reference Descriptor drop-down list to choose a reference descriptor.
The OracleAS TopLink Mapping Workbench displays only interface
descriptors.

2. Enter any other required information on the General tab (see "Working with
Common Mapping Properties" on page 4-70).

3. Select the Query Key Associations tab.

6-28 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Variable One-to-One Mappings

Figure 6—18 Variable One-to-One Mapping Query Key Associations Properties

=+ contact fvariable One Ta One Mapping)

General Cluery KeyAssociationsl Class Indicator Info
Foreign Key Query Key Name Add...
#ulio |[Ciat |

Eemove

1. Specify fields in the source descriptor’s tables to use for common query keys.

2. Select the Class Indicator Info tab.

Figure 6—19 Variable One-to-One Mapping Class Indicator Info Tab

o contact (Wariable One To One Mapping)
General Query Key Assaciations Class Indicator Info l
Class Indicator Field: | COMTACT_TYFPE Browse...
Indicatar Type: | o String {avalang) Browse...
Include Clags Indicator Value =
" 2 Ernail E Edlic.
e v Phaone P

1. Use this table to enter data in each field.

Field Description

Class Indicator Field Use the drop-down list to choose a field to use as a class
indicator. To use unique primary keys (no class indicator
values), choose <none selected>.

Indicator Type Use the drop-down list to choose the Java type for the Class
Indicator Field.

Class information:
Include Specify to use this class for the mapping.

Class Name of the class. This field is for display only.

Understanding Relationship Mappings 6-29

Working with Direct Collection Mappings

Field Description

Indicator Value Value used by this class.

Note: If the class does not appear in the Class Information table,
you must add the class in the interface descriptor. See
"Implementing an Interface" on page 4-48 for more information.

Working with Direct Collection Mappings

Direct collection mappings store collections of Java objects that are not OracleAS
TopLink-enabled. The object type stored in the direct collection is typically a Java
type, such as String.

It is also possible to use direct collection mappings to map a collection of
non-String objects. For example, it is possible to have an attribute that contains a
collection of Integer or Date instances. The instances stored in the collection can

be any type supported by the database and has a corresponding wrapper class in
Java.

Support for primitive data types such as int is not provided because Java vectors
hold only objects.

Figure 620 illustrates how a direct collection is stored in a separate table with two
fields. The first field is the reference key field, which contains a reference to the
primary key of the instance owning the collection. The second field contains an
object in the collection and is called the direct field. There is one record in the table
for each object in the collection.

Figure 6-20 Direct Collection Mappings

Java class: Relational database:
Employes &

Address address; Q Pas)
Integer id; "<z> QQ’

String name; 103 | Developer
“ector responsibilities; 104 Developer
[MEEmail support

RESPONS table

Maps are not supported for direct collection because there is no key value.

6-30 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Direct Collection Mappings

Note: The responsibilities attribute is of type Vector. When using
JDK 1.2, it is possible to use a Collection interface (or any class that
implements the Collection interface) for declaring the collection
attribute. See "Working with a Container Policy" on page 6-4 for
details.

Creating Direct Collection Mappings

Use this procedure to create a direct collection mapping.

To create a direct collection mapping:
1. Select the attribute to be mapped from the Navigator pane.

2. Click the Direct Collection Mapping button on the mapping toolbar.

Figure 6-21 Direct Collection Mapping General Properties

ke hroadeastor (Direct Collection Mapping)

General l Collection Options ~ Tahble Reference

[Read Only
[Use Method Accessing:

Get hethod: |<n0ne selected= |

Set hethod: |=none selenian= |

[Use Batch Reading

W Use Indirection:

® YalueHolder " Transparent

Direct Collection Specifics

Target Table: | =none selected= v|

Direct Field: | =hane selecteds |

1. Use the Target Table and Direct Field drop-down lists to specify the
appropriate information.

2. Enter any other required information on the General tab (see "Working with
Common Mapping Properties" on page 4-70).

Understanding Relationship Mappings 6-31

Working with Aggregate Collection Mappings

3. Click the Collection Options tab to specify collection information for this
mapping. See "Specifying Collection Properties" on page 4-73 for more
information.

4. Click the Table Reference tab to specify foreign key information for this
mapping. See "Creating Table References" on page 3-6 for more information.

Figure 6-22 Direct Collection Mapping Table Reference Properties

k= hroadeastor (Direct Collection Mapping)

General Collection Options Tahle Reference l

Tahle Reference: |EMPLOYEE_EMPLOYEE v| ey
Source Field Target Field Add.
=5 [EmP_ID |[EmMP_ID |
Remove

1. Choose the appropriate reference that relates the target table to the tables
associated with the source descriptor.

Working with Aggregate Collection Mappings

Aggregate collection mappings are used to represent the aggregate relationship
between a single-source object and a collection of target objects. Unlike the
OracleAS TopLink one-to-many mappings, in which there should be a one-to-one
back reference mapping from the target objects to the source object, there is no back
reference required for the aggregate collection mappings, because the foreign key
relationship is resolved by the aggregation.

Caution: The OracleAS TopLink Mapping Workbench does not
directly support aggregate collections. You must use an
amendment method (see "Amending Descriptors After Loading" on
page 4-27) or manually edit the project source to add the mapping.

To implement an aggregate collection mapping:

s The descriptor of the target class must declare itself to be an aggregate
collection object. Unlike the aggregate object mapping, in which the target
descriptor does not have a specific table to associate with, there must be a target
table for the target object.

6-32 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with One-to-Many Mappings

s The descriptor of the source class must add an aggregate collection mapping
that specifies the target class.

Aggregate collection descriptors can use inheritance. You must also declare
subclasses as aggregate collection. The subclasses can have their own mapped
tables, or share the table with their parent class. See "Working with Inheritance" on
page 4-39 for more information on inheritance.

In a Java Vector, the owner references its parts. In a relational database, the parts
reference their owners. Relational databases use this implementation to make
querying more efficient.

Note: For information on using collection classes other than
Vector with aggregate collection mappings, see the Oracle
Application Server TopLink Application Developer’s Guide.

Working with One-to-Many Mappings

One-to-many mappings are used to represent the relationship between a single
source object and a collection of target objects. They are a good example of
something that is simple to implement in Java using a Vector (or other collection
types) of target objects, but difficult to implement using relational databases.

In a Java Vector, the owner references its parts. In a relational database, the parts
reference their owner. Relational databases use this implementation to make
querying more efficient.

Note: See "Working with a Container Policy" on page 6-4 for
information on using collection classes other than Vector with
one-to-many mappings.

The purpose of creating this one-to-one mapping in the target is so that the foreign
key information can be written when the target object is saved. Alternatives to the
one-to-one mapping back reference include:

s Use a direct-to-field mapping to map the foreign key and maintain its value in
the application. Here the object model does not require a back reference, but the
data model still requires a foreign key in the target table.

= Use a many-to-many mapping to implement a logical one-to-many. This has the
advantage of not requiring a back reference in the object model and not

Understanding Relationship Mappings 6-33

Working with One-to-Many Mappings

requiring a foreign key in the data model. In this model the many-to-many
relation table stores the collection. It is possible to put a constraint on the join
table to enforce that the relation is a logical one-to-many relationship.

One-to-Many Mapping One-to-many mappings must put the foreign key in the target
table, rather than the source table. The target class should also implement a
one-to-one mapping back to the source object, as illustrated in the following figure.

Figure 6-23 One-to-Many Relationships

One-to-Many relationship in Java:

Address address;
Integer id;

String areaCode;
Integer id;
Ermployee owner;

String firstMame;
String lastMarme;
“ector phones;

Orne-to-one mapping

One-to-Many relationship in relational database: 6’
&)
& % Y A %
9 & S) 2NN AR &
S & * &R
I & & $

<2
Q}@ SN ks Foreign key

103 | John | Doe 305 reference 25 |F13 1105 | 5557634
104 | Jane_| Smith— {245 26 |E03 OB | AE5-3251
10! . lonas {274 FTH7 105 | 555-5R40
EMPLOYEE table FHOME

Creating One-to-Many Mappings
Use this procedure to create a one-to-many mapping in the OracleAS TopLink
Mapping Workbench.

To create a one-to-many mapping:
1. Select the attribute to be mapped from the Navigator pane.

2. Click the One-to-Many Mapping button on the mapping toolbar.

6-34 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with One-to-Many Mappings

Figure 6-24 One-to-many mapping General Properties

%33 (Cne To Many Mapping)

General l Collection Options Tahle Reference

[Read Only
[Use Method Accessing:

Get Method: |<none selected= |

Sat Method: |<none selecied> |

Refarance Descriptar: | Metwork '|

™ Maintain Bidirectional Relationship:

Relationship Partner: | =none selected= |

[Private Cwmed
[" Use Batch Reading
W Use Indirection:

T WalueHolder ® Transparent

3. Use the Reference Descriptor drop-down list to choose the reference for this
descriptor.

4. You can also specify:

» Bidirectional relationships — See "Maintaining Bidirectional Relationships"
on page 4-73.

= Read-only attributes — See "Specifying Read-Only Settings" on page 4-72.

= Access methods — See "Specifying Direct Access and Method Access" on
page 4-71.

= Null values — See "Defaulting Null Values" on page 4-73.

5. Click the Table References tab to specify foreign key information for this
mapping. See "Creating Table References" on page 3-6 for more information.

Understanding Relationship Mappings 6-35

Working with Many-to-Many Mappings

Working with Many-to-Many Mappings

Many-to-many mappings represent the relationships between a collection of source
objects and a collection of target objects. They require the creation of an
intermediate table for managing the associations between the source and target
records. Figure 6-25 illustrates a many-to-many mapping in Java and in relational
database tables.

Many-to-many mappings are implemented using a relation table. This table
contains columns for the primary keys of the source and target tables. Composite
primary keys require a column for each field of the composite key. The intermediate
table must be created in the database before using the many-to-many mapping.

The target class does not have to implement any behavior for the many-to-many
mappings. If the target class also creates a many-to-many mapping back to its
source, then it can use the same relation table, but one of the mappings must be set
to read-only. If both mappings write to the table, they can cause collisions.

Note: See "Working with a Container Policy" on page 6-4 for
information on using collection classes other than Vector with
one-to-many mappings.

Indirection is enabled by default in a many-to-many mapping, which requires that
the attribute have the ValueHolderInterface type or transparent collections.

The following figures illustrate a many-to-many relationship in both Java and a
relational database.

6-36 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Many-to-Many Mappings

Figure 6-25 Many-to-many Relationships

Java class:

Employee

Address address;
Integer id;
String name;
“ector projects;

Project

String description
Integer id;

Project

String name;

String description;
Integer id;

Employee String narme;
Address address; I —
Integer id; Project
String name; String description;
“ector projects; Integer id;
String name;
Relational database: o <
Y 3 ¥ ¥

R ¥ g &7 & o

& & B < & &
103 |John Doe 305 379 |Consultant Smalltalk

104 [Jane Smith | 226 42 |Java Developer| Java Product

105 | Tom Jones | 274 356 |Magazine ultirnedia

EMPLOYEE table (source) 4 PROJECT table target)

9 &
AN 3
N T
s K < < Target key
ource key 104 [356 4
104 | 92
105 | 356

PROJ_EMP table (relation table)

Creating many-to-many Mappings

Use this procedure to create a many-to-many mapping.

To create a many-to-many mapping:

1.
2

In the Navigator pane, select the attribute to be mapped.
Click the Many-to-Many Mapping button on the mapping toolbar.

Understanding Relationship Mappings 6-37

Working with Many-to-Many Mappings

Figure 6-26 Many-to-Many Mapping General Properties

%3 projects {(Many To Many Mapping)

Generall Collection Options Source Reference Target Reference

Reference Descriptor: | H¥] BaseProject -

[Read Only
[Use Method Accessing:

Get ethod: | =naone selected= Erowse...

Bethethod: | <none selected - Browse..

[Maintain Bidirectional Relationship:

Relationship Farmer: | =honeselectads

[Private Owned
[" Use Batch Reading
W Use Indirection

W YalueHolder

" Transparent

Relation Table: | PROJ_EMP |

3. Use the Reference Descriptor drop-down list to choose the reference descriptor
for this mapping.

4. Use the Relation Table drop-down list to choose the relation table.

5. Use the Maintain Bidirectional Relationship option to select a Relationship
Partner for this mapping. See "Maintaining Bidirectional Relationships" on
page 4-73 for more information.

6. Modify any other properties, as needed. See "Working with Common Mapping
Properties" on page 4-70 for more information.

7. Click the Collection Options tab to specify how the source descriptor relates to
the relation table. See "Specifying Collection Properties" on page 4-73 for more
information.

8. Click the Source Reference tab to specify how the source descriptor relates to
the relation table.

6-38 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Many-to-Many Mappings

Figure 6-27 Many-to-Many Mapping Source Reference Properties

%3 projects (Many To Many Mapping)

General Caollection Options . Source Referencel Target Reference
Tahle Reference: | PROJ_EMP_EMPLOYEE v| Mew...
Source Field Target Field Add.
#y|EmP_ID |[EmP_ID |

Fermoyve

9. Use the Table Reference drop-down list to choose a reference whose foreign
key is in the relation table and that points to a table associated to the source
descriptor. See "Creating Table References" on page 3-6 for more information.

10. Click the Target Reference tab to specify how the reference descriptor relates to
the relation table.

11. Choose a reference whose foreign key is in the relation table and that points to a
table associated to the reference descriptor. See "Creating Table References" on
page 3-6 for more information.

Specifying Advanced Features by Amending the Descriptor

OracleAS TopLink can populate a collection in ascending or descending order,
upon your specification. To do this, specify and write an amendment method,
sending the addAscendingOrdering () or addDescendingOrdering () to the
many-to-many mapping. Both messages expect a string as a parameter, which
indicates what attribute from the target object is used for the ordering. This string
can be an attribute name or query key from the target’s descriptor. Query keys are
automatically created for and with the same name as all attributes mapped as
direct-to-field, type conversion, object type, and serialized object mappings.

Example 6-9 Descriptor Amendment Example

The following code example illustrates returning an Employee’s projects in
ascending order, according to their descriptions:

public static void addToDescriptor (Descriptor descriptor)
{

//Find the Many-to-Many mapping for the projects attribute
ManyToManyMapping projectsMapping= (ManyToManyMapping)
descriptor.getMappingForAttributeName (“projects”) ;
projectsMapping.addAscendingOrdering (“description”) ;

Understanding Relationship Mappings 6-39

Working with Custom Relationship Mappings

Working with Custom Relationship Mappings

Just as a descriptor’s query manager generates the default SQL code used for
database interaction, relationship mappings also generate query information.

As with the queries used by a descriptor’s query manager, you can customize
relationship mappings using SQL strings or query objects. Refer to "Specifying
Queries and Named Finders" on page 4-12 for more information on customizing
queries and the syntax that OracleAS TopLink supports.

To customize the way a relationship mapping generates SQL, use any of the
following methods:

= selection — All relationship mappings can use the
setSelectionCriteria(), setSelectionSQLString (), and
setCustomSelectionQuery () methods of the mapping to customize the
selection criteria.

» insert — Many-to-many and direct collection mappings can use the
setInsertSQLString () or setCustomInsertQuery () methods of the
mapping to customize the insertion criteria.

s delete all — Many-to-many, direct collection, and one-to-many mappings can
use the setDeleteAl1SQLString () and setCustomDeleteAllQuery ()
methods of the mapping to customize the deletion criteria.

s delete —Many-to-many mappings can use the setDeleteSQLString () and
setCustomDeleteQuery () methods of the mapping to customize the
deletion criteria.

A query object that specifies the search criteria must be passed to each of these
methods. Because search criteria for these operations usually depend on variables at
runtime, the query object must usually be created from a parameterized expression,
SQL string, or stored procedure call.

See the Oracle Application Server TopLink Application Developer’s Guide for more
information on defining parameterized queries and stored procedure calls.

Creating Custom Mapping Queries in Java Code

The following example illustrates selection customization with a parameterized
expression using setSelectionCriteria (), and deletion customization using

6-40 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Custom Relationship Mappings

setDeleteAllSQLString (). Because the descriptor is passed as the parameter
to this amendment method, which has been specified to be called after the
descriptor is loaded in the project, you must locate each mapping for which you
wish to define a custom query.

Example 6-10 Custom Mapping Example

The following code illustrates adding a custom query to two different mappings in
the Employee descriptor.

// RAmendment method in Employee class
public static void addToDescriptor (Descriptor descriptor)

{

//Find the one-to-one mapping for the address attribute
OneToOneMapping addressMapping=(OneToOneMapping)
descriptor.getMappingForAttributeName ("homeaddress") ;

//Create a parameterized Expression and register it as the default selection
criterion for the mapping.

ExpressionBuilder builder = new ExpressionBuilder () ;
addressMapping.setSelectionCriteria(builder.getField ("ADDRESS.ADDRESS

ID") .equal (builder.getParameter ("EMP.ADDRESS

ID")) .and(builder.getField ("ADDRESS.TYPE") .equal ("home"))) ;

// Get the direct collection mapping for responsibilitiesList.
DirectCollectionMapping directCollection= (DirectCollectionMapping)
descriptor.getMappingForAttributeName ("responsibilitiesList");
directCollection.setDeleteAllSQLString ("DELETE FROM RESPONS WHERE EMP ID = #EMP_
") ;

}

Understanding Relationship Mappings 6-41

Working with Custom Relationship Mappings

6-42 Oracle Application Server TopLink Mapping Workbench User’'s Guide

7

Understanding Object-Relational Mappings

Relational mappings define how persistent objects reference other persistent objects.
Oracle Application Server TopLink supports the following object relational

mapping types:

Array mappings are similar to direct collection mappings, but map to
object-relational array data-types (the Array type in JDBC 2.0 and the VARRAY
type in Oracle8i). Use array mappings to map a collection of primitive data. See
"Working with Array Mappings" on page 7-2 for more information.

Object array mappings are similar to array mappings, but map to object-relational
array data types. See "Working with Object Array Mappings" on page 7-4 for
more information.

Structure mappings are similar to aggregate object mappings, but map to
object-relational aggregate structures (the Struct type in JDBC 2.0 and the
OBJECT TYPE in Oracle8i). See "Working with Structure Mappings" on page 7-5
for more information.

Reference mappings are similar to one-to-one mappings, but map to
object-relational references (the Ref type in JDBC 2.0 and the REF type in
Oracle8i). See "Working with Reference Mappings" on page 7-8 for more
information.

Nested table mappings are similar to many-to-many mappings, but map to
object-relational nested tables (the NESTED TABLE type in Oracle8i). See
"Working with Nested Table Mappings" on page 7-9 for more information.

These mappings allow for an object model to be persisted into an object-relational
data-model. Currently the OracleAS TopLink Mapping Workbench does not
support object-relational mappings—they must be defined in code or through
amendment methods. See "Working with Object-relational Descriptors" on

page 4-67 for more information.

Understanding Object-Relational Mappings 7-1

Working with Object-Relational Mappings

Working with Object-Relational Mappings

Object-relational mappings allow for an object model to be persisted into an
object-relational data-model. The OracleAS TopLink Mapping Workbench does not
directly support these mappings—you must define them in code through
amendment methods.

OracleAS TopLink supports the following object-relational mappings:
= Array

» Object array

= Structure

= Reference

= Nested table

Working with Array Mappings

In an object-relational data-model, structures can contain arrays (collections of other
data types). These arrays can contain primitive data types or collections of other
structures. OracleAS TopLink stores the arrays with their parent structure in the
same table.

All elements in the array must be the same data type. The number of elements in an
array controls the size of the array. An Oracle database allows arrays of variable
sizes (called Varrays).

Oracle8i offers two collection types:

= Varray — Used to represent a collection of primitive data or aggregate
structures.

= Nested table — Similar to varrays except they store information in a separate
table from the parent structure’s table

OracleAS TopLink supports arrays of primitive data through the ArrayMapping
class. This is similar to DirectCollectionMapping — it represents a collection of
primitives in Java. However, the ArrayMapping class does not require an
additional table to store the values in the collection.

OracleAS TopLink supports arrays of aggregate structures through the
ObjectArrayMaping class.

OracleAS TopLink supports nested tables through the NestedTableMapping
class.

7-2 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Array Mappings

Implementing Array Mappings in Java

Array mappings are instances of the ArrayMapping class. You must associate this
mapping to an attribute in the parent class. OracleAS TopLink requires the
following elements for an array mapping;:

= Attribute being mapped — Set by sending the setAttributeName ()
message.

s Field being mapped — Set by sending the setFieldName () message.
= Name of the array — Set by sending the setStructureName () message.

Table 7-1 summarizes all array mapping properties:

Example 7-1 Array Mapping

The following code example illustrates creating an array mapping for the
Employee source class and registering it with the descriptor

// Create a new mapping and register it with the source descriptor.
ArrayMapping arrayMapping = new ArrayMapping() ;
arrayMapping.setAttributeName ("responsibilities");
arrayMapping.setStructureName ("Responsibilities t");
arrayMapping.setFieldName ("RESPONSIBILITIES") ;
descriptor.addMapping (arrayMapping) ;

Reference

The following table summarizes all array mapping properties. In the Method
Names column, arguments are bold, methods are not.

Table 7-1 Properties for ArrayMapping methods

Property Default Method Names

Attribute to be not applicable setAttributeName (String name)

mapped *

Set parent class * not applicable setReferenceClass (Class
referenceClass)

User-defined data not applicable setStructureName (String

type * Structurename)

* Required property

Understanding Object-Relational Mappings 7-3

Working with Object Array Mappings

Table 7-1 (Cont.) Properties for ArrayMapping methods

Property Default Method Names
Field to be mapped * not applicable setFieldName (String fieldName)
Method access direct access setGetMethodName (String name)

setSetMethodName (String name)
Read only read / write readWrite ()

readOnly ()

setIsReadOnly (boolean readOnly)

* Required property

Working with Object Array Mappings

In an object-relational data-model, object arrays allow for an array of object types or
structures to be embedded into a single column in a database table or an object
table. OracleAS TopLink supports object array mappings to define a
collection-aggregated relationship in which the target objects share the same row as
the source object.

Implementing Object Array Mappings in Java

Object array mappings are instances of the ObjectArrayMapping class. You must
associate this mapping to an attribute in the parent class. OracleAS TopLink
requires the following elements for an object array mapping;:

= Attribute being mapped — Set by sending the setAttributeName ()
message.

» Field being mapped — Set by sending the setFieldName () message.
= Name of the array — Set by sending the setStructureName () message.

Use the optional setGetMethodName () and setSetMethodName ()
messages to access the attribute through user-defined methods rather than directly.
See "Specifying Direct Access and Method Access" on page 4-71 for more
information. Table 7-2 summarizes all object array mapping properties.

Example 7-2 Object Array Mapping

The following code example illustrates creating an object array mapping for the
Insurance source class and registering it with the descriptor.

7-4 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Structure Mappings

// Create a new mapping and register it with the source descriptor.
ObjectArrayMapping phonesMapping = new ObjectArrayMapping() ;
phonesMapping.setAttributeName ("phones") ;

phonesMapping. setGetMethodName ("getPhones") ;

phonesMapping. setSetMethodName ("setPhones") ;
phonesMapping.setStructureName ("PHONELIST TYPE");
phonesMapping.setReferenceClass (Phone.class) ;
phonesMapping.setFieldName ("PHONES") ;

descriptor.addMapping (phonesMapping) ;

Reference

The following table summarizes all object array mapping properties. In the Method
Names column, arguments are bold, methods are not.

Table 7-2 Properties for ObjectArrayMapping Methods

Property Default Method Names

Attribute to be not applicable setAttributeName (String name)

mapped *

Set parent class * not applicable setReferenceClass (Class
referenceClass)

User-defined data not applicable setStructureName (String

type * structureName)

Field to be mapped * not applicable setFieldName (String fieldName)

Method access direct access setGetMethodName (String name)

setSetMethodName (String name)
Read only read / write readWrite ()

readOnly ()

setIsReadOnly (boolean readOnly)

* Required property

Working with Structure Mappings

In an object-relational data-model, structures are user defined data-types or
object-types. This is similar to a Java class—it defines attributes or fields in which
each attribute is either:

Understanding Object-Relational Mappings 7-5

Working with Structure Mappings

= A primitive data type
s Another structure
s Reference to another structure

OracleAS TopLink maps each structure to a Java class defined in your object model
and defines a descriptor for each class. A StructureMapping class maps nested
structures, similar to an AggregateObjectMapping class. However, the structure
mapping supports null values and shared aggregates without requiring additional
settings (because of the object-relational support of the database).

Implementing Structure Mappings in Java

Structure mappings are instances of the St ructureMapping class. You must
associate this mapping to an attribute in each of the parent classes. OracleAS
TopLink requires the following elements for structure mapping:

= Attribute being mapped — Set by sending the setAttributeName ()
message.

s Field being mapped — Set by sending the setFieldName () message.
s Target (child) class — Set by sending the setReferenceClass() message.

Use the optional setGetMethodName () and setSetMethodName () messages
to access the attribute through user-defined methods, rather than directly. See
"Specifying Direct Access and Method Access" on page 4-71 for more information.

You must make the following changes to the target (child) class descriptor:

s Send the descriptorIsAggregate () message to indicate it is not a root
level.

= Remove table or primary key information.

Table 7-3 summarizes all structure mapping properties:

Example 7-3 Structure Mapping Examples

The following code example illustrates creating a structure mapping for the
Employee source class and registering it with the descriptor

// Create a new mapping and register it with the source descriptor.
StructureMapping structureMapping = new StructureMapping() ;
structureMapping.setAttributeName ("address") ;
structureMapping.setReferenceClass (Address.class) ;
structureMapping.setFieldName ("address") ;

7-6 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Structure Mappings

descriptor.addMapping (structureMapping) ;

The following code example illustrates creating the descriptor of the Address
aggregate target class. The aggregate target descriptor does not need a mapping to
its parent, or any table or primary key information.

// Create a descriptor for the aggregate class. The table name and primary key
are not specified in the aggregate descriptor.

ObjectRelationalDescriptor descriptor = new ObjectRelationalDescriptor () ;
descriptor.setJavaClass (Address.class) ;
descriptor.setStructureName ("ADDRESS T") ;

descriptor.descriptorIsAggregate () ;

// Define the field ordering

descriptor.addFieldOrdering ("STREET") ;

descriptor.addFieldOrdering ("CITY") ;

// Define the attribute mappings or relationship mappings.

Reference

The following table summarizes all structure mapping properties. In the Method
Names column, arguments are bold, methods are not.

Table 7-3 Properties for StructureMapping Methods

Property Default Method Names

Attribute to be not applicable setAttributeName (String name)
mapped *

Set parent class * not applicable setReferenceClass (Class aClass)
Field to be mapped * not applicable setFieldName (String fieldName)
Method access direct access setGetMethodName (String name)

setSetMethodName (String name)
Read only read / write readWrite ()

readOnly ()

setIsReadOnly (boolean readOnly)

* Required property

Understanding Object-Relational Mappings 7-7

Working with Reference Mappings

Working with Reference Mappings

In an object-relational data-model, structures reference each other through refs—not
through foreign keys (as in a traditional data-model). Refs are based on the target
structure’s ObjectID.

OracleAS TopLink supports refs through the ReferenceMapping class. They
represent an object reference in Java, similar to a OneToOneMapping. However, the
reference mapping does not require foreign key information.

Implementing Reference Mappings in Java

Reference mappings are instances of the ReferenceMapping class. You must
associate this mapping to an attribute in the source class. OracleAS TopLink
requires the following elements for a reference mapping;:

= Attribute being mapped — Set by sending the setAttributeName ()
message.

= Field being mapped — Set by sending the setFieldName () message.
» Target class — Set by sending the setReferenceClass () message.

Use the optional setGetMethodName () and setSetMethodName () messages
to access the attribute through user-defined methods rather than directly. See
"Specifying Direct Access and Method Access" on page 4-71 for more information.

Table 7—4 summarizes all reference mapping properties.

Example 7-4 Reference Mapping

The following code example illustrates creating a reference mapping for the
Employee source class and registering it with the descriptor.

// Create a new mapping and register it with the source descriptor.
ReferenceMapping refrenceMapping = new ReferenceMapping() ;
referenceMapping.setAttributeName (“manager”) ;
referenceMapping.setReferenceClass (Employee.class) ;
referenceMapping.setFieldName ("MANAGER") ;

descriptor.addMapping (refrenceMapping) ;

Reference

The following table summarizes all reference mapping properties. In the Method
Names column, arguments are bold, methods are not.

7-8 Oracle Application Server TopLink Mapping Workbench User's Guide

Working with Nested Table Mappings

Table 7-4 Properties for ReferenceMapping Methods

Property Default Method Names

Attribute to be not applicable setAttributeName (String name)
mapped *

Set parent class * not applicable setReferenceClass (Class aClass)
Field to be mapped * not applicable setFieldName (String fieldName)
Method access direct access setGetMethodName (String name)

setSetMethodName (String name)

Indirection use indirection useBasicIndirection ()

dontUselIndirection()

Privately owned independent independentRelationship ()
relationship privateOwnedRelationship ()

setIsPrivateOwned (boolean
isPrivateOwned)

Read only read / write readWrite ()
readOnly ()
setIsReadOnly (boolean readOnly)

* Required property

Working with Nested Table Mappings

Nested table types model an unordered set of elements. These elements may be
built-in or user-defined types. You can view a nested table as a single-column table
or, if the nested table is an object type, as a muticolumn table (with a column for
each attribute of the object type).

Typically, nested tables represent a one-to-many or many-to-many relationship of
references to another independent structure. They support querying and joining
better than Varrays that are inlined to the parent table.

OracleAS TopLink supports nested table through the NestedTableMapping class.
They represent a collection of object references in Java, similar to a
OneToManyMapping or ManyToManyMapping. However, the nested table
mapping does not require foreign key information (as with a one-to-many
mapping) or the relational table (as with a many-to-many mapping).

Understanding Object-Relational Mappings 7-9

Working with Nested Table Mappings

Implementing Nested Table Mappings in Java

Nested table mappings are instances of the NestedTableMapping class. This
mapping is associated to an attribute in the parent class. The following elements are
required for a nested table mapping to be viable:

s The attribute being mapped, which is set by sending the
setAttributeName () message

s The field being mapped, which is set by sending the setFieldName ()
message

= The name of the array structure, which is set by sending the
setStructureName () message

Use the optional setGetMethodName () and setSetMethodName () messages to
allow OracleAS TopLink to access the attribute through user-defined methods,
rather than directly. See "Specifying Direct Access and Method Access" on page 4-71
for more information.

Table 7-5 summarizes all nested table mapping properties.

Example 7-5 Nested Table

The following code example illustrates creating a nested table mapping for the
Insurance source class and registering it with the descriptor.

// Create a new mapping and register it with the source descriptor.
NestedTableMapping policiesMapping = new NestedTableMapping () ;
policiesMapping.setAttributeName ("policies");
policiesMapping.setGetMethodName ("getPolicies") ;
policiesMapping.setSetMethodName ("setPolicies") ;
policiesMapping.setReferenceClass (Policy.class);
policiesMapping.dontUseIndirection() ;
policiesMapping.setStructureName ("POLICIES TYPE") ;
policiesMapping.setFieldName ("POLICIES") ;
policiesMapping.privateOwnedRelationship() ;
policiesMapping.setSelectionSQLString("select p.* from policyHolders ph,
table(ph.policies) t, policies p where ph.ssn=#SSN and ref (p) = value(t)");
descriptor.addMapping (policiesMapping) ;

Reference

The following table summarizes all nested table mapping properties. In the Method
Names column, arguments are bold, methods are not.

7-10 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Working with Nested Table Mappings

Table 7-5 Properties for NestedTableMapping Methods

Property Default Method Names

Attribute to be not applicable setAttributeName (String name)

mapped *

Set parent class * not applicable setReferenceClass (Class
referenceClass)

User-defined data not applicable setStructureName (String

type * structureName)

Field to be mapped * not applicable setFieldName (String fieldName)

Method access

Indirection

direct access

use indirection

setGetMethodName (String name)
setSetMethodName (String name)
useIndirection()
dontUseIndirection()

setUsesIndirection (boolean

usesIndirection)
Privately owned independent independentRelationship ()
relationship privateOwnedRelationship ()
setIsPrivateOwned (Boolean
isPrivateOwned)
Read only read / write readWrite ()
readOnly ()
setIsReadOnly (boolean readOnly)
* Required property

Understanding Object-Relational Mappings 7-11

Working with Nested Table Mappings

7-12 Oracle Application Server TopLink Mapping Workbench User’'s Guide

8

Understanding the OracleAS TopLink
Sessions Editor

Use the Oracle Application Server TopLink Sessions Editor to easily manage your
sessions.xml file information. You can work with this file outside of the
OracleAS TopLink Mapping Workbench, if necessary.

Use the sessions.xml file to configure one or more sessions for the OracleAS
TopLink project, and associate the sessions with the project. This approach allows
you to configure the following elements for each project:

s Database (JDBC) login information different from that used during
development (for example, external data sources for the host application
server's connection pools).

s JTA/JTS transaction usage
s Cache synchronization

= Session Broker (multiple databases appearing as a single OracleAS TopLink
session)

Refer to the Oracle Application Server TopLink Application Developer’s Guide for more
information.

Starting the OracleAS TopLink Sessions Editor
Use one of the following methods to start the OracleAS TopLink Sessions Editor:

= For Windows environments: From the Start menu, choose Program Files >
OracleAS TopLink > Sessions Editor.

» For non-Windows environments: Execute the <ORACLE HOME>\toplink)\
bin\sessionsEditor. shfile.

Understanding the OracleAS TopLink Sessions Editor 8-1

Working with the OracleAS TopLink Sessions Editor

The splash screen appears, followed by the OracleAS TopLink Sessions Editor
window.

OracleAS TopLink Sessions Editor Preferences

Before changing any other general preferences (such as the text editor location), you
must select a default Look and Feel in the General Preferences dialog and click
OK. Then reopen the General Preferences dialog and make any additional changes.

Working with the OracleAS TopLink Sessions Editor

The OracleAS TopLink Sessions Editor window contains similar parts as the
OracleAS TopLink Mapping Workbench window (see Figure 1-2). The Navigator
pane contains the project tree for all open projects (see "Using the Navigator Pane"
on page 8-2). Click the plus or minus (+ or —) symbol next to an object (or
double-click the object) to expand and collapse the tree. When you select an object
in the Navigator pane, its properties appear in the Editor pane.

Using the Navigator Pane

The OracleAS TopLink Sessions Editor displays each configuration’s session and
connection pool information in the Navigator pane on the left side of the editor.

Figure 8—1 Sample Navigator Pane

_.E] Mavigator
#® & [[2] o
- |38 sessions.xml

o @2 Session
5‘= Connection Pool
& Connection Poolz —
5‘= Connection Fool3

82 Session2
o WoFmmm |

Figure 8-1 calls out the following user-interface components:

o000

1. Navigator toolbar (see "Using the Toolbars" on page 1-5)

2. Configuration (refers to the <toplink-configurations tag)
3. Session (refers to the <sessions> tag)
4

Connection pool (refers to the <connection-pools> tag)

8-2 Oracle Application Server TopLink Mapping Workbench User's Guide

Understanding Configurations

ey

5. Change indicator (>) — Appears beside elements that have been changed, but
not yet saved.

Click the + or — symbol next to the item, or double-click the item name, to expand
and collapse an item.

When you select an item in the Navigator pane, its properties appear in the Editor
pane (see "Using the Editor Pane" on page 1-10).

You can perform specific functions for an item by right-clicking the item in the
Navigator pane and choosing the function from the pop-up menu. (see "Pop-Up
Menus" on page 1-5).

If a session element contains an error, a warning icon appears beside the
descriptor’s icon in the Navigator pane, and a message displays in the status bar
detailing the error.

Renaming Elements

To rename an element, select the element in the Navigator pane, then click the
Rename button. The Rename dialog box appears.

Understanding Configurations

The OracleAS TopLink sessions configuration file (named sessions.xml, by
default) is an XML (extensible markup language) file that contains all sessions
associated with a project. Each OracleAS TopLink project belongs to an OracleAS
TopLink session. To deploy beans that belong to different projects, add an
appropriate OracleAS TopLink session (see "Working with Sessions" on page 8-6) to
the configuration.

Refer to the Oracle Application Server TopLink Application Developer’s Guide for a
sample sessions.xml configuration file.

Working with Configurations

The OracleAS TopLink Sessions Editor displays configurations and their contents in
the Navigator pane. When you select a configuration, its attributes display in the
Editor pane.

Creating New Configurations
Use this procedure to create a new OracleAS TopLink session configuration.

Understanding the OracleAS TopLink Sessions Editor 8-3

Understanding Configurations

To Create a New Configuration:
il 1. Click the Create New Configuration button on the toolbar. The Create New
Session Configuration dialog box appears.

You can also choose File > New from the menu.

Figure 8-2 New Sessions File

E'; New

Create a new TopLink Sessions file.

Marme: |

Location: | Erowse. ..

Enterthe name of the default session that will be added to
your docurment.

Session Mame: |

1. Enter the configuration Name (sessions.xml by default), select a directory
Location in which to save the file, enter a default Session Name, and click OK.

The OracleAS TopLink Sessions Editor appears, showing the configuration
name in the Navigator pane.

2. Select the configuration element in the Navigator pane. The session’s General
tab appears in the Editor pane (see Figure 8-5 on page 8-8.

Opening Existing Configurations
Use this procedure to open an existing session configuration.

To Open an Existing Configuration:
=, Click the Open Configuration button on the toolbar. The Create New Session
Configuration dialog box appears.

You can also choose File > Open from the menu.

Saving Configurations

The OracleAS TopLink Sessions Editor does not automatically save your project. Be
sure to save your project often to avoid losing data.

8-4 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Understanding Configurations

To Save Your Configuration(s):
Click the Save button or Save All button to save your project(s).

You can also choose File > Save, or File > Save All from the menu.

To Save Your Configuration with a Different Name or Location:

e 1. Click the Save As button or choose File > Save As. The Save As dialog box
appears.

2. Browse to the directory in which to save the project. In the File Name field, type
the name of the project and click Save.

Caution: Do not rename the . xml file outside of the OracleAS
TopLink Sessions Editor. Always rename a project by using the
Save As option.

Working with Session Brokers

Use session brokers to allow OracleAS TopLink to access multiple databases. With a
session broker, you can store the objects within one application on multiple
databases.

To Create a Session Broker

1. Select the configuration element in the Navigator pane. The session’s General
tab appears in the Editor pane.

Figure 8-3 Configuration — General Property Sheet

|3 sessions .l

@ To create a new session, clickCreate a
General Mew Session in the Navigator pane toolbar.

To edit an exsting session, select the
session it the Navigatar pane.

2. Click the Sessions Broker tab. The Session Broker tab of the Session property
sheet appears.

If the Session Broker tab is not visible for the session, click the Session Broker
button on the Navigator toolbar. You can also create brokers by right-clicking

Understanding the OracleAS TopLink Sessions Editor 8-5

Understanding Configurations

on the configuration element in the Navigator pane and selecting Advanced >
Session Brokers from the pop-up menu.

Figure 8—-4 Configuration — Session Broker Property Sheet

|3 sessionsxml

i) Session Braokers: o
General _r/;:ﬁu/f/
Session Bemove
Brokers

Rename
Mo Session Broker is Sel e
"/Adﬂ/
—
Add Existing
Remove

Figure 8—4 calls out the following user-interface components:
1. Session Broker area
2. Sessions area (for currently selected session broker)
3. Click Add in the Session Broker area to create a new session broker.

4. To delete a session broker, select the session broker and click Remove. To
rename a session broker, select the session broker and click Rename (see
"Renaming Elements" on page 8-3).

Note: Each session broker must contain at least one session.

5. To create a new session, select a session broker, then click Add in the Session
area to create a new session for the selected session broker.

To delete a session, select the session and click Remove. To rename a session,
select the session and click Rename (see "Renaming Elements" on page 8-3).

Working with Sessions

A OracleAS TopLink session describes how OracleAS TopLink communicates with
the datasource at runtime. When using the OracleAS TopLink Sessions Editor to

8-6 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Understanding Configurations

configure the session options, choose Default to use the values specified in the
Oracle Application Server TopLink Foundation Library. Refer to the Oracle
Application Server TopLink Application Developer’s Guide for more information.

To create a new session:
Use one of the following methods to create a new session:

= Right-click on a configuration element in the Navigator pane and choose New >
Session from the pop-up menu.

= Select a configuration element in the Navigator pane and click the Session
button.

= Create a new session for the session broker (see "Working with Session
Properties" on page 8-7).

Working with Session Properties

Each session contains tabs and specific properties. By default, sessions contain the
following properties:

= General
= Logging

In addition, you can specify advanced properties (see "Working with Advanced
Session Properties" on page 8-10) for each session.

Setting General Properties

1. Select the session element in the Navigator pane. The OracleAS TopLink
Sessions Editor displays the session’s properties in the Editor pane.

2. Click the General tab. The General property sheet appears.

Understanding the OracleAS TopLink Sessions Editor 8-7

Understanding Configurations

Figure 8-5 Session — General Property Sheet

€2 Session
@ Session Type
Geﬂ_ebrﬂ @ Database
Lo‘ggbing ® e
Project Type
 Class: |
L
Options
™ Profiler:

[Exception Handler:

|Dep|0ymentDescriptor.me

™ External Transaction Cantraller:
Session Event Listeners:

Erowse...

PerformanceProfile

Add
Eemoyve

Edit

3. Use this table to enter data in each field:

Field Description

Session Type Specify whether this is a Database or Server session (the
<session-type> tag).

Project Type Specify whether this is a Class or XML project (the
<project-class> or <project-xml> tag).

Profiler Specify the profiler class (the <profiler-classs> tag).

Exception Handler Specify the exception handler class (the

External Transaction
Controller

Event Listeners

<exception-handler-class> tag).

Specify whether OracleAS TopLink database calls are
synchronized with the container’s transaction manager (the
<uses-external-transaction-controllers tag).

Name of the event listener(s) registered with the session (the
<event-listener-class> tag).

Click Add to add a new event listener.

8-8 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Understanding Configurations

Refer to the Oracle Application Server TopLink Application Developer’s Guide for more
information.

Setting Logging Properties
1. Select the session element in the Navigator pane. The OracleAS TopLink
Sessions Editor displays the session’s properties in the Editor pane.

2. Click the Logging tab. The Logging property sheet appears.

Figure 8-6 Session — Logging Property Sheet

§2 session
é) Enahle Logging: | True v|
General
=] Log Debug: |True '|
Logging Log Exceptions: |True '|
Log Exception Stack Trace: |True '|
Print Connection; |True '|
Frint Date: |True '|
Print Session: |True '|
Print Thread: |True '|

3. Use this table to enter data in each field:

Field Description

Logging Use these fields to specify the session logging properties. Select
Default to use the logging properties specified by OracleAS
TopLink.

Enable Logging Specify whether the session logs messages (the

<enable-logging> tag).

Logging Options Specify whether the session logs individual message types (such
as the <log-debugs> tag).

Refer to the Oracle Application Server TopLink Application Developer’s Guide for more
information.

Understanding the OracleAS TopLink Sessions Editor 8-9

Understanding Configurations

Working with Advanced Session Properties

=

[

OracleAS TopLink sessions may contain advanced properties to specify login and
clustering (cache synchronization) information. Select one of the following methods
to display the advanced properties:

= Right-click the session in the Navigator pane and choose Advanced > Login or
Clustering from the pop-up menu.

= Select the session in the Navigator pane and click Login or Clustering on the
Navigator pane toolbar.

Setting Login Properties
1. Select the session element in the Navigator pane. The OracleAS TopLink
Sessions Editor displays the session’s properties in the Editor pane.

2. Click the Login tab. The General tab of the Login property sheet appears.

If the Login advanced property is not visible for the session, click the Login
button on the Navigator toolbar.

Figure 8-7 Login Property Sheet—General Tab

§2 session

é) General l Sequencing Qptions

General
[" Database Driver:
Logaing [" Database Platform:
@ [Username
Login
[Encrypted Password:
Encryption Class Mame:

Data Source Location

® Diata Source: |datasource

T Connection URL: |

[Use Mon-JTS far

& Datg Source: |

O CGonnection URL: |

1. Use this table to enter data in each field:

8-10 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Understanding Configurations

Field

Description

Database Driver
Database Platform
Username

Encrypted Password

Encryption Class Name

Data Source Location

Data Source

Connection URL

Use Non-JTS for

Data Source

Connection URL

Name of the database driver (the <driver-classs> tag).
Name of the database platform (the <platform-class> tag).
Name used to log into the database (the <user-name> tag).

Password of the Username used to log into the database (the
<encrypted-passwords> tag).

When using an Encrypted Password, select the specific
encryption class (the <encryption-class-name> tag).

Name of the data source used by the session to connect to the
database (the <datasources tag).

URL used by the session to connect to the database (the
<connection-urls tag).

Specify if the session requires a non-JTS connection.

Note: Normally, use this option for an application server when
using cache synchronization.

Name of the non-JTS connection (the <non-jts-datasources>
tag).

URL used by the non-JTS connection (the
<non-jts-connection-urls tag).

1. Click the Sequencing tab. The Sequencing tab appears.

Understanding the OracleAS TopLink Sessions Editor 8-11

Understanding Configurations

Figure 8-8 Login Property Sheet—Sequencing Tab

§2 session

General

Logaing | [Preallocation Size:

@ [~ Table:

Login
[Wame Field:
[Counter Field:

\i) General Sequencingl Options

Lse Mative Sequencing: | Default (False) e

|50

[sEQUENCE

[5EG_HAME

[sEQ_counT

2. Use this table to enter data in each field:

Field

Description

Use Native Sequencing

Preallocation Size

Table
Name Field

Counter Field

Specify whether the login uses the database’s native sequencing
(the <uses-native-sequencings> tag).

Number of sequences retrieved from the database (the
<sequence-preallocation-sizes tag).

Name of the sequence table (the <sequence-table> tag).

Field in the sequence Table that contains the sequence name (the
<sequence-name-fields> tag).

Field in the sequence Table that contains the sequence counter
(the <sequence-counter-fields tag).

3. Click the Options tab. The Options Login property sheet appears.

8-12 Oracle Application Server TopLink Mapping Workbench User's Guide

Understanding Configurations

Figure 8-9 Login Property Sheet — Options Tab

§2 session
\i) General Sequencing Qptions l
General Parameterized SQL
Lo;;;}ng Queries Should Bind All Parameters:
@ Cache All Statements: :\
Login | Use
Byte Array Binding:
String Binding:
Strearns for Binding:
Native SQL:
Batch Whiting:
JDEC 2.0 Batch Writing;
External Connection Pool:
External Transaction Controller:
Advanced Options
Force Field Mame to Uppercase:
Optimize Data Conversion:
Tritm Strings:

4. Use this table to enter data in each field:

Field Description

Queries Should Bind Specify whether all queries should bind all parameters (the

All Parameters

<should-bind-all-parameterss> tag).

Cache All Statements Specify whether OracleAS TopLink caches all statements (the
<should-cache-all-statements> tag).

Use

Byte Array Binding Specify whether OracleAS TopLink binds byte arrays (the
<uses-byte-array-binding> tag).

String Binding Specify whether OracleAS TopLink binds strings (the

<uses-string-binding> tag).

Understanding the OracleAS TopLink Sessions Editor 8-13

Understanding Configurations

[&

Field

Description

Streams for Binding
Native SQL

Batch Writing

JDBC 2.0 Batch Writing
External Connection
Pool

External Transaction
Controller

Other Options

Force Field Name to
Uppercase

Optimize Data

Conversion

Trim Strings

Specify whether OracleAS TopLink uses streams when binding
byte arrays (the <uses-streams-for-binding> tag).

Specify whether OracleAS TopLink uses native SQL for the
connection (the <uses-native-sql> tag).

Specify whether the connection batches statements for writing
(the <uses-batch-writings tag).

Specify whether the connection uses JDBC 2.0 batch writing for
statements (the <uses-jdbc20-batch-writings> tag).

Specify whether the connection uses external connection pooling
(the <uses-external-connection-pools> tag).

Specify whether the session uses an external transaction
controller (the
<uses-external-transaction-controller-pools> tag).

Specify whether OracleAS TopLink converts all field names to
uppercase when generating SQL (the
<should-force-field-names-to-uppercases tag).

Specify whether OracleAS TopLink optimizes data conversions
(the <should-optimize-data-conversions> tag).

Note: Selecting this option may affect the how OracleAS
TopLink converts dates.

Specify whether OracleAS TopLink removes white space
(blanks) from strings (the <should-trim-stringss> tag).

Setting Clustering Properties

1. Select the session element in the Navigator pane. The OracleAS TopLink
Sessions Editor displays the session’s properties in the Editor pane.

2. Click the Clustering tab. The Clustering property sheet appears.

If the Clustering advanced property is not visible for the session, click the
Clustering button in the Navigator toolbar.

8-14 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Understanding Configurations

Figure 8-10 Clustering Property Sheet

£2 session

Clustering

.y Clustering Service:
General

=] ™ Multicast Port:
Logaing
d?-» [~ Multicast Group Address:

Login | [T Packet Time to Live:
[

Asynchronous:

Eemove Connection an Errar:

JMS Topic
[~ Marme:

™ Connection Eactary Marme:

Maming Service

[URL:

[T nitial Gontext Factany Marme:

[~ Wse JHDI Lagin

|0rac|e.t0p|ink.remote.jms.JMSCluS' -

|Defau|t (True)y |

|Defau|t (True} v|

Usernarme:
Eassword:

3. Use this table to enter data in each field:

Field

Description

Clustering Service
Multicast Port
Multicast Group
Address

Packet Time to Live

Asynchronous

Name of the clustering service used for cache synchronization (the
<clustering-services tag).

Multicast port used by the clustering service to listen for new
sessions (the <multicast-ports> tag).

IP address used by the clustering service to listen for new sessions
(the <multicast-group-address> tag).

The maximum number of hops a packet will be broadcast (the
<packet-time-to-lives> tag).

Specify whether the cache manager does not require that all
sessions be synchronized before returning (the
<is-asynchronous> tag).

Understanding the OracleAS TopLink Sessions Editor 8-15

Understanding Configurations

Field

Description

Remove Connection
on Error

JMS Topic
Name

Connection Factory
Name

Naming Service

URL

Initial Context
Factory Name

Use JNDI Login

Username

Password

Specify whether OracleAS TopLink removes the connection from
the session in case of a configuration error (the
<should-remove-on-errors tag).

Specify the name of the JMS topic (the <jms-topic-name> tag).

Specify the name of the JMS topic connection factory (the
<jms-topic-connection-factory-names> tag).

URL of the global namespace for the cache synchronization (the
<naming-service-urls tag).

Note: Normally, this is the URL of the JNDI service.

Name of the element used for synchronization (the
<naming-service-initial-context-factory-names> tag).

Specify whether cache synchronization uses a JNDI service.

Name used to log into the JNDI service (the <jndi-user-name>
tag).

Password used to log into the JNDI service (the
<jndi-passwords> tag).

Refer to the Oracle Application Server TopLink Application Developer’s Guide for more
information.

Working with Connection Pools

OracleAS TopLink uses connection pools to manage and share the connections used
by the server and client sessions among multiple clients. This feature reduces the
number of connections required by the application server and allows the server to
support many clients.

b To create a new connection pool, right-click a session element in the Navigator pane
and choose New > Connection Pool from the pop-up menu, or click the
Connection Pool

button.

8-16 Oracle Application Server TopLink Mapping Workbench User’'s Guide

Understanding Configurations

Setting General Properties

1. Select the connection pool element in the Navigator pane. The OracleAS
TopLink Sessions Editor displays the connection pool’s properties in the Editor
pane.

2. Click the General tab. The General property sheet appear.

Figure 8—11 Connection Pool—General Property Sheet

5.= Connection Pool

@ " Read Connection Pool

General .
G.% Connection Count

Login ™ Minimurn: {0

[Maximum: |D

1. Use this table to enter data in each field:

Field Description

Read Connection Pool Specifies whether OracleAS TopLink uses a read connection
pool (the <is-read-connection-pools> tag).

Connection Count Specify the Minimum and Maximum read connections in the
OracleAS TopLink connection pool (the <min-connections>
and <max connectionss> tags).

Refer to the Oracle Application Server TopLink Application Developer’s Guide for more
information.

Setting Login Properties

1. Select the connection pool element in the Navigator pane. The OracleAS
TopLink Sessions Editor displays the connection pool’s properties in the Editor
pane.

2. Click the Login tab. The General tab of the Login property sheet appears. See
"Setting Login Properties" on page 8-10

Understanding the OracleAS TopLink Sessions Editor 8-17

Working with the Source

Working with the Source

Use this procedure to display the source code in the sessions.xml configuration
at any time.

To View the Source:

Select a configuration in the Navigator pane and choose View > Source from the
menu. The Sessions Configuration Editor opens the configuration in your editor.

If you have not selected a text editor (see "General Preferences” on page 1-10), the
OracleAS TopLink Sessions Editor prompts you select a text editor.

8-18 Oracle Application Server TopLink Mapping Workbench User’'s Guide

A

Object Model Requirements

Oracle Application Server TopLink requires that classes must meet certain
minimum requirements before they can become persistent. OracleAS TopLink also
provides alternatives to most requirements. OracleAS TopLink uses a non-intrusive
approach employing a meta-data architecture that allows for almost no object
model intrusions.

This section summarizes OracleAS TopLink’s object model requirements. Unlike
other products, OracleAS TopLink does not require any of the following:

= Persistent superclass or implementation of persistent interfaces
» Stored, delete, or load methods required in the object model
= Special persistence methods

= Generating source code into or wrapping the object model

Persistent Class Requirements

The attribute requirements vary, depending on your Java version. When employing
Java 2, you can use direct access on private or protected attributes. Refer to

Chapter 4, "Understanding Descriptors" for more information on direct and method
access.

When using non-transparent indirection, the attributes must be of the type
ValueHolderInterface rather than the original attribute type. The value holder does
not instantiate a referenced object until it is needed.

In Java 2, OracleAS TopLink provides transparent indirection for Collection and List
attribute types for any collection mappings. Using transparent indirection does not
require the usage of ValueHolderInterface or any other object model requirements.

Object Model Requirements A-1

Constructor Requirements

Refer to Chapter 6, "Understanding Relationship Mappings" for more information
on indirection and transparent indirection.

Constructor Requirements

By default, OracleAS TopLink uses and requires default (zero argument)
constructors to create objects from the database. It is also possible to instruct
OracleAS TopLink to use a different constructor, static method, or factory. Refer to
"Working with Instantiation Policy" on page 4-53 for more information.

Remote Session Requirements

If you employ the OracleAS TopLink Remote Session, all persistent classes to be
used remotely must implement the Serializable interface.

A-2 Oracle Application Server TopLink Mapping Workbench User’'s Guide

B

Tutorials

This section contains the following tutorials that illustrate how to use Oracle
Application Server TopLink Mapping Workbench.

» Introductory Tutorial
s Advanced Tutorial

» Completing the Tutorials

Before You Begin

The tutorials require classes that are built from the OracleAS TopLink Three Tier
example project. This example project is included as part of the complete OracleAS
TopLink installation. You must build and run the example before beginning the
tutorial. Refer to <ORACLE HOME>\toplink\doc\examples.htm for complete
information.

Introductory Tutorial

In the introductory tutorial, you will create mappings from a simple database
three-tier application using OracleAS TopLink Mapping Workbench. You will learn
how to:

n Create a new project

= Enable and add Java classes (provided with the tutorial)
» Create and import database tables

= Associate descriptors to tables

» Implement mappings

Tutorials B-1

Creating the Database Schema

Overview

By the end of the tutorial, you will be able to store data from a Java class into a
relational database and access existing database information from Java classes.

This tutorial project manages the employee database at the ACME Leisure
Company. The system tracks each employee’s name, address, and phone number.

The system uses these classes:

s Employee — Represents both full-time ACME employees and temporary
contractors working on ACME projects. It includes the employees” personal

information as well as references to their home addresses and phone numbers.

= Address — Represents the employee’s home address. The class contains
country, street, city, province, and postal code information.

= PhoneNumber — Contains the telephone number(s) for each employee and

contractor (number, area code, and type information). The class also includes a

reference to the employee who owns the phone number.

Figure B-1 illustrates the object model for this system.

Figure B-1 Simple ACME Object Model

Emplayes Address

address (1:1)

- phone (1:M) Phone Number

owner (1:1) *

Creating the Database Schema

The ACME employee system stores the employee data in three database tables.
Later in this tutorial, you will be able to create these tables from the OracleAS
TopLink Mapping Workbench or import them from your database application.

Note: The column types listed here are generic; the actual column
types depend on the database used.

B-2 Oracle Application Server TopLink Mapping Workbench User’s Guide

Creating the Database Schema

Table B-1 EMPLOYEE Table

Column Name Column Type Details
EMP_ID NUMERIC(15) Primary key
F_NAME VARCHAR(40)

L_NAME VARCHAR(40)

ADDRESS_ID NUMERIC(15)

Table B-2 ADDRESS Table

Column Name Column Type Details
ADDRESS_ID NUMERIC(15) Primary key
COUNTRY VARCHAR(80)

STREET VARCHAR(80)

CITY VARCHAR(80)

PROVINCE VARCHAR(80)

P_CODE VARCHAR(20)

Table B-3 PHONE Table

Column Name Column Type Details
EMP_ID NUMERIC(15) Primary key
AREA_CODE CHAR(3)

P_NUMBER CHAR(?)

TYPE VARCHAR(15) Primary key
Table B-4 SEQUENCE Table

Column Name Column Type Details
SEQ_NAME NUMERIC(38)

SEQ_COUNT NUMERIC(38) Primary key

After creating these ACME database tables, you are ready to begin the tutorial.

Tutorials B-3

Creating a New Project

Creating a New Project

OracleAS TopLink Mapping Workbench stores project information in the . mwp file
and associated folders. Always start an OracleAS TopLink Mapping Workbench
project in a new folder.

To create a new project:

1. Start OracleAS TopLink Mapping Workbench. From the Windows Start menu,
select Programs > OracleAS TopLink > Mapping Workbench.

The splash screen appears, followed by the OracleAS TopLink Mapping
Workbench window.

Figure B-2 OracleAS TopLink Mapping Workbench

E:_:\:Is:-l:lral:le.l"\S TopLink Mapping Workbench

File Selected Tools Window Help

i EEIESF DR A EBER LE O
heeo M E QeI (Bl
E] Mavigatar ﬁ Editar

Click the New Project button on the toolbar or select File > New Project from
the menu. The Create a New Project dialog box appears.

Figure B-3 Create New Project

E.'_:\;s:-l:reate New Project

Database Mame: |newhatahase

Platfarm: Oracle

B-4 Oracle Application Server TopLink Mapping Workbench User’s Guide

Creating a New Project

2.

3.

From the Create New Project dialog box:
= In the Database Name field, type INTRO TUTORIAL_DB.

= In the Platform field, click Browse button and select the appropriate
database platform. Contact your database administrator if you need
additional information.

Click OK. The Save As dialog box appears.

Figure B-4 Save As

Location: [D toplink

File Type: [examples v]

Eiles: AE] @]

E:_:\.-"s:-Sa!.l'e Untitled As

[projects

File Mame: [Employee.mwp

Select the folder in which to save the Employee project.

Note: Always use a new folder to save a project.

In the File Name field, type Employee . mwp.

Click Save to save your work and return to the OracleAS TopLink Mapping
Workbench window.

Tutorials B-5

Creating a New Project

Figure B-5 OracleAS TopLink Mapping Workbench

:\: DracleAS TopLink Mapping Workbench
File Selected Toaols Window Help

BB REE S 0 E s 2
) Navigator [Editar
® Fg} Employee
E?Employee
General lSequencing Defaults Options

|»

Project Save Location:
ChADracleHometoplinkliexamplesitutorialsiintra

FPersistence Type

® Java Ohjects

" Entity Beans using CMF 1.1
" Entity Beans using CMP 2.0
O Entity Beans using BMP

ejb-jarxml Location:

| Browse...

7. Click Save on the toolbar or select File > Save to save the project.

Note: OracleAS TopLink Mapping Workbench does not
automatically save your work; remember to save periodically.

Setting the Project’s Classpath
Each OracleAS TopLink project uses a classpath—a set of directories, . jar files,
and . zip files—when importing Java classes and defining object types. In this
tutorial, you will use information from the OracleAS TopLink three tier example
project. Refer to <ORACLE HOME>\toplink\doc\examples.htm for complete
information.

1. In the OracleAS TopLink Mapping Workbench, highlight the Employee project
in the Navigator pane.

2. In the Editor pane on the right-hand side of the OracleAS TopLink Mapping
Workbench window, click the General tab.

B-6 Oracle Application Server TopLink Mapping Workbench User’s Guide

Creating a New Project

Figure B-6 General Tab

General

Project Save Location:
|C:10racIeH0me‘tt0nlinl-dexamnles‘ttutorialslimru

~Persistence Type

w0 Java Ohjects

1 Entity Beans using CWMP 1.1
1 Entity Beans using CWMP 2.0
1 Entity Beans using EMP

ejb-jarxml Location:

| Browse...

Class Path:

3. Click Add Entries. The Add Entry dialog box appears.

Figure B-7 Add Entries

‘twi-Add Entries

Select Desired Class Path Entries G
Browse through the file system, use the histary or one of your
shorteuts in order to select the desired location.

i [AN A
@ Directary: 4 CF 5l w0
Hist |C:IOraHomeS‘ttopIinldexampIeslfoundation\threetienstage
istory
session-remote [+]
threetier
Home
SRecent ..
»

Tutorials B-7

Enabling Your Java Classes

4. Browse to the <ORACLE HOME>\toplink\examples\foundation)\
threetier\stage directory and click OK.

Note: If the stage directory does not exist, you must create the
OracleAS TopLink Three Tier example project. See "Before You
Begin" on page B-1 for more information.

Figure B-8 General Tab with Classpath Information

General

Project Save Location:

ChdracleHomeitoplinkliexamplestutorialsiintro
FPersistence Type
o Java Objects
1 Entity Beans using CMP 1.1
1 Entity Beans using CWMP 2.0
1 Entity Beans using BMP

ejb-jarxml Location:

| Browse...

Class Path
CDracleHomeltoplinkiexamplesifoundat.. | add Entry...

Remaoye

TEE

Down

Click Save on the toolbar or choose File > Save to save the project.

Enabling Your Java Classes
The Employee model uses three classes:

= Employee class has a name attribute and privately owned PhoneNumber and
Address relationships.

= PhoneNumber class has attributes describing the phone number information
and a relationship that describes the owner of the PhoneNumber .

= Address class has attributes describing the employee’s mailing address.

B-8 Oracle Application Server TopLink Mapping Workbench User’s Guide

Enabling Your Java Classes

You must enable the Employee, PhoneNumber, and Address classes (provided
in the examples.session.threetier.model package) for this tutorial, as
"Generating the Class Definitions" describes.

Table B-5 shows how the classes relate to the database tables.

Table B-5 Employee Classes and Database Tables

Column Class Attribute Database Type Java Type
EMPLOYEE Employee
EMP_ID id NUMERIC(15) BigDecimal
NAME name CHAR(40) String
ADDRESS_ID address NUMERIC(15) Address
not applicable phoneNumbers not applicable Vector
ADDRESS Address
ADDRESS_ID id NUMERIC(15) BigDecimal
COUNTRY country VARCHAR(80) String
STREET street VARCHAR(80) String
CITY city VARCHAR(80) String
PROVINCE province VARCHAR(80) String
P_CODE postalCode VARCHAR(20) String
PHONE PhoneNumber
AREA_CODE areaCode CHAR(3) String
P_NUMBER number CHAR(?) String
EMP_ID owner NUMERIC(15) Employee
TYPE type VARCHAR(15) String
Note: Supplying each of the class members in OracleAS

TopLink-enabled classes with accessor methods is good

programming practice. This tutorial provides the get and set
methods for each attribute. For example, the Employee class
should have an addPhoneNumber () method to allow a new
PhoneNumber to store a reference to its parent.

Tutorials B-9

Enabling Your Java Classes

Example B-1 Accessor Method
The following code example illustrates providing accessor methods.

// addPhoneNumber method of the Employee class allows the phoneNumber to set a
reference to the Employee that owns it.
public void addPhoneNumber (PhoneNumber phoneNumber)

{

getPhoneNumbers () .addElement (phoneNumber) ;
phoneNumber. setOwner (this) ;

Generating the Class Definitions

You must generate an OracleAS TopLink descriptor for each Java class in
the project.

To create descriptors from the class definition file:
1. From the Navigator pane, click the Employee project.

£ 2. Click the Add or Refresh Classes button or choose Selected > Add or Refresh
Classes from the menu. The Select Classes dialog box appears.

You can also create descriptors by right-clicking on the project in the Navigator
pane and selecting Add or Refresh Classes from the pop-up menu.

Figure B-9 Select Classes

E:_:\--'Is:-Seltal:I: Classes

Available PackagesiClasses:

ig examples sessions threetier A

examples.sessions threetier. 4]

Selected Classes:

3. Locate the examples.sessions.threetier.model package. Click the plus
sign to expand that package (or double-click the name to expand the package).

B-10 Oracle Application Server TopLink Mapping Workbench User’s Guide

Enabling Your Java Classes

Figure B-10 Demo Classes

{:\:s:-Select Classes

Available PackagesiClasses:
4 examples.sessions.threatital P

ssions. threetifea 4]
o Address

‘I BaseProject

“# Emplovee

¥ EmploymentPeriod
¥ LargeProject

Selected Classes:

4. Highlight the Address class and click the button. OracleAS TopLink copies the
Address class to the Selected Classes pane.

Figure B-11 Selected Class

E.'_:\;s:-Staltal:l: Classes

Available PackagesiClasses: Selected Classes:

P examples sessionsthrestiial b | | o@ exarmples. sessions threetierr
J examples.sessions threetil _{] |_ﬂ|; Address
“¥ BaseProject
T Emplovee
¥ EmploymentFPeriod
¥ LargeProject
“¥ PhoneNumber

]

5. Repeat Step 4 for Employee and PhoneNumber classes in that package. (Or,

highlight both classes using Shift+click or Ctrl+click as necessary, and click
once to import all the remaining classes.)

6. Click OK to import the classes. OracleAS TopLink creates a descriptor for each

class and an unmapped mapping for each attribute. The descriptors and their
attributes appear in the Navigator pane.

Note: If an error occurs, check that the given classes are included
in the classpath and that JDK has been installed correctly.

Tutorials B-11

Logging Into the Database

Figure B-12 OracleAS TopLink Mapping Workbench with Employee Project

:\: DracleAS TopLink Mapping Workbench

File Selected Toaols Window Help

L e = = N e R \2)
) Navigator [Editor
5} EEmployee
0— C @ oracletoplink derm... 2 Employee
et Address : :
e & = Employee General l Seguencing Defaults Options
=8 PhoneNurnber Project Save Location: =

& INTRO_TLITORIAL. . CATL Projectsttutarialintrod uctory

Fersistence Type

w Java Objects

" Entity Beans using CMP 1.1
" Entity Beans using CMP 2.0
" Entity Beans using EMP

ejb-jarxml Location:

| Browse...

4] D

Figure B-12 identifies the following user-interface elements:
1. Package
2. C(Class/descriptors

7. Save your changes. Click Save or choose File > Save from the menu.

Logging Into the Database

You can enter database table information directly from OracleAS TopLink Mapping
Workbench or import the tables from the database. You must log into the database
to obtain the table information and to generate table files.

Note: You must include your database driver on the system
classpath — not the OracleAS TopLink Mapping Workbench project
classpath.

B-12 Oracle Application Server TopLink Mapping Workbench User’s Guide

Logging Into the Database

1. Select the INTRO_TUTORIAL_DB database object in the Navigator pane. The
Database Editor property sheet appears in the Editor pane of the OracleAS
TopLink Mapping Workbench window.

Figure B-13 Database Properties

Datahase Platform: | Cracle Change...
Defined Logins:
Add...

Remaove

|~ Login information

Driver Class: |

URL: |

Lzername: |

Password: |

[~ Save Pagsword (Unencrypted)

Development I__ogin:|

Deployment Login: |

2. Click Add to create a new database login.

3. Inthe Defined Login area, select the newly added login. Contact your database
administrator for the necessary database login information (driver, URL,
username, and password).

4. Click the Log In to Database button or choose Selected > Log In to Database
from the menu. The database icon changes.

Note: OracleAS TopLink Mapping Workbench supports
connecting to the database through JDBC. Make sure you have
installed, configured, and tested your JDBC driver before
attempting to connect.

If OracleAS TopLink Mapping Workbench is unable to connect to the database,
contact your database administrator to ensure that the database login parameters
have been entered correctly and your JDBC driver has been installed correctly. If

Tutorials B-13

Creating Tables

problems persist, test your driver connectivity. See the Appendix C,
"Troubleshooting" for details.

Creating Tables

You can enter database table information (as "Creating the Database Schema" on
page B-2 specifies) directly from OracleAS TopLink Mapping Workbench or import
the tables from the database.

» To create the tables from OracleAS TopLink Mapping Workbench, continue
with "Creating Tables Using the OracleAS TopLink Mapping Workbench" on
page B-14.

» To create the tables by importing from the database, continue with "Importing
Tables from the Database" on page B-16.

Creating Tables Using the OracleAS TopLink Mapping Workbench

Use this procedure to create the database tables from the OracleAS TopLink
Mapping Workbench.

Caution: Do not use this procedure if you plan to import the
tables from a database.

Creating the Table Definitions

Use this procedure to create table definitions using the OracleAS TopLink Mapping
Workbench. Later, you can create the actual tables on the database.

To create the tables:

1. Select the database in the Navigator pane and click the Add New Table button
or right-click the database in the Navigator pane, and choose Add New Table.
The New Table dialog box appears.

2. Type ADDRESS for the table name, and click OK.

Note: Leave the Catalog and Schema fields blank.

3. Click the Fields tab in the Editor pane.

B-14 Oracle Application Server TopLink Mapping Workbench User’s Guide

Creating Tables

4. Click Add to add each database field for the ADDRESS table. Refer to the tables
in "Creating the Database Schema" on page B-2 for the correct field information.
Be sure to indicate the primary key(s) for each table.

Note: Use the scroll bar to view additional fields for each database
field (such as the Primary Key). See "Preparing the Primary Keys"
on page B-20 for more information.

Figure B-14 Database Fields Tab

Fields l References
Name Tyne Size Frimary Key add.
@ ADDRESS_ID NUMBER [15 =t 7
@ COUNTRY YARCHARS 20 =t [Remoye
| STREET YARCHAR? (80 =t [
o cimy YARCHARZ 50 =t [
| PROVINCE YARCHARS [20 = [
| PCODE YARCHAR? [z0 =t [

1 | »

5. Save your changes. Click the Save Project button or choose File > Save from the
menu.

Repeat this procedure for the EMPLOYEE and PHONE tables.

Creating the Tables on the Database

After defining the tables in OracleAS TopLink Mapping Workbench, you can
automatically create the tables on the database.

To create tables on the database:

1. Right-click one of the database tables in the Navigator pane, and choose Create
on Database > All Tables from the pop-up menu. The system displays a
message indicating that the three tables were created.

Note: To use the Create on Database option, you must be logged
into the database.

Tutorials B-15

Creating Tables

@
w

4,

|El|||

5.

If the Confirm Replace dialog box appears, it means that an existing table on the
database has the same name. Check with your database administrator before
replacing any table. The existing table may have been created by:

= Someone else doing the tutorial previously (in which case you could click
the Yes to All button safely)

= Someone using the same database name for a business project (in which
case you should not replace it)

Click OK to close the dialog box and return to the OracleAS TopLink Mapping
Workbench window.

On the toolbar, click the Logout of Database button or choose Selected > Log
Out from the menu.

Save your changes. Click the Save Project button

or choose File > Save from the menu.

Continue with "Mapping Classes and Tables in the Descriptor” on page B-18.

Note: OracleAS TopLink Mapping Workbench can generate Data
Definition Language (DDL) creation scripts that can be used to
create tables on the desired database.

If the table creation fails, there might have been a problem with the
DDL, or you may not have permission to create tables on the
database. Make sure you set the target database to the correct
database platform on login. Because the DDL may not be
compatible with some databases, you may have to edit the
generated DDL and execute the DDL manually.

In addition, ensure that the Database Platform field on the
Database property sheet (see Figure B-13 on page B-13) matches
your database driver information.

Importing Tables from the Database

Use this procedure if you have already created tables in your database and want to
import these tables directly into the OracleAS TopLink Mapping Workbench.

Caution: Do not use this procedure if you plan to create the tables
directly from OracleAS TopLink Mapping Workbench.

B-16 Oracle Application Server TopLink Mapping Workbench User’s Guide

Creating Tables

To import tables from the database:
= 1. Click the Login to Database button or choose Selected > Login from the menu.

2. Select the database in the Navigator pane and click the Add or Update Existing
Tables from Database button, or right-click the database and choose Add or
Update Existing Tables From Database from the pop-up menu.

The Import tables from database dialog box appears.

Figure B-15 Import Tables from Database

E:gls:-ln'lporlz Tables from Database

— Tahle Name Pattern: |%

- Catalog: |<|gn0re= v|

= Schema Pattern: |<|gn0re> e

= Tahle Type: |TAEILE v|

Get Tahle Mames [Import fully qualified names
9— L pvailable Tables Selected Tables

Ff ADDRESS]
B EMPLOYEE Kl
B PHONE

Figure B-15 calls out the following user-interface elements:

1. Use the filters to specify database tables to select for import.

2. The Available Tables displays the database tables that match the filter.
3. Click the Get Table Names button to display all tables in the database.

Note: You can use the table filters to specify which database tables
are available for import. For this tutorial, leave the filters as their
default values.

4. Select the ADDRESS

[] 5. table in the Available Tables pane and then click the button. The ADDRESS
table moves to the Selected Tables pane.

Tutorials B-17

Mapping Classes and Tables in the Descriptor

6. Repeat Step 4 for the EMPLOYEE and PHONE tables.
7. Click OK to add the selected tables to the Employee project.

8. To display the details of the imported tables, select a table in the Navigator
pane and click the Fields tab in the Editor pane.

@
©

Click the Log Out of Database button or choose Selected > Log Out of
Database from the menu.

10. Save your changes. Click the Save Project button or choose File > Save from the
menu.

Continue with "Mapping Classes and Tables in the Descriptor” on page B-18.

Mapping Classes and Tables in the Descriptor

When you create a new project and generate class definitions, OracleAS TopLink
Mapping Workbench automatically creates descriptors. However, these descriptors
do not contain any information about how the classes are associated with the tables.
This section describes how to store associations in a descriptor, which can then be
used by a Java application to make the classes persistent.

This section contains procedures to map the classes to tables for the ACME project.
After mapping the descriptors, you can access the database from a Java application.

Mappings
The OracleAS TopLink mapping describes the way an attribute is stored in, and

retrieved from, a database. For example, the name attribute of the Employee class
maps to the NAME column of the EMPLOYEE table.

Descriptors

A descriptor stores the class-to-table mappings for a class.OracleAS TopLink
Mapping Workbench stores the descriptors in XML files in the Descriptor
directory. At run time, OracleAS TopLink creates instances of the Descriptor
class for each of the descriptor files and stores them in a database session.

Mapping Classes to Tables

Use this procedure to associate the Java classes with database tables.

B-18 Oracle Application Server TopLink Mapping Workbench User’s Guide

Mapping Classes and Tables in the Descriptor

To map Java classes to a table:

1. Select the Address descriptor from the Navigator pane.

2. Click the Descriptor Info tab of the Editor pane.

3. In the Associated Table drop-down menu, choose the Address table.

Figure B-16 Descriptor Info Tab

Descriptor Info l

Associated Table: | =none selecteds

v|

Frimary Keys: =none selected=

EMPLOYEE [\!S

PHONE

[Use Sequencing:

arme: |

Takle: |

Field: |

[Read Only

[Canfarm Results in Unit of Wark
Refreshing Cache Cptions (Advanced)

W Default
" Always Refresh
["|Dizable Cache Hits

" Only Refresh If Mewer Version

Note: A warning message appears in the status bar, indicating
that the primary key fields are unmapped. This is addressed later in

the tutorial.

4. Repeat steps 1 -3 to map:

= Employee class to the EMPLOYEE table

s PhoneNumber class to the PHONE table

Tutorials B-19

Mapping Classes and Tables in the Descriptor

5. Save your changes. Click the Save Project button or choose File > Save from the
menu.

Although you have mapped the descriptors to specific database tables, the class
attributes have not yet been mapped to the tables” columns. You will map the
attributes later in this tutorial.

Preparing the Primary Keys

A table’s primary key is the field (or fields) used to uniquely identify its records.
The PHONE table has a compound primary key (EMP_ID and TYPE fields).

Database tables often use a sequence number as the primary key. Sequence numbers
are sequential, artificially generated fields, outside of the problem domain, that
uniquely identify a record. OracleAS TopLink supports sequence numbers through
the database’s native support, such as in Oracle and Sybase, or by maintaining a
sequence table. If sequence numbers are enabled for a class, they are generated and
incremented whenever an object of that class is inserted into a database.

To specify the primary key:
1. In the Navigator pane, select the ADDRESS database table.

2. On the Fields tab of the Editor pane, make sure the ADDRESS_ID column is
selected as a Primary Key.

Figure B-17 Database Table Fields Tab

Fields l References
MName Tyhe Size Frimary Key add..
@ ADDRESS_ID NUMEER [15 = 7
& COUNTRY YARCHARZ [s0 - I Rermoye
@ STREET YARCHARZ En =t O
| cimy YARCHARS 80 = [
| PROVINGE YARCHAR? [z0 =t [
@ PCODE YARCHARZ 20 =t O

1 | »

3. Repeat Step 1 -2 for the other tables:
= EMPLOYEE table — Set the EMP_ID field as the primary key.

= PHONENUMBER table — Set both the EMP_ID and TYPE fields as primary
keys.

B-20 Oracle Application Server TopLink Mapping Workbench User’s Guide

Mapping Classes and Tables in the Descriptor

4. Save your changes. Click the Save Project button or choose File > Save from

the menu.

Setting the Sequence Table

The ACME system uses sequence numbers for the EMPLOYEE and ADDRESS tables.
You must explicitly create a sequence table, then apply it to your project.

To create a sequence table:

1. Select the database in the Navigator pane, and log into the database by clicking
the Login button or by right-clicking on the database in the Navigator and

choosing Login from the pop-up menu.

2. Select Database in the Navigator pane and click the Add New Table button.

The New Table dialog box appears.

Figure B-18 New Table

?:gs:-New Table

Enter news table name:
Catalog:

Schema:

Tahle Mame:

3. Create a table named SEQUENCE. Leave Catalog and Schema blank, unless

required by your specific database.
4. Add the following fields to the table:
» SEQ NAME (VARCHAR?2 type, size 50)

= SEQ COUNT (NUMBER type, size 50)

Tutorials B-21

Mapping Classes and Tables in the Descriptor

Figure B-19 Database Table Fields Tab

Fields |

MName Type Size Primary key Add..

13| SEQ_NAME YARCHARZ 50 = "
& SEG_COUNT NUMBER |50 =t I [0 Remove

4 | »

5. Setthe SEQ NAME field as the primary key.

6. Log out of the database by right-clicking the Database in the Navigator pane
and choosing Log Out from the pop-up menu.

7. Select the Project in the Navigator pane.
8. Select the project’s Sequencing tab in the Editor pane.

Figure B-20 Sequencing Tab

Sequencingl

Sequencing Preallocation Size; |20 :"

" Use Default Seguence Tahle

" Use Mative Sequencing (Mot Supported for DB2)

W se Custom Sequence Tahle:

Blame: | sEQUENCE -

Sequence Mame Field: | SEG_MNAME

Sequence Counter Field: | SEQ_COUNT

9. Select Use Custom Sequence Table and use the drop lists to choose the Name,
Sequence Name Field, and Sequence Counter Field, as Figure B-20 illustrates.

10. Save your changes. Click the Save Project button or choose File > Save from the
menu.

Note: You will set the individual sequence names for each table
later.

B-22 Oracle Application Server TopLink Mapping Workbench User’s Guide

Mapping Classes and Tables in the Descriptor

Implementing Direct-to-Field Mappings

The Address class does not reference any other classes. Its attributes map directly

to database fields as a direct-to-field mapping.

To map the Address class attributes directly to the ADDRESS columns:
1. Expand the Address descriptor in the Navigator pane.

2. C(lick the city attribute.

3. Click the Direct-to-Field mapping button on the mapping toolbar. The
Direct-to-Field mapping tab appears in the Editor pane.

4. Use the Database Field drop-down list to choose the CITY field.

Figure B-21 Direct-to-Field Mapping General Tab

A% city

General l

Datahase Field: I =none selected=

[~ Read 0nly | =NONe selected=
ADDRESS_ID

[Use Methad

Get Wethod; [{ COUNTRY
P_CODE

Sethethod: < province
STREET

" Use DefaultValue When Database Field is Tull:

TiyRes | =none selected=

yalue: |

Repeat steps 2 — 4 to map the remaining attributes in the ADDRESS table.

= Map the COUNTRY attribute to COUNTRY field.

= Map the ID attribute to ADDRESS_ ID field.

Note: When you map the ADDRESS_ID field (the primary key),
the OracleAS TopLink Mapping Workbench removes the warning

icon for the Address descriptor.

Tutorials B-23

Mapping Classes and Tables in the Descriptor

= Map the POSTALCODE attribute to P_CODE field.
= Map the PROVINCE attribute to PROVINCE field.
= Map the STREET attribute to STREET field.

6. Save your changes. Click the Save Project button or choose File > Save from the
menu.

Setting the Sequence Name

The Address and Employee classes use nonnative sequencing for primary keys.

Note: The sequence name is the value of a row stored in the
sequence table. When you create tables for your own projects, you
must insert this row into the table using the OracleAS TopLink
SchemaManager.

To set the sequencing for the Address and Employee classes:
1. Select the Address descriptor in the Navigator pane.

2. Select the Descriptor Info in the Editor pane.
3. Select the Use Sequencing check box.

4. Inthe Name field, type ACME_ADDRESS and use the drop lists to choose the
Table and Field, as in Figure B-22.

B-24 Oracle Application Server TopLink Mapping Workbench User’s Guide

Mapping Classes and Tables in the Descriptor

Figure B-22 Descriptor Info Tab

Descriptor Info l

Associated Table: | ADDRESS <

Primary Keys:

W ADDRESS_ID
7 iy

[T COUNTRY
[pPcoDE

[PROVINGE
[T STREET

W Use Sequencing:

Mame: |ACME_ADDRESS

Table: [ADDRESS |

Field: [ADDRESS_ID -

[Read Only

" Conform Results in Unit of Work
Refreshing Cache Options (Advanced)

w Default
" Always Refresh
[Disakle Gache Hits

" Only Refresh If Mewer Version

Save your changes. Click the Save Project button or choose File > Save from the
menu.

6. Repeat steps 1 —4 to set the sequencing for the Employee class. Use ACME_
EMPLOYEE as the Name, and choose EMPLOYEE and EMP_ID from the Table
and Field drop-down lists, respectively.

Save your changes. Click the Save Project button or choose File > Save from
the menu

When the descriptors are registered with a database session, this information is
entered into the SEQUENCE table. The session tracks the sequencing information.

Creating One-to-One Mappings Between Objects

In the Employee class, the name and id attributes map directly to the EMPLOYEE
table columns. The phoneNumbers and address attributes refer to other Java
classes, rather than referring directly to columns in the database.

Tutorials B-25

Mapping Classes and Tables in the Descriptor

1. Map the firstName and lastName attributes as a direct-to-field mapping to
the F_NAME and L._NAME fields, respectively.

2. Map the id attribute as a direct-to-field mapping to the EMP_ID field (the
primary key).

Only one home address is associated with each employee, so the address attribute
requires a one-to-one mapping with the Address class. Figure B-23 illustrates a
sample one-to-one mapping.

Figure B-23 One-to-One Mappings

One-to-One relationship in Java:

Address address; String city;
Integer id; String country;

String firstMame; Date established;
String lastMarme; Integer id;
“ector phones; String province;

One-to-One relationship in relational database:

A & <
¢ & 9
S & & QQ‘Q‘> <Y & @3‘\‘& & d“@p
& o O = &8 o & &

104 | Jane | Smith | 296 105 | Taranto Canada | 04/01/1993 | Taoronto
105 | Tom | Jones | 274 421 | New York | USA 080172001 | Mew Y¥ork
EMPLOYEE table ADDRESS table

103 | John | Doe 305 /2?4 Ottawa Canada | 01/01/1935 | Ottawa

To create a one-to-one mapping

1. Select the Employee’s address attribute in the Navigator pane, then click the
One-to-one Mapping button on the mapping toolbar.

The Editor pane displays the appropriate information for a one-to-one
relationship to be specified.

B-26 Oracle Application Server TopLink Mapping Workbench User’s Guide

Mapping Classes and Tables in the Descriptor

Figure B-24 One-to-One Mapping General Tab

- address

General l Table Reference

Reference Descriptor: | =none selected=

™ Read Only =none selected=

™ Use Method Acces 8 Employee

Get Method: [=none 25 PhoneNumber

Set ethod: | =none selected=

[Maintain Bidirectional Relationship:

Erowse...

Relationship Fartner: | =none selected=

[¥ Private Cvwned

[” Use Batch Reading
[~ Use Joining

¥ Use Indirection

Use the Reference Descriptor drop-down list in the to select Address as the

reference descriptor.

Select the Use Indirection check box.

Ensure that the Private Owned check box is enabled.

This allows the Address object to be created, updated, or deleted automatically

when the Employee owning it is changed.

Foreign Key References

One-to-one mappings use the relational database concept of foreign keys to access
other classes stored in the database. You must specify the foreign key information in
the descriptor so that OracleAS TopLink knows how to search for a referenced
object, as Figure B-23 shows.

1.
2.
3.

Click the Table Reference tab.

Create a new table reference by clicking the New button.

In the New Reference dialog box, create a reference whose:

s Name is EMPLOYEE ADDRESS

Tutorials B-27

Mapping Classes and Tables in the Descriptor

s Source table is EMPLOYEE

s Target table is ADDRESS

Note: If you leave the Name field blank, OracleAS TopLink
automatically builds the name as <SourceTable>
<TargetTables.

Select the On Database option if you want to create the reference on the

database when you create the tables. OracleAS TopLink does not require that
you actually have the constraint on the database, but you may wish to do this
for other reasons. Consult your database administrator for more information.

Note: The mapping is from the EMPLOYEE table, ADDRESS_ID
attribute to the ADDRESS table.

4, Choose EMPLOYEE_ADDRESS from the Table Reference drop-down list.
5. Click the Add button to define the foreign key fields.

= Inthe Source Field column, choose ADDRESS_ID (foreign key).

= In the Target Field column, choose ADDRESS_ID (primary key).

= Leave the Target Foreign Key option unchecked.

Figure B-25 One-to-One Mapping Table Reference Tab

@-2 gddress
General Tahle Referencel
Table Reference: |EMPLOYEE_ADDRESS v| w
Source Field Target Field Target Foreign Key Add..

“ulappress 1 -|lappRESS D - [
Femove

6. Save your changes. Click the Save Project button or choose File > Save from
the menu.

B-28 Oracle Application Server TopLink Mapping Workbench User’s Guide

Mapping Classes and Tables in the Descriptor

Creating One-to-Many Mappings

To map an attribute to a Java collection such as a Vector, the application must
make a one-to-many mapping for the class owning the collection, and a one-to-one
mapping back from the class being referenced. The one-to-one mapping in the
referenced class is implemented as a foreign key to the source class.

Figure B-26 One-to-Many Mappings

One-to-Many relationship in Java:

Address address;
Integer id;

String areaCode;
Integer id;
Ermployee owner;

String firstMame;
String lastMarme;
“ector phones;

Orne-to-one mapping

One-to-Many relationship in relational database: o 6’

& % Y ¥ P ') 2
Rt KT &
R ks Foreign key < % =
103 | Jobn | Doe 305 reference 20 |R13 108 | 555-7634
104 | Jane_| Smith— {245 26 |R03 95 | 555-8251
10 m T TAHT 105 | 555-5649

EMPLOYEE table PHOME

In this tutorial, the Employee project requires:

= A one-to-many mapping from the phoneNumbers attribute of the Employee
class to the PhoneNumber class

= A one-to-one mapping from the owner attribute of the PhoneNumber class
back to the Employee class

To map the phoneNumbers attribute:
1. Expand the Employee class in the Navigator pane.

2. Select the phoneNumbers attribute.

3. Click the One-to-many Mapping button on the mapping toolbar. The Editor
pane changes to allow you to specify the appropriate information for a
one-to-many relationship.

4. Use the Reference Descriptor drop-down list to choose PhoneNumber.

Tutorials B-29

Mapping Classes and Tables in the Descriptor

Figure B-27 One-to-Many Mapping General Tab

#§ phonelumbers

General l Collection Options ~ Table Refarence

Reference Descriptor: | =none selected= =

™ Read Only =none selected=
HF Address
#ff Employee

Get Method: | <none ‘{-g PhoneMumber

™ Use Method Acces

Set hethod; | =hone selected= Browse...

[Maintain Bidirectional Relationship:

Felationship Fartner: | =none selected=

[Private Owned
[” Use Batch Reading
¥ Use Indirection

& YalueHolder

" Transparent

5. Click the Table Reference tab, and add a new reference by clicking New.

» Create a new reference named PHONE EMPLOYEE with a source table of
PHONE and a target table of EMPLOYEE and click OK.

= In the Table Reference drop-down list, choose the PHONE EMPLOYEE.

» Click the Add button on the Table Reference tab to add a foreign key
relationship. Set the Source (foreign key) field to EMP_ID and the Target
(primary key) field to EMP_ID.

Figure B-28 One-to-Many Mapping Table Reference Tab

928 phoneMurmbers
General Collection Options Tahle Reference l
Table Reference: | PHOME_EMPLOYEE v| e
Source Field Target Field Add.
A EmP_D | EmP_ID |
Fermoyve

B-30 Oracle Application Server TopLink Mapping Workbench User’s Guide

Setting Up Database Sessions

6. Save your changes. Click the Save Project button or choose File > Save from the

menu.

Note: Leave the remaining attributes of the Employee descriptor
as unmapped. You will use them in the Advanced tutorial.

To map the PhoneNumber class to the Employee class:

After mapping the Employee descriptor, use this procedure to map the one-to-one
back reference:

1.

Map the owner attribute of the PhoneNumber descriptor as a one-to-one
mapping to the Employee class (refer to "Creating One-to-One Mappings
Between Objects" on page B-25).

Select EMPLOYEE as the Reference Descriptor.

Note: You do not need to create a new table reference. Select the
same PHONE_EMPLOYEE reference you created when you mapped
the one-to-many from Employee to PhoneNumber.

Map the remaining attributes in the Phone descriptor as direct-to-field
mappings (refer to "Implementing Direct-to-Field Mappings" on page B-23).

Remove all unmapped attributes in the Employee descriptor. Right-click the
attribute and choose Remove from the pop-up menu.

You can also remove attributes by choosing Selected >Remove from the menu.

Setting Up Database Sessions

A database session in OracleAS TopLink represents an application’s dialog with a
relational database. The DatabaseSession class keeps track of the following
information:

Project and login — contains the login and configuration information about the
session

Descriptors — maintain the associations between tables and persistent classes

Identity maps — cache and maintain identity

Tutorials B-31

Setting Up Database Sessions

s The database accessor — handles low-level communication between the session
and the relational database

An application uses the session to log in to the database and perform read and write
operations on the objects stored therein. The session’s lifetime is normally the same
as the lifetime of the application.

OracleAS TopLink includes a test class so that you can test the descriptor mappings
that you have created for this introductory tutorial. This class, Demo, among other
things, tests the validity of the descriptors and logs into the database.

Logging Into a Database

To log into a database, an application must first read the project file into a Project
instance. The Project creates the DatabaseSession and connects through login.
The OracleAS TopLink Mapping Workbench can generate the project file
(Employee.xml in this example), including the login information. The following
code fragment illustrates this approach.

Example B-2 Logging in and Creating a Project Example Code
The following code example illustrates creating the EMPLOYEE project.

import oracle.toplink.sessions.*;

Project builderProject =
oracle.toplink.tools.workbench.XMLProjectReader.read (“C:\\oracle\\toplink\\
tutorials\\intro\\Employee.xml") ;

DatabaseSession session = builderProject.createDatabaseSession() ;

session.login(); // or, session.login(userName, password) ;

See the loginToDatabase () method, in the Demo class, for a complete method.

Creating the Tables in Code

You can use OracleAS TopLink Mapping Workbench to create database tables.
OracleAS TopLink can also create tables using the SchemaManager class. To use
this method of creating tables, you must have already obtained a valid login.

The following example illustrates how to create the EMPLOYEE table after having
logged into the database. The method createTables () on the Demo class
contains sample code that uses the schema manager to create all the required tables
for the introductory tutorial.

B-32 Oracle Application Server TopLink Mapping Workbench User’s Guide

Using Descriptors in an Application

Example B-3 Creating Tables
The following code example illustrates creating the EMPLOYEE table.

import oracle.toplink.tools.schemaframework.*;
import java.math.*;

// Create table definition which supplies information about the table to be
created.

TableDefinition employeeTable = new TableDefinition() ;

employeeTable.setName ("EMPLOYEE") ;

employeeTable.addIdentityField ("EMP_ID", BigDecimal.class, 15);

employeeTable.addField ("NAME", String.class, 40);

employeeTable.addField ("ADDRESS ID", BigDecimal.class, 15);

// Create the table in the database.
SchemaManager schemaManager = new SchemaManager (session) ;
schemaManager.replaceObject (employeeTable) ;

// Create an empty table named SEQUENCE if it is not already there. This is
used to hold the sequence number information such as name and counter.
schemaManager .createSequences () ;

Using Descriptors in an Application

After creating the descriptor files, you must write Java code to register the files with
the OracleAS TopLink session. After registering the files, the application can read
and write Java class instances from the database.

s Toread instances from the database, use the database session object.

= To write instances to the database, use a unit of work object.

Transactions and Units of Work

A transaction is a set of database operations that can be either committed (accepted)
or rolled back (undone). Transactions can be as simple as inserting an object into a
database, but also allow complex operations to be committed or rolled back as a
single unit. Unsuccessful transactions can be discarded, leaving the database in its
original state.

A unit of work is an object that simplifies the transaction process and stores
transaction information for its registered persistent objects. The unit of work
enhances database commit performance by updating only the changed portions of

Tutorials B-33

Using Descriptors in an Application

an object. Units of work are the preferred method of writing to a database in
OracleAS TopLink.

To use a unit of work, create an instance of UnitOfWork and register the desired
persistent objects. The registering process returns clones that can be modified. After
changes are made to the clones, use the commit () method to commit an entire
transaction. The unit of work inserts new objects or updates changed objects in the
database, as Figure B-29 illustrates.

If an error occurs when writing the objects to the database, a DatabaseException
is thrown, and the unit of work is rolled back to its original state. If no database
error occurs, the original objects are updated with the new values from the clones.

Figure B-29 Unit of Work Example

Unit of Work
Commit
* Registered
Editad Persistent
Clones Objects

Y

WSty
insotUptate™

Reading and Writing Java Class Instances

Sessions can read instances from the database using the readObject () method.
Database sessions can write instances to the database using the writeObject ()
method, but note that write is neither required nor used when employing a unit of
work. An application typically uses the session to read the instances of a given class
from the database and determines which of the instances require changes. The
instances requiring changes are then registered with a unit of work. After the
changes have been made, the unit of work is used to commit only the changed
objects to the database.

B-34 Oracle Application Server TopLink Mapping Workbench User’s Guide

Using Descriptors in an Application

This model provides the optimum performance for most applications. Read
performance is optimized by using the session because the unit of work does not
have to keep track of objects that do not change. Write performance is optimized
because the unit of work keeps track of transaction information and writes only the
changed portions of an instance to the database.

Using a Unit of Work to Write an Object

After the descriptors have been registered with the session, you are ready to read
and write objects to the database. Objects are registered with a unit of work and
then committed to the database.

The code fragment in the following example is a continuation of the fragment in
Example B-3 and uses the session created there.

Example B-4 Unit of Work
The following code example illustrates using a unit of work to write an object.

//Create an Employee object for the company president, as well as the associated
personal information objects.
Employee president = new Employee();

Address presidentHome = new Address();
presidentHome.setStreet ("601-1140 Meadowlands Dr.");
presidentHome.setCity ("Ottawa") ;
presidentHome.setPostalCode ("K2E 6J6") ;
presidentHome.setProvince ("ON") ;
presidentHome.setCountry ("Canada") ;

PhoneNumber homePhone = new PhoneNumber () ;
homePhone. setType ("Home") ;
homePhone.setAreaCode ("555") ;
homePhone . setNumber ("555-1234") ;

PhoneNumber businessPhone = new PhoneNumber () ;
businessPhone.setType ("Business") ;
businessPhone.setAreaCode ("555") ;
businessPhone.setNumber ("555-5678") ;

president.setName ("John Smith");
president.setAddress (presidentHome) ;
president .addPhoneNumber (homePhone) ;
president .addPhoneNumber (businessPhone) ;

Tutorials B-35

Using Descriptors in an Application

//Register objects with a new unit of work. Registered objects will return a
clone which should be used to make changes to the object.

UnitOfWork unitOfWork;

unitOfWork = session.acquireUnitOfWork() ;

Employee tempPresident = (Employee)unitOfWork.registerObject (president) ;

//Register any other objects, or change registered objects.
tempPresident.setName ("Johnny Smith");

//Commit the objects to the database.
unitOfWork.commit () ;

Using a Session to Read an Object

To change the information in the database, the application must create an
Expression that contains information about the query to be made. The session
then searches the database for an object that matches the query and returns the
instance. The returned object is registered with the unit of work, and the application
makes changes to the object. The application then commits the changes to the
database using the commit () method.

Example B-5 Session

The following code example illustrates using a session to read an object.

//Import the Expression classes.
import oracle.toplink.expressions.*;

//Import the other classes. Create a session and login. Create a query
expression to find the database object.

ExpressionBuilder builder = new ExpressionBuilder () ;

Expression expression = builder.get ("name").equal ("John Smith");

//Read the object from the database using the query expression.
Employee president = (Employee) session.readObject (Employee.class, expression);

//Register the object with a new unit of work.
UnitOfWork unitOfWork = session.acquireUnitOfWork () ;

Employee tempPresident = (Employee)unitOfWork.registerObject (president);

//Make the change to the object.
tempPresident.setName ("Johnny Smith") ;

//Commit the change to the database. Only the NAME field is actually updated.

B-36 Oracle Application Server TopLink Mapping Workbench User’s Guide

Advanced Tutorial

unitOfWork.commit () ;

Conclusion

This introductory tutorial explained the basic steps required to create a Java project
that accesses a relational database through OracleAS TopLink. The main concepts
explained include:

Creating Java classes which represent database tables
Using OracleAS TopLink Mapping Workbench to create tables on the database

Creating descriptors for those classes using OracleAS TopLink Mapping
Workbench

Registering the descriptors with the OracleAS TopLink session

Logging in to the database and doing simple read and write operations

Advanced Tutorial

In this advanced tutorial, you will improve the ACME Employment Management
System (built in the introductory tutorial) to manage additional information. You
will update the introductory application with new project information and reuse
existing components from previous applications.

You will also learn how to:

Work with self-relationships

Create the following advanced mapping types: object type mappings, aggregate
object mappings, direct collection mappings, and many-to-many mappings

Implement indirection and value holders
Use inheritance

Create transformations

Work with the Automap tool

Use multiple tables for one class

Create and generate code

Tutorials B-37

Advanced Tutorial

This advanced tutorial adds the ability to track employees’ current projects,
managers, and contract period. You will reuse components from the introductory
tutorial.

In addition to the Employee, Address, and PhoneNumber classes from the
introductory tutorial (see "Overview" on page B-2), the advanced tutorial uses these
classes:

EmploymentPeriod — Defines the contract term for contractors and the hire
date for ACME employees. Each Employee class has an EmploymentPeriod.

ResponsibilityList — Each Employee has a collection of text that describes
the employee’s job.

BaseProject —Maintains information about a particular project and the
people working on it. The Project class contains two subclasses:
LargeProject and SmallProject. Each Employee can be involved in more
than one project.

TeamLeader — Each Project can have a team leader (the Employee
responsible for the project.

Manager — Each Employee may have a manager and a collection of managed
employees.

Figure B-1 illustrates the object model for the advanced tutorial.

B-38 Oracle Application Server TopLink Mapping Workbench User’s Guide

Creating the Database Schema

Figure B-30 Advanced Tutorial Object Model

Address
manages | Employee address (1:1) .
[1:M) v
iy phone (1:M)= FPhaone#
manager
(1:1) o owner (1:1)
» Ermployment
Period

member of (W) »[BaseProject
_team leader (1:1)
/' subclass of

[Small Project | [Large Project |

responsibilities P String
[wectar)

Creating the Database Schema

The advanced ACME employee system stores the employee data in the following
database tables. To use this tutorial, create these tables in your database application.
Table B-14 describes how each class relates to the database tables.

The column types listed here are generic; the actual column types depend on the
database used.

Table B-6 EMPLOYEE Table

Column Name Column Type Details
EMP_ID NUMERIC(15) Primary key
F_NAME VARCHAR(40)

L_NAME VARCHAR(40)

ADDR_ID NUMERIC(15)

GENDER CHAR(1)

START_DATE DATE

Tutorials B-39

Creating the Database Schema

Table B-6 (Cont.) EMPLOYEE Table

Column Name Column Type Details
END_DATE DATE

START_TIME TIME

END_TIME TIME

MANAGER_ID NUMERIC(15)

VERSION NUMERIC(15)

Table B-7 SALARY Table

Column Name Column Type Details
EMP_ID NUMERIC(15) Primary key
SALARY NUMERIC(10)

Table B-8 ADDRESS Table

Column Name Column Type Details
ADDRESS_ID NUMERIC(15) Primary key
COUNTRY VARCHAR(80)

STREET VARCHAR(80)

CITY VARCHAR(80)

PROVINCE VARCHAR(80)

P_CODE VARCHAR(20)

Table B-9 PHONE Table

Column Name Column Type Details
EMP_ID NUMERIC(15) Primary key
AREA_CODE CHAR(3)

P_NUMBER CHAR(?7)

TYPE VARCHAR(15) Primary key

B-40 Oracle Application Server TopLink Mapping Workbench User’s Guide

Creating the Database Schema

Table B-10 PROJECT Table

Column Name Column Type Details
PROJ_ID NUMERIC(15) Primary key
DESCRIP VARCHAR(200)

PROJ_NAME VARCHAR(30)

PROJ_TYPE CHAR(1)

LEADER_ID NUMERIC(15)

VERSION NUMERIC(15)

Table B-11 LPROJECT Table

Column Name Column Type Details
PROJ_ID NUMERIC(15) Primary key
BUDGET NUMERIC(10,2)

MILESTONE TIMESTAMP

Table B-12 RESPONS Table

Column name Column type Details
EMP_ID NUMERIC(15) Primary key
DESCRIP VARCHAR(200)

Table B-13 PROJ_EMP Table Between PROJECT and EMPLOYEE

Column Name Column Type Details
EMP_ID NUMERIC(15) Primary key
PROJ_ID NUMERIC(15) Primary key

Tutorials B-41

Creating the Database Schema

Table B-14 Relationships Between Classes and Database Table

Column Class Attribute Database Type Java Type
EMPLOYEE Employee
EMP_ID id NUMERIC(15) BigDecimal
F_NAME firstName VARCHAR(40) String
L_NAME lastName VARCHAR(40) String
ADDR_ID address NUMERIC(15) Address
not applicable phoneNumbers not applicable Vector
GENDER gender CHAR(1) String
START_TIME normalHours [0] TIME Time
END_TIME normalHours [1] TIME Time
MANAGER_ID manager NUMERIC(15) Employee
not applicable managedEmployees not applicable Vector
not applicable projects not applicable Vector
see Employment Period period not applicable EmploymentPeriod
SALARY Employee
EMP_ID not applicable NUMERIC(15) not applicable
SALARY salary NUMERIC(10) int
EMPLOYEE EmploymentPeriod
START_DATE startDate DATE Date
END_DATE endDate DATE Date
RESPONS Employee
EMP_ID not applicable NUMERIC(15) not applicable
DESCRIP responsibilitiesList VARCHAR(200) String
PROJECT LargeProject and

SmallProject
PROJ_ID id NUMERIC(15) BigDecimal
DESCRIP description VARCHAR(200) String
LEADER_ID teamLeader NUMERIC(15) Employee

B-42 Oracle Application Server TopLink Mapping Workbench User’s Guide

Creating a New Project

Table B-14 (Cont.) Relationships Between Classes and Database Table

Column Class Attribute Database Type Java Type
PROJ_NAME name VARCHAR(30) String
PROJ_TYPE not applicable CHAR(1) not applicable
VERSION not applicable NUMERIC(15) not applicable
LPROJECT LargeProject

PROJ_ID not applicable NUMERIC(15) not applicable
BUDGET budget NUMERIC(10,2) double
MILESTONE milestoneVersion TIMESTAMP TimeStamp
ADDRESS Address

ADDRESS_ID id NUMERIC(15) BigDecimal
COUNTRY country VARCHAR(80) String
STREET street VARCHAR(80) String

CITY city VARCHAR(80) String
PROVINCE province VARCHAR(80) String
P_CODE postalCode VARCHAR(20) String
PHONE PhoneNumber

AREA_CODE areaCode CHAR(3) String
P_NUMBER number CHAR(7) String
EMP_ID owner NUMERIC(15) Employee
TYPE type VARCHAR(15) String
PROJ_EMP *Relation Table*

PROJ_ID not applicable NUMERIC(15) not applicable
EMP_ID not applicable NUMERIC(15) not applicable

Creating a New Project

1. Create a new project for the Advanced Tutorial as "Creating a New Project” on
page B-4 describes.

s For the database name, use ADVANCED_TUTORIAL_DB.

Tutorials B-43

Creating a New Project

n For the project name, use Advanced Tutorial.

2. Set the project’s classpath to include the
examples.session.threetier.model package. See "Setting the Project’s
Classpath" on page B-6.

3. Enable the following classes in the examples.session.threetier.model
package, and generate a TopLink descriptor for each Java class as "Generating
the Class Definitions" on page B-10 describes:

m Address

s Employee

s EmploymentPeriod

m LargeProject

s PhoneNumber

m BaseProject

m SmallProject

Table B-14 shows how the classes relate to the database tables.

4. Log into the database as "Logging Into the Database" on page B-12 describes to
create or import the database information.

Select one of the following methods to add database information:

s Creating Tables Using the OracleAS TopLink Mapping Workbench

= Importing Tables from the Database

Refer to Table B-6 through Table B-13 for complete database information.

Mapping Classes to Tables

Map each Java class in the Advanced tutorial to a database table as "Mapping
Classes to Tables" on page B-18 describes.

Map this class... To this database table...
Address ADDRESS

Employee EMPLOYEE
LargeProject LPROJECT

B-44 Oracle Application Server TopLink Mapping Workbench User’s Guide

Using the Automap Tool

Map this class... To this database table...
PhoneNumber PHONENUMBER
BaseProject PROJECT

Ensure that the primary keys are correctly indicated, as Table B-6 through
Table B-13 specify.

Note: A warning message appears indicating that you have not
yet mapped the attributes. This is addressed later in the tutorial.

Using the Automap Tool

TopLink can automatically map class attributes to similarly named database tables.
This Automap function creates mappings only for unmapped attributes—it does
not change previously defined mappings.

You can automap classes for an entire project or for specific tables.

Note: Although Automap correctly maps most one-to-one and
direct-to-field mappings, examine each mapping for valid and
correct information. You may need to add or change some

mappings.

To Automap the Address descriptor:

1. Choose the Address class in the Navigator pane and click the Descriptor Info
tab in the Editor pane.

2. In the Associated Table drop-down list, choose the ADDRESS table.
You must associate the class with a table before using the Automap tool.

3. Right-click the Address class in the Navigator pane and choose Automap from
the pop-up menu.
You can also automap descriptors by choosing Selected > Automap from the
menu.

The system automatically maps each attribute to the appropriate database table. Do
not Automap any other classes. You will manually map these classes later in this
tutorial.

Tutorials B-45

Implementing Indirection

Implementing Indirection
Indirection allows you to retrieve objects from the database as needed.

= With indirection turned off, when an object is retrieved from the database all the
other objects that it references are also retrieved.

= With indirection turned on, each object is retrieved from the database only when
asked for.

Using indirection can be a great performance benefit and we strongly recommended
using it. See "Working with Indirection” on page 6-5 for more information.

Preparing Java Code for Indirection

To prepare your object model for indirection, you must alter the application slightly:

= Replace each relationship reference with a ValueHolderInterface. This
interface is located in the oracle.toplink. indirection package and
allows for indirection to be used.

» Instantiate all variables with indirection references to empty value holders.
Normally, this is done in the constructor of the object.

= Modify the get methods for these variables to extract the value from the value
holder.

= Modify the set methods for these variables to insert the value into the value
holder.

You can implement indirection using direct access or method access.

s For method access, TopLink requires additional get and set methods that
provide access to the value holders.

= For direct access, TopLink can access the value holders directly—the additional
get and set methods are not required.

If the instance variable returns a Vector instead of an object, then define the value
holder in the constructor as follows:

addresses = new ValueHolder (new Vector()) ;

In the following examples, the Employee class uses indirection with method access
for its one-to-one mapping to Address. The class definition is modified so that the
address attribute of Employee is a ValueHolderInterface instead of an
Address. In both examples, the application uses the getAddress () and
setAddress () methods to access the Address object.

B-46 Oracle Application Server TopLink Mapping Workbench User’s Guide

Implementing Indirection

Example B-6 Indirection Examples

The following example illustrates code before using indirection.

protected Address address;
public Employee() {
address = null;
}

public Address getAddress()
return address;
}

public void setAddress(Address address) {
this.address = address;
}

The following example illustrates the same code after using indirection.

protected ValueHolderInterface address;
public Employee() {
address = new ValueHolder () ;
}

public Address getAddress() {
return (Address)address.getValue();
}

public void setAddress(Address address) {
this.address.setValue (address) ;
}

The indirection example could also use method access instead of direct access. This
would be implemented by adding getAddressValueHolder () and
setAddressValueHolder () methods.

Implementing Indirection in the OracleAS TopLink Mapping Workbench

After modifying the code, update the OracleAS TopLink Mapping Workbench
descriptors to use indirection.

To implement indirection in the Workbench:
1. Map the one-to-one and one-to-many mappings for each class as normal.

2. On the General tab for each mapping, select the Use Indirection option.

Tutorials B-47

Implementing Indirection

Figure B-31 General Tab of a Mapping

s gddress
General l Table Reference

[Read Only
[Use Method Accessing

Get Method: |<none selecteds |

Sethethod: |<none selecteds |

Reference Descriptor:

[" Maintain Bidirectional Relationship

Relationship Partner:

[Private Cwned

Indirection option ™ Use Batch Reading

\ " Use Joining
W Use Indirection

Implementing Indirection in the Tutorial

The following attributes in the Advanced tutorial sample code have been
implemented using ValueHolderInterfaces:

Employee

address

manager
managedEmployees
projects
responsibilitiesList
phoneNumbers

PhoneNumber
owner
BaseProject

teamLeader

B-48 Oracle Application Server TopLink Mapping Workbench User’s Guide

Implementing a One-to-One Self Relationship

When you create mappings for these attributes, be sure to enable the Use
Indirection option.

Implementing a One-to-One Self Relationship

Some object models require a class to reference another instance of the same class.
In the advanced tutorial, the Manager attribute in the Employee class references
another employee (see Figure B-1).

To map the manager attribute:

1. Select the Employee’s manager attribute in the Navigator pane, then click the
One-to-One Mapping button on the mapping toolbar.

The Editor pane displays the appropriate information for a one-to-one
relationship to be specified.

2. Use the Reference Descriptor drop-down list on the General tab to choose
Employee as the reference descriptor.

Figure B-32 One-to-One Mapping General Tab

-2 manager

General l Tahle Reference

Reference Descriptor: | i Employee o

™ Read Only =none selected=
H¥ Address

1% BaseProject

[Use Method Acces

Get Methad: | =nane fi#2 Employee b
H EmplovmentPeriod

Set Method: | =none| 457 LargePraject
H PhoneMurmber

™ Maintain Bidirectiol e SmallPraiect

Eelationship Farner: | =none selected= Erowse...

[Private Cwned

™ Use Batch Reading
™ Use Jaining

¥ Use Indirection

1. Select the Use Indirection option. See "Implementing Indirection in the
Tutorial" on page B-48.

Tutorials B-49

Implementing a One-to-One Self Relationship

2. C(lick the Table Reference tab.

Figure B-33 One-to-One Mapping Table Reference Tab

>3 manager
General Tahle Referencel
Table Reference: |EMPLOYEE_EMPLOYEE v| [emwy...
Source Field Tarcet Field Target Fareigh Key Add..
“3lmenacer 0 llEme D | [
Fermove

1. Create a new table reference by clicking the New button.

2. In the New Reference dialog box, create a reference whose:

Name is EMPLOYEE_EMPLOYEE
Source table is EMPLOYEE
Target database is EMPLOYEE

Note: If you leave the Name field blank, then TopLink
automatically names the table as <SourceTable>_
<TargetTables.

3. Select EMPLOYEE EMPLOYEE (created in step 1 from the Table Reference
drop-down list.

4. Click the Add button to define the foreign key fields.

In the Source Field column, choose MANAGER_ID (foreign key) field.
In the Target Field column, choose EMP_ID (primary key) field.

Leave the Target Foreign Key option unchecked.

Note: The mapping is from the EMPLOYEE table, MANAGER_ID
field to the EMP_ID field.

Click Save on the toolbar or choose File > Save Project to save the project.

B-50 Oracle Application Server TopLink Mapping Workbench User’s Guide

Implementing a One-to-Many Self-Relationship

Creating Other One-to-one Mappings

The Advanced tutorial also includes a one-to-one mapping for the following
attributes:

» address attribute in the Employee descriptor
= owner attribute in the PhoneNumber descriptor
= teamLeader attribute in the BaseProject descriptor

Create these mappings as shown in "Creating One-to-One Mappings Between
Objects" on page B-25. Refer to Table B-14 for the correct relationships. Enable
indirection for each of these mappings, as "Implementing Indirection in the
Tutorial" on page B-48 indicates.

Implementing a One-to-Many Self-Relationship

Some object models require a class to reference another instance of the same class.
In the advanced tutorial, a manager can have a collection of managed employees
(see Figure B-1).

To map the managedEmployee attribute:

3

Select the Employee’s managedEmployees attribute in the Navigator pane,
then click the One-to-Many Mapping button on the mapping toolbar.

The Editor pane displays the appropriate information for a one-to-many
relationship to be specified.

2. Use the Reference Descriptor drop-down list to choose Employee.

Tutorials B-51

Implementing a One-to-Many Self-Relationship

Figure B-34 One-to-Many Mapping General Tab

iE! managedEmployees

General l Collection Options Tahle Reference

Reference Descriptor: | =none selecteds 2

™ Read Only =hone selected=
HE Address
1] BaseFroject

[Use Method Acces

Get Method: | =none ‘{vg Employee \
H# EmploymentPeriod
Setmethod: | =none| 45 LargeProject
H& Phonelumber

[Maintain Bidirectior &) SmallPraject

Relationship Fartner: | =naone selected=

[Private Owned
[” Use Batch Reading
¥ Use Indirection

® YalueHolder

" Trahsparent

3. Select the Use Indirection option, and choose ValueHolder. See "Implementing
Indirection in the Tutorial" on page B-48.

4. Click the Table Reference tab. Use the Table Reference drop-down list to
choose the EMPLOYEE_EMPLOYEE table (previously created in "To map the
manager attribute:" on page B-49).

» Click the Add button on the Table Reference tab to add a foreign key
relationship.

= Set the Source Field (foreign key) to MANAGER _ID.

= Set the Target Field (primary key) to EMP_ID.

B-52 Oracle Application Server TopLink Mapping Workbench User’s Guide

Using Multiple Tables

Figure B-35 One-to-Many Mapping Table Reference Tab

¢<§§ managedEmplovees

General Collection Options . Tahle Reference l

Tahle Reference: | EMFLOYEE_EMPLOYEE

'| ey,

Source Field Target Field Add..
3 [manscER 1D |lEme 1D
Rermoye
5. Click Save on the toolbar or choose File > Save Project to save the project.

Creating Other One-to-Many Mappings

The Advanced tutorial also includes a one-to-many mapping for the
phoneNumbers attribute in the Employee descriptor. Create this mapping as
shown in "Creating One-to-Many Mappings" on page B-29. Refer to Table B-14 for

the correct relationship.

Enable indirection for this mapping, as indicated in "Implementing Indirection in

the Tutorial" on page B-48.

Using Multiple Tables

In TopLink, it is possible to spread classes across two or more tables. In the
advanced tutorial, the Employee class is stored in multiple tables: although most
information is in the EMPLOYEE table, salary information is stored in the SALARY

table.

To map the Employee class to multiple tables:
1. Select the Employee descriptor in the Navigator pane.

2. Click the Multi-Table Info tab in the Editor pane.

If the Multi-Table info tab is not visible, right-click the Employee descriptor
and choose Set Advanced Properties > Multi-Table Info from the pop-up

menu.

3. Inthe Additional Tables pane, click Add and add the SALARY table.

4. In the Associated Via pane select Primary Key and in the Primary Key Table

Reference pane, select Primary Keys Have Same Names.

Tutorials B-53

Implementing Object Type Mapping

Figure B-36 Multi-Table Info Tab

Multi-Table Info |

Frimary Table: EMPLOYEE

Additional Tables Associated Yia

SALARY ® Prirmary Key

O Foreigh Key

Add.. Remaove

Prirary Key Table Reference

® Primary Keys Have Same Mames

" Primary Keys Have Different Mames (Use Specified Reference)

Tahle Reference: | =none selacted= |

Saurce Fareidh Keysl| Tardet Primaty Keys

[+ ey

5. Click Save on the toolbar or choose File > Save Project to save the project.

Implementing Object Type Mapping

In TopLink, you can match a fixed number of database values to Java objects
through object type mappings. In the advanced tutorial, each employee’s gender is
stored as a single letter in the database field (M or F), but the value is the full name
(Male or Female).

To map the gender attribute:
1. Expand on the Employee descriptor in the Navigator pane.

freice
xm

2. Select the gender attribute and click the Object-Type Mapping button in the
mapping toolbar.

B-54 Oracle Application Server TopLink Mapping Workbench User’s Guide

Implementing Object Type Mapping

Figure B-37 Object-Type Mapping Tab

Eﬁ gender

General l
Datahasze Field: | EMPLOYEE.GEMDER Browse. ..
[Read Only

[Use Method Accessing:

GetMethod: |<n0ne selecteds Erowse...

Sethiethad: |<n0ne selecteds Erowse...

[Use Default Yalue When Database Field is Mull:

TiRe: |<none selected= |

yalug: |
Database Type: | T String Gava.lang) Browse...
Object Type: | ‘T String (ava.lang) Erowse...
Database Value Ohject Yalue Default Atk Add...
oo F Female [4
el Male) Edit
1] ¥] [Eemave

3. In the Database Field, select the GENDER field from the EMPLOYEE table.
4. Select String as the Database Type, and String as the Object Type.
5. Click Add and create the following database mappings:

Database Value Object Value
F Female
M Male

6. Click Save on the toolbar or choose File > Save Project to save the project.

Tutorials B-55

Implementing an Aggregate Object

Implementing an Aggregate Object

In TopLink, two objects are related by aggregation if there is a one-to-one
relationship between the objects and all the attributes of the second object can be
retrieved from the same table(s) as the owning object. In the advanced tutorial, the
EmploymentPeriod is an aggregate descriptor, and the period attribute is an
aggregate object.

To map an aggregate object:
1. Select the EmploymentPeriod descriptor in the Navigator pane.

B 2. Click the Aggregate Descriptor button on the mapping toolbar. The
descriptor’s icon in the Navigator pane changes to an aggregate descriptor.
3. Map the startDate and EndDate attributes of the EmploymentPeriod as
direct-to-field mappings.
Note: The Database Field fields are disabled because the
aggregate descriptor is not associated with a database table.
4. Expand the Employee descriptor in the Navigator pane.
5. Select the period attribute of the Employee descriptor.
|§| 6. Click the Aggregate Mapping button on the mapping toolbar.

Figure B-38 Aggregate Mapping General Tab

¥y perind

General l Fields

Reference Descriptor: | & EmploymentPeriod =

[Read Only
[Use Method Accessing:

GetMethod: |<n0ne selected= Erowse...
sethethod: | <none selected= Brawse..
[V Allowes Mull

B-56 Oracle Application Server TopLink Mapping Workbench User’s Guide

Implementing a Direct Collection Mapping

7. Use the Reference Descriptor drop-down list to choose the
EmploymentPeriod aggregate descriptor.

8. Click the Fields tab.

Figure B-39 Aggregate Mapping Fields Tab

Q period Aggregate Mapping)

General Fields l

Field Description Fields

EmploymentPeriod.endDate directfield |END DATE
EmploymentPeriod.startDate direct field | START _DATE

9. Use the Fields drop-down list to map each field as follows:
s endDate - END _DATE
m startDate -START DATE

10. Click Save on the toolbar or choose File > Save Project to save the project.

Implementing a Direct Collection Mapping

Direct collection mappings store collections of Java objects that are not
TopLink-enabled. In the advanced tutorial, the responsibilitiesList attribute
is a direct collection.

To map a direct collection:
1. Expand the Employee descriptor in the Navigator pane.

2. Click the responsibilitiesList attribute of the Employee descriptor.
3. Click the Direct Collect button on the mapping toolbar.

4. To specify where to place the strings in the direct collection, use the Target
Table and Direct Field drop-down lists to select the DESCRIP field on the
RESPONS databases table.

5. Select the Use Indirection option and choose ValueHolder. See "Implementing
Indirection in the Tutorial" on page B-48.

Tutorials B-57

Implementing a Many-to-Many Mapping

Figure B-40 Direct Collection Mapping General Tab

o responsibilitiesList
General l Collection Options Tahle Reference

[Read Only
[Use Method Accessing:

GetMethoc: |<n0ne selested= Browse...

Sethethod: |<n0ne selecteds Browse...

[” Use Batch Reading
¥ Use Indirection

® YalueHolder

" Trahsparent

Direct Collection Specifics

Target Table: |RESPONS '|

Direct Field: | DESCRIP -

6. Click the Table Reference tab, and add a new table reference by clicking the
New button.

» Create a reference named RESPONS EMPLOYEE, with a source table of
RESPONS and target table of EMPLOYEE and click OK.

= In the Table Reference drop-down list, choose the RESPONS_EMPLOYEE.

» Click the Add button on the Table Reference tab to add a foreign key
relationship.

= Set the Source Field (foreign key) to EMP_ID (from the RESPONS table).
» Set the Target Field (primary key) to EMP_ID (from the EMPLOYEE table).

7.

Click Save on the toolbar or choose File > Save Project to save the project.

Implementing a Many-to-Many Mapping

Many-to-many mappings represent relationships between a collection of source
objects and a collection of target objects. In the advanced tutorial, the projects
attribute uses a many-to-many-mapping (for example, many employees can have
many projects).

B-58 Oracle Application Server TopLink Mapping Workbench User’s Guide

Implementing a Many-to-Many Mapping

To map a many-to-many mapping:

1.
2.
3.

Figure B-41 Many-to-Many Mapping General Tab

Expand the Employee descriptor in the Navigator pane.

Click the projects attribute of the Employee descriptor.

Click the Many-to-many Mapping button on the mapping toolbar.

Use the Reference Descriptor drop-down list to choose the BaseProject

descriptor.

Use the Relation Table drop-down list to choose the PROJ EMP table (the class

to map to).

Ensure that the Use Indirection field is selected. See "Implementing Indirection

in the Tutorial" on page B-48.

&3 projects

Generall Collection Options Source Reference Target Reference

Reference Descriptor: | HF BaseFroject i

[Read Only
[Use Method Accessing:

Get ethod: |<n0ne selected= Erowse...

et hethod: | =hohe selected= Erowse...

™ Maintain Bidirectional Relationship:

Relatianship Fartner: | =none selecieds

[V Private COwnhed
[Use Batch Reading
[V Use Indirection

w YalueHolder

" Transparent

Relation Table: | PROJ_EMP -

7.

Click the Source Reference tab, and add a new reference by clicking the New

button.

Tutorials B-59

Implementing Inheritance

Create a new reference named PROJ EMP_EMPLOYEE, with a source table
of PROJE_EMP and target table of EMPLOYEE, and click OK.

In the Table Reference drop-down list, choose the PROJ EMP EMPLOYEE
reference.

Click the Add button on the Source Reference tab to add a foreign key
relationship.

Set the Foreign Key field to EMP_ID (from the PROJ_EMP table).
Set the Primary Key field to EMP_ID (from the EMPLOYEE table).

8. Click the Target Reference tab, and add a new reference by clicking the New
button.

In the Table Reference drop-down list, choose the PROJ_EMP PROJECT
reference.

Click the Add button on the Source Reference tab to add a foreign key
relationship.

Set the Source Field field to PROJ_ID (from the PROJ_EMP table).
Set the Target Field field to PROJ ID (from the PROJECT table).

9. Click Save on the toolbar or choose File > Save Project to save the project.

Implementing Inheritance

Inheritance describes how a child class inherits the characteristics of its parent class.
TopLink uses multiple implementations to support database inheritance.

In the advanced tutorial, the LargeProject and SmallProject classes inherit
the characteristics of the BaseProject class. Use the following procedures to set
the BaseProject descriptor to implement inheritance, then enable the two
subclasses.

To implement inheritance in the BaseProject descriptor:
1. Click the BaseProject descriptor in the Navigator pane.

2. Click the Inheritance tab in the Editor pane.

If the Inheritance tab is not visible, right-click the Project descriptor and choose
Advanced Properties > Inheritance from the pop-up menu or Selected >
Advanced Properties > Inheritance from the menu.

B-60 Oracle Application Server TopLink Mapping Workbench User’s Guide

Implementing Inheritance

Ensure that the Is Root Descriptor field is selected.

Select the Use Class Indicator Field option, and use the drop-down list to
choose PROJ TYPE.

Select the Use Class Indicator Dictionary field and choose a String type as the
Indicator Type.

To implement inheritance in each subclass:

1.
2.

3.
4.

Click the SmallProject descriptor in the Navigator pane.
Click the Inheritance tab in the Editor pane.

If the Inheritance tab is not visible, right-click the SmallProject descriptor
and choose Advanced Properties > Inheritance from the pop-up menu or
Selected > Advanced Properties > Inheritance from the menu.

In the Parent Descriptor drop-down list, choose the BaseProject class.

Click Save on the toolbar or choose File > Save Project to save the project.

Repeat this procedure for the LargeProject descriptor.

To complete the inheritance:

1.
2
3.
4.

Click the BaseProject descriptor in the Navigator pane.
Click the Inheritance tab in the Editor pane.

Select the Read Sublcasses on Query option.

For each inherited descriptor:

= Select the Include column.

» Click Edit.

» Enter an Indicator Value (S for SmallProject and L for LargeProject)
for each child class.

Tutorials B-61

Implementing a Transformation Mapping

Figure B-42 Inheritance Tab

H¥| BaseProject

Descriptor Infa Class Info Gueries Cluery kKeys

[Read Subclasses on Query:

Inheritance l

Read Bubclasses Wiew (Optional): | =none selected=

W |5 Root Descriptar:

" Use Class Extraction Method:

| =none selected=

® Use Class Indicator Field:

| PRO._TYPE

" Use Class Mame as Indicator

® Lse Class Indicator Dictionary:

Indicator Type: | T String Gava.lang)

Include Class Indicatar
o ¥ H LargeProject L
o ¥ H# SmallProject 5
4 | [

Browse...

Edt...

Parent Descriptor; | =hone selected=

Note:

To have the root class store instances of itself in the table, it

must include a value-subclass pair for itself. This is not required for
the advanced tutorial because Project is an abstract class.

Implementing a Transformation Mapping

Use transformation mappings for specialized translations between how a value is
represented in Java and in the database. The method takes a database row as an
argument and is called whenever an object is written to the database. The method
returns the value from the object that should be written to the field.

In the advanced tutorial, the transformation method corresponds to a single
argument method on the Employee class and extracts the values from the fields,
placing them into the NormalHours array.

B-62 Oracle Application Server TopLink Mapping Workbench User’s Guide

Mapping the Remaining Attributes

To map the normalHours attribute:

1.
2.
3.

Expand the Employee descriptor in the Navigator pane.

Click the normalHours attribute of the Employee descriptor.

Click the Transformation Mapping button on the mapping toolbar.

Use the Database Row -> Object Method drop-down list to select the

bulidNormalHours method.

Click the Add button to create the following Object->Field Methods:
» Database Field: START_TIME, Method: getStartTime
s Database Field: END_TIME, Method: getEndTime

Figure B-43 Transformation Mapping Tab

*X normalHours
General l

[Read Only
[Use Method Accessing:

Get Method: |<n0ne selectads= Erowse...

Set Methad: |<n0ne selected= Erowse...

[Use Indirection

Database Row -= Ohject Method: | @ buildMarmalHours{oraclet... '|

Ohject-= Field Methods
Datahase Field Method Add.

i (EMPLOYEE END TIME |[@ aetEndTimen
% EMPLOYEE START TIME @ setStadTim... Remove

6. Click Save on the toolbar or choose File > Save Project to save the project.

Mapping the Remaining Attributes

The remaining attributes for each descriptor are simple direct-to-field mappings.
Use Table B-14 to map each attribute.

Tutorials B-63

Completing the Tutorials

Completing the Tutorials

Generating Code

To use your project with the Foundation Library, you must either generate
deployment XML files or export the project to Java source code.

In this tutorial, we will create a deployment XML file that can be read in at runtime.
The code generator creates a single subclass that can be used instead of reading
directly from the files.

To export to Java source code:

1. Right-click the project in the Navigator pane and choose Export Project to Java
Source from the pop-up menu. The Choose an Export File dialog box appears.

You can also export the project by choosing File > Export to Java Source or
Selected > Export to Java Source from the menu.

2. Select a directory location and file name (. java) and click OK.

Congratulations! You have completed the Advanced Tutorial and are now familiar
with TopLink’s advanced topics and functions.

Completed versions of this tutorial (for various architectures and application
servers) are included with the complete installation of TopLink in the following
directory:

<ORACLE HOME>\toplink\examples

B-64 Oracle Application Server TopLink Mapping Workbench User’s Guide

C

Troubleshooting

This section contains the following information on troubleshooting the Oracle
Application Server TopLink Mapping Workbench and Oracle Application Server
TopLink Sessions Editor.

s Error Messages

s Classpath Issues

= Database Connections

= Troubleshooting Descriptors

= Troubleshooting Known Issues

In addition to the information in this chapter, refer the online help for additional
information.

Error Messages

The following errors messages (listed in alphabetical order) may appear in the
status bar of the OracleAS TopLink Mapping Workbench and OracleAS TopLink
Sessions Editor. Each message includes a description of the action that caused the
error and the recommended resolution. Use the Project Status report (see
"Generating the Project Status Report" on page 2-4) to display all error messages in
a project.
1-1 mappings for EJB 2.0 CMP descriptors must use ValueHolder indirection.
Cause: You created a mapping without indirection.

Action: When creating a one-to-one mapping for EJB descriptors in projects
with 2.0 CMP persistence, you must select the ValueHolder indirection option
on the mapping’s General tab.

Troubleshooting C-1

Error Messages

1-M and M-M mappings for EJB 2.0 CMP descriptors must use transparent
indirection.

Cause: You created a mapping without indirection.
Action: When creating a one-to-many or a many-to-many mapping for projects

with 2.0 CMP persistence, you must select the Transparent indirection option
on the mapping’s General tab.

A field/method pair is incomplete in the [mapping name] mapping.
Cause: You created a transformation mapping, but did not specify a complete
field /pair method

Action: Complete the Object > Field Method for each database field on the
mapping’s General tab.

A key pair has not been completely specified for a reference.
Cause: You created a table reference without a key pair.

Action: You must specify a foreign key reference for the database table. Use the
database table’s Reference tab to add a key pair.

A locking policy is specified, but the lock field is not specified.
Cause: You selected a locking policy, but did not specify a field for optimistic
locking.

Action: Specify the locking Field on the Locking tab.

Aggregate fields are not specified.
Cause: You created an aggregate mapping without specifying specific fields.

Action: For aggregate mappings, each Field Description on the Fields tab
must contain a unique Field.

Aggregate mapping fields must be unique.
Cause: You created an aggregate mapping without specifying unique fields.

Action: For aggregate mappings, each Field Description on the Fields tab
must contain a unique Field.

An aggregate shared by multiple source descriptors cannot have one-to-many or
many-to-many mappings.
Cause: You attempted to create multiple one-to-many and many-to-many, or
one-to-one mappings in which the target is the aggregate.

Action: Aggregate descriptors that are shared by multiple source descriptors
cannot have mappings that contain a target object that references the descriptor.

C-2 Oracle Application Server TopLink Mapping Workbench User’s Guide

Error Messages

An ejb-jar.xml file needs to be specified.
Cause: For a 2.0 CMP persistence project, you must specify an ejb-jar.xml
file.
Action: Specify the location of the ejb-jar.xml file on the project’s General
Properties tab.

Attribute is typed as a ValueHolderInterface, but the mapping does not use
Value Holder Indirection.

Cause: You did not specify indirection or transparent indirection for the
mapping.

Action: If the class attribute is of type ValueHolderInterface, you must
use value holder indirection for the mapping.

Attribute is typed as a ValueHolderInterface, but the mapping does not use
Indirection.
Cause: For one-to-one and transformation mappings, you did not use
indirection.

Action: If the class attribute is of type ValueHolderInterface, you must
use indirection for the mapping.

Cannot Use Joining because the source and target (reference) descriptors are the
same type.
Cause: You selected the Use Joining option on a one-to-one mapping in which
the source and reference descriptors are the same.

Action: Either unselect the Use Joining option or select a difference Reference
Descriptor on the One-to-One Mapping General tab.

Classes cannot reference an aggregate target with one-to-one, one-to-many, or
many-to-many mappings.
Cause: You tried to select an aggregate descriptor as a reference.

Action: You cannot select an aggregate descriptor as the Reference Descriptor
for a one-to-one, one-to-many, or many-to-many mapping.

EJB Class information is not compatible with project persistence type.
Cause: You entered EJB incorrect EJB information.

Action: Ensure that the information you entered on the E]JB descriptor’s EJB
Info tab is incorrect, based on the project’s persistence type (as specified on the
project’s General Properties tab).

Troubleshooting C-3

Error Messages

If the mapping uses indirection, then the attribute must be a

ValueHolderInterface.

Cause: Persistent classes that use indirection must replace the relationship
attributes with a value holder (an instance of a class that implements the
ValueHolderInterface, such as ValueHolder).

Action: On the attribute’s General mapping tab, select the Use Indirection
option and specify ValueHolder type.

[descriptor name] is not an implementor of the [descriptor name] interface, so it

cannot have an indicator value.
Cause: You included a descriptor on the Variable One-to-One Class Indicator
Info tab that is an implementor.

Action: Unselect the descriptor on the Variable One-to-One Class Indicator Info
tab or add the descriptor to the Implementor tab.

Mapping references write lock field, but is not read-only.

Cause: You specified a locking policy for a descriptor, but one of the attribute
mappings is not read-only.

Action: Select the Read Only option on the mapping’s General tab.

Mapping uses Indirection, but its associated attribute is not a

ValueHolderInterface.
Cause: You attempted to use Indirection for a one-to-one mapping.
Action: If you select the Use Indirection option for a one-to-one mapping with

transparent indirection, the associated class attribute must be
ValueHolderInterface.

Mapping uses Value Holder Indirection but its associated attribute is not a

ValueHolderInterface.
Cause: You selected indirection without a ValueHolderInterface.
Action: If you select the Use Indirection (ValueHolder) option for a

one-to-many, many-to-many, or direct collection mapping, the associated class
attribute must be ValueHolderInterface.

Mappings for EJB 2.0 CMP descriptors that use Value Holder Indirection must

not use method accessing.

Cause: You cannot use method accessing on mappings for EJB 2.0 CMP
descriptors that use ValueHolder Indirection.

C-4 Oracle Application Server TopLink Mapping Workbench User’s Guide

Error Messages

Action: Because E]B attributes are code-generated, reference mappings should
not be set to use method access. The attributes are code-generated to be of type
ValueHolder but the abstract methods are defined to return the local interface
type of the related bean.

Method accessors have not been selected.
Cause: You selected to Use Method Accessing for a mapping but did not select
a method.

Action: You must select a Get and Set method on the mapping’s General tab.

More than one writable many-to-many mapping cannot use the same relation
table.
Cause: A project cannot have more than one writable many-to-many mapping
using the same relation table.

Action: You must either make sure only one of the mappings is writable or
choose a different table for each many-to-many mapping.

Multi-table reference should be defined from the base table [table name] to the
derived table.

Cause: This descriptor has Inheritance and Multi-Table advanced properties
defined on it.

Action: The multi-table relationship that is defined between the base class's
table and this derived class's table must be defined from base to derived.

NCharacter, NString, and NClob database types are currently only supported on
the Oracle9 platform.

Cause: You attempted to map a database type that is not supported by your
database.

Action: The database type for a type conversion mapping or direct-to-field
mapping can be NCharacter, NString, or NCLOB only if you are using an
Oracle9 database.

No attribute is associated with the mapping named [mapping name].
Cause: The specified mapping does not have an associated class attribute.

Action: Either refresh the class or remove the mapping.

No calss indicator value should be defined for the abstract class [class name].
Cause:

Action:

Troubleshooting C-5

Error Messages

No class in inheritance tree is marked as root.
Cause: The inheritance hierarchy must contain one root descriptor.

Action: Select the Is Root Descriptor option on the Inheritance tab.

No class indicator field is selected for this root class.

Cause: You selected the Use Class Indicator Dictionary option for the root
descriptor in the inheritance hierarchy, but did not specify an indicator value
for the root and its children.

Action: Use the Indicator Type drop-down list on the Inheritance tab for the
root class.

No class indicator field should be defined for the abstract class [class].
Cause: Abstract classes should not be included or contain an Indicator Value
on a descriptor’s Inheritance tab.

Action: Either remove the Include option for the class on the Inheritance tab,
or remove the abstract modifier option on the descriptor’s Class Info — Class
tab.

No collection type is selected.
Cause: For collection mappings, you must select a collection type.

Action: Select a collection type on the mapping’s Collection tab.

No database field is selected.
Cause: You created a direct-to-field or type conversion mapping without
selecting a database field.

Action: For attributes with direct-to-field mappings, you must specify a
Database Field on the mapping’s General tab. For attributes with type
conversion mappings, you must specify a Database Field on the mapping’s
General tab.

No database type is selected.

Cause: For type conversion and object type mappings, you must select a
database type.

Action: Select a Database Type on the mapping’s General properties tab.

No direct field is specified.

Cause: For direct collection mappings, you must specify the direct collection
information.

C-6 Oracle Application Server TopLink Mapping Workbench User’s Guide

Error Messages

Action: Select a Target Table and Direct Field that the direct collection
specifies.

No field/method pairs defined for the [mapping name] mapping.

Cause: You created a transformation mapping, but did not specify an
Object --> Field Method.

Action: You must specify at least one field/method pair, unless the mapping is
Read Only.

No indicator field is selected.

Cause: You created a variable one-to-one mapping, but did not specify a
database field in which to store indicator values.

Action: Select the Class Indicator Field on the Class Indicator Info tab.

No indicator values are specified.

Cause: You created a variable one-to-one mapping, but did not specify
indicator values for each object type.

Action: Select the Indicator Type on the Class Indicator Info tab.

No method specified for transforming a database row into this attribute.

Cause: You created a transformation mapping, but did not specify the
transformation method.

Action: Select a Database Row -> Object Method on the mapping’s General
tab.

If you are creating a write-only mapping, you can ignore this warning.

No null value type has been selected.

Cause: You selected to Use Default Value When Database Field is Null for a
mapping, but did not specify the value.

Action: Specify a default Type and/or Value on the mapping’s General tab.

This message may also appear after using the Package Rename tool when
upgrading an older OracleAS TopLink Mapping Workbench project.

No object type is selected.
Cause: You created an object type mapping, but did not select the type.

Action: Select the Object Type and Database Type on the mapping’s General
tab.

Troubleshooting C-7

Error Messages

No object-type mappings have been specified.
Cause: You created an object type mapping, but did not create n
object-to-database mapping.

Action: Specify at least one mapping (Database Value and Object Value) on
the mapping’s General tab.

No primary key(s) specified in [table name] table.
Cause: You must specify a primary key for each database table. When
importing tables from a database into the OracleAS TopLink Mapping
Workbench, the primary key information will be retained only if the JDBC
driver supports the get PrimaryKeys () method.

Action: Ensure that a primary key is specified for each descriptor on the
Descriptor Info tab.

Not all query key associations have foreign key fields specified.
Cause: You created a query key association without a foreign key.

Action: You must specify a foreign key field for each query key association on
the Query Key Associations tab for variable one-to-one mapping.

No query key associations have been defined.
Cause: You created a variable one-to-one mapping, but did not define a key
pair.

Action: Create or select a key pair on the mapping’s Query Key Association
tab.

No reference descriptor is selected.
Cause: You created a mapping, but did not specify the reference descriptor

Action: You must select a Reference Descriptor for each relationship mapping
on the mapping’s General tab.

No relation table is selected.

Cause: You created a many-to-many mapping, but did not specify a relation
table. The relation table represents the relationship between the primary keys of
the source table and target table.

Action: Select or create a Relation Table on the mapping’s General tab.

No sequence field name is selected.

Cause: You selected Use Sequencing on a descriptor’s Descriptor Info tab but
did not specify the sequence information.

C-8 Oracle Application Server TopLink Mapping Workbench User’s Guide

Error Messages

Action: Specify a Name, Table, and Field.

No sequence name is selected.
Cause: You selected Use Sequencing on a descriptor’s Descriptor Info tab but
did not specify the sequence information.

Action: Specify a Name, Table, and Field.

No source reference is selected.
Cause: You created a many-to-many mapping, but did not select (or create) a
source table reference on the mapping’s Source Reference tab.

Action: The source table reference must contain a Source field (from the
mapping’s relation table) and a Target field (from one of the descriptor’s
associated tables).

No table reference is selected.
Cause: You create a relationship mapping, but did not specify a reference table.

Action: Select (or create) a table reference for each relationship mapping on the
mapping’s Table Reference tab.

No target reference is selected.
Cause: You created a many-to-many mapping, but did not select (or crate) a
target table reference on the mappings Target Reference tab.

Action: The source table reference must contain a Source field (from the
mapping’s relation table) and a Target field (from one of the descriptor’s
associated tables).

Object values do not match the specified attribute or object type.

Cause: For object-type mappings, you entered an Object Value that does not
match the Object Type, as specified on the mapping’s General tab. For
example, you specified an integer type, but entered a value of A.

Action: Ensure that the Object Value matches the Object Type.

One or more field types have not been specified.
Cause: You created a field with a missing or invalid Type.

Action: You must specify the Type for each database field on the Field tab.

One of the descriptors in this package is incomplete.

Troubleshooting C-9

Error Messages

Cause: One (or more) of the descriptors in a package contains errors. The
OracleAS TopLink Mapping Workbench places an error icon beside the
incorrect package.

Action: Expand the package to display its descriptors.

One of the packages is incomplete.

Cause: One (or more) of the packages in your project contains errors. The
OracleAS TopLink Mapping Workbench places an error icon beside the
incorrect project.

Action: Expand the project to display its packages.

One of the tables is incomplete.

Cause: One (or more) of the database tables in your project contains errors. The
OracleAS TopLink Mapping Workbench places an error icon beside the
incorrect table.

Action: Expand the database object to display its tables.

Primary keys do not match across associated tables and no reference(s) specified
in multi-table policy info.
Cause: You attempted to associate multiple tables via primary key.

Action: Primary key field names must match across associated tables, or
references must be defined from the primary table to each secondary table.

Primary keys(s) do not match parent’s primary key(s).
Cause: In an inheritance hierarchy, the child’s primary key(s) must match the
root’s primary key(s).

Action: Ensure that each child’s Primary Key on the Descriptor Info tab
matches the parent’s primary key.

[descriptor name] references [reference descriptor name], which is not active.
Cause: You tried to select an inactive descriptor as a Reference Descriptor on
the mapping’s General tab.

Action: Either select a new Reference Descriptor, or make the descriptor
active.

Root class does not include an indicator mapping for this descriptor.

Cause: The root class in the inheritance hierarchy is set to use the class
indicator dictionary. The dictionary does not contain an indicator value for this
child class.

C-10 Oracle Application Server TopLink Mapping Workbench User’s Guide

Error Messages

Action: Select an Indicator Type on the Inheritance tab of the root class that
includes the child types.

Some mappings are incomplete.

Cause: One (or more) of the attributes of a descriptor contains mapping errors.
The OracleAS TopLink Mapping Workbench places an error icon beside the
incorrect attribute(s).

Action: Expand the descriptor to display its mappings.

The Collection class is a Map, but the key method is not selected.
Cause: You created a direct collection mapping that uses a map class, but did
not specify the key method.

Action: Select the Key Method on the mappings Collection Options tab.

The inheritance hierarchy originating in this descriptor cannot contain both
aggregate and nonaggregate child descriptors.
Cause: Aggregate and class descriptors cannot be in the same inheritance
hierarchy.

Action: Ensure that the inheritance hierarchy contains either aggregate or
nonaggregate children — but not both.

The following mappings "Use Joining" and are mapped to the same reference
descriptor: [mapping name]
Cause: You have multiple one-to-one mappings to the same descriptor, that
use joining.
Action: Unselect the Use Joining option on the One-to-One Mapping General
tab for all but one mapping.

The [access method type] method for this mapping’s method accessing field is no
longer visible to this descriptor.
Cause: You changed the class hierarchy within the project, causing the method
access type (get or set) to no longer be visible to the class.

Action: Ensure that the selected method is visible to the class.

The method specified for the copy policy on this descriptor is no longer a visible
member of this class.

Cause: You changed the class hierarchy within the project, causing the copy
policy to no longer be visible to the class.

Action: Ensure that the selected copy policy is visible to the class.

Troubleshooting C-11

Error Messages

The database type for the mapping does not match the database type of the
database field.

Cause: You selected a Database Type for an Object Type mapping that differs

from the type in the database.

Action: Select the Database Type on the mapping’s General tab that matches

the actual type in the database.

The database is incomplete.

Cause: The databases in a project contains errors. The OracleAS TopLink
Mapping Workbench places an error icon beside the database.

Action: Expand the database to display its tables.

The event policy’s [method type] method is no longer a visible member of this
descriptor’s associated class.

Cause: You changed the class hierarchy within the project, causing the method

to no longer be visible to the class.

Action: Ensure that the selected method is visible to the class.

The expression [line number] on query [query name] is invalid.
Cause: One of the arguments in the query expression is missing or invalid.

Action: Edit the query and ensure that all query keys and parameters have
been specified.

The following fields have multiple writable mappings: [field name].
Cause: Multiple mappings cannot write to the save database field.

Action: Each database field must have a single, writable mapping.

The following Query Keys do not have associated database fields:

Cause: The database field(s) for the query key(s) listed have been removed
from the associated table.

Action: If you want to use these query key(s), then you must specify a
database field(s) for them.

The following primary key fields have no writable mappings: [field name].
Cause: Each primary key field must have a writable mapping.

Action: Ensure that the primary key field mappings are not read only.

The following primary key fields are unmapped: [field name].
Cause: Each primary key field must have a writable mapping.

C-12 Oracle Application Server TopLink Mapping Workbench User’s Guide

Error Messages

Action: Ensure that the primary key(s) are mapped.

The method specified for the copy policy on this descriptor is no longer a visible
member of this class.
Cause: You changed the class hierarchy within the project, causing the copy
policy to no longer be visible to the class.

Action: Ensure that the copy policy is visible to the class.

The method specified for the inheritance policy’s class extraction method on this
descriptor is no longer a visible member of this class.
Cause: You changed the class hierarchy within the project, causing the
inheritance policy to no longer be visible to the class.

Action: Ensure that the inheritance policy is visible to the class.

The multi-table reference should not be defined on the database.

Cause: When using multi-tables with differently named primary keys, you
must set a reference from the TOP table to the BOTTOM table. This reference
must not be an actual constraint on the database.

Action: Select the table in which this is defined, and deselect the On Database
option.

The parent and children of an aggregate descriptor must also be aggregates.
Cause: You created an inheritance hierarchy for an aggregate descriptor.

Action: If an aggregate descriptor is in an inheritance policy hierarchy, then all
descriptors in the hierarchy must be aggregates.

The reference [table reference] does not have any field associations.
Cause: You selected a table reference for a mapping, but did not add a key
pair.

Action: You must specify source and target key pairs for the reference.

The reference must have at least one field association.

Cause: You selected a table reference for a relationship mapping, but did not
define a source and target field key pair.

Action: For variable one-to-one mappings, you must define a query key pair
(in the source descriptor’s tables) to use for the common query key.

The selected parent descriptor for this descriptor’s inheritance policy does not
have an associated inheritance policy.

Troubleshooting C-13

Error Messages

Cause: You selected a Parent Descriptor for a descriptor’s inheritance policy
that does not have an inheritance policy.

Action: Parent Descriptors must have a valid inheritance policy.

The source reference does not contain any field associations.
Cause: You created a many-to-many mapping, but did not define a source and
target reference for the source reference.

Action: You must define a table reference and the appropriate key pairs for
each source reference.

The source reference must be specified.
Cause: You created a many-to-many mapping, but did not define a source
table reference.

Action: Select or create a table reference on the mapping’s Source tab.

The target reference does not contain any field associations.
Cause: You created a many-to-many mapping, but did not define a source and
target reference for the target reference.

Action: You must define a table reference and the appropriate key pairs for
each target reference.

The target reference must be specified.

Cause: You created a many-to-many mapping, but did not define a target table
reference.

Action: On the mapping’s Target tab, define a target table reference.

There is no database associated with the query key [query key name].
Cause: You did not associated the specified query key with a database table.

Action: You must select a database Name and Table on the Query Keys tab.

This class is a subclass of a final class.
Cause: If you select the Final option on the descriptor’s Class Info, Class tab
for a class, then the class cannot contain subclasses.

Action:

This root class has no class indicator mappings for its hierarchy.

Cause: You created an inheritance policy with the Use Class Indicator
Dictionary option but did not specify the indicator values for all subclasses.

C-14 Oracle Application Server TopLink Mapping Workbench User’s Guide

Classpath Issues

Action: Specify the indicator values for all subclasses on the descriptor’s
Inheritance tab.

Note: OracleAS TopLink displays a list of each subclass and
indicator value if you have identified the subclasses’ parent
descriptor.

"Use factory" is specified for the Instantiation policy, but all required
information is not specified.

Cause: You selected the Use Factory option on the descriptor’s Instantiation
Policy tab, but did not specify the Factory Class, Factory Method, or
Instantiation Method fields.

Action: Complete the Factory Class, Factory Method, or Instantiation Method
fields on the descriptor’s Instantiation tab.

"Use method" is selected for the Instantiation policy, but no method is selected.

Cause: You selected the Use Method option on the descriptor’s Instantiation
Policy tab, but did not specify the field.

Action: Select the Method on the descriptor’s Instantiation tab.

Writable mappings defined for the class indicator field [field name].
Cause: The class indicator field should not contain any writable mappings.

Action: Select a Use Class Indicator Field on the descriptor’s Inheritance tab
that does not contain any writable mappings.

Classpath Issues
The OracleAS TopLink Mapping Workbench does not display the class(es) to
import.
Cause: Your classes are not available for import on the Select Classes dialog
box.

Action: Ensure that the class is in your project’s classpath (on the project’s
General properties tab).

Ensure that the class is in the . zip or . jar file. You cannot import compressed
classes.

Troubleshooting C-15

Database Connections

The OracleAS TopLink Mapping Workbench generates an exception error when
importing classes.

Cause: OracleAS TopLink’s class import utility did not start correctly. One of
the classes includes a static initialization method, which may cause the import
utility to fail.

Action: Ensure that your project’s classpath points to the root folder of your
package hierarchy. For example, to import the com. company . class package
in the C:\classes\com\company directory, your project classpath should be
C:\classes\.

The OracleAS TopLink Mapping Workbench fails to import the class, but does
not generate an exception error.

Cause: Ensure that you have properly indicated the directories that contain the
domain class(es) to map on the project’s General tab.

Action: The classpath containing your JDBC drivers should still be on your
system CLASSPATH. The OracleAS TopLink Mapping Workbench classpath is
for domain classes only.

Database Connections

If the OracleAS TopLink Mapping Workbench encounters problems
communicating or logging into the database, you should:

= Ensure that the driver class, login name, password, and JDBC database URL are
correct.

= Verify that your system classpath includes all files (for example, native .d11
files) required by the driver.

= Verify that your OracleAS TopLink classpath includes all classes and files (for
example, . zip or . jar) required by the driver.

= Consult with your database administrator and confirm that the:
= Database server is setup correctly
= Database permissions are set correctly

= Database has enough available connections

C-16 Oracle Application Server TopLink Mapping Workbench User’s Guide

Troubleshooting Known Issues

Troubleshooting Descriptors

OracleAS TopLink checks each descriptor and mapping to ensure that you have
properly defined the required settings.

If a descriptor contains a deficient mapping or property, then the OracleAS TopLink
Mapping Workbench displays a yellow caution icon to the left of its icon. If you
select the error, then the OracleAS TopLink Mapping Workbench displays the
complete error message in the status bar.

Figure C-1 Sample Deficient Mapping

G _E} arder
O examples.ejb.cmp20 relationships
p
2 /_'_@ CustomerBean | An errar in a mapping causes
B termBean an error in the descriptor.
5 .
*% arderld
*% guantity

The OracledS ToplLink
Mapping Warkbench displays
the errar infarmation.

*¥ shippingAddress
B oracle toplinkworkbench.com
=8 OrderDatabase

& Mo reference descriptoris selected.

Refer to the specific error message (see "Error Messages" on page C-1) and
Chapter 4, "Understanding Descriptors" for more information on working with
descriptors.

The Project Status report (see "Generating the Project Status Report” on page 2-4) for
information on generating an error report.

Troubleshooting Known Issues

The OracleAS TopLink Mapping Workbench has a number of known issues in this
release, namely:

s Icon Size

s Improper Set Method for Array Type Attributes

s Changes to the Interface Descriptor do not Update Properly
s Using the JAWS Screen Reader

Troubleshooting C-17

Troubleshooting Known Issues

Icon Size

Changing the icon size of the OracleAS TopLink Mapping Workbench toolbar may
cause the application to fail at the next start-up. You must edit the workbench . xml
file and change small-icon="false" to "true".

Improper Set Method for Array Type Attributes

OracleAS TopLink Mapping Workbench does not generate proper set method for
array type attributes.

Changes to the Interface Descriptor do not Update Properly

In the OracleAS TopLink Mapping Workbench, changes to the interface descriptor
do not update properly. When the inheritance structure of a class, for example, class
A changes so that the class A is no longer a subclass of a class B which implements
the interface I, the interface's descriptor is not properly updated by the OracleAS
TopLink Mapping Workbench and still displays class A as the implementor. If you
attempt to remove class A from the interface I implementors, the OracleAS TopLink
Mapping Workbench throws the following exception:
java.lang.ArrayIndexOutOfBoundsException.

As a work around, remove the implementor from the interface descriptor before
changing its inheritance.

Using the JAWS Screen Reader

JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

Due to limitations in JAWS 4.5.1, input field labels in the OracleAS TopLink
Mapping Workbench are not read properly. Oracle recommends using JAWS 3.7
and version 103 Access Bridge for maximum accessibility.

C-18 Oracle Application Server TopLink Mapping Workbench User’s Guide

A

access method

direct, 4-71

generating, 3-10

mappings, 4-72

method, 4-71

project default, 2-9

specifying, 4-72
access, direct, 4-72
accessors

database, B-32

Java methods, B-10
ACME Employee Management System

database schema, B-39

see also tutorials
activating descriptors, 1-9
Add Named Query dialog box, 4-16
Add New Class dialog box, 2-13
addAscendingOrdering (), 6-39
addDescendingOrdering (), 6-39
addFieldTransformation (), 5-13
adding

classes, 2-14, B-10

query keys, 4-25

sessions, 8-6

see also creating
ADDRESS table, B-3, B-40
addTableName () method, 4-73
Add/Update Class button, 2-14
advanced properties

descriptor, 4-26

sessions, 8-10

specifying default, 2-12
Advanced Properties Default dialog box, 2-12
Advanced Query Options dialog box, 4-19
advanced tutorial

about, B-37

see also tutorials
After Load tab, 4-27
aggregate collection mappings, about, 6-32
Aggregate Descriptor button, 6-19
Aggregate Descriptor icon, 6-19
Aggregate Mapping button, 6-19
Aggregate Mapping tab

Fields, 6-20, B-57

IndeXx

General, 6-19, B-56
aggregate object mappings

about, 6-16

creating, 6-19

target descriptor, 6-18

tutorial, B-56
alias, descriptor, 4-17
AllFieldsLockingPolicy, 4-58
amending descriptors, 4-27,5-12, 6-24

see also after load
API, 4-1
arguments

binding in query, 4-14
array dimensionality, 4-10
array mappings

about, 7-1,7-2

example, 7-3

implementing in Java, 7-3
attributes

array dimensionality, 4-10

nullvValue, 4-73

transformation method, 5-9
Attributes tab, 4-9,4-11
automapping descriptors

about, 4-3

tutorial, B-45

see also mappings

bidirectional relationships
about, 6-1
generating, 3-11
maintaining, 4-73
target keys, 6-22
bindAllParameters (), 4-18
binding arguments, 4-14
BLOB fields in databases, 5-1,5-8
branch classes, 4-32,4-44
Builder JDBC Server, B-4, B-5
buttons. see toolbars

Cc

cache
caching objects, 4-61

Index-1

identity map, 4-59
refreshing, 4-7
cacheQueryResults (), 4-18,4-20
cacheStatement (), 4-18
caching. see also clustering
ChangedFieldsLockingPolicy, 4-58
changing package names, 2-10
checking in/out projects, 1-19
Choose Query Key dialog box, 4-22
Choose Relationships to Generate dialog box,
class file, 2-6
class definitions, generating, B-10
class extraction method, 4-43
class files
merging, 1-21
Class Import preferences
Editing Classes tab, 1-15
Importing Classes tab, 1-14
class indicator field, 4-43, 6-25
Class Indicator Info tab, 6-29
class information, setting, 4-7
Class tab, 4-8
classes
advanced tutorial, B-38
ArrayMapping, 7-10
branch, 4-44
creating, 2-13
DatabaseException, B-34
DatabaseMapping, 4-69
DirectCollectionMapping, 6-41
enabling, B-8
Expression, B-36
ExpressionBuilder, 6-41
generating, 4-4
generating from database, 3-9
introductory tutorial, B-2
leaf, 4-44
linking to tables, B-18
NestedTableMapping, 7-10
OneToOneMapping, 6-41
OptimisticLockException, 4-58
persistent, 4-73
persistent requirements, A-1
preferences, 1-14
refreshing, 2-14
removing, 2-15
root, 4-44
SchemaManager, B-32
setting information, 4-7
TableDefinition, B-33
TransformationMapping, 5-13

3-10

ValueHolderInterface, 6-7,6-36, A-1,B-46

VariableOneToOneMapping, 6-25

XMLProjectReader class, 2-1
classpath

about, 2-5

adding, 2-7,B-7

relative, 2-7

setting, B-6
class-table relationships, B-9, B-42

Index-2

Clustering property sheet, 8-14
CMP fields

CMR relationships, 2-7
code generation

creating from descriptors, 4-4

options, 2-11
collapsing items in Navigator pane, 1-9, 8-3
collection mappings, persistent requirements, A-1
Collection Options tab, 4-74
composite primary key, 6-36
Configuration General property sheet, 8-5
Configuration Session Broker property sheet, 8-6
configurations

about, 8-3

creating, 8-4

new, 8-4

opening, 8-4

saving, 8-5

session, 8-4
conform results in unit of work, 4-6
Connection Pool button, 8-16
Connection Pool General property sheet, 8-17
connection pools

about, 8-16

creating, 8-16
constructor requirements, A-2
container policy

about, 6-4

overriding, 6-5
copy policy

about, 4-52

setting, 4-52
copying project objects, 1-22
Copying tab, 4-53
Create New Configuration button, 8-4
Create New Project button, 2-2
Create New Project dialog box, 2-2
creating

configurations, 8-4

database tables, B-14

database tables in OracleAS TopLink Mapping

Workbench, B-14

expressions, 4-20

new projects, B-4, B-43

projects, 2-2

session brokers, 8-5

sessions, 8-7

D

data definition language (DDL) creation
scripts, B-16
database
about, 3-1
accessors, B-32
creating reference tables on, 3-7
drivers, 1-17,3-2
for project, 2-2
logging in, 3-3, B-12, B-32
platform, 2-2,3-2

preferences, 1-16

properties, 3-1

supported, 4-68
database drivers, custom, 1-17
Database Fields tab, B-15, B-20, B-22
database login, B-12, B-32
Database Login button, 3-3
Database login icon, 3-3
Database Preferences, 1-16
Database properties, B-13
Database property sheet, 3-1
database schema

about, 2-10

advanced tutorial, B-39

introductory tutorial, B-2
database sessions, B-31
database tables

creating, B-14

creating in Java, B-32

creating in OracleAS TopLink Mapping

Workbench, B-14

generating, 3-13

generating descriptors and classes, 3-9

generating EJB entities, 3-11

generating Java source, 2-17

generating SQL, 3-8

importing, B-16

properties, 3-3

specifying fields, 3-4

specifying references, 3-6
DatabaseException class, B-34
DatabaseMapping class, 4-69
DatabaseRow, 5-9
dates, converting, 8-14
deactivating descriptors, 1-9
default values, when database field is null

Direct-to-Field mapping, 5-4

object type mappings, 5-7
defaults

advanced properties, setting, 2-12

sessions, 8-7

table generation, 2-10
Defaults tab, 2-9
deleteObject (), 4-13
deployment

database login, 3-3

descriptors, 4-1

XML, generating, 2-17
deployment XML, generating, 2-17
descriptor alias, 4-17
descriptor files

merging, 1-21
Descriptor Info tab, 4-6, B-19, B-25
descriptors

about, 4-1,B-18,B-31

advanced properties, 4-26

advanced properties, setting default, 2-12

alias, 4-17

amending, 4-27

automapping, 4-3, B-45

cache refreshing, 4-7

class information, 4-7

deactivating, 1-9

EJB, 2-7

errors, 1-10

events, 4-28

generating from database, 3-9

generating Java code, 4-4

identity mapping, 4-29

inactive, 1-9

interface, 4-46

mapping, 4-3

mapping inherited attributes, 4-40

mapping to tables, 4-5

object-relational, 4-67

primary key, 4-35

registering events, 4-65

removing, 2-15

types, 4-2

using in an application, B-33
development database login, 3-3
dimensionality, array, 4-10
direct access

about, 4-71

specifying, 4-72
Direct Collection Mapping button, 6-31
Direct Collection Mapping tab

General, 6-31, B-58

Table Reference, 6-32
direct collection mappings, B-57

about, 6-30

creating, 6-31

example, 6-30
direct mappings

about, 4-69,5-1

nullvalue, 4-73
direct nullvalue attribute, 4-73
direct query key, 4-61
DirectCollectionMapping class, 6-41
direct-to-field mapping, B-23
Direct-to-Field Mapping button, 5-4
Direct-to-Field Mapping tab, 5-4, B-23, B-48
direct-to-field mappings

about, 5-1,5-2

creating, 5-4

n, 4-73

null values, 5-3

type conversions, 5-2
drivers

custom database, 1-17

database, 3-2

E

Edit the Literal Type and Value dialog box, 4-23
Editor pane, about, 1-3,1-10
EJB descriptor icon, 2-7
EJB descriptors
deployment descriptors, 4-1
icon, 2-7

Index-3

opening projects with, 2-3
updating, 2-7
EJB entities
generating, 3-11
inheritance, 4-40
EJB finders, 4-17
EJB Info tab, 4-25
EJB Preferences, 1-16
EJB QL queries, 4-12
ejb-jar.xml
about, 2-18
corresponding to OracleAS TopLink Mapping
Workbench functions, 2-18
displaying information, 4-25
file location, 2-7
managing, 1-23
preferences, 1-15
specifying, 4-3
updating from, 2-20
writing, 2-19
ejbSelect queries, 4-17
elements, renaming, 8-3
EMPLOYEE table, B-3, B-39
enabling Java classes, B-8
encrypting login passwords, 2-16
encryption, password, 8-11
Entity Beans, using sequence numbers with, 4-37
errors
descriptors, 1-10
OracleAS TopLink Mapping Workbench
messages, C-1
sessions, 8-3
Event Manager, 4-64
event method, 4-65
events
about, 4-28,4-64
registering with a descriptor, 4-65
setting, 4-28
supported, 4-66
Events tab, 4-28
examples
array mapping, 7-3
custom mapping query, 6-41
direct collection mappings, 6-30
events, 4-65
indirection, 6-6
inheritance, 4-41
interface, 4-46
nested table mapping, 7-10
object array mapping, 7-4
object type mapping, 5-6
one-to-many mapping, 6-34
OracleAS TopLink Mapping Workbench, 1-2
pop-up menu, 1-5
query keys, 4-61,4-62, 4-64
reference mapping, 7-8
serialized mapping, 5-8
structure mapping, 7-6
transformation mapping, 4-64, 5-10, 5-12
transformation mapping (write-only), 5-13

Index-4

type conversion mappings, 5-5

see also tutorials
existence checking, specifying, 2-10
expanding items in Navigator pane, 1-9, 8-3
Export to Deployment XML button, 2-17
Export to Java Source button, 2-16
exporting

Java model source, 2-17

Java source, 2-16

projects, 2-16
Expression Builder, 4-20
Expression Builder dialog box, 4-21
Expression class, B-36
ExpressionBuilder class, 6-41
expressions

building, 4-20

see also queries

F

field locking policies, 4-56, 4-57
fields
access, project, 2-9
database tables, 3-4
finders
about, 4-67
reserved, 4-67
see also queries
findManyByQuery, 4-19
findOnebyQuery, 4-19
foreign keys
about, 6-3
multiple tables, 4-52
one-to-many mappings, 6-33
one-to-one mappings, 6-22, B-27
references, C-2
specifying, 6-4
target, 6-22
troubleshooting, C-2
full identity map, 4-59

G

General Preferences dialog box, 1-10
General tab, 2-6, B-7
Generate Classes and Descriptors dialog box, 3-10
Generate E]B Entity Classes and Descriptors dialog
box, 3-12
generating
access method, 3-10
class definitions, B-10
options, 2-11
tutorial code, B-64
see also exporting
getValue (), 6-7
getValue () method, 6-7
getWrapperPolicy (), 4-56

H

hard cache weak identity map, 4-59

hashtable, collection mappings, 6-5
Help Preferences, 1-18
holders, value, 6-7

identity maps
about, 4-59
database sessions, B-31
project default, 2-9
recommendations, 4-60
size, 4-59
specifying, 4-29
Identity tab, 4-29
Implementors tab, 4-48, 6-27
importing
classes, 1-14
database tables, B-16
inactive descriptors, 1-9
independent relationships, 6-2
indirection
about, 6-5, 6-6, B-46
example, 6-6
implementing in OracleAS TopLink Mapping
Workbench, B-47
Java class requirements, 6-9
many-to-many mappings, 6-36
non-transparent, A-1
specifying, 6-8
transformation mapping, 5-11
transparent, A-1,C-2
value holder, C-1
ValueHolderInterface, A-1
see also proxy indirection, transparent indirection
Informix, sequence numbers, 4-37
inheritance
about, 4-39
aggregate collection mappings, 6-33
branch and leaf classes, 4-32
branch classes, 4-44
finding subclasses, 4-43
in one descriptor, 4-40
leaf classes, 4-44
primary keys, 4-44
root class, 4-30
root classes, 4-44
specifying, 4-30
supporting with multiple tables, 4-42
supporting with one table, 4-41
tutorial examples, B-60
using with EJBs, 4-40
Inheritance tab, 4-30, B-62
insertObject (), 4-13
instantiation policy
about, 4-53
setting, 4-54
Instantiation tab, 4-54
Interface Alias tab, 4-34
interfaces
about, 4-45

adding, 4-9

customizing, 1-10

descriptors, 4-46

implementing, 4-48, 4-49

query keys, 4-62

removing, 4-9

variable class relationships, 4-45
introductory tutorial

about, B-1

database schema, B-2, B-39

see also tutorials

J

Java

database tables, 2-17

descriptors, 4-4

exporting to, 2-16

generating source code, B-64

object model, A-1

persistent classes, B-18
Java class instances, B-34
Java classes

persistent, B-18
Java Core Reflection API, 4-71
Java Cryptography Extension, 2-16
Java source code, generating, B-64
java.util.Collection interface, 6-4
java.util.Map interface, 6-4
java.util.Vectorclass, 6-5
javax.ejbEntityBean interface, 3-11
JCE. see Java Cryptography Extension
JDBC drivers

supported, 4-68

tutorial, B-13
JDBC Server, B-4, B-5

K

key pairs
database table reference, 3-8
troubleshooting, C-2

keys
foreign, 6-22, B-27
foreign, target, 6-22
primary, 6-36, B-20
primary, in inheritance, 4-44
primary, in variable class relationships,
primary, multiple tables, 4-51
primary, read-only settings, 4-72
query, 4-61,4-63
reference key field, 6-30

L

6-25, 6-26

LARGEPROJECT table, B-41
leaf classes, 4-32,4-44
linking classes and tables, B-18
locked files, 1-23
locking policies

about, 4-56

Index-5

advanced options, 4-58
optimistic, 4-56
troubleshooting, C-2
Locking tab, 4-34
logging into a database, B-12, B-32
logging XML, 1-11,2-1
Login General properties sheet, 8-10
Login Options tab, 8-12
Login Sequencing properties sheet, 8-11
logins, database, 3-2
look and feel, specifying, 1-10

maintainCache (), 4-19
management, source control, 1-19
Many-to-Many Mapping button, 6-37
Many-to-Many Mapping tab

General, 6-37, B-59

Source Reference, 6-38
many-to-many mappings

about, 6-36

creating, 6-37

relation table, 6-36

tutorial, B-58
mapping

class hierarchy, 4-69

descriptors, 4-3

relationship, 4-69, 6-2

to tables, 4-5

tutorial, B-18

Mapping Workbench. see OracleAS TopLink Mapping

Workbench

mapping, relationship
about, 4-69,6-2
aggregate object, 6-16
direct collection, 6-30
many-to-many, 6-36
one-to-many, 6-33
one-to-one, 6-21

mappings
about, 4-69,B-18
access types, 4-72
aggregate object, 6-16, B-56
amending the descriptor, 5-12
array, 7-2
bidirectional relationships, maintaining,
BLOB fields, 5-8
collection options, 4-74
direct, 4-69,5-1
direct access, 4-71,4-72
direct collection, 6-30, B-57
direct mappings, 5-1
direct-to-field, 5-1,5-2, B-23
ejb-jar.xml file, 4-74
hierarchy, 4-69
many-to-many, 6-36, B-58
method access, 4-71,4-72
object relational, 7-2
object type, 5-1, 5-6, B-54

Index-6

one-to-many, 6-33, B-29, B-51
one-to-one, 6-21, B-25, B-49
properties, 4-70
read-only setting, 4-72
serialized object, 5-1,5-8
to database BLOB fields, 5-1
transformation, 5-1,5-9, 5-13, B-62
type conversion, 5-1,5-5
maps, identity, B-31
menu bar, 1-4
menus
about, 1-2,1-4
menu bar, 1-4
pop-up menus, 1-5
merging files, 1-19
method access

about, 4-71
setting, 4-72
methods

getValue (), 6-7
setting container policy, 6-5
setValue (), 6-7
wrapper policy, 4-56
Methods tab, 4-11
model source, exporting, 2-17
multimedia objects, mapping, 5-1
multiple tables
about, 4-49
specifying for descriptors, 4-50
tutorial, B-53
Multi-table Info tab, 4-50
mw_xml.log file, 2-1
mw_xml . txt file, 1-11
.mwp file, 2-1,2-2,4-1,B-5

N

named queries, 4-14

see also finders
Named Queries Format tab, 4-17
Named Queries General tab, 4-16
Named Queries Options tab, 4-18
Named Queries tab, 4-15
native sequencing, 4-37
NAVCHAR?2 database type, 5-3,5-5
Navigator pane

about, 1-3

example, 1-8,8-2

refreshing, 2-4
NCHAR database type, 5-3,5-5
NCLOB database type, 5-3,5-5
neediness warnings, 1-10, 8-3

see also troubleshooting
nested table mappings

about, 7-1,7-9

example, 7-10

Java, 7-10

properties, 7-11
NestedTableMapping class, 7-10
new project, creating, B-4

New Reference dialog box, 3-6
New Sessions File dialog box, 8-4
non-native sequencing, B-24
non-transparent indirection, A-1
null value
in expressions, 4-22
nullValue attribute, 4-73

(0]

object array mappings

about, 7-4

example, 7-4

implementing in Java, 7-4
object identity, 4-59, 4-60
object model

advanced tutorial, B-38

OracleAS TopLink requirements, A-1
Object Type Mapping button, 5-7
Object Type Mapping tab, 5-7, B-55
object type mappings

about, 5-1,5-6

creating, 5-7

tutorial, B-54
object, cache, 4-57
object-relational descriptors

about, 4-67,4-69

mapping, 4-69
one-to-many mapping, B-29
One-to-Many Mapping button, 6-34
One-to-Many Mapping tab

General, 6-34, B-30, B-52

Table Reference, B-30, B-53
one-to-many mappings

about, 6-33, B-51

creating, 6-34, B-29

specifying advanced features, 4-73
one-to-one mapping, B-25
One-to-One Mapping button, 6-23
One-to-One Mapping tab

General, 6-23, B-27, B-49

Table Reference, 6-24, B-28, B-50
one-to-one mappings

about, 6-21

creating, 6-23, B-25, B-49

foreign key references, B-27

specifying advanced features, 6-24

variable, 6-25
one-way transformation mapping, 5-13
online help, 1-17
Open Configuration button, 8-4
Open Project button, 2-3
opening configurations, 8-4
opening projects, 2-3
optimistic locking

about, 4-56

advanced policies, 4-58
OptimisticLockException class, 4-58
optimization

inheritance, 4-42

queries, 6-15
Oracle
native sequencing, 4-39
pre-allocation, 4-38
sequence objects, 4-37
OracleAS TopLink
about, 1-1

see also OracleAS TopLink Mapping Workbench

OracleAS TopLink Mapping Workbench
about, 1-1
development process, 1-1
error messages, C-1
parts of, 1-2,8-2
sample, 1-2
starting, 1-2
upgrading projects, 2-3
window, B-4

OracleAS TopLink Sessions Editor
about, 8-1
defaults, 8-7
starting, 8-1

outer-join, 4-31

P

package names

generating, 3-10

renaming, 2-10
packages, renaming, 2-10
password

encryption, 2-16
password, database login, 3-3
persistent class requirements, A-1
persistent classes

about, 4-2

Java, B-18

multiple tables, 4-73

project, 3-12

registering events, 4-65

requirements, A-1

types, 2-6
pessimistic locking, 4-56
PHONENUMBER table, B-3, B-40
platform, database, 2-2, 3-2
polymorphic relationships, 6-25
pop-up menus, 1-5
Potential EJB Descriptors dialog box, 2-3
pre-allocating sequence numbers, 2-8, 4-38
preferences

class import, 1-14

database, 1-16

EJB, 1-15

general, 1-10

help, 1-17

warnings, 1-12

workbench, 1-10
Preferences button, 1-10, 1-14, 1-15, 1-17
primary key

composite, 6-36

default, 2-10

inheritance, 4-44
multiple tables, 4-51
read-only settings, 4-72
search, 2-10

setting, 3-5, 4-5,4-35
tutorial, B-20

variable class relationships, 6-25, 6-26

primary key search pattern

default, 2-10
primkey, ejb-jar.xml file, 2-18
private relationships, 6-2
privately owned classes, B-27
PROJ_EMP table, B-41
project files, merging, 1-20
project objects, copying, 1-22
Project Options tab, 2-10
project status, 2-4
Project Status Report dialog box, 2-5
PROJECT table, B-41
projects

about, 2-1

classpath, 2-5

creating, 2-2, B-4, B-43

defaults, 2-9

exporting, 2-16

general properties, 2-5

locked, 1-23

logging XML, 1-11,2-1

merging, 1-20

merging files, 1-19

model, exporting, 2-17

.mwp file, 4-1

new, 2-2

open, 2-3

packages, renaming, 2-10

persistence type, 2-6

properties, 2-5

recently opened, 2-3

refreshing, 2-4

renaming, 2-4,8-5

reopening, 2-3

saving, 2-4

status report, 2-4

team development, 1-18

troubleshooting, 1-11,2-1

updating from ejb-jar.xml, 2-20

upgrading from 2.x or 3.x, 2-3

writing ejb-jar.xml, 2-19
properties

project, general, 2-5

setting default advanced, 2-12
proxies. see wrapper policy
proxy indirection

about, 6-12

implementing in Java, 6-14
public accessor methods, requirements,

Q

queries

Index-8

ejb-jar.xml file, 4-12
optimizing, 6-15
Query Key Association tab, 6-28

query keys
about, 4-24,4-61
adding, 4-25

automatically defining, 4-61,4-73

creating, 4-25

interface descriptors, 4-62

relationship mappings, 4-63

specifying, 4-24

variable one-to-one mapping, 6-28
Query keys tab, 4-24

R

Read Only Files dialog box, 1-23
readAllObjects (), 4-14
reading ejb-jar.xml, 2-20
read-only files, 1-23
read-only mappings, 4-72
recently opened projects, 2-3
records, B-20
reference key field, 6-30
reference mappings

about, 7-1

example, 7-8

Java, 7-8

properties, 7-9
ReferenceMapping class, 7-8
references

about, 6-3

database tables, 3-6

foreign keys, C-2
refreshIdentityMapResults (),
refreshing

cache, 4-7

classes, 2-14

project tree, 2-4
relation table, 6-36
relational mappings, about, 7-1
relationship mappings

about, 4-69,6-1,6-2

aggregate object, 6-16

many-to-many, 6-36

one-to-one, 6-21

optimizing queries, 6-15

4-18

relationship partner, bidirectional, 4-73

relationship query keys, 4-63
relationship element, 4-74
relationships
bidirectional, 6-22
bidirectional, generating, 3-11
inejb-jar.xml file, 2-19
polymorphic, 6-25
query keys, 4-63
variable class, 6-25
relative classpath, 2-7
remote session requirements, A-2
Remove Class button, 2-15

Rename button, 8-3
renamer, project, 2-3
renaming

packages, 2-10

projects, 2-4,8-5
renaming elements, 8-3
reopening projects, 2-3
reports, 2-4
requirements

constructors, A-2

remote session, A-2
reserved finders, 4-67
RESPONS table, B-41
root class

about, 4-44

inheritance mapping, 4-43

S

SALARY table, B-40
samples. see examples
Save All button, 8-5
Save All Projects button, 2-4
Save As button, 8-5
Save button, 8-5
Save Selected Project button, 2-4
schema manager, 4-39
schema, database, 2-10
scripts

see also SQL

SQL, generating, 3-8
security, 8-11

password encryption, 2-16
Select Classes dialog box, 2-14
SelectedFieldsLockingPolicy, 4-58
sequence information, setting, 4-5
sequence numbers

about, 4-36, B-20

Entity Beans, 4-37

native in database, 4-37

pre-allocation, 4-38

projects, 2-8
sequence table

about, 4-38
tutorial, B-21
sequencing

classes, B-24

non-native, B-24

setting, B-24
Sequencing tab, 2-8, B-22
Serialized Mapping button, 5-8
Serialized Object Mapping tab, 5-8
serialized object mappings

about, 5-1,5-8

creating, 5-8
server, Builder JDBC, B-4, B-5
Session, 5-9
session brokers

about, 8-5

adding sessions, 8-6

Session button, 8-7
Session Classes property sheet, 8-9
Session General property sheet, 8-8
sessions
adding to session broker, 8-6
advanced properties, 8-10
brokers, 8-5
creating, 8-7
default values, 8-7
errors, 8-3
remote, requirements, A-2

Sessions Editor. see OracleAS TopLink Sessions Editor

sessions, remote, A-2
sessions.xml file, 8-1
set, 6-7
setTableName () method, 4-73
setting

sequence table, B-21

sequencing, B-24
setValue () method, 6-7
setWrapperPolicy (), 4-20,4-56
single implementor interfaces, 4-48
soft cache weak identity map, 4-59
source control management

with OracleAS TopLink Mapping

Workbench, 1-19

see also team development
source table, reference, 3-7
SQL (DDL) creation scripts, B-16
SQL Creation Script dialog box, 3-8
SQL scripts

binding arguments, 4-14

generating, 3-8

generating from database tables, 3-8
SQL Server, sequence numbers, 4-37
SQL, using custom code, 4-72
stale data, avoiding, 4-56
starting the OracleAS TopLink Mapping

Workbench, 1-2

starting the OracleAS TopLink Sessions Editor
starting the workbench, B-4
Status bar, about, 1-3
status report, generating, 2-4
structure mappings

about, 7-1

example, 7-6

Java, 7-6

properties, 7-7
StructureMapping class, 7-6
subclasses, finding in inheritance, 4-43
Sybase, sequence numbers, 4-37

T

, 81

table files
creating in code, B-32
creating in OracleAS TopLink Mapping
Workbench, B-14
importing, B-16
merging, 1-21

Index-9

table generation properties, 2-10

table-class relationships, B-9, B-42

table-class, linking, B-18

tables
ADDRESS, B-3, B-40
creating in code, B-32
EMPLOYEE, B-3,B-39
EMPLOYEE2, B-40
LARGEPROJECT, B-41
mapping to descriptors, 4-5
multiple, 4-49
PHONENUMBER, B-3, B-40
primary key, 3-5
PROJ_EMP, B-41
PROJECT, B-41
RESPONS, B-41

tables, database
creating, B-14

creating in OracleAS TopLink Mapping

Workbench, B-14
importing, B-16
linking to classes, B-18
primary keys, B-20

target descriptor in aggregate object mappings,

target foreign key, 6-22
target table, reference, 3-7
team development, 1-18
TimestampLockingPolicy, 4-57
toolbars

about, 1-2,1-5,1-8
TopLink. see OracleAS TopLink
transactions, B-33
Transformation Mapping button, 5-10
Transformation Mapping tab, 5-10, B-63
transformation mappings

about, 5-1,5-9

creating, 5-10

example, 4-64,5-12,5-13

one-way, 5-13

tutorial, B-62
TransformationMapping class, 5-13
transparent indirection

about, 6-11

persistent class requirements, A-1

specifying, 6-11

troubleshooting, C-2
troubleshooting projects, 1-11, 2-1
tutorials

advanced, B-37

introductory, B-1
Type Conversion Mapping button, 5-5
Type Conversion Mapping tab, 5-5
type conversion mappings

about, 5-1,5-5

creating, 5-5

provided by direct-to-field mappings,

U

uni-directional relationships, 6-1

Index-10

unit of work, 6-24

conform query results, 4-6

updating methods in, 4-66
units of work

about, B-33

reading an object, B-36

using, B-35
updateObject (), 4-13
updating descriptors from ejb-jar.xml, 2-7
upgrading OracleAS TopLink Mapping Workbench

projects from prior versions, 2-3

URL for database login, 3-2
Use Indirection checkbox, 5-11, 6-12
useCollectionClass (Class), 6-5
useMapClass (Class, String), 6-5
useProxyIndirection (), 6-14
using source control management, 1-19

\'}

value holder indirection, C-1
value holders, 6-7, B-46
ValueHolderInterface class, 6-7,6-36, A-1
variable class relationships, interfaces, 4-45
Variable One-to-One Mapping button, 6-28
Variable One-to-one Mapping tab

Class Indicator Info, 6-29

General, 6-28

Query Key Associations, 6-28
variable one-to-one mappings

about, 6-25

creating, 6-27

interfaces, 4-48
VariableOneToOneMapping class, 6-25
Varray (Oracle). see array mappings
verification, one-to-one mappings, 6-24
version control, 1-23
version fields, 4-56,4-57
version locking policies, 4-57
VersionLockingPolicy, 4-57

w

warning icon, 1-10, 8-3
warnings and confirmations, preferences, 1-12
Warnings Preferences dialog box, 1-12
weak identity map, 4-59
web browser, specifying, 1-17
workbench preferences, 1-10
wrapper policy

about, 4-55

implementing in Java, 4-56
write-locking, 4-56
writing ejb-jar.xml, 2-19

X

XML
generating deployment, 2-17
logging, 1-11,2-1
XMLProjectReader class, 2-1

y4

zero-argument constructors
editing, 1-15

Index-11

Index-12

	Contents
	Send Us Your Comments
	Preface
	1 Understanding the OracleAS TopLink Mapping Workbench
	Starting the OracleAS TopLink Mapping Workbench
	Working with the OracleAS TopLink Mapping Workbench
	Using the Menus
	Menu Bar Menus
	Pop-Up Menus

	Using the Toolbars
	Standard Toolbar
	Mapping Toolbar
	OracleAS TopLink Sessions Editor Navigator Toolbar

	Using the Navigator Pane
	Using the Editor Pane

	Working with Workbench Preferences
	General Preferences
	Class Preferences
	EJB Preferences
	Database Preferences
	Help Preferences

	Working with the OracleAS TopLink Mapping Workbench in a Team Environment
	Using a Source Control Management System
	Merging Files
	Merging Project Files
	Merging Table, Descriptor, and Class Files

	Sharing Project Objects
	Managing the ejb-jar.xml File
	Working with Locked Files

	2 Understanding Projects
	Working with Projects
	Creating new Projects
	Opening Existing Projects
	Saving Projects
	Refreshing the Navigator Pane
	Generating the Project Status Report

	Working with Project Properties
	Working with General Project Properties
	Mapping EJB 2.0 Entities

	Working with Sequencing Properties
	Working with Default Properties
	Renaming Packages

	Working with Project Options
	Setting Default Advanced Properties

	Working with Classes
	Creating Classes
	Updating Classes
	Refreshing Descriptors with Dependent Classes

	Exporting Project Information
	Exporting Project to Java Source
	Exporting Deployment XML
	Exporting Table Creator Files
	Exporting Java Model Source

	Working with the ejb-jar.xml File
	Writing to the ejb-jar.xml File
	Reading from the ejb-jar.xml File

	3 Understanding Databases
	Working with Databases
	Database Properties
	Logging into the Database

	Working with Database Tables in the Editor Pane
	Working with Field Properties
	Setting a Primary Key for Database Tables
	Working with Reference Properties
	Creating Table References
	Creating Field References

	Generating Data from Database Tables
	Generating SQL Creation Scripts
	Generating Descriptors and Classes from Database Tables
	Generating EJB Entities from Database Tables
	Generating Tables on the Database

	4 Understanding Descriptors
	Working with Descriptors
	Understanding Persistent Classes
	Specifying Descriptor Types
	Mapping Descriptors
	Automapping Descriptors
	Generating Java Code for Descriptors

	Working with Descriptor Properties
	Setting Descriptor Information
	Setting Class Information
	Class Tab
	Attributes Tab
	Methods Tab

	Specifying Queries and Named Finders
	Custom SQL Queries
	Named Queries

	Building Expressions
	Adding Arguments

	Query Keys
	Specifying Query Keys

	Displaying EJB descriptor Information

	Working with Advanced Properties
	Amending Descriptors After Loading
	Specifying Events
	Specifying Identity Mapping
	Specifying Inheritance
	Creating a Root Class
	Creating Branch and Leaf Classes

	Specifying Optimistic Locking
	Specifying an Interface Alias

	Working with Primary Keys
	Setting a Primary Key for Descriptors

	Working with Sequencing
	Using Sequence Numbers with Entity Beans
	Using Native Sequencing
	Using Sequence Tables
	Pre-allocating Sequence Numbers
	Creating the Sequence Table on the Database

	Working with Inheritance
	Using Inheritance with EJBs
	Mapping Inherited Attributes in One Descriptor
	Supporting Inheritance Using One Table
	Supporting Inheritance Using Multiple Tables
	Finding Subclasses
	Providing a Class Indicator Field
	Understanding Root, Branch, and Leaf Classes in an Inheritance Hierarchy
	Specifying Primary Keys in an Inheritance Hierarchy
	Mapping Inherited Attributes in a Subclass

	Working with Interfaces
	Understanding Interface Descriptors
	Single Implementor Interfaces

	Implementing an Interface

	Working with Multiple Tables
	Specifying Multi-table Info
	Primary Keys Match
	Primary Keys are Named Differently
	Tables are Related by Foreign Key in Primary Table

	Working with a Copy Policy
	Setting the Copy Policy

	Working with Instantiation Policy
	Setting Instantiation Policy

	Working with a Wrapper Policy
	Setting the Wrapper Policy Using Java Code

	Working with Optimistic Locking
	Using Version Locking Policies
	Using Field Locking Policies
	Specifying Advanced Optimistic Locking Policies

	Working with Identity Maps
	Identity Map Size
	Design Guidelines
	Using Object Identity
	Caching Objects

	Working with Query Keys
	Automatically-generating Query Keys
	Using Query Keys in Interface Descriptors
	Relationship Query Keys
	Defining Relationship Query Keys by Amending a Descriptor

	Working with Events
	Registering an Event with a Descriptor
	Registering an Event
	Supported Events

	Working with Finders
	Working with Object-relational Descriptors
	Effect on OracleAS TopLink
	Databases OracleAS TopLink Supports
	Defining Object-Relational Descriptors

	Working with Mappings
	Working with Common Mapping Properties
	Specifying Direct Access and Method Access
	Setting the Access Type

	Specifying Read-Only Settings
	Defaulting Null Values
	Maintaining Bidirectional Relationships
	Specifying Field Names and Multiple Tables
	Specifying Collection Properties
	Specifying Mapping information in ejb-jar.xml File

	5 Understanding Direct Mappings
	Working with Direct Mappings
	Working with Direct-to-Field Mappings
	Creating Direct-to-Field Mappings

	Working with Type Conversion Mappings
	Creating Type Conversion Mappings

	Working with Object Type Mappings
	Creating Object Type Mappings

	Working with Serialized Object Mappings
	Creating Serialized Object Mappings

	Working with Transformation Mappings
	Creating Transformation Mappings
	Specifying Advanced Features Available by Amending the Descriptor

	6 Understanding Relationship Mappings
	Working with Relationship Mappings
	Specifying Private or Independent Relationships

	Working with Foreign Keys
	Understanding Foreign Keys
	Specifying Foreign Keys

	Working with a Container Policy
	Overriding the Default Container Policy

	Working with Indirection
	Understanding Indirection
	Using Value Holder Indirection
	Value Holder Indirection
	Specifying Indirection
	Changing Java Classes to Use Indirection

	Working with Transparent Indirection
	Specifying Transparent Indirection

	Working with Proxy Indirection
	Implementing Proxy Indirection in Java

	Optimizing for Queries
	Working with Aggregate Object Mappings
	Creating a Target Descriptor
	Creating an Aggregate Object Mapping

	Working with One-to-One Mappings
	Creating One-to-One Mappings
	Specifying Advanced Features Available by Amending the Descriptor

	Working with Variable One-to-One Mappings
	Specifying Class Indicator
	Specifying Unique Primary Key
	Creating Variable One-to-One Mappings

	Working with Direct Collection Mappings
	Creating Direct Collection Mappings

	Working with Aggregate Collection Mappings
	Working with One-to-Many Mappings
	Creating One-to-Many Mappings

	Working with Many-to-Many Mappings
	Creating many-to-many Mappings
	Specifying Advanced Features by Amending the Descriptor

	Working with Custom Relationship Mappings
	Creating Custom Mapping Queries in Java Code

	7 Understanding Object-Relational Mappings
	Working with Object-Relational Mappings
	Working with Array Mappings
	Implementing Array Mappings in Java
	Reference

	Working with Object Array Mappings
	Implementing Object Array Mappings in Java
	Reference

	Working with Structure Mappings
	Implementing Structure Mappings in Java
	Reference

	Working with Reference Mappings
	Implementing Reference Mappings in Java
	Reference

	Working with Nested Table Mappings
	Implementing Nested Table Mappings in Java
	Reference

	8 Understanding the OracleAS TopLink Sessions Editor
	Starting the OracleAS TopLink Sessions Editor
	OracleAS TopLink Sessions Editor Preferences

	Working with the OracleAS TopLink Sessions Editor
	Using the Navigator Pane
	Renaming Elements

	Understanding Configurations
	Working with Configurations
	Creating New Configurations
	Opening Existing Configurations
	Saving Configurations

	Working with Session Brokers
	Working with Sessions
	Working with Session Properties
	Setting General Properties
	Setting Logging Properties

	Working with Advanced Session Properties
	Setting Login Properties
	Setting Clustering Properties

	Working with Connection Pools
	Setting General Properties
	Setting Login Properties

	Working with the Source

	A Object Model Requirements
	Persistent Class Requirements
	Constructor Requirements
	Remote Session Requirements

	B Tutorials
	Introductory Tutorial
	Overview

	Creating the Database Schema
	Creating a New Project
	Setting the Project’s Classpath

	Enabling Your Java Classes
	Generating the Class Definitions

	Logging Into the Database
	Creating Tables
	Creating Tables Using the OracleAS TopLink Mapping Workbench
	Creating the Table Definitions
	Creating the Tables on the Database

	Importing Tables from the Database

	Mapping Classes and Tables in the Descriptor
	Mappings
	Descriptors

	Mapping Classes to Tables
	Preparing the Primary Keys
	Setting the Sequence Table
	Implementing Direct-to-Field Mappings
	Setting the Sequence Name
	Creating One-to-One Mappings Between Objects
	Foreign Key References

	Creating One-to-Many Mappings

	Setting Up Database Sessions
	Logging Into a Database
	Creating the Tables in Code

	Using Descriptors in an Application
	Transactions and Units of Work
	Reading and Writing Java Class Instances
	Using a Unit of Work to Write an Object
	Using a Session to Read an Object

	Conclusion
	Advanced Tutorial
	Creating the Database Schema
	Creating a New Project
	Mapping Classes to Tables

	Using the Automap Tool
	Implementing Indirection
	Preparing Java Code for Indirection
	Implementing Indirection in the OracleAS TopLink Mapping Workbench
	Implementing Indirection in the Tutorial

	Implementing a One-to-One Self Relationship
	Creating Other One-to-one Mappings

	Implementing a One-to-Many Self-Relationship
	Creating Other One-to-Many Mappings

	Using Multiple Tables
	Implementing Object Type Mapping
	Implementing an Aggregate Object
	Implementing a Direct Collection Mapping
	Implementing a Many-to-Many Mapping
	Implementing Inheritance
	Implementing a Transformation Mapping
	Mapping the Remaining Attributes
	Completing the Tutorials
	Generating Code

	C Troubleshooting
	Error Messages
	Classpath Issues
	Database Connections
	Troubleshooting Descriptors
	Troubleshooting Known Issues
	Icon Size
	Improper Set Method for Array Type Attributes
	Changes to the Interface Descriptor do not Update Properly
	Using the JAWS Screen Reader

