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The size of the Earth
Eratosthenes (275-195 B.C.) head of the famous library at Alexandria in Egypt made the

first measurement of the Earth’s size. His demonstration is one of the most beautiful ever
performed. Because it so superbly illustrates how science links observation and logic.

Astronomers were very acquainted with the yearly movement of the Sun and could predict
accurately the times of the solstices and equinoxes. Eratosthenes, a geographer as well as
astronomer, heard that lying to the south, Syene (the present city of Aswan), the Sun would be
directly overhead at noon and cast no shadow. Sun shone exactly down a well. Knowing the
distance between Alexandria and Syene and the power of geometry, he realized he could deduce
the circumference of the Earth. He analyzed the problem as follows:

• Sun’s rays are parallel lines Because the Sun is far away from the Earth, its light travels
in parallel rays toward the Earth.

• Parallel lines form equal angles Imagine drawing a straight line from the center of the
Earth outward so that it passes vertically through the Earth’s surface in Alexandria. The
angle between that line and the Sun’s rays in Alexandria is the same as the angle between
that line and the line from the center of the Earth up through the well in Syene.

• The cities Alexandria and Syene are in the same longitude.

He measured that angle between the direction to the Sun and the vertical to the ground with
sticks and a protractor to be 7.2◦.
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7.2
Well in Syne

Obelisk in Alexandria

a

Since he knew the distance between Alexandria and the well in Syene, to be 5000 stadia (measure
or norm used to be stadium), now 800kms, the circumference L of the Earth is 50 times this
distance. That is 40000kms. (actual value 40074kms)

7.2
360

=
800
L

.
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Pythagorean Theorem Pythagoras of Samos (380-300 B.C.)
Algebraic identities were verified by geometric figures. For example, (a + b)2 = a2 + 2ab + b2.

a2 ab

ab b2

a

b

a b

In a right triangle with legs of length a and b and hypothenuse of length c, we have

c2 = a2 + b2.

The converse is also true, it must be a right triangle.
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The figure is a square with side lengths a + b. Inside the square is a rhombus PQRS with side
length c. We claim the rhombus is a square. Notice that the triangles inside the square are
congruent. The interior angle at P is α + γ + β = 180◦ since α + β = 90◦, acute angles in a
right triangle, so γ = 90◦. Thus, the rhombus is a square. Now, we write the area of the outer
square as a sum of 4 congruent triangles and inner square,

(a + b)2 = c2 + 4
1
2
ab ⇐⇒ a2 + b2 = c2.

Next we give another proof for the theorem. In the figure, a square of side length c is partitioned
with a square of side length a− b in the center. Complete the proof.
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The Pythagorean theorem given in the Euclid’s (about 325-265 B.C.) “Elements” is based
on the following figure.
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The big square is divided into two rectangles whose areas are pc and qc. We must show that
a2 = pc and b2 = qc. Corresponding sides of these similar triangles are the proportions

p

a
=

a

c
and

q

b
=

b

c
.

Hence, we have
a2 + b2 = pc + qc = c(p + q) = c2.

The book by Elista Scott Loomis “Pythagorean Proposition” contains 370 proofs of the
theorem.

Euclid’s most famous work is his treatise on mathematics The Elements. The book was a compilation
of knowledge that became the centre of mathematical teaching for 2000 years. Probably no results in
The Elements were first proved by Euclid but the organisation of the material and its exposition are
certainly due to him. In fact there is ample evidence that Euclid is using earlier textbooks as he writes
the Elements since he introduces quite a number of definitions which are never used such as that of an
oblong, a rhombus, and a rhomboid.

The Elements begins with definitions and five postulates. The first three postulates are postulates
of construction, for example the first postulate states that it is possible to draw a straight line between
any two points. These postulates also implicitly assume the existence of points, lines and circles and
then the existence of other geometric objects are deduced from the fact that these exist. There are other
assumptions in the postulates which are not explicit. For example it is assumed that there is a unique
line joining any two points. Similarly postulates two and three, on producing straight lines and drawing
circles, respectively, assume the uniqueness of the objects the possibility of whose construction is being
postulated.

The fourth and fifth postulates are of a different nature. Postulate four states that all right angles
are equal. This may seem ”obvious” but it actually assumes that space in homogeneous - by this we
mean that a figure will be independent of the position in space in which it is placed. The famous fifth, or
parallel, postulate states that one and only one line can be drawn through a point parallel to a given line.
Euclid’s decision to make this a postulate led to Euclidean geometry. It was not until the 19th century
that this postulate was dropped and non-euclidean geometries were studied.
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We describe all the integer solutions to a2+b2 = c2; The Pythagorean triples (a, b, c). Almost
everybody is familiar with 32 + 42 = 52. The history of the Pythagorean triples goes back to
Babylonians about 1800 B.C. Chine about 200 B.C. and India about 500 B.C. It is interesting
to note that Babylonians knew the triple (12709,13500,18541).
Theorem Pythagorean triples are the integer multiples of triples of the from

(2rs, r2 − s2, r2 + s2), or (r2 − s2, 2rs, r2 + s2)

where r, s are integers.
Proof Since (2rs)2 + (r2 − s2)2 = (r2 + s2)2 are indeed Pythagorean triples. Notice that all
integer multiples of the triples are also in the set since if we multiply each element of such a triple
by n, then we multiply the equality by n2 on both sides. We must prove that this characterizes
every Pythagorean triple. Suppose a, b, c are integers with a2 + b2 = c2 and b, c 6= 0. We can
normalize this by dividing by c2 and hence

x2 + y2 = 1, where x =
a

c
, y =

b

c
.

The graph of the latter equation is the unit circle, that is the circle of radius 1 with center at
the origin. Let us call a point (x, y) in the plane a rational point if both its coordinates are
rational numbers. Pythagorean triples are essentially the same as that of finding all rational
points (x, y) on the unit circle. (First quadrant if both x, y are positive) It is helpful to describe
the circle using parametric equations, where the parameter t is the slope of the line from (−1, 0)
to (x, y).

.......................

.......................

........................

.......................

.......................

......................

......................

.......................
.......................

........................
....................................................................................................................

......................
.

.................
......

..............
........

............
..........

............
...........

...........
...........
.

...........
...........
..

..........
..........
...

..........

..........

...

..........

..........

...

..........
..........
...

...........
...........
..

...........
...........
.

............
...........

............
..........

..............
........

.................
......

......................
.

........................ ....................... ....................... ....................... .......................
........................

.......................
.......................

......................

......................

.......................

.......................

........................

.......................

.......................

(−1, 0)

(x, y)

r

r

The slope of the line is t = y/(1 + x) and is a rational number because both x, y are rational
numbers. Substituting y = t(1 + x) into x2 + y2 = 1 gives x2 + t2(1 + x)2 = 1 which we rewrite
as

x2 +
2t2

1 + t2
x +

t2 − 1
1 + t2

= 0.

We observe that the first coordinate x, of a point on both the line and the circle must satisfy
the above quadratic equation. If the roots are, say α and β, then we have

x2 +
2t2

1 + t2
x +

t2 − 1
1 + t2

= (x− α)(x− β).

The product of the roots is

αβ =
t2 − 1
1 + t2

.

From the point (−1, 0), since x = −1 is one of the roots the other root must be (1− t2)/(1 + t2).
Again, notice that this root must be rational, since t is rational. Let t = s/r in lowest terms.
We obtain the solution with respect to s, r,

x =
1− t2

1 + t2
=

1− s2/t2

1 + s2/t2
=

r2 − s2

r2 + s2
and y = t(1 + x) =

s

r

2r2

r2 + s2
=

2rs

r2 + s2
.
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This gives us the Pythagorean triple

(r2 − s2, 2rs, r2 + s2)

where the ratios equal the original ratios a/c and b/c. Because the ratios are the same, the
original triple (a, b, c) is a multiple of this triple by a rational number q. If q is an integer, then
we have the desired conclusion. Otherwise, the triple has a common factor n 6= ±1. Hence n
also divides the sum and difference of r2 − s2 and r2 + s2. Those are 2r2 and 2s2 respectively.
Since r and s have no common factors, this requires n = ±2. Hence the terms of the triple are
all even and r, s must both be odd. Now let R = (r + s)/2 and S = (r − s)/2. We compute

2RS =
r2 − s2

2
, R2 − S2 = rs, R2 + S2 =

r2 + s2

2

and hence (a, b, c) = (2RS, R2 − S2, R2 + S2) which is again the desired form.
This is the elegant strategy of Diophantus (about 200 B.C. in Alexandria) .
In the 1630’s P. Fermat (1601,1675) wrote in the margin of his copy of a book by Diophantus,

. . . it is impossible for a cube to be written as a sum of two cubes or a fourth power to
be written as a sum of two fourth powers or, in general, for any number which is a power
greater than the second to be written as a sum of two like powers. I have discovered a truly
marvellous demonstration of this proposition which this margin is too narrow to contain.

Fermat never wrote a proof except for n = 4. The statement “For every n > 2, there are no
positive integers a, b, c with an +bn = cn ” is known as Fermat’s Last Theorem. Many important
techniques were developed in unsuccessful attempts to prove it. At last, in 1995, Andrew Wiles
with the help of Richard Taylor succeeded in finding a proof that had eluded mathematicians
over 350 years. His paper appeared in “Modular Elliptic Curves and Fermat’s Last Theorem”,
Annals of Mathematics, 141, (1995), 443-551.
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